19.01.2014 Views

Effects of edible chitosan- linseed mucilage coating on quality and ...

Effects of edible chitosan- linseed mucilage coating on quality and ...

Effects of edible chitosan- linseed mucilage coating on quality and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>edible</str<strong>on</strong>g> <str<strong>on</strong>g>chitosan</str<strong>on</strong>g>- <str<strong>on</strong>g>linseed</str<strong>on</strong>g> <str<strong>on</strong>g>mucilage</str<strong>on</strong>g> <str<strong>on</strong>g>coating</str<strong>on</strong>g> <strong>on</strong> <strong>quality</strong> <strong>and</strong> shelf life <str<strong>on</strong>g>of</str<strong>on</strong>g> freshcut<br />

strawberry<br />

Laura Eugenia Pérez Cabrera a , Gloria Cristina Díaz Narváez a , Alberto Tecante Cor<strong>on</strong>el b , Chelo G<strong>on</strong>zález<br />

Martínez c<br />

a Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Food Technology, Universidad Autónoma de Aguascalientes, Aguascalientes, México<br />

(leperez@correo.uaa.mx)<br />

b Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Food <strong>and</strong> Biotechnology, Universidad Naci<strong>on</strong>al Autónoma de México, Ciudad de México<br />

c Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Food Technology, Universidad Politécnica de Valencia, Valencia, Spain<br />

ABSTRACT<br />

The increment <strong>on</strong> c<strong>on</strong>sumer dem<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> high <strong>quality</strong> foods <strong>and</strong> the c<strong>on</strong>cern <str<strong>on</strong>g>of</str<strong>on</strong>g> the envir<strong>on</strong>ment deteriorati<strong>on</strong><br />

have forced to the food processors to reduce disposable packaging waste <strong>and</strong> have led to increase research<br />

interest <strong>on</strong> <str<strong>on</strong>g>edible</str<strong>on</strong>g> films <strong>and</strong> <str<strong>on</strong>g>coating</str<strong>on</strong>g>s. Edible <str<strong>on</strong>g>coating</str<strong>on</strong>g>s provide an additi<strong>on</strong>al protective <str<strong>on</strong>g>coating</str<strong>on</strong>g> fruits <strong>and</strong><br />

vegetables minimally processed, which is equivalent to the technological impact <str<strong>on</strong>g>of</str<strong>on</strong>g> a modified atmosphere,<br />

representing an alternative to c<strong>on</strong>servati<strong>on</strong>, coupled with an envir<strong>on</strong>ment friendly method. The objective <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this study was evaluated the effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>edible</str<strong>on</strong>g> <str<strong>on</strong>g>chitosan</str<strong>on</strong>g>-<str<strong>on</strong>g>linseed</str<strong>on</strong>g> <str<strong>on</strong>g>mucilage</str<strong>on</strong>g> <str<strong>on</strong>g>coating</str<strong>on</strong>g>s to extend the shelflife<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> strawberries minimally processed. Edible <str<strong>on</strong>g>coating</str<strong>on</strong>g>s made with flaxseed <str<strong>on</strong>g>mucilage</str<strong>on</strong>g>, <str<strong>on</strong>g>chitosan</str<strong>on</strong>g> 1%, lactic<br />

acid 0.5% <strong>and</strong> Glycerol 0.6%. It dipped strawberries, washed <strong>and</strong> sanitized in the <str<strong>on</strong>g>edible</str<strong>on</strong>g> <str<strong>on</strong>g>coating</str<strong>on</strong>g>s <strong>and</strong> stored<br />

at 10 ° C to facilitate dry, then were packed in polystyrene bags at 4 ° C. Uncoated strawberries were used as<br />

a blank <strong>and</strong> covered strawberries without <str<strong>on</strong>g>chitosan</str<strong>on</strong>g> in the formulati<strong>on</strong> <strong>and</strong> c<strong>on</strong>trol. Were analyzed respirati<strong>on</strong><br />

rate, colour, decay rate, texture, microbial growth <strong>and</strong> weight loss at 0 days <strong>and</strong> during storage (20 days). The<br />

