19.01.2014 Views

Impact of starch gelatinization on the kinetics of Maillard reaction in ...

Impact of starch gelatinization on the kinetics of Maillard reaction in ...

Impact of starch gelatinization on the kinetics of Maillard reaction in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>starch</str<strong>on</strong>g> <str<strong>on</strong>g>gelat<strong>in</strong>izati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>k<strong>in</strong>etics</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Maillard</strong> reacti<strong>on</strong> <strong>in</strong> potato<br />

dehydrated systems<br />

Nuria C. Acevedo a , Carol<strong>in</strong>a Schebor a,b , Pilar Buera a,b<br />

a Departamentos de Industrias y de Química Orgánica. Facultad de Ciencias Exactas y<br />

Naturales. Universidad de Buenos Aires. Ciudad Universitaria (1428). Ciudad de Buenos<br />

Aires. ARGENTINA.e-mais: aceved<strong>on</strong>uria@yahoo.com.ar, cschebor@di.fcen.uba.ar,<br />

pilar@di.fcen.uba.ar<br />

b Members <str<strong>on</strong>g>of</str<strong>on</strong>g> CONICET, Argent<strong>in</strong>a.<br />

ABSTRACT<br />

The n<strong>on</strong>-enzymatic brown<strong>in</strong>g (NEB) reacti<strong>on</strong> plays an essential role <strong>in</strong> food acceptance and quality. There<br />

has been <strong>in</strong>creased <strong>in</strong>terest <strong>in</strong> reveal<strong>in</strong>g <strong>the</strong> role that water plays <strong>in</strong> native and gelat<strong>in</strong>ized <str<strong>on</strong>g>starch</str<strong>on</strong>g>. However<br />

<strong>the</strong>re is a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>formati<strong>on</strong> <strong>on</strong> <strong>the</strong> relati<strong>on</strong>ship between <strong>the</strong> water dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> water–<str<strong>on</strong>g>starch</str<strong>on</strong>g> <strong>in</strong>teracti<strong>on</strong>s and<br />

<strong>the</strong> <strong>k<strong>in</strong>etics</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NEB reacti<strong>on</strong> <strong>in</strong> native and gelat<strong>in</strong>ized <str<strong>on</strong>g>starch</str<strong>on</strong>g> systems. The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present work was<br />

to analyze <strong>the</strong> changes <strong>in</strong> water-distributi<strong>on</strong> and water-solids <strong>in</strong>teracti<strong>on</strong>s that take place after <str<strong>on</strong>g>starch</str<strong>on</strong>g><br />

<str<strong>on</strong>g>gelat<strong>in</strong>izati<strong>on</strong></str<strong>on</strong>g> and to elucidate <strong>the</strong>ir <strong>in</strong>fluence <strong>on</strong> <strong>the</strong> <strong>k<strong>in</strong>etics</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Maillard</strong> reacti<strong>on</strong> <strong>in</strong> low moisture potato<br />

<str<strong>on</strong>g>starch</str<strong>on</strong>g> systems. Freeze-dried native (NS) and gelat<strong>in</strong>ized (GS) potato <str<strong>on</strong>g>starch</str<strong>on</strong>g> systems c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g glyc<strong>in</strong>e and<br />

glucose were prepared. 1 H NMR relaxati<strong>on</strong> times (T 2 ), <strong>the</strong>rmal transiti<strong>on</strong>s and water sorpti<strong>on</strong> iso<strong>the</strong>rms were<br />

analyzed. <strong>Maillard</strong> reacti<strong>on</strong> was studied at 70ºC. In NS <strong>Maillard</strong> rate was <strong>in</strong>versely dependent <strong>on</strong> RH. In GS<br />

<strong>the</strong> rate <strong>in</strong>creased up to RHs between 75 and 84 % and <strong>the</strong>n decreased at higher RHs. In <strong>the</strong> NS matrix,<br />

which is almost <strong>in</strong>ert towards <strong>Maillard</strong> reacti<strong>on</strong>, reactants are c<strong>on</strong>centrated <strong>in</strong> <strong>the</strong> <strong>in</strong>ter-granule spaces. NS<br />

has also lower tendency to reta<strong>in</strong> water than GS, and <strong>the</strong> water formed dur<strong>in</strong>g <strong>Maillard</strong> reacti<strong>on</strong> is not<br />

reta<strong>in</strong>ed by <strong>the</strong> matrix, be<strong>in</strong>g available to act as <strong>in</strong>hibitor. This expla<strong>in</strong>s <strong>the</strong> high <strong>Maillard</strong> rate at low RHs and<br />

<strong>the</strong> c<strong>on</strong>t<strong>in</strong>uous <strong>in</strong>hibit<strong>in</strong>g effect <str<strong>on</strong>g>of</str<strong>on</strong>g> water observed <strong>in</strong> NS. GS presents a more homogeneous distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>Maillard</strong> reagents with<strong>in</strong> <strong>the</strong> matrix, which renders a more dilute system regard<strong>in</strong>g brown<strong>in</strong>g reagents, and<br />

also less water availability for <strong>the</strong> reacti<strong>on</strong>. The “diluti<strong>on</strong>” <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reagents makes this system more diffusi<strong>on</strong><br />

dependent. This can expla<strong>in</strong> <strong>the</strong> low <strong>Maillard</strong> rate at <strong>the</strong> lower RH values <strong>in</strong> <strong>the</strong> GS matrix, which <strong>in</strong>creases<br />

above <strong>the</strong> glass transiti<strong>on</strong> temperature (T g ) value and decreases when solvent water appears.<br />

Keywords: potato <str<strong>on</strong>g>starch</str<strong>on</strong>g>; <str<strong>on</strong>g>gelat<strong>in</strong>izati<strong>on</strong></str<strong>on</strong>g>; molecular mobility; <strong>Maillard</strong> reacti<strong>on</strong>; glass transiti<strong>on</strong>.<br />

