19.01.2014 Views

OUTGASSING OF HYDROGEN M. Leisch

OUTGASSING OF HYDROGEN M. Leisch

OUTGASSING OF HYDROGEN M. Leisch

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Institute of Solid State Physics<br />

<strong>OUTGASSING</strong> <strong>OF</strong> <strong>HYDROGEN</strong><br />

Manfred <strong>Leisch</strong><br />

Institute of Solid State Physics<br />

Graz University of Technology, Austria<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

1


Institute of Solid State Physics<br />

Contributions by<br />

TU Graz:<br />

A. Stupnik (STM, AP)<br />

F. Lackner (AP)<br />

P. Frank, H. Plank, E. List (AFM)<br />

A. Winkler (TDS)<br />

K.D. Rendulic (TDS)<br />

R. Schennach (SurfChem)<br />

R. Dobrozemsky (TU Wien)<br />

J. Setina (IMT Ljubljana)<br />

E. Hedlund (Uppsala Univ.)<br />

L. Westerberg (Uppsala Univ.)<br />

A. Juan (Bahia Blanca, Argentina)<br />

Zukunftsfonds des Landes Steiermark<br />

Project No 119<br />

WS&M Software by Nanotec (E)<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

2


Institute of Solid State Physics<br />

Background<br />

Accelerators<br />

Mainspring for<br />

achieving extremly<br />

low pressures (XHV)<br />

(Images copyright CERN)<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

3


Institute of Solid State Physics<br />

Materials<br />

Austenitic stainless steel (Type AISI 304 and 316) is one of the<br />

most important construction materials in UHV and XHV<br />

– corrosion resistant and chemically inert<br />

– nonmagnetic<br />

– standard machining and welding procedures<br />

– relatively cheap<br />

– negligible vapor pressure at room temperature<br />

– negligible permeation of atmospheric gasses (fcc lattice)<br />

but ….<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

4


Institute of Solid State Physics<br />

Hydrogen as impurity<br />

Solubility of Hydrogen in stainless steel<br />

The H content in standard austenitic<br />

stainless steel is about 1 ppm in weight<br />

(~ 56 at ppm).<br />

Amount equates ~ 0.1 mbar·l / cm 3 ,<br />

at typical outgassing rates of<br />

10 -11 mbar.l/cm 2 .s from 2 mm wall<br />

source for more than 50 years<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

5


Institute of Solid State Physics<br />

Reduction of outgassing<br />

Is essential for obtaining ultimate pressures<br />

1. Decreasing the H Concentration:<br />

-- Bakeout and high temperature bakeout (vacuum firing)<br />

2. Hindering H Desorption from the Surface:<br />

– Treatments to produce barrier layer on the surface: air bakeout<br />

– Passive coatings on the surface<br />

– Active coatings (NEG)<br />

[1] P. A. Redhead: Extreme high vacuum, CERN Report No 99-05, 213 (1999)<br />

[2] R. Dobrozemsky: Our present understanding of outgassing, EVC-9, Paris (2005)<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

6


Institute of Solid State Physics<br />

Decreasing the concentration<br />

Vacuum firing<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

7


Institute of Solid State Physics<br />

Mechanism for H 2 outgassing<br />

Diffusion in the bulk– Recombinative desorption from surface<br />

Polany – Wigner Equation:<br />

- dN/dt = ν (Θ) 2 exp (-E des / kT)<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

8


Institute of Solid State Physics<br />

Diffusion limited outgassing (DLM)<br />

described by Fick‘s equation<br />

Kinetic models<br />

Recombination limited outgassing<br />

(RLM)<br />

Flat bulk concentration in pure RLM<br />

with recombination coefficient<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