<str<strong>on</strong>g>edible</str<strong>on</strong>g> <str<strong>on</strong>g>coating</str<strong>on</strong>g> samples with <str<strong>on</strong>g>chitosan</str<strong>on</strong>g> in its formulati<strong>on</strong>, have a significantly lower compared with c<strong>on</strong>trol RR<br />

to 0 days. The colour <strong>and</strong> firmness <str<strong>on</strong>g>of</str<strong>on</strong>g> the strawberries with <str<strong>on</strong>g>edible</str<strong>on</strong>g> <str<strong>on</strong>g>coating</str<strong>on</strong>g>s to the end <str<strong>on</strong>g>of</str<strong>on</strong>g> storage showed less<br />

changes compared to day 0, weight loss was significantly higher for c<strong>on</strong>trol samples <strong>and</strong> the decay rate<br />

showed that <str<strong>on</strong>g>edible</str<strong>on</strong>g> <str<strong>on</strong>g>coating</str<strong>on</strong>g>s c<strong>on</strong>taining strawberries have less damage Chitosan expressed as tissue<br />

desiccati<strong>on</strong>, presence <str<strong>on</strong>g>of</str<strong>on</strong>g> fungi <strong>and</strong> collapse. Coating applicati<strong>on</strong> with <str<strong>on</strong>g>chitosan</str<strong>on</strong>g> in its formulati<strong>on</strong> reduces<br />

significantly microbial growth in fresh-cut strawberry. From these observati<strong>on</strong>s, it appears that the<br />

experimental <str<strong>on</strong>g>coating</str<strong>on</strong>g>s had a positive effect <strong>on</strong> maintaining <strong>quality</strong>. However, a l<strong>on</strong>ger testing period is<br />

needed to re-enforce the findings from this study.<br />

Keywords: <str<strong>on</strong>g>linseed</str<strong>on</strong>g> <str<strong>on</strong>g>mucilage</str<strong>on</strong>g>; <str<strong>on</strong>g>chitosan</str<strong>on</strong>g>; strawberry; shelf life; <strong>quality</strong><br />

INTRODUCTION<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>edible</str<strong>on</strong>g> <str<strong>on</strong>g>coating</str<strong>on</strong>g>s represents <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the important methods being used for preserving <strong>quality</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

minimally processed produce; several mechanisms are involved in extending the shelf-life <str<strong>on</strong>g>of</str<strong>on</strong>g> fruits <strong>and</strong><br />

vegetables. Edible <str<strong>on</strong>g>coating</str<strong>on</strong>g>s have been traditi<strong>on</strong>ally used to improve food appearance <strong>and</strong> maintain <strong>quality</strong><br />

because they are c<strong>on</strong>sidered envir<strong>on</strong>mentally friendly [1]. Coating films can act as barriers to moisture <strong>and</strong><br />

oxygen during processing, h<strong>and</strong>ling <strong>and</strong> storage [2]. Moreover, they can retard food deteriorati<strong>on</strong> by<br />

inhibiting the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> microorganisms, due to their natural intrinsic activity or to the incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

antimicrobial compounds [3]. Normally, <str<strong>on</strong>g>edible</str<strong>on</strong>g> films are made <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins or polysaccharides that can also<br />

help to maintain moisture, thereby improving shelf life. However, the hydrophilic nature <str<strong>on</strong>g>of</str<strong>on</strong>g> these compounds<br />

limits their ability to provide desired <str<strong>on</strong>g>edible</str<strong>on</strong>g> film functi<strong>on</strong>s. Current approaches to extend functi<strong>on</strong>al <strong>and</strong><br />

mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> these films include (i) incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrophobic compounds such as lipids to<br />

improve their resistance to water [4], (ii) optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the interacti<strong>on</strong> between polymers (protein-protein<br />

interacti<strong>on</strong>s, charge–charge electrostatic complexes between proteins or polysaccharides) <strong>and</strong> (iii) crosslinking<br />

or functi<strong>on</strong>alizati<strong>on</strong> through physical, chemical, or enzymatic treatments [5].<br />