INTRODUCTION<br />

<strong>Maillard</strong> reacti<strong>on</strong> plays an essential role <strong>in</strong> food acceptance and quality. It produces desirable flavors and<br />

colors [1,2], but it may also cause undesirable loss <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients and brown pigment formati<strong>on</strong> dur<strong>in</strong>g<br />

process<strong>in</strong>g and storage [2]. Therefore, much attenti<strong>on</strong> has been given to c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reacti<strong>on</strong> rate. It is<br />

known that <strong>Maillard</strong> reacti<strong>on</strong> <strong>k<strong>in</strong>etics</strong> is affected by several physico-chemical factors such as c<strong>on</strong>centrati<strong>on</strong>,<br />

ratio and chemical nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reactants (type <str<strong>on</strong>g>of</str<strong>on</strong>g> am<strong>in</strong>e and carb<strong>on</strong>yl groups <strong>in</strong>volved), pH, relative<br />

humidity, temperature, and time <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<strong>in</strong>g [3]. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> most familiar features <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Maillard</strong> reacti<strong>on</strong> is <strong>the</strong><br />

bell-shaped curve which relates <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reacti<strong>on</strong> to water activity (aw) [4]. Maximum brown<strong>in</strong>g rate<br />

has been observed <strong>in</strong> most cases at water activities between 0.3 and 0.8 [5-9]. This is a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

low reacti<strong>on</strong> rates due to mobility limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> reactants at low water c<strong>on</strong>tents [10] and <strong>in</strong>hibiti<strong>on</strong> by<br />

product/diluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reactants at high water c<strong>on</strong>tents [11]. However, <strong>in</strong> liquids or systems where a low water<br />

activity is not associated with a str<strong>on</strong>g <strong>in</strong>crease <strong>in</strong> viscosity, a maximum does not appear and <strong>the</strong> reacti<strong>on</strong> rate<br />

c<strong>on</strong>t<strong>in</strong>uously decreases from low to high aw [12].<br />

Ra<strong>the</strong>r than water affect<strong>in</strong>g chemical reacti<strong>on</strong>s via water activity or by plasticiz<strong>in</strong>g amorphous systems, and<br />

c<strong>on</strong>sider<strong>in</strong>g <strong>the</strong> <strong>in</strong>hibitory effect <str<strong>on</strong>g>of</str<strong>on</strong>g> water as a reacti<strong>on</strong> product <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Maillard</strong> reacti<strong>on</strong> c<strong>on</strong>densati<strong>on</strong>s, water<br />

mobility itself may have a direct impact <strong>on</strong> chemical reactivity <strong>in</strong> low and <strong>in</strong>termediate moisture systems.<br />

Solid state NMR is a useful tool to <strong>in</strong>vestigate <strong>the</strong> water dynamics <strong>in</strong> semisolid and solid states, such as<br />

<str<strong>on</strong>g>starch</str<strong>on</strong>g> granules. The slow<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> water moti<strong>on</strong> <strong>in</strong> low-moisture samples reflects str<strong>on</strong>g water-solid <strong>in</strong>teracti<strong>on</strong>s


through hydrogen b<strong>on</strong>d<strong>in</strong>g [13] which corresp<strong>on</strong>ds to water molecules that are str<strong>on</strong>gly <strong>in</strong>fluenced by <strong>the</strong>ir<br />

proximity to <strong>the</strong> solids comp<strong>on</strong>ents.<br />

In recent years, <strong>the</strong>re has been <strong>in</strong>creased <strong>in</strong>terest <strong>in</strong> reveal<strong>in</strong>g <strong>the</strong> important role that water plays <strong>in</strong> native and<br />

gelat<strong>in</strong>ized <str<strong>on</strong>g>starch</str<strong>on</strong>g> [14-16]. However <strong>the</strong>re is a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> published studies <strong>on</strong> <strong>the</strong> relati<strong>on</strong>ship between <strong>the</strong> water<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> water–<str<strong>on</strong>g>starch</str<strong>on</strong>g> <strong>in</strong>teracti<strong>on</strong>s and <strong>the</strong> <strong>k<strong>in</strong>etics</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Maillard</strong> reacti<strong>on</strong> <strong>in</strong> native and gelat<strong>in</strong>ized <str<strong>on</strong>g>starch</str<strong>on</strong>g><br />

systems.<br />

The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present work was to c<strong>on</strong>tribute to <strong>the</strong> understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> changes <strong>in</strong> water-distributi<strong>on</strong><br />

and water-solids <strong>in</strong>teracti<strong>on</strong>s that take place after <str<strong>on</strong>g>starch</str<strong>on</strong>g> <str<strong>on</strong>g>gelat<strong>in</strong>izati<strong>on</strong></str<strong>on</strong>g> and to elucidate <strong>the</strong>ir <strong>in</strong>fluence <strong>on</strong> <strong>the</strong><br />

<strong>k<strong>in</strong>etics</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Maillard</strong> reacti<strong>on</strong> <strong>in</strong> low moisture potato <str<strong>on</strong>g>starch</str<strong>on</strong>g> systems.<br />

MATERIALS & METHODS<br />

Starch systems: Raw potatoes were washed, peeled and diced. A commercially available juice extractor was<br />

employed to obta<strong>in</strong> a <str<strong>on</strong>g>starch</str<strong>on</strong>g>-rich extract. The extract was diluted with distilled water, centrifuged, and <strong>the</strong><br />

precipitate was recovered and re-suspended <strong>in</strong> water. This procedure was d<strong>on</strong>e many times <strong>in</strong> order to wash<br />

<strong>the</strong> soluble comp<strong>on</strong>ents. The <str<strong>on</strong>g>starch</str<strong>on</strong>g>-rich aqueous suspensi<strong>on</strong>s were freeze-dried to obta<strong>in</strong> <strong>the</strong> <str<strong>on</strong>g>starch</str<strong>on</strong>g> powder.<br />

This <str<strong>on</strong>g>starch</str<strong>on</strong>g> powder was c<strong>on</strong>sidered “native” as it was not gelat<strong>in</strong>ized. A porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> extracted <str<strong>on</strong>g>starch</str<strong>on</strong>g> was<br />

gelat<strong>in</strong>ized by heat<strong>in</strong>g a 5 % aqueous suspensi<strong>on</strong> for 30 m<strong>in</strong> at 80 °C. Aqueous suspensi<strong>on</strong>s c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g 15 %<br />

(w/w) <str<strong>on</strong>g>of</str<strong>on</strong>g> freeze-dried native or gelat<strong>in</strong>ized <str<strong>on</strong>g>starch</str<strong>on</strong>g> powder, 0.5 % (w/w) glyc<strong>in</strong>e and glucose <strong>in</strong> phosphate<br />

buffer pH 6, 0.175 M were prepared.<br />

Freeze-dry<strong>in</strong>g: The freeze-dry<strong>in</strong>g process lasted 48 hours. An Alpha 1-4 LD / 2-4 LD-2, freeze drier (Mart<strong>in</strong><br />