9


Institute of Solid State Physics<br />

Documented work<br />

Calder and Lewin (1969):<br />

[R. Calder and G. Lewin, Brit. J. Appl. Phys. 18, 1459 (1969)]<br />

– poor correlation between experiment and calculation (diffusion limited<br />

outgassing expected)<br />

Moore (1995):<br />

[B. C. Moore, J. Vac. Sci. Technol. A 13(3), 545 (1995)]<br />

– Calculations of H concentration profile support recombination limited<br />

outgassing<br />

L. Westerberg (1997):<br />

[L. Westerberg et al., Vacuum 48, 771 (1997)]<br />

- Assignment of difference in the outgassing rate to different transport properties<br />

due to bulk states.<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

10


Institute of Solid State Physics<br />

Documented work<br />

Jousten (1998):<br />

[K. Jousten, Vacuum 49, 359 (1998)]<br />

– There is a significant influence of the surface on outgassing<br />

Fremery (1999):<br />

[J. K. Fremery, Vacuum 53, 197 (1999)]<br />

– At low H concentration in the bulk outgassing is limited by surface<br />

recombination<br />

B. Zajec, V. Nemanic (2001):<br />

[B. Zajec, V. Nemanic, Vacuum 61, 447 (2001)]<br />

- neither DLM nor RLM fits, most H strongly bound in traps, precipitates,<br />

surface states, just a fraction in the interstitial state<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

11


Institute of Solid State Physics<br />

Documented work<br />

J.P. Bacher et al. (2003):<br />

[J.-P. Bacher et al. JVST A21(2003)167]<br />

- TDS study (up to 1200°C) on different SS types and treatments (vac<br />

firing, air bake, vac bake) gives reason for oxide-layer traps, lattice<br />

defects due to precipitates, recrystallization<br />

Paolo Chiggiato (2006) [CAS Platjo d‘Aro, Spain]<br />

The outgassing of H after vacuum firing can be reasonable described by a diffusion<br />

model only if the pressure of H during the treatment is taken into account<br />

J. Setina (2006)<br />

[53rd AVS Symposium, San Francisco 2006 ]<br />

- Outgassing measurements (250° C, 300 h) and<br />

model calculations solved with FEM support RLM<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

12


Institute of Solid State Physics<br />

Surface Analysis<br />

Recombination of atomic Hydrogen to the Hydrogen molecule is<br />

the essential step.<br />

Recombination process strongly relates on surface morphology<br />

• surface structure of the material?<br />

• surface composition of the material?<br />

Application of Surface characterization tools like<br />

TDS, AES, XPS, AFM, STM and Atom Probe<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

13


Institute of Solid State Physics<br />

Thermal Desorption Spectroscopy<br />

Useful technique to provide insight on thermodynamics and kinetics of gas –<br />

surface reactions (surface states, sticking coefficient, activation energy)<br />

[J.-P. Bacher et al. JVST A21(2003)167]<br />

TDS study (up to 1200°C) on different SS types and treatments (vac<br />

firing, air bake, vac bake) gives reason for oxide-layer traps, lattice<br />

defects<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

14


Institute of Solid State Physics<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

15


Institute of Solid State Physics<br />

Surface Imaging<br />

Characterization of surface morphology<br />

Surface roughness<br />

Grain boundary structure<br />

Surface reconstruction<br />

Surface defects<br />

Atomic level information by STM<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

16


Institute of Solid State Physics<br />

Experimental setup<br />

Preparation<br />

Chamber<br />

• QMA<br />

• sample<br />

heating stage<br />

• Sputtergun<br />

• Auger CMA<br />

STM<br />

• OMICRON<br />

STM 1<br />

Atom Probe<br />

• FIM<br />

• T<strong>OF</strong><br />

Main<br />

Chamber<br />

• Tip heating<br />

stage<br />

• Tip sputter<br />

gun<br />

• Vacuum<br />

lock for<br />

transfer<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

18


Institute of Solid State Physics<br />

Samples for AFM and STM study<br />

304L stainless steel<br />

C Mn P S Si Cr Ni Mo<br />


Institute of Solid State Physics<br />

Grain boundary structure<br />

100 nm<br />

100 nm<br />

304L 3hours@300°C<br />

304L 15min@1000°C<br />

Surface morphology after low temperature bakeout and after vacuum firing<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