Strawberries are a n<strong>on</strong>-climacteric fruits with a very short postharvest life. Strawberries are especially<br />

perishable fruits, being susceptible to mechanical injury, desiccati<strong>on</strong>, decay <strong>and</strong> physiological disorders<br />

during storage [6]. Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>quality</strong> in this fruit is mostly due to its relatively high metabolic activity <strong>and</strong><br />

sensitivity to fungal decay


Linseed <str<strong>on</strong>g>mucilage</str<strong>on</strong>g> is capable to film-forming [7]; the functi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>linseed</str<strong>on</strong>g> <str<strong>on</strong>g>mucilage</str<strong>on</strong>g> is similar to that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gum arabic [8]. Linseed <str<strong>on</strong>g>mucilage</str<strong>on</strong>g> <strong>and</strong> <str<strong>on</strong>g>linseed</str<strong>on</strong>g> <str<strong>on</strong>g>mucilage</str<strong>on</strong>g>-based <str<strong>on</strong>g>edible</str<strong>on</strong>g> <str<strong>on</strong>g>coating</str<strong>on</strong>g>s have been used in fresh-cut<br />

cucumber resulting from better preservati<strong>on</strong> did not induce significant changes in physicochemical <strong>quality</strong><br />

throughout cold storage, but they did result in a better preservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the coated samples mechanical<br />

properties <strong>and</strong> colour during storage. From these observati<strong>on</strong>s, it appears that the experimental <str<strong>on</strong>g>coating</str<strong>on</strong>g>s had a<br />

positive effect <strong>on</strong> maintaining <strong>quality</strong> [6]. However <str<strong>on</strong>g>linseed</str<strong>on</strong>g> <str<strong>on</strong>g>mucilage</str<strong>on</strong>g>-based <str<strong>on</strong>g>edible</str<strong>on</strong>g> <str<strong>on</strong>g>coating</str<strong>on</strong>g>s does not present a<br />

significant reducti<strong>on</strong> in antimicrobial activity, that is why the combinati<strong>on</strong> with antimicrobial agents is<br />

necessary, such as <str<strong>on</strong>g>chitosan</str<strong>on</strong>g>.<br />

Chitosan (poly β-(1,4)N-acetyl-D-glucosamine) polymer is industrially produced by chemical deacetylati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the chitin found in arthropod exoskelet<strong>on</strong>s. This biopolymer can also be obtained directly from the cell<br />

wall <str<strong>on</strong>g>of</str<strong>on</strong>g> some plant-pathogenic fungi. Chitosan <strong>and</strong> its derivatives have been shown to inhibit the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> fungi <strong>and</strong> trigger defensive mechanisms in plants <strong>and</strong> fruits against infecti<strong>on</strong>s caused by<br />

several pathogens. Chitosan possesses excellent film-forming properties <strong>and</strong> can be applied as an <str<strong>on</strong>g>edible</str<strong>on</strong>g><br />

surface <str<strong>on</strong>g>coating</str<strong>on</strong>g> to fruits <strong>and</strong> vegetables. Chitosan <str<strong>on</strong>g>coating</str<strong>on</strong>g>s have been reported to limit fungal decay <strong>and</strong> delay<br />

the ripening <str<strong>on</strong>g>of</str<strong>on</strong>g> several commodities, including strawberry [9]. In additi<strong>on</strong>, <str<strong>on</strong>g>chitosan</str<strong>on</strong>g> is an ideal preservative<br />

<str<strong>on</strong>g>coating</str<strong>on</strong>g> for fresh fruits because <str<strong>on</strong>g>of</str<strong>on</strong>g> its biochemical properties [9] <strong>and</strong> its use in food is particularly promising<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> its ‘‘biocompatibility’’, n<strong>on</strong>-toxicity <strong>and</strong> antimicrobial acti<strong>on</strong>. The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was<br />

evaluated the effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>edible</str<strong>on</strong>g> <str<strong>on</strong>g>chitosan</str<strong>on</strong>g>-<str<strong>on</strong>g>linseed</str<strong>on</strong>g> <str<strong>on</strong>g>mucilage</str<strong>on</strong>g> <str<strong>on</strong>g>coating</str<strong>on</strong>g>s to extend the shelf-life <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

strawberries minimally processed.<br />

MATERIALS & METHODS<br />

Strawberries (Fragaria ananassa cv. Albi<strong>on</strong>) were purchased from a producer-provider under the trademark<br />