Christ, Gefriertrocknungsanlagen GmbH) was used; it was operated at -84 °C, at a chamber pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.04<br />

mbar. The dehydrated <str<strong>on</strong>g>starch</str<strong>on</strong>g> powders were transferred <strong>in</strong>to evacuated desiccators and kept for 14 days at 20<br />

°C over saturated salt soluti<strong>on</strong>s that provided c<strong>on</strong>stant relative humidities <strong>in</strong> a range between 11 and 92 %<br />

[17]. Part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> humidified powders was distributed <strong>in</strong>to vials for <strong>the</strong> determ<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water c<strong>on</strong>tent, <strong>the</strong>rmal<br />

transiti<strong>on</strong>s and molecular mobility. The rema<strong>in</strong><strong>in</strong>g material was used to determ<strong>in</strong>e <strong>Maillard</strong> reacti<strong>on</strong>.<br />

Water c<strong>on</strong>tent: The water c<strong>on</strong>tent was determ<strong>in</strong>ed gravimetrically by vacuum dry<strong>in</strong>g at 97 °C for 48 h.<br />

Heat treatment: After equilibrati<strong>on</strong>, potato <str<strong>on</strong>g>starch</str<strong>on</strong>g> powder systems were placed <strong>in</strong>side rubber o-r<strong>in</strong>gs which <strong>in</strong><br />

turn were sandwiched between two glass plates held hermetically with metal clamps to avoid water loss as<br />

previously described [8]. The glass sample holder was <strong>the</strong>n placed <strong>in</strong> an air-c<strong>on</strong>vecti<strong>on</strong> oven operated at 70 ±<br />

1 ºC. At suitable <strong>in</strong>tervals, samples were removed from <strong>the</strong> oven; color was measured and <strong>the</strong> samples were<br />

placed back <strong>in</strong> <strong>the</strong> oven to c<strong>on</strong>t<strong>in</strong>ue with <strong>the</strong> heat treatment.<br />

Thermal transiti<strong>on</strong>s: Glass transiti<strong>on</strong> temperatures (T g ) were determ<strong>in</strong>ed by differential scann<strong>in</strong>g calorimetry<br />

(DSC; <strong>on</strong>set values) us<strong>in</strong>g a DSC 822e Mettler Toledo calorimeter (Schwerzenbach, Switzerland). All<br />

measurements were performed at a heat<strong>in</strong>g rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 °C/m<strong>in</strong>. Hermetically sealed 40 l medium pressure<br />

pans were used (an empty pan served as reference). Thermograms were evaluated us<strong>in</strong>g Mettler Star e<br />

program. Average values <str<strong>on</strong>g>of</str<strong>on</strong>g> at least two replicates and standard deviati<strong>on</strong>s were reported.<br />

1 H Relaxati<strong>on</strong> molecular mobility: A Bruker M<strong>in</strong>ispec mq 20 pulsed nuclear magnetic res<strong>on</strong>ance (NMR)<br />

<strong>in</strong>strument, with a 0.47 T magnetic field operat<strong>in</strong>g at res<strong>on</strong>ance frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 MHz, was used for<br />

measurements. The sp<strong>in</strong>-sp<strong>in</strong> relaxati<strong>on</strong> time (T 2 ) associated to <strong>the</strong> fast relax<strong>in</strong>g prot<strong>on</strong>s (related to <strong>the</strong> solid<br />

matrix and to water <strong>in</strong>teract<strong>in</strong>g tightly with solids) was measured us<strong>in</strong>g a free <strong>in</strong>ducti<strong>on</strong> decay analysis (FID)<br />

after a s<strong>in</strong>gle 90º pulse. The decay envelopes were fitted to m<strong>on</strong>o-exp<strong>on</strong>ential behavior. T 2 associated to slow<br />

relax<strong>in</strong>g prot<strong>on</strong>s (related to <strong>the</strong> populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> water molecules display<strong>in</strong>g less <strong>in</strong>teracti<strong>on</strong>s with solids) were<br />

measured us<strong>in</strong>g <strong>the</strong> Carr−Purcell-Meiboom−Gill pulse sequence (CPMG). The decay envelopes were fitted<br />

to bi-exp<strong>on</strong>ential. All determ<strong>in</strong>ati<strong>on</strong>s were performed <strong>in</strong> duplicate.<br />

Degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Maillard</strong> reacti<strong>on</strong>: The degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Maillard</strong> reacti<strong>on</strong> was determ<strong>in</strong>ed by reflectance measurements <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> color attribute lum<strong>in</strong>osity (L*) with a white background <str<strong>on</strong>g>of</str<strong>on</strong>g> reflectance. A handheld tristimulus reflectance<br />

spectrocolorimeter with an <strong>in</strong>tegrat<strong>in</strong>g sphere (M<strong>in</strong>olta CM-508-d, M<strong>in</strong>olta Corp., Ramsey, NJ, USA) was<br />

employed. Color functi<strong>on</strong>s were calculated for illum<strong>in</strong>ant D65 at 2° standard observer and <strong>in</strong> <strong>the</strong> CIELAB<br />

uniform color space. The measurements were performed exclud<strong>in</strong>g <strong>the</strong> specular comp<strong>on</strong>ent, to avoid <strong>the</strong><br />

c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reflecti<strong>on</strong> from <strong>the</strong> glass plate. The color functi<strong>on</strong> L*, (Lo*- L*) was found to be an<br />

adequate parameter to evaluate <strong>the</strong> n<strong>on</strong> enzymatic brown<strong>in</strong>g reacti<strong>on</strong>s <strong>in</strong> opaque samples [18] be<strong>in</strong>g Lo* and<br />

L* <strong>the</strong> sample color attribute before and after heat treatment respectively. Six replicates were analyzed for<br />

each storage time and an average value was reported. The standard error was lower than 2 % (P < 0.05) for<br />

all <strong>the</strong> analyzed samples.


