18.01.2014 Views

The Finite Element Method for the Analysis of Non-Linear and ...

The Finite Element Method for the Analysis of Non-Linear and ...

The Finite Element Method for the Analysis of Non-Linear and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong> <strong>for</strong> <strong>the</strong> <strong>Analysis</strong> <strong>of</strong><br />

<strong>Non</strong>-<strong>Linear</strong> <strong>and</strong> Dynamic Systems<br />

Pr<strong>of</strong>. Dr. Eleni Chatzi<br />

Lecture 1 - 20 September, 2010<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 1


Course In<strong>for</strong>mation<br />

Instructor<br />

Pr<strong>of</strong>. Dr. Eleni Chatzi, email: chatzi@ibk.baug.ethz.ch<br />

Office Hours: HIL E14.3, Wednesday 10:00-12:00 or by email<br />

Assistant<br />

Mohammad Miah, HIL E14.2, email: miah@ibk.baug.ethz.ch<br />

Course Website<br />

Lecture Notes <strong>and</strong> Homeworks will be posted at:<br />

http://www.ibk.ethz.ch/ch/education<br />

Suggested Reading<br />

<strong>Finite</strong> <strong>Element</strong> Procedures by K.J. Ba<strong>the</strong>, Prentice Hall, 1996<br />

<strong>Non</strong>linear <strong>Finite</strong> <strong>Element</strong>s <strong>for</strong> Continua <strong>and</strong> Structures by T.<br />

Belytschko, W. K. Liu, <strong>and</strong> B. Moran, John Wiley <strong>and</strong> Sons, 2000<br />

<strong>The</strong> <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong>: <strong>Linear</strong> Static <strong>and</strong> Dynamic <strong>Finite</strong><br />

<strong>Element</strong> <strong>Analysis</strong> by T. J. R. Hughes, Dover Publications, 2000<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 2


Course Outline<br />

Review <strong>of</strong> <strong>the</strong> <strong>Finite</strong> <strong>Element</strong> method - Introduction to<br />

<strong>Non</strong>-<strong>Linear</strong> <strong>Analysis</strong><br />

<strong>Non</strong>-<strong>Linear</strong> <strong>Finite</strong> <strong>Element</strong>s in solids <strong>and</strong> Structural Mechanics<br />

- Overview <strong>of</strong> Solution <strong>Method</strong>s<br />

- Continuum Mechanics & <strong>Finite</strong> De<strong>for</strong>mations<br />

- Lagrangian Formulation<br />

- Structural <strong>Element</strong>s<br />

Dynamical <strong>Finite</strong> <strong>Element</strong> Calculations<br />

- Integration <strong>Method</strong>s<br />

- Mode Superposition<br />

Eigenvalue Problems<br />

Special Topics<br />

- Extended <strong>Finite</strong> <strong>Element</strong>s, Multigrid <strong>Method</strong>s, Meshless <strong>Method</strong>s<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 3


Grading Policy<br />

Homeworks (60%) - Class Project (40%)<br />

Homework<br />

Project<br />

Homeworks are due in class 2 weeks after assignment<br />

Computer Assignments may be done using any coding language<br />

(MATLAB, Fortran, C, MAPLE) - example code will be provided in<br />

MATLAB<br />

Simulation <strong>of</strong> <strong>the</strong> non-linear behavior <strong>of</strong> a concrete column under<br />

cyclic loading<br />

Students can work in groups <strong>of</strong> two <strong>and</strong> can assist with <strong>the</strong><br />

experimental setup<br />

A final written report by each team will be submitted at <strong>the</strong> end <strong>of</strong><br />

<strong>the</strong> class<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 4


Review <strong>of</strong> <strong>the</strong> <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong> (FEM)<br />

Classification <strong>of</strong> Engineering Systems<br />

Discrete<br />

Continuous<br />

q|y+dy<br />

h 1<br />

q|x<br />

dy<br />

q|x+dx<br />

dx<br />

q|y<br />

h 2<br />

L<br />

Flow<br />

<strong>of</strong> water<br />

Permeable Soil<br />

F = KX<br />

Direct Stiffness <strong>Method</strong><br />

k<br />

( )<br />

∂ 2 φ<br />

∂ 2 x + ∂2 φ<br />

∂ 2 y<br />

Impermeable Rock<br />

Laplace Equation<br />

= 0<br />

FEM: Numerical Technique <strong>for</strong> solution <strong>of</strong> continuous systems.<br />

We will use a displacement based <strong>for</strong>mulation <strong>and</strong> a stiffness based solution<br />

(direct stiffness method).<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 5


Review <strong>of</strong> <strong>the</strong> <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong> (FEM)<br />

Differential Formulation (Strong Form)<br />

Obtained through equilibrium <strong>and</strong> Constitutive Requirements<br />