HamBerry® (Aguascalientes, México) <strong>and</strong> were inspected for no sign <str<strong>on</strong>g>of</str<strong>on</strong>g> physical damage, disease <strong>and</strong> visual<br />

decay. Strawberries were sorted to select those with 2/3 <str<strong>on</strong>g>of</str<strong>on</strong>g> their red colour <strong>and</strong> being <str<strong>on</strong>g>of</str<strong>on</strong>g> uniform size.<br />

Mucilaginous material was extracted from brown <str<strong>on</strong>g>linseed</str<strong>on</strong>g> (Linum usitatissimum) purchased from a local<br />

wholesale distributor by mixing the seed with distilled water (1:20 w/v), stirring the seed-water mixture for 1<br />

h at 40°C. The <str<strong>on</strong>g>mucilage</str<strong>on</strong>g> extract was separated from seed by filtrati<strong>on</strong> trough a mesh-using vacuum <strong>and</strong> to<br />

obtain polymer the mucilaginous material was ethanol precipitate (1:1.5 v/v) <strong>and</strong> recovered by evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the solvent <strong>and</strong> drying.<br />

Coating soluti<strong>on</strong>s FA, FB <strong>and</strong> FC were prepared by dissolving 1.5, 1.2 <strong>and</strong> 1.0% w/v <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mucilage</str<strong>on</strong>g> polymer in<br />

aqueous dispersi<strong>on</strong>, <str<strong>on</strong>g>chitosan</str<strong>on</strong>g> with a deacetylati<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> 75% (1% w/v) (Sigma-Aldrich N. C3646), lactic<br />

acid 0.5% (Hycel) <strong>and</strong> Glycerol 0.6% (Fermot). The pH <str<strong>on</strong>g>of</str<strong>on</strong>g> the formulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>edible</str<strong>on</strong>g> <str<strong>on</strong>g>coating</str<strong>on</strong>g>s were ~ 4.5-<br />

5.2.<br />

Strawberries were washed <strong>and</strong> sanitized by immersi<strong>on</strong> into a 4 mL/10 l <str<strong>on</strong>g>of</str<strong>on</strong>g> Nic<strong>on</strong>-PQ® for 3 min. After<br />

draining, the fresh-cut strawberries were dipped in the <str<strong>on</strong>g>coating</str<strong>on</strong>g>s soluti<strong>on</strong>s FA, FB <strong>and</strong> F2 for 8 min. Uncoated<br />

strawberries were used as a blank <strong>and</strong> coated strawberries without <str<strong>on</strong>g>chitosan</str<strong>on</strong>g> in the formulati<strong>on</strong> was c<strong>on</strong>trol.<br />

After the <str<strong>on</strong>g>coating</str<strong>on</strong>g>s process, samples were dried by natural c<strong>on</strong>vecti<strong>on</strong> for 2 h at 12 °C <strong>and</strong> were packed <strong>and</strong><br />

stored in polystyrene bags at 4 ° C.<br />

Weight loss was expressed as the percentage loss <str<strong>on</strong>g>of</str<strong>on</strong>g> the initial total weight. For each measurement, 25 fruits<br />

corresp<strong>on</strong>ding to each treatment were used <strong>and</strong> the experiment was performed in triplicate.<br />

Respirati<strong>on</strong> rate was determined by using the static method. Eight strawberries were placed in hermetically<br />

sealed 875 ml glass jars <strong>and</strong> kept at 10 °C. After 1 h <str<strong>on</strong>g>of</str<strong>on</strong>g> enclosure, a 100 µl sample was withdrawn from the<br />

headspace <strong>and</strong> analyzed for O 2 <strong>and</strong> CO 2 using a gas analyser (PBI Dansensor). Respirati<strong>on</strong> rate (RR i , mg kg −1<br />

h −1 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 generati<strong>on</strong> <strong>and</strong> O 2 c<strong>on</strong>sumpti<strong>on</strong> was determined from the slope <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

fitted linear equati<strong>on</strong>, as described by [10].