RESULTS & DISCUSSION<br />

Figure 1 shows <strong>the</strong> <strong>Maillard</strong> reacti<strong>on</strong> rate coefficient (K) versus RH for native (NS) and gelat<strong>in</strong>ized (GS)<br />

potato <str<strong>on</strong>g>starch</str<strong>on</strong>g> systems stored at 70 °C. The rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Maillard</strong> reacti<strong>on</strong> for each system was calculated from a<br />

pseudo first order k<strong>in</strong>etic model from <strong>the</strong> plot <str<strong>on</strong>g>of</str<strong>on</strong>g> L* versus storage time at 70 ºC. It can be seen that for <strong>the</strong><br />

NS system <strong>the</strong> rate coefficients were relatively high at very low RH values and significantly decreased as RH<br />

<strong>in</strong>creased. The GS system, however, did not show important differences <strong>in</strong> brown<strong>in</strong>g rate up to 52 % RH, and<br />

at higher RH values it showed an <strong>in</strong>crease and a maximum rate coefficient between 75 and 84 % RH. The GS<br />

system behavior resembles that observed for most <str<strong>on</strong>g>of</str<strong>on</strong>g> model and food systems, show<strong>in</strong>g a bell-shaped curve<br />

with a maximum rate at <strong>in</strong>termediate/high RH values [4]. In this case, <strong>the</strong> disrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> granule up<strong>on</strong><br />

<str<strong>on</strong>g>gelat<strong>in</strong>izati<strong>on</strong></str<strong>on</strong>g> caused a more homogeneous distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reactants with<strong>in</strong> <strong>the</strong> <str<strong>on</strong>g>starch</str<strong>on</strong>g> matrix. Thus, <strong>the</strong><br />

diffusi<strong>on</strong> effects and <strong>the</strong> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> water greatly affected <strong>the</strong> <strong>Maillard</strong> reacti<strong>on</strong> rate, giv<strong>in</strong>g k<strong>in</strong>etic<br />

coefficients up to 4 times lower than those observed for NS systems. Acevedo et al. [7] studied <strong>the</strong> <strong>Maillard</strong><br />

reacti<strong>on</strong> <strong>k<strong>in</strong>etics</strong> at 70 ºC <strong>on</strong> dehydrated potato systems and found that <strong>the</strong> RH value for <strong>the</strong> maximum<br />

<strong>Maillard</strong> reacti<strong>on</strong> rate was 75 %. Hendel et al. [19] studied dehydrated potato systems at temperatures <strong>in</strong> a<br />

range from 40 to 99.5 °C and reported a maximum <strong>Maillard</strong> reacti<strong>on</strong> rate corresp<strong>on</strong>d<strong>in</strong>g to 70–75 % RH. The<br />

NS system c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>tact <str<strong>on</strong>g>starch</str<strong>on</strong>g> granules and <strong>the</strong> <strong>Maillard</strong> reactants (glyc<strong>in</strong>e and glucose). Up<strong>on</strong><br />

freeze dry<strong>in</strong>g it is likely that glucose and glyc<strong>in</strong>e rema<strong>in</strong> adsorbed <strong>on</strong> <strong>the</strong> granules surface, and do not<br />

penetrate <strong>the</strong> compact structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> granules. Thus, <strong>the</strong> <strong>Maillard</strong> reacti<strong>on</strong> would <strong>on</strong>ly take place <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>ter-granule space, <strong>in</strong> which reactants would be highly c<strong>on</strong>centrated. Therefore, at low RH values, <strong>the</strong>re<br />

would be enough reactant c<strong>on</strong>centrati<strong>on</strong> and water adsorbed to allow a high brown<strong>in</strong>g development. The NS<br />

systems presented a behavior similar to that observed <strong>in</strong> liquid systems for which <strong>on</strong>ly an <strong>in</strong>hibitory effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

water is manifested [5]. The c<strong>on</strong>f<strong>in</strong>ement <str<strong>on</strong>g>of</str<strong>on</strong>g> water and reactants <strong>in</strong> <strong>the</strong> <strong>in</strong>ter-granule spaces can support <strong>the</strong><br />

fact that a possible effect <str<strong>on</strong>g>of</str<strong>on</strong>g> diluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reactants, besides an <strong>in</strong>hibitory effect <str<strong>on</strong>g>of</str<strong>on</strong>g> water, could <strong>in</strong>fluence<br />

<strong>Maillard</strong> reacti<strong>on</strong> <strong>k<strong>in</strong>etics</strong> even at very low RH values [20, 21].<br />

0.16<br />

0.12<br />

K<br />

0.08<br />

0.04<br />

0.00<br />

0 20 40 60 80 100<br />

Relative Humidity (%)<br />

Figure 1. <strong>Maillard</strong> reacti<strong>on</strong> rate coefficients (K) versus RH for NS (■) and GS () systems stored at 70 °C. The error<br />

bars represent <strong>the</strong> standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> average K value.<br />

Figure 2 shows <strong>the</strong> experimental po<strong>in</strong>ts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> water sorpti<strong>on</strong> iso<strong>the</strong>rm at 20 ºC for NS and GS systems<br />

toge<strong>the</strong>r with <strong>the</strong> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fitt<strong>in</strong>g with <strong>the</strong> GAB model [22], and <strong>the</strong> glass transiti<strong>on</strong> temperatures. The<br />

GAB fitt<strong>in</strong>g gave “m<strong>on</strong>olayer” water c<strong>on</strong>tents (mo) <str<strong>on</strong>g>of</str<strong>on</strong>g> 6.1 % and 8.7 % d.b. (dry basis) for NS and GS<br />

systems respectively. Both values corresp<strong>on</strong>d to RHs between 22 and 33 %. The mo values are <strong>in</strong> agreement<br />

with previously reported “m<strong>on</strong>olayer” water c<strong>on</strong>tents for potato <str<strong>on</strong>g>starch</str<strong>on</strong>g> at similar temperatures [23, 24], and<br />

also with data for <str<strong>on</strong>g>starch</str<strong>on</strong>g> from different sources [15, 23, 25-27]. Water adsorpti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>starch</str<strong>on</strong>g> occurs through<br />

hydrogen-b<strong>on</strong>d<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> water molecules to <strong>the</strong> available hydroxyl groups <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> substrate [28]. The <str<strong>on</strong>g>starch</str<strong>on</strong>g><br />

granule is chemically micro-heterogeneous: it c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> both crystall<strong>in</strong>e and amorphous regi<strong>on</strong>s. The<br />

crystall<strong>in</strong>e regi<strong>on</strong>s typically exhibit resistance to solvent penetrati<strong>on</strong>. It can be observed that at low RH<br />

values, up to 52 %, <strong>the</strong> GS system adsorbs approximately 2 % more water than <strong>the</strong> NS system. This could be<br />

due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> granules <strong>in</strong> <strong>the</strong> NS system that present higher crystall<strong>in</strong>ity and less sites available to<br />