20


Institute of Solid State Physics<br />

3hours@300°C<br />

Grain boundary structure<br />

15min@1000°C<br />

200<br />

600<br />

150<br />

500<br />

Z[nm]<br />

100<br />

Z[nm]<br />

400<br />

300<br />

50<br />

200<br />

100<br />

0<br />

0<br />

0.5<br />

1<br />

1.5<br />

2<br />

2.5<br />

3<br />

3.5<br />

0<br />

0<br />

2<br />

4<br />

6<br />

8<br />

10<br />

X[µm]<br />

X[µm]<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

21


Institute of Solid State Physics<br />

Grain boundary structure<br />

Line profile show Δh up to 150 nm<br />

140<br />

120<br />

100<br />

Z[nm]<br />

80<br />

60<br />

40<br />

20<br />

1 µm<br />

0<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

X[µm]<br />

AFM micrograph 316L (B) 20min@1000°C<br />

(10x10µm², derivated image)<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

22


Institute of Solid State Physics<br />

Grain boundary structure<br />

Line profile show Δh up to 150 nm<br />

AFM micrograph 316L (U) 1h@1100°C<br />

(8.6x8,6µm², derivated image)<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

23


Institute of Solid State Physics<br />

Grain boundary structure<br />

Line profile show Δh up to 70 nm<br />

70<br />

60<br />

50<br />

Z[nm]<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0<br />

0.2<br />

0.4<br />

0.6<br />

0.8<br />

1<br />

X[µm]<br />

STM micrograph 316L (U) 1h@1100°C<br />

(1x1 µm², 3D image, top view)<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

24


Institute of Solid State Physics<br />

Precipitates<br />

b<br />

c<br />

200 nm 200 nm<br />

100 nm<br />

100 nm<br />

304L (1000x1000nm², U=-0.5V, I=0.1nA) 20min@1000°C<br />

Nanoprecipitate in reconstructed surface<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

25


Institute of Solid State Physics<br />

Facets and atomic steps<br />

Line profile show Δh up to 25 nm<br />

AFM micrograph 316L (U) 48h@450°C<br />

(2.2x2.2 µm², derivated image)<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

26


Institute of Solid State Physics<br />

Facets and atomic steps<br />

304L 15min@1000°C<br />

(1000x1000nm², U=-0.5V, I=0.1nA)<br />

(1000x1000nm², U=-0.5V, I=0.1nA)<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

27


Institute of Solid State Physics<br />

Facets and atomic steps<br />

25<br />

20<br />

Z[nm]<br />

15<br />

10<br />

5<br />

1 µm<br />

0<br />

0<br />

0.5<br />

1<br />

1.5<br />

2<br />

X[µm]<br />

AFM micrograph 316L (B) 20min@1000°C<br />

(8x8µm², derivated image)<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

28


Institute of Solid State Physics<br />

Facets and atomic steps<br />

100<br />

80<br />

Z[nm]<br />

60<br />

40<br />

20<br />

0.5 µm<br />

0<br />

0<br />

200<br />

400<br />

600<br />

800<br />

1000<br />

X[nm]<br />

AFM micrograph 316L (B)<br />

20min@1000°C<br />

(2x2µm², derivated image)<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

29


Institute of Solid State Physics<br />

Facets and atomic steps<br />

6<br />

5<br />

4<br />

Z[nm]<br />

3<br />

2<br />

1<br />

0<br />

0<br />

50<br />

100<br />

150<br />

200<br />

250<br />

X[nm]<br />

2<br />

1.5<br />

Z[nm]<br />

1<br />

0.5<br />

STM 316L 20min@1000°C<br />

0<br />

0<br />

50<br />

100<br />

150<br />

(1000x1000nm², U=-0.5V, I=0.1nA)<br />

X[nm]<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

30


Institute of Solid State Physics<br />

304L 20min@1000°C<br />

Facets and atomic steps<br />

(500x500nm², U=-0.5V, I=0.1nA)<br />

(300x300nm², U=-0.5V, I=0.1nA)<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

31


Institute of Solid State Physics<br />

Role of stepped surface<br />

(111) terraces<br />

(110) faceted<br />

The bunched steps and facets offer preferred surface sites for Hydrogen recombination<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