Strawberry external colour was evaluated with a colorimeter (Minolta CR-400) CIE L*a*b* coordinates were<br />

recorded using C illuminant <strong>and</strong> a 2° St<strong>and</strong>ard Observer as a reference system. Three readings were taken at<br />

different locati<strong>on</strong>s <strong>on</strong> each strawberry, during storage at 0, 5, 10, 15 <strong>and</strong> 20 days<br />

Mechanical properties were measured by using a Texture Analyser (TA-XT-plus, Stable Micro Systems),<br />

using a 75 mm diameter plate probe. Strawberry samples were 95% compressed at a 0.2 mm/s deformati<strong>on</strong><br />

rate. Force <strong>and</strong> distance at the rupture point were used as mechanical parameters.<br />

Decay rate (lost <str<strong>on</strong>g>of</str<strong>on</strong>g> visual <strong>quality</strong>, arbitrary scale) <str<strong>on</strong>g>of</str<strong>on</strong>g> strawberries that showed any sign <str<strong>on</strong>g>of</str<strong>on</strong>g> surface mycelia<br />

development, dehydrati<strong>on</strong>, spots, colour changes, tissue damage, tissue collapse were c<strong>on</strong>sidered decayed.<br />

Results were expressed as percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> damaged strawberries.<br />

Microbial growth was determined <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 g <str<strong>on</strong>g>of</str<strong>on</strong>g> strawberries was removed from each package <strong>and</strong> homogenized<br />

with 90 mL sterile water in a sterile plastic bag, by use <str<strong>on</strong>g>of</str<strong>on</strong>g> a Seaward 400 Stomacher for 3 min. Decimal<br />

diluti<strong>on</strong>s were then prepared <strong>and</strong> plated <strong>on</strong>to appropriate media. The media <strong>and</strong> the incubati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s<br />

were as follows: mesophilic aerobic count (Plate count agar, Biox<strong>on</strong>), incubated at 35±1 °C for 48 h for total<br />

coliforms (Violet red bile agar, Biox<strong>on</strong>) incubated at 37±1 °C for 24 h <strong>and</strong> for moulds <strong>and</strong> yeasts (Potato<br />

dextrose agar, Biox<strong>on</strong>) incubated at 25±1 ◦C for 72 h. All microbial counts were reported as log CFU/g<br />

(col<strong>on</strong>y forming units per gram <str<strong>on</strong>g>of</str<strong>on</strong>g> sample). The cell load data <str<strong>on</strong>g>of</str<strong>on</strong>g> each microbial group, collected during the<br />

storage <str<strong>on</strong>g>of</str<strong>on</strong>g> the products, were modelled according to Gompertz equati<strong>on</strong> modified by [11] during storage (0,<br />

5, 10, 15, 20 days):<br />

{ − exp[( µ e / A)(<br />

λ − ) 1] }<br />

y = k + Aexp max<br />

t +<br />

(1)<br />

where y is the log[CFU/g], k is the initial level <str<strong>on</strong>g>of</str<strong>on</strong>g> the dependent variable to be modelled, A is the maximum<br />

increase <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial load attained at the stati<strong>on</strong>ary phase, µ max is the maximal growth rate (∆log<br />