<strong>in</strong>teract with <strong>the</strong> water molecules. Charles et al. [15] reported <strong>the</strong> same behaviour when <strong>the</strong>y compared native<br />

and gelat<strong>in</strong>ized wheat <str<strong>on</strong>g>starch</str<strong>on</strong>g> up to 75 % RH. The sorpti<strong>on</strong> iso<strong>the</strong>rms were determ<strong>in</strong>ed at 20 °C. The slope


change <strong>in</strong> <strong>the</strong> sorpti<strong>on</strong> iso<strong>the</strong>rm at high RH levels has been attributed to <strong>the</strong> differences <strong>in</strong> <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>starch</str<strong>on</strong>g> hydroxyl groups available [28], and to <strong>the</strong> glass transiti<strong>on</strong> regi<strong>on</strong>, where <strong>the</strong> amorphous parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>starch</str<strong>on</strong>g><br />

start to plasticize [22]. The glass transiti<strong>on</strong> temperature (T g ) values obta<strong>in</strong>ed for <strong>the</strong> studied samples are close<br />

to those reported by several authors for native and gelat<strong>in</strong>ized potato <str<strong>on</strong>g>starch</str<strong>on</strong>g> [29-31].<br />

Water c<strong>on</strong>tent, %d.b.<br />

70<br />

60<br />

50<br />

40<br />

30<br />

150<br />

120<br />

20<br />

30<br />

10<br />

• NS<br />

GS<br />

0<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Water activity<br />

90<br />

60<br />

T g , °C<br />

Figure 2. Glass transiti<strong>on</strong> temperatures (dashed l<strong>in</strong>es) and water sorpti<strong>on</strong> iso<strong>the</strong>rm at 20 °C: experimental po<strong>in</strong>ts and <strong>the</strong><br />

corresp<strong>on</strong>d<strong>in</strong>g GAB fitt<strong>in</strong>g (solid l<strong>in</strong>es) versus aw. NS (■) and GS (□) systems.<br />

All <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> samples shown <strong>in</strong> <strong>the</strong> water sorpti<strong>on</strong> iso<strong>the</strong>rm were <strong>in</strong> <strong>the</strong> glassy state at 20 °C (Fig. 2). At 70°C<br />

<strong>the</strong> GS samples above 90 % RH (ly<strong>in</strong>g <strong>on</strong> <strong>the</strong> ascend<strong>in</strong>g branch <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> iso<strong>the</strong>rm) were <strong>in</strong> <strong>the</strong> supercooled<br />

regi<strong>on</strong>, and this RH regi<strong>on</strong> co<strong>in</strong>cides with <strong>the</strong> decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Maillard</strong> rate coefficient (Fig. 1). Thus,<br />

particularly for <strong>the</strong> GS systems, <strong>the</strong> rate coefficient seems to be <strong>in</strong>fluenced by <strong>the</strong> glass transiti<strong>on</strong>.<br />

Above 90 % RH, frozen water was detected by DSC both <strong>in</strong> <strong>the</strong> GS and NS samples (not shown). As shown<br />

<strong>in</strong> Fig. 2, <strong>in</strong> <strong>the</strong> GS samples <strong>the</strong> <strong>Maillard</strong> reacti<strong>on</strong> rate coefficient decreased above 84 % RH. This could be<br />

due, <strong>in</strong> part, to <strong>the</strong> diluti<strong>on</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> water, s<strong>in</strong>ce solvent water is available to dilute <strong>the</strong> reactants at high RH<br />

values. In co<strong>in</strong>cidence with <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs by Acevedo et al. [9], for <strong>the</strong> GS samples <strong>the</strong> <strong>Maillard</strong> reacti<strong>on</strong> rate<br />

decrease after <strong>the</strong> maximum is related to <strong>the</strong> appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> mobile water.<br />

As water and matrix molecular mobility can be related to <strong>the</strong> <strong>Maillard</strong> reacti<strong>on</strong> rate, 1 H NMR relaxati<strong>on</strong><br />

times were determ<strong>in</strong>ed <strong>in</strong> <strong>the</strong> samples equilibrated at <strong>the</strong> different RHs analyzed (Figure 3). A free <strong>in</strong>ducti<strong>on</strong><br />

decay (FID) analysis was performed at 20 ºC to analyze <strong>the</strong> molecular mobility corresp<strong>on</strong>d<strong>in</strong>g to prot<strong>on</strong>s <strong>in</strong><br />

solids and tightly bound water. Both native and gelat<strong>in</strong>ized <str<strong>on</strong>g>starch</str<strong>on</strong>g> showed a s<strong>in</strong>gle T 2 -FID value <strong>in</strong> <strong>the</strong> whole<br />

RH scale, which was <strong>in</strong> a range between 8 and 10 microsec<strong>on</strong>ds, and, for a given RH value, no differences <strong>in</strong><br />

T 2 -FID values between NS and GS samples were observed (p < 0.05).<br />

The relaxati<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> more mobile prot<strong>on</strong>s (which account ma<strong>in</strong>ly for water prot<strong>on</strong>s) was studied<br />

through <strong>the</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sp<strong>in</strong>-sp<strong>in</strong> relaxati<strong>on</strong> times after <strong>the</strong> CPMG pulses sequence. Prot<strong>on</strong> populati<strong>on</strong>s<br />

with medium (T 2-1 , from 0.1 to 0.9 ms) and high mobility (T 2-2 , from 1.5 to 3 ms) were detected. Both T 2<br />

values <strong>in</strong> NS and GS <str<strong>on</strong>g>starch</str<strong>on</strong>g> systems are shown <strong>in</strong> Fig. 4. It can be observed that NS system always showed<br />

higher values for both T 2-1 and T 2-2 than those for GS system, particularly at high RH (p < 0.05). As a larger<br />