Governing Differential Equation ex: general 2nd order PDE<br />

A(x, y) ∂2 u<br />

∂ 2 x + 2B(x, y) ∂2 u<br />

∂x∂y + C(x, u<br />

y)∂2 ∂ 2 y<br />

= φ(x, y, u,<br />

∂u<br />

∂y , ∂u<br />

∂y )<br />

Problem Classification<br />

B 2 − AC < 0 ⇒ elliptic<br />

B 2 − AC = 0 ⇒<br />

parabolic<br />

B 2 − AC > 0 ⇒<br />

hyperbolic<br />

Boundary Condition Classification<br />

Essential (Dirichlet): u(x 0 , y 0 ) = u 0<br />

order m − 1 at most <strong>for</strong> C m−1<br />

Natural (Neumann): ∂u<br />

∂y (x 0, y 0 ) = ˙u 0<br />

order m to 2m − 1 <strong>for</strong> C m−1<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 6


Strong Form - 1D FEM<br />

Consider <strong>the</strong> following 1D strong <strong>for</strong>m<br />

d<br />

dx (c(x)du dx ) + f(x) = 0<br />

− c(0) d dx u(0) = h<br />

u(L) = 0<br />

(Neumann BC)<br />

(Dirichlet BC)<br />

Physical Problem (1D) Diff. Equation Quantities<br />

One dimensional Heat<br />

flow<br />

Axially Loaded Bar<br />

d dT<br />

Ak<br />

dx dx + Q = 0<br />

d du<br />

AE<br />

dx dx + b = 0<br />

T=temperature<br />

A=area<br />

k=<strong>the</strong>rmal<br />

conductivity<br />

Q=heat supply<br />

u=displacement<br />

A=area<br />

E=Young’s<br />

modulus<br />

B=axial loading<br />

Constitutive<br />

Law<br />

Fourier<br />

q = −k dT/dx<br />

q = heat flux<br />

Hooke<br />

σ = Edu/dx<br />

σ = stress<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 7


Weak Form - 1D FEM<br />

From Strong Form to Weak <strong>for</strong>m - Approach #1<br />

Principle <strong>of</strong> Virtual Work:<br />

For any compatible small virtual displacements imposed on <strong>the</strong> body in its<br />

state <strong>of</strong> equilibrium, <strong>the</strong> total internal virtual work is equal to <strong>the</strong> total<br />

external virtual work.<br />

∫<br />

W int =<br />

where<br />

Ω<br />

∫<br />

¯ɛ T τ dΩ = W ext =<br />

Ω<br />

∫<br />

ū T bdΩ + ū ST T S dΓ + ∑<br />

Γ<br />

i<br />

ū iT R C<br />

i<br />

T S : surface traction (along boundary Γ)<br />

b: body <strong>for</strong>ce per unit area<br />

R C : nodal loads<br />

ū: virtual displacement<br />

¯ɛ: virtual strain<br />

τ : stresses<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 8


Weak Form - 1D FEM<br />

From Strong Form to Weak <strong>for</strong>m - Approach #2<br />

Principle <strong>of</strong> Minimum Potential Energy:<br />

Applies to elastic problems where since <strong>the</strong> elasticity matrix is positive<br />

definite, hence <strong>the</strong> energy functional Π has a minimum (stable equilibrium).<br />

Approach #1 applies in general.<br />

<strong>The</strong> potential energy Π is defined as <strong>the</strong> strain energy U minus <strong>the</strong> work <strong>of</strong><br />

<strong>the</strong> external loads W<br />

Π = U − W<br />

U = 1 ∫<br />

ɛ T CɛdΩ<br />

2 Ω<br />

∫<br />

∫<br />

W = ū T bdΩ + ū ST T s dΓ T + ∑<br />

Ω<br />

Γ T i<br />

ū T i R C<br />

i<br />

(b T s , R C as defined previously)<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 9


Weak Form - 1D FEM<br />

3. Derive Weak <strong>for</strong>m from Strong <strong>for</strong>m<br />

Given an arbitrary weight function w, where<br />

S = {u|u ∈ C 0 , u(l) = 0}, S 0 = {w|w ∈ C 0 , w(l) = 0}<br />

C 0 is <strong>the</strong> collection <strong>of</strong> all continuous functions.<br />

Multiplying by w <strong>and</strong> integrating over Ω<br />

∫ l<br />

0<br />

w(x)[(c(x)u ′ (x)) ′ + f (x)]dx = 0<br />

[w(0)(c(0)u ′ (0) + h] = 0<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 10


Weak Form - 1D FEM<br />

Using <strong>the</strong> divergence <strong>the</strong>orem (integration by parts) we reduce <strong>the</strong><br />

order <strong>of</strong> <strong>the</strong> differential:<br />

∫ l<br />

0<br />

∫ l<br />

wg ′ dx = [wg] l 0 − gw ′ dx<br />

0<br />

<strong>The</strong> weak <strong>for</strong>m is <strong>the</strong>n written<br />

Find u(x) ∈ S such that :<br />

∫ l<br />

0<br />

wcu ′ dx =<br />

∫ l<br />

0<br />

wfdx + w(0)h<br />

S = {u|u ∈ C 0 , u(l) = 0}<br />

S 0 = {w|w ∈ C 0 , w(l) = 0}<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 11