[CFU/g]/day), λ is the lag time (days) <strong>and</strong> t is the time.<br />

RESULTS & DISCUSSION<br />

Weight loss was expressed as percentage loss <str<strong>on</strong>g>of</str<strong>on</strong>g> the initial total weight (Figure 1) all samples showed a<br />

progressive loss <str<strong>on</strong>g>of</str<strong>on</strong>g> weight during storage, after the fifth day <str<strong>on</strong>g>of</str<strong>on</strong>g> storage weight losses for strawberries coated<br />

with <str<strong>on</strong>g>chitosan</str<strong>on</strong>g>-<str<strong>on</strong>g>linseed</str<strong>on</strong>g> <str<strong>on</strong>g>mucilage</str<strong>on</strong>g> (FA, FB & FC) were significantly lower (p


metabolic pathways <str<strong>on</strong>g>of</str<strong>on</strong>g> coated strawberries. The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>coating</str<strong>on</strong>g> is likely to modify the<br />

internal atmosphere without causing anaerobic respirati<strong>on</strong>, since <str<strong>on</strong>g>chitosan</str<strong>on</strong>g>-<str<strong>on</strong>g>linseed</str<strong>on</strong>g> <str<strong>on</strong>g>mucilage</str<strong>on</strong>g> <str<strong>on</strong>g>edible</str<strong>on</strong>g> are more<br />

selectively permeable to O 2 than to CO 2 [9].<br />

2.5<br />

2<br />

Respiratory quotient<br />

1.5<br />

1<br />

0.5<br />

0<br />

Blank C<strong>on</strong>trol FA FB FC<br />

Sample<br />

Figure 3. Visual lost <strong>quality</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coated, blank <strong>and</strong> c<strong>on</strong>trol strawberries stored at 10 ◦C.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the best parameters to describe the variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> colour is the colour differences (∆E*), as it shows the<br />

total change in all parameters L *, a * b *, (Figure 4) the changes during storage were visually perceptible to<br />

an end. Uncoated fruits were darkens, skin colour becomes less chromatic <strong>and</strong> surface browning develops.<br />

Firmness (Figure 5) significantly decreased during storage for all samples, these changes, which can be<br />

attributed to tissue senescence <strong>and</strong> cell wall breakdown, as well as to the sample water loss, were<br />

significantly less marked in coated strawberries.<br />

14<br />

2.0<br />

12<br />

∆E*<br />

10<br />

8<br />

6<br />

Firmness (N)<br />

1.5<br />

1.0<br />

4<br />

0.5<br />

2<br />

0<br />

Blank C<strong>on</strong>trol FA FB FC<br />

Sample<br />

0.0<br />

FA FB FC Blank C<strong>on</strong>trol<br />

0 5 10 15 20<br />

Storage time (days)<br />

Figure 4. Colour difference <str<strong>on</strong>g>of</str<strong>on</strong>g> strawberries coated,<br />

blank <strong>and</strong> c<strong>on</strong>trol at end <str<strong>on</strong>g>of</str<strong>on</strong>g> storage time.<br />

Figure 5. Firmness strawberries coated, blank<br />

<strong>and</strong> c<strong>on</strong>trol during storage time.<br />

Under refrigerati<strong>on</strong>, the antimicrobial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>chitosan</str<strong>on</strong>g> seemed to influence significantly the growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mesophilic bacteria. Edible <str<strong>on</strong>g>coating</str<strong>on</strong>g>s <str<strong>on</strong>g>chitosan</str<strong>on</strong>g>-based displayed a str<strong>on</strong>g inhibiti<strong>on</strong> for all microbial groups; the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>chitosan</str<strong>on</strong>g> <strong>on</strong> coated strawberries were significant difference between uncoated or c<strong>on</strong>trol<br />

strawberries (Table 1.).<br />

Table 1. Gompertz parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> mesophilic bacteria<br />

Sample<br />

Gompertz parameters a,c<br />

A µ max λ R 2<br />

Blank 6.9 3.0 0.45 0.995<br />

C<strong>on</strong>trol 4.3 7.0 0.39 0.998<br />

FA 1.7 2.5 0.18 0.995<br />

FB 1.3 2.6 0.21 0.997<br />

FC 1.5 3.0 0.15 0.989


CONCLUSION<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>edible</str<strong>on</strong>g> <str<strong>on</strong>g>chitosan</str<strong>on</strong>g>-<str<strong>on</strong>g>linseed</str<strong>on</strong>g> <str<strong>on</strong>g>mucilage</str<strong>on</strong>g> applied at strawberry fruits is recommended to c<strong>on</strong>trol browning,<br />

firmness lost, microbial growth <strong>and</strong> decay in strawberry fruit in combinati<strong>on</strong> with other methods, i.e. low<br />

temperature <strong>and</strong> suitable packaging.<br />

REFERENCES<br />

[1] Khwaldia K. Perez C. Ban<strong>on</strong> S. Desobry S. & Hardy J. 2004. Milk proteins for <str<strong>on</strong>g>edible</str<strong>on</strong>g> films <strong>and</strong> <str<strong>on</strong>g>coating</str<strong>on</strong>g>s. Critical<br />