T 2 value <strong>in</strong>dicates a more mobile prot<strong>on</strong> populati<strong>on</strong>, <strong>the</strong> larger T 2 values <str<strong>on</strong>g>of</str<strong>on</strong>g> NS reveal <strong>the</strong> less aff<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

native <str<strong>on</strong>g>starch</str<strong>on</strong>g> by water.<br />

The RMN f<strong>in</strong>d<strong>in</strong>gs obta<strong>in</strong>ed for NS and GS systems (Fig. 3) agree with <strong>the</strong> <strong>in</strong>terpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Maillard</strong><br />

reacti<strong>on</strong> rate (Fig. 1), and <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> water sorpti<strong>on</strong> properties (Fig. 2). The rapid decrease <strong>in</strong> <strong>the</strong> <strong>Maillard</strong> reacti<strong>on</strong><br />

rate with <strong>in</strong>creas<strong>in</strong>g RH <strong>in</strong> NS samples, which could be caused by product <strong>in</strong>hibiti<strong>on</strong>, is also <strong>in</strong> accord with<br />

<strong>the</strong> higher water molecular mobility (Fig. 4) detected by 1H NMR. Regard<strong>in</strong>g <strong>the</strong> GS systems, several NMR<br />

studies have revealed a drastic decrease <strong>in</strong> T 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>starch</str<strong>on</strong>g> with<strong>in</strong> <strong>the</strong> <str<strong>on</strong>g>gelat<strong>in</strong>izati<strong>on</strong></str<strong>on</strong>g> temperature range,<br />

suggest<strong>in</strong>g that <strong>the</strong> <strong>in</strong>crease <strong>in</strong> <str<strong>on</strong>g>starch</str<strong>on</strong>g> polymers hydrati<strong>on</strong> dim<strong>in</strong>ishes <strong>the</strong> water molecules mobility [14, 32].<br />

The results shown <strong>in</strong> Fig. 3 are <strong>in</strong> accordance with those f<strong>in</strong>d<strong>in</strong>gs. It can be proposed that water adsorbed <strong>in</strong><br />

<strong>the</strong> gelat<strong>in</strong>ized matrix is more homogeneously distributed and renders less mobile prot<strong>on</strong>s due to <strong>the</strong><br />

<strong>in</strong>creased number <str<strong>on</strong>g>of</str<strong>on</strong>g> water-<str<strong>on</strong>g>starch</str<strong>on</strong>g> molecules <strong>in</strong>teracti<strong>on</strong>s, than <strong>the</strong> observed for NS system. Moreover, <strong>the</strong><br />

sorpti<strong>on</strong> iso<strong>the</strong>rm shape <strong>in</strong>dicates <strong>the</strong> higher tendency <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> gelat<strong>in</strong>ized matrix to adsorb water. The GS<br />

system presents also a more homogeneous distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Maillard</strong> reagents with<strong>in</strong> <strong>the</strong> matrix, which renders<br />

a more dilute system regard<strong>in</strong>g brown<strong>in</strong>g reagents, and also less water availability for <strong>the</strong> reacti<strong>on</strong>. The


“diluti<strong>on</strong>” <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reagents makes this system more diffusi<strong>on</strong> dependent. This can expla<strong>in</strong> <strong>the</strong> <strong>in</strong>itial low<br />

<strong>Maillard</strong> reacti<strong>on</strong> rate, which <strong>in</strong>creases up<strong>on</strong> <strong>the</strong> <strong>in</strong>crease <strong>in</strong> RH and decreases when solvent water appears.<br />

T 2 (millisec<strong>on</strong>d)<br />

3.0 • NS<br />

2.5<br />

GS<br />

2.0<br />

1.5<br />

0.9<br />

0.6<br />

0.3<br />

0.0<br />

0 20 40 60 80 100<br />

Relative Humidity (%)<br />

Figure 3. Sp<strong>in</strong>-sp<strong>in</strong> relaxati<strong>on</strong> times T 2-1 and T 2-2 (<strong>in</strong>set) at 20 °C obta<strong>in</strong>ed by CPMG sequence for NS (■) and GS (□)<br />

systems versus RH. The bars represent <strong>the</strong> standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> average value.<br />

CONCLUSION<br />

The relati<strong>on</strong>ships am<strong>on</strong>g brown<strong>in</strong>g rate, sorpti<strong>on</strong> behavior, molecular mobility and physical state have been<br />

c<strong>on</strong>firmed <strong>in</strong> <str<strong>on</strong>g>starch</str<strong>on</strong>g> matrices.<br />

S<strong>in</strong>ce <strong>the</strong> general water sorpti<strong>on</strong> behavior does not take <strong>in</strong>to account <strong>the</strong> heterogeneities <strong>in</strong> <strong>the</strong> water<br />

distributi<strong>on</strong> with<strong>in</strong> <strong>the</strong> matrix, a general relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sorpti<strong>on</strong> phenomen<strong>on</strong> with <strong>the</strong> brown<strong>in</strong>g rate is<br />

difficult to establish.<br />

In <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> NS systems, <strong>the</strong> <str<strong>on</strong>g>starch</str<strong>on</strong>g> matrix is almost <strong>in</strong>ert towards <strong>Maillard</strong> reacti<strong>on</strong>. Thus, reactants are<br />

very c<strong>on</strong>centrated <strong>in</strong> <strong>the</strong> <strong>in</strong>ter-granule spaces. Also, NS has lower tendency to reta<strong>in</strong> water than GS, and <strong>the</strong><br />

water formed dur<strong>in</strong>g <strong>Maillard</strong> reacti<strong>on</strong> is not reta<strong>in</strong>ed by <strong>the</strong> matrix, be<strong>in</strong>g available to act as <strong>in</strong>hibitor. These<br />

characteristics account for <strong>the</strong> high <strong>Maillard</strong> reacti<strong>on</strong> rate at low RH and for its c<strong>on</strong>t<strong>in</strong>uous attenuati<strong>on</strong> given<br />

by <strong>the</strong> <strong>in</strong>hibit<strong>in</strong>g effect <str<strong>on</strong>g>of</str<strong>on</strong>g> water. In native <str<strong>on</strong>g>starch</str<strong>on</strong>g> systems <strong>the</strong> <strong>Maillard</strong> reacti<strong>on</strong> rate is thus <strong>on</strong>ly <strong>in</strong>versely<br />

dependent <strong>on</strong> <strong>the</strong> water c<strong>on</strong>tent.<br />