32


Institute of Solid State Physics<br />

Electronic structure on stepped surface<br />

Tersoff (1981):<br />

Calculations for flat and stepped Ni (111) surfaces show that sites of<br />

highest coordination have a less completely filled d band and tend to be the<br />

most active sites on a surface.<br />

Site coord. nr. ∆n total ∆n sp ∆n d<br />

bulk 12 0 0 0<br />

d<br />

b<br />

a<br />

c<br />

surface 9 -0.11 -0.29 0.18<br />

atom a 7 -0.18 -0.49 0.31<br />

step<br />

atom b 7 -0.18 -0.50 0.32<br />

atom c 11 -0.04 -0.08 0.04<br />

atom d 10 -0.08 -0.19 0.11<br />

∆n… change in total electron occupation (with respect to the bulk) for s, p<br />

and d electrons<br />

[1] J. Tersoff and L. M. Falicov, Phys. Rev. B 24 (2), 754 (1981)<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

33


Institute of Solid State Physics<br />

304L 20min@1000°C<br />

STM images show vacancies<br />

(300x300nm², U=-0.1V, I=0.1nA)<br />

(10x10nm², U=-0.1V, I=0.1nA)<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

34


Institute of Solid State Physics<br />

Role of vacancies<br />

Recently performed theoretical studies and simulations<br />

on the interaction of hydrogen with lattice<br />

imperfections by Alfredo Juan provide a new insight.<br />

Energy calculations using ASED method (Atom<br />

Superposition and Electron Delocalization) result in<br />

lower energy levels in tetrahedral sites in Fe<br />

vacancies*.<br />

Surface and subsurface defects are forming traps with<br />

lower energetic levels<br />

* D. Rey Saravia, A. Juan, G. Brizuela, S. Simonetti, J Hydrogen Energy 34(2009)8302<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

35


Institute of Solid State Physics<br />

Role of vacancy<br />

Alfredo Juan, 17th Conf. on Materials, Portoroz, 2009<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

36


Institute of Solid State Physics<br />

STM close ups<br />

304L (10x10nm², U=-0.1V, I=0.1nA)<br />

Comparison: Vanadium<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

37


Institute of Solid State Physics<br />

Comparison TDS on V (100) surface<br />

ΔE v<br />

G. Krenn et. al. Surface Sci 445(2000)343<br />

Surface defects are channels for H diffusion and sites for recombination<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

38


Institute of Solid State Physics<br />

Effect of pinhole<br />

Pinhole gas throughput is strongly enhanced by lateral diffusion<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

39


Institute of Solid State Physics<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

40


Institute of Solid State Physics<br />

From: Paolo Chiggiato, CAS 2006 Platjo d‘Aro, Spain<br />

Surface composition<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

41


Institute of Solid State Physics<br />

Surface inspection by Auger<br />

304L after bakeout 3h@300°C<br />

after vacuum firing 5min@1000°C<br />

Enrichment: P, S, Fe, Ni<br />

Depletion: C, N, O, Cr<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

42


Institute of Solid State Physics<br />

Analysis of surface composition<br />

AES gives sign for slight enrichment of Ni and<br />

depletion of Cr but due to information depth of this<br />

technique composition of topmost layer almost<br />

uncertain.<br />

Atom probe provides true atomic layer composition.<br />

Quantitative analysis simply by counting of the field<br />

evaporated ions.<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

43


Institute of Solid State Physics<br />

Atom probe depth profiling analysis<br />

Samples<br />

Samples were cut by low speed<br />

diamond saw from stainless<br />

steel samples (needles 0.3mm<br />

x 0.3mm), electropolished to<br />

fine tips (tip radius >10nm) and<br />

mounted on Mo heating loop.<br />

Thermal treatment:<br />

– vacuum firing in situ<br />

by resistive heating<br />

– Temperature control<br />

by micro pyrometer<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

44


Institute of Solid State Physics<br />

Field ion imaging and atom probe analysis<br />

Field ion image of a vacuum fired 304 stainless steel<br />

(1 . 10 -5 mbar Ne, U=10kV, T=40K)<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

45


Institute of Solid State Physics<br />

Atom probe principle<br />

Pulsed field desorption of individual ions, mass from time-of-flight, lateral position<br />

from screen, 3D reconstruction of probed volume from data set<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