Review in Food Science <strong>and</strong> Nutriti<strong>on</strong>, 44, 239−251.<br />

[2] Xu W. T. Huang K. L. Guo F. Qu W. Yang J. J. Liang Z. H. 2007. Postharvest grapefruit seed extract <strong>and</strong> <str<strong>on</strong>g>chitosan</str<strong>on</strong>g><br />

treatments <str<strong>on</strong>g>of</str<strong>on</strong>g> table grapes to c<strong>on</strong>trol Botrytis cinerea. Postharvest Biolology <strong>and</strong> Technology, 46, 86−94.<br />

[3] Cha D. S. & Chinnan M. S. 2004. Biopolymer-based antimicrobial packaging: A review. Critical Review in Food<br />

Science <strong>and</strong> Nutriti<strong>on</strong>, 44, 223−237.<br />

[4] McHugh T. H. & Krochta J. M. 1994. Milk-protein-based <str<strong>on</strong>g>edible</str<strong>on</strong>g> films <strong>and</strong> <str<strong>on</strong>g>coating</str<strong>on</strong>g>s. Food Technolology, 48,<br />

97−103.<br />

[5] Pierro P. D. Chico B. Villal<strong>on</strong>ga R. Mariniello L. Damiao A. E. Masi P. 2006. Chitosan-Whey protein <str<strong>on</strong>g>edible</str<strong>on</strong>g> films<br />

produced in the absence or presence <str<strong>on</strong>g>of</str<strong>on</strong>g> transglutaminase: Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> their mechanical <strong>and</strong> barrier properties.<br />

Biomacromolecules, 7, 744−749.<br />

[6] Tournas V. H. & Katsoudas E. 2005. Mould <strong>and</strong> yeast flora in fresh berries, grapes <strong>and</strong> citrus fruits. Internati<strong>on</strong>al<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Food Microbiology, 105, 11−17.<br />

[7] Hernández C., Pérez-Cabrera L. E. & G<strong>on</strong>zález-Martínez C. 2010. Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Linseed-Mucilage Edible<br />

Coatings <strong>and</strong> its Applicati<strong>on</strong> to Extend Fresh-cut Cucumber Shelf-life. In Regalado C. & García B. E. (Eds.).<br />

Innovati<strong>on</strong>s in Food Science <strong>and</strong> Food Biotechnology in Developing Countries. Inc. AMECA, A. C. Queretaro,<br />

Mexico. p 321-334.<br />

[8] Mazza G. & Biliaderis C. G. 1989. Functi<strong>on</strong>al properties <str<strong>on</strong>g>of</str<strong>on</strong>g> flax <str<strong>on</strong>g>mucilage</str<strong>on</strong>g>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Food Science, 54, 1302-1305.<br />

[9] El Ghaouth A. P<strong>on</strong>nampalam R. Castaigne F. & Arul J. 1992. Chitosan <str<strong>on</strong>g>coating</str<strong>on</strong>g> to extend the storage life <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tomatoes. Horticultural Science, 27, 1016–1018.<br />

[10] F<strong>on</strong>seca S.C. Oliveira F.A.R. Jeffrey K. Brecha J.K. 2002. Modelling respirati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh fruits <strong>and</strong> vegetables<br />

for modified atmosphere packages: a review. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Food Engineering, 52, 99–119.<br />

[11] Zwietering M.H. J<strong>on</strong>genberge I. Rombouts F.M. van’tRiet K. 1990. Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial growth curve. Applied<br />

<strong>and</strong> Envir<strong>on</strong>mental Microbiology, 56,1875–1881.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!