On <strong>the</strong> o<strong>the</strong>r hand, due to a more homogeneous distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water and reactants with<strong>in</strong> <strong>the</strong> gelat<strong>in</strong>ized<br />

<str<strong>on</strong>g>starch</str<strong>on</strong>g> matrix, <strong>in</strong> <strong>the</strong>se systems <strong>the</strong> <strong>Maillard</strong> reacti<strong>on</strong> rate can be related to <strong>the</strong> physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

matrix: Tg, water sorpti<strong>on</strong> and water mobility as determ<strong>in</strong>ed by 1 H NMR T 2 relaxati<strong>on</strong> times. These<br />

properties can be relevant tools to predict <strong>the</strong> Mallard reacti<strong>on</strong> rate dependence <strong>on</strong> water c<strong>on</strong>tent.<br />

REFERENCES<br />

[1] Carabasa-Giribet M. & Ibarz-Ribas A. 2000. K<strong>in</strong>etics <str<strong>on</strong>g>of</str<strong>on</strong>g> Colour Development <strong>in</strong> Aqueous Glucose Systems at High<br />

Temperatures. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Food Eng<strong>in</strong>eer<strong>in</strong>g, 44, 181–189.<br />

[2] Mart<strong>in</strong>s S.I.F.S., J<strong>on</strong>gen W.M.F. & van Boekel M.A.J.S. 2001. A Review <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Maillard</strong> Reacti<strong>on</strong> <strong>in</strong> Food and<br />

Implicati<strong>on</strong>s to K<strong>in</strong>etic Modell<strong>in</strong>g. Trends <strong>in</strong> Food Science and Technology, 11, 364–373.<br />

[3] Buera M.P., Chirife J., Resnik S.L. & Wetzler G. 1987. N<strong>on</strong>enzymatic Brown<strong>in</strong>g <strong>in</strong> Liquid Systems <str<strong>on</strong>g>of</str<strong>on</strong>g> High Water<br />

Activity: K<strong>in</strong>etics <str<strong>on</strong>g>of</str<strong>on</strong>g> Color Changes due to <strong>Maillard</strong> Reacti<strong>on</strong>'s Between Different S<strong>in</strong>gle Sugars and Glyc<strong>in</strong>e and<br />

Comparis<strong>on</strong> with Caramelizati<strong>on</strong> Brown<strong>in</strong>g. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Food Science, 52, 1063–1067.<br />

[4] Labuza T.P., Tannenbaum S.R. & Karel M. 1970. Water C<strong>on</strong>tent and Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Low Moisture and Intermediate-<br />

Moisture Foods. Food Technology, 24, 543–550.<br />

[5] Eichner K. & Karel M. 1972. The Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Water C<strong>on</strong>tent and Water Activity <strong>on</strong> <strong>the</strong> Sugar-Am<strong>in</strong>o Brown<strong>in</strong>g<br />

Reacti<strong>on</strong> <strong>in</strong> Model Systems Under Various C<strong>on</strong>diti<strong>on</strong>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural and Food Chemistry, 20, 218–223.<br />

[6] Labuza T. & Saltmarch M. 1981. K<strong>in</strong>etics <str<strong>on</strong>g>of</str<strong>on</strong>g> Brown<strong>in</strong>g and Prote<strong>in</strong> Quality Loss <strong>in</strong> Whey Powders Dur<strong>in</strong>g Steady<br />

State and N<strong>on</strong>steady State Storage C<strong>on</strong>diti<strong>on</strong>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Food Science, 41(1), 92–96.<br />

[7] Acevedo N.C., Schebor C. & Buera M.P. 2006. Water–solids Interacti<strong>on</strong>s, Matrix Structural Properties and <strong>the</strong><br />

Rate <str<strong>on</strong>g>of</str<strong>on</strong>g> N<strong>on</strong>-Enzymatic Brown<strong>in</strong>g. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Food Eng<strong>in</strong>eer<strong>in</strong>g, 77, 1108–1115.


[8] Acevedo N.C., Bri<strong>on</strong>es V., Buera M.P. & Aguilera J.M. 2008a. Microstructure Affects <strong>the</strong> Rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical,<br />

Physical and Color Changes Dur<strong>in</strong>g Storage <str<strong>on</strong>g>of</str<strong>on</strong>g> Dried Apple Discs. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Food Eng<strong>in</strong>eer<strong>in</strong>g, 85, 222–231.<br />

[9] Acevedo N.C., Schebor C. & Buera M.P. 2008b. N<strong>on</strong>-Enzymatic Brown<strong>in</strong>g K<strong>in</strong>etics Analysed Through Water–<br />

Solids Interacti<strong>on</strong>s and Water Mobility <strong>in</strong> Dehydrated Potato. Food Chemistry, 108, 900–906.<br />

[10] Buera M.P. & Karel M. 1995. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Changes <strong>on</strong> <strong>the</strong> Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> N<strong>on</strong>enzymatic Brown<strong>in</strong>g and Related<br />

Reacti<strong>on</strong>s. Food Chemistry, 28, 359-365.<br />

[11] Karmas R. & Karel M. 1994. The Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Glass Transiti<strong>on</strong> <strong>on</strong> <strong>Maillard</strong> Reacti<strong>on</strong> Brown<strong>in</strong>g <strong>in</strong> Food Models. In<br />

Labuza T.P., Re<strong>in</strong>eccius G., M<strong>on</strong>nier V.M. & O’Bre<strong>in</strong> J. (Eds.). <strong>Maillard</strong> Reacti<strong>on</strong>s <strong>in</strong> Chemistry, Food and Health.<br />

Royal Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, Cambridge, England.<br />

[12] L<strong>on</strong>c<strong>in</strong> M. 1975. Basic Pr<strong>in</strong>ciples <str<strong>on</strong>g>of</str<strong>on</strong>g> Moisture Equilibria. In Goldblith S.A., Rey L. & Rothmayr W.W. (Eds.).<br />

Freeze Dry<strong>in</strong>g and Advanced Food Technology. Academic Press, New York, USA.<br />

[13] Chen P.L., L<strong>on</strong>g Z., Ruan R. & Labuza T.P. 1997. Nuclear Magnetic Res<strong>on</strong>ance Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> Water Mobility <strong>in</strong><br />

Bread Dur<strong>in</strong>g Storage. Lebensmittel-Wissenschaft und Technologie, 30, 178–183.<br />