46


Institute of Solid State Physics<br />

3D atom probe result before vacuum firing<br />

Cr and Ni distribution in space<br />

(Fe matrix not displayed)<br />

Probed volume ca. 9x9x5 nm 3<br />

Combined features of Cr and Ni<br />

• Cr<br />

• Ni<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

47


Institute of Solid State Physics<br />

3D atom probe result before vacuum firing<br />

Depth profile of a 302 stainless steel sample without thermal treatment<br />

Measured bulk composition close to nominal composition.. (200 ions<br />

correspond to one atomic layer).<br />

100<br />

%<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 2 4 6 8 10 12 14 16 18<br />

atomic layer<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

Cr<br />

Ni<br />

Fe<br />

48


Institute of Solid State Physics<br />

3D atom probe result after vacuum firing<br />

%<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 2 4 6 8 10 12<br />

atomic layer<br />

Cr<br />

Ni<br />

Fe<br />

Depth profile of a 304 stainless steel sample after vacuum firing<br />

(20s@ 900°C).<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

49


Institute of Solid State Physics<br />

Atom probe results<br />

• After vacuum firing an enrichment of Nickel was found within the<br />

first atomic layer.<br />

• Chromium depletion on the first atomic layer after vacuum firing.<br />

• Thermodynamic model calculation of first atomic layer<br />

composition gives equalitative explanation for behavior.<br />

• Consequences of Ni enrichment on surface?<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

50


Institute of Solid State Physics<br />

Sticking coefficients from TDS<br />

H.F. Berger et. al. Surface Sci 251/252(1991)882 A. Winkler et. al. I Rev Phys Chem 11(1992)101<br />

Nearly 10x higher sticking coefficients on Ni!<br />

Recombination of H is promoted<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

51


Institute of Solid State Physics<br />

•Atom Probe show segregation of Ni<br />

accompanied by slight Cr depletion.<br />

•The steps and facets provide still a<br />

considerable number of active sites<br />

which can promote the recombination of<br />

hydrogen.<br />

•Vacancies give reason for subsurface<br />

states which act as traps for H.<br />

•This surface and subsurface states may<br />

control the outgassing behaviour.<br />

•From the look on the surface: In all<br />

probability diffusion to the surface may<br />

be the limiting process.<br />

0.1 µm<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

52


Institute of Solid State Physics<br />

Hindering the desorption<br />

• Airbake<br />

• Passive Layers<br />

• Active Layers<br />

• Internal gettering – new materials<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

53


Institute of Solid State Physics<br />

Air bakeout<br />

Such processing is reported to decrease hydrogen diffusion<br />

rate by 10 3 times (D.G. Bills, JVST 6(1969)166)<br />

Air bakeout 38h@450° C and in-situ bakeout 168h@150°C<br />

(Bernardini et al.) results in:<br />

Question arises is benefit of treatment due to hydrogen<br />

depletion or not?<br />

TDS on air baked samples show H peak shift<br />

Hydrogen trapped by oxide layer<br />

Extraction measurements gives reason for H depletion<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

54


Institute of Solid State Physics<br />

Passive barriers<br />

Deposited thin films (Al2O3, BN, TiN, ZrO etc.) should entirely block<br />

Hydrogen outgassing<br />

Experimental results have shown that only partial reduction of the flux is<br />

attained.<br />

Attributed to defects on the coating (pinholes)<br />

Pinhole gas throughput is strongly enhanced by lateral diffusion<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

55


Institute of Solid State Physics<br />

Active barriers<br />

Active barriers absorb H exothermically (negative<br />

solution enthalpy). They should absorb the H atoms<br />

coming from the substrate.<br />

Application of non evaporable getter (NEG) layers e.g.<br />

sputter-deposited Ti-Zr-V alloys.<br />

Potentiality of active barriere is obtained only after<br />

surface activation (activation e.g. 24h@180°C).<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

56


Institute of Solid State Physics<br />

Other materials<br />

Titanium Chambers:<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

57


Institute of Solid State Physics<br />

Materials on ITER<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

58


Institute of Solid State Physics<br />

Complex system<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

59


Institute of Solid State Physics<br />

Challenge for the future<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

60


Institute of Solid State Physics<br />

The End<br />

© ITER.org<br />

Thank you for your<br />

attention<br />

Professor Manfred <strong>Leisch</strong> Horst Cerjak, 19.12.2005 63rd IUVSTA Workshop Avila September 17, 2010<br />

61

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!