[14] Lelievre J. & Mitchell J. 1975. A Pulsed NMR Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Some Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> Starch Gelat<strong>in</strong>izati<strong>on</strong>. Die Stärke, 4, 113-<br />

115.<br />

[15] Charles A.L., Kao H.M. & Huang T.C. 2003. Physical Investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Surface Membrane-Water Relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Intact and Gelat<strong>in</strong>ized Wheat-Starch Systems. Carbohydrate Research, 338, 2403-2408.<br />

[16] Tananuw<strong>on</strong>g K. & Reid D.S. 2004. DSC and NMR Relaxati<strong>on</strong> Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> Starch–Water Interacti<strong>on</strong>s Dur<strong>in</strong>g<br />

Gelat<strong>in</strong>izati<strong>on</strong>. Carbohydrate Polymers, 58, 345–358.<br />

[17] Greenspan L. 1977. Humidity Fixed Po<strong>in</strong>ts <str<strong>on</strong>g>of</str<strong>on</strong>g> B<strong>in</strong>ary Saturated Aqueous Soluti<strong>on</strong>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Nati<strong>on</strong>al Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Standards, 81, 89–96.<br />

[18] Buera M.P. & Resnik S.L. 1989. Colorimetric Measurements <strong>in</strong> a Turbid Medium: Hydrolized C<strong>on</strong>centrated<br />

Cheese Whey. Die Farbe, 36, 201-214.<br />

[19] Hendel C., Silveira V. & Harr<strong>in</strong>gt<strong>on</strong> W. 1955. Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> N<strong>on</strong>enzymatic Brown<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> White Potato Dur<strong>in</strong>g<br />

Dehydrati<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Food Technology, 9, 433–438.<br />

[20] L<strong>on</strong>c<strong>in</strong> M., Jackma<strong>in</strong> D., Tutundjian Provost A., Lenges J. & Bimbenet J. 1965. Influence de L’eau Sur Les<br />

Réacti<strong>on</strong>s de <strong>Maillard</strong> Reacti<strong>on</strong>. Critical Reviews <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, 206, 3208–3211.<br />

[21] White K. & Bell. L. 1999. Glucose loss and <strong>Maillard</strong> Reacti<strong>on</strong> Brown<strong>in</strong>g <strong>in</strong> Solids as Affected by Porosity and<br />

Collapse. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Food Science, 64, 1010–1014.<br />

[22] Van den Berg C. & Bru<strong>in</strong> S. 1981.Water Activity and its Estimati<strong>on</strong> <strong>in</strong> Food Systems. In Rockland L.B. & Stewart<br />

G.F. (Eds.). Water Activity: Influence <strong>on</strong> Food Quality. Academic Press, New York, USA.<br />

[23] Chatakan<strong>on</strong>da P., Dick<strong>in</strong>s<strong>on</strong> L.C. & Ch<strong>in</strong>achoti P. 2003. Mobility and Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Water <strong>in</strong> Cassava and Potato<br />

Starches by 1 H and 2 H NMR. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural and Food Chemistry, 51, 7445 -7449.<br />

[24] Al-Muhtaseb A.H., McM<strong>in</strong>n W.A.M. & Magee T.R.A. 2004. Water Sorpti<strong>on</strong> Iso<strong>the</strong>rms <str<strong>on</strong>g>of</str<strong>on</strong>g> Starch Powders. Part 1:<br />

Ma<strong>the</strong>matical Descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Data. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Food Eng<strong>in</strong>eer<strong>in</strong>g, 61, 297–307.<br />

[25] Peng G., Chen X., Wu W. & Jiang X. 2007. Modell<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Water Sorpti<strong>on</strong> Iso<strong>the</strong>rm for Corn Starch. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Food Eng<strong>in</strong>eer<strong>in</strong>g, 80, 562–567.<br />

[26] Blahovec J. & Yanniotis J. 2008. GAB Generalized Equati<strong>on</strong> for Sorpti<strong>on</strong> Phenomena. Food and Bioprocess<br />

Technology, 1, 82-90.<br />

[27] Perdomo J., Cova A., Sandoval A.J., García L., Laredo E. & Müller, A.J. 2009. Glass Transiti<strong>on</strong> Temperatures and<br />

Water Sorpti<strong>on</strong> Iso<strong>the</strong>rms <str<strong>on</strong>g>of</str<strong>on</strong>g> Cassava Starch. Carbohydrate Polymers, 76(2), 305-313.<br />

[28] Urquhart A.R. 1959. Sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Water by Cellulose and Starch. In H<strong>on</strong>eyman J. (Ed.). Recent Advances <strong>in</strong> <strong>the</strong><br />

Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Cellulose and Starch. Heywood & Company, L<strong>on</strong>d<strong>on</strong>, England.<br />

[29] Thiewes H.J. & Steeneken P.A.M. 1997. The Glass Transiti<strong>on</strong> and <strong>the</strong> sub-Tg Endo<strong>the</strong>rm <str<strong>on</strong>g>of</str<strong>on</strong>g> Amorphous and<br />

Native Potato Starch at Low Moisture C<strong>on</strong>tent. Carbohydrate Polymers, 32, 123-130.<br />

[30] Mizuno A., Mitsuiki M. & Motoki M.J. 1998. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Crystall<strong>in</strong>ity <strong>on</strong> <strong>the</strong> Glass Transiti<strong>on</strong> Temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> Starch.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural and Food Chemistry, 46(1), 98-103.<br />

[31] Farahnaky A., Farhat I.A., Mitchell J.R. & Hill S.E. 2009. The Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Sodium Chloride <strong>on</strong> <strong>the</strong> Glass Transiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Potato and Cassava Starches at Low Moisture C<strong>on</strong>tents. Food Hydrocolloids, 23(6), 1483-1487.<br />

[32] Ch<strong>in</strong>achoti P., White A., Lo L. & Stengle T.R. 1991. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> High Resoluti<strong>on</strong> Carb<strong>on</strong>-13, Oxygen-17, and<br />

Sodium-23 Nuclear Magnetic Res<strong>on</strong>ance to Study <strong>the</strong> Influences <str<strong>on</strong>g>of</str<strong>on</strong>g> Water, Sucrose and Sodium Chloride <strong>on</strong> Starch<br />

Gelat<strong>in</strong>isati<strong>on</strong>. Cereal Chemistry, 68, 238–244.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!