FE <strong>for</strong>mulation: Discretization<br />

Divide <strong>the</strong> body into finite elements, e, connected to each o<strong>the</strong>r<br />

through nodes<br />

e<br />

x 1<br />

e<br />

x 2<br />

e<br />

Replace <strong>the</strong> integral as sum over <strong>the</strong> elements:<br />

[<br />

∑ ∫ x e ∫ ]<br />

2<br />

x e<br />

w ′ cu ′ 2<br />

dx − wfdx − w(0)h = 0<br />

x1<br />

e x1<br />

e<br />

e<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 12


1D FE <strong>for</strong>mulation: Galerkin’s <strong>Method</strong><br />

Galerkin’s method assumes that <strong>the</strong> approximate solution, u, can be<br />

expressed as<br />

u(x) ≈ u h (x) = ∑ i<br />

N i (x)u i = N(x)u<br />

<strong>The</strong> weighting function, w is chosen to be <strong>of</strong> <strong>the</strong> same <strong>for</strong>m as u<br />

w(x) ≈ w h (x) = ∑ i<br />

N i (x)w i = N(w)w<br />

N = [N 1 N 2 ] u = [u 1 u 2 ] T w = [w 1 w 2 ] T (<strong>for</strong> 2 nodes)<br />

Shape function Properties:<br />

Bounded <strong>and</strong> Continuous<br />

One <strong>for</strong> each node<br />

Ni e(x j e) = δ ij, where<br />

{<br />

1 if i = j<br />

δ ij =<br />

0 if i ≠ j<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 13


1D FE <strong>for</strong>mulation: Galerkin’s <strong>Method</strong><br />

Substituting into <strong>the</strong> weak <strong>for</strong>mulation <strong>and</strong> rearranging terms, we<br />

finally obtain <strong>the</strong> following discrete system:<br />

Ku = f<br />

K = A e K e −→ K e =<br />

∫ x e<br />

2<br />

x1<br />

e<br />

N Ț xcN ,x dx =<br />

∫ x e<br />

2<br />

x1<br />

e<br />

B T cBdx<br />

f = A e f e −→ f e =<br />

∫ x e<br />

2<br />

x e 1<br />

N T fdx + N T h| x=0<br />

where A is not a sum but an assembly <strong>and</strong> , x denotes differentiation<br />

with respect to x<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 14


1D FE <strong>for</strong>mulation: Iso-Parametric Formulation<br />

Iso-Parametric Mapping<br />

x<br />

x 1<br />

e<br />

x 2<br />

e<br />

−1 1<br />

ξ<br />

Shape Functions in Natural Coordinates<br />

x(ξ) = ∑<br />

N i (ξ)xi e = N 1 (ξ)x1 e + N 2 (ξ)x2<br />

e<br />

i=1,2<br />

N 1 (ξ) = 1 2 (1 − ξ), N 2(ξ) = 1 (1 + ξ)<br />

2<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 15


1D FE <strong>for</strong>mulation: Iso-Parametric Formulation<br />

Map <strong>the</strong> integrals to <strong>the</strong> natural domain −→ element stiffness matrix:<br />

K e =<br />

∫ x<br />

e<br />

2<br />

x e 1<br />

N Ț xcN ,xdx =<br />

where N ,ξ = d dξ<br />

∫ 1<br />

−1<br />

<strong>and</strong> x ,ξ = dx<br />

dξ = x 2 e − x1<br />

e<br />

2<br />

(N ,ξ ξ ,x) T c(N ,ξ ξ ,x)x ,ξ dξ<br />

[ 1<br />

]<br />

(1 − ξ)<br />

2<br />

1<br />

(1 + ξ) 2<br />

=<br />

[ −1<br />

2<br />

1<br />

2<br />

]<br />

= h 2 = J (Jacobian)<br />

ξ ,x = dξ<br />

dx = J−1 = 2/h<br />

From all <strong>the</strong> above,<br />

[ ]<br />

K e c 1 −1<br />

=<br />

x2 e − x 1<br />

e −1 1<br />

Similary, we obtain <strong>the</strong> element load vector:<br />

f e =<br />

∫ x<br />

e<br />

2<br />

x e 1<br />

N T fdx + N T h| x=0 =<br />

∫ 1<br />

−1<br />

N T (ξ)fx ,ξ dξ + N T (x)h| x=0<br />

Note: <strong>the</strong> iso-parametric mapping is only done <strong>for</strong> <strong>the</strong> integral.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 16


Strong Form - 2D <strong>Linear</strong> Elasticity FEM<br />

Governing Equations<br />

Equilibrium Eq: ∇ s σ + b = 0 ∈ Ω<br />

Kinematic Eq: ɛ = ∇ s u ∈ Ω<br />

Constitutive Eq: σ = D · ɛ ∈ Ω<br />

Traction B.C.: τ · n = T s ∈ Γ t<br />

Displacement B.C: u = u Γ ∈ Γ u<br />

Hooke’s Law - Constitutive Equation<br />

Plane Stress<br />

Plane Strain<br />

τ zz = τ xz = τ yz = 0, ɛ zz ≠ 0 ɛ zz = γ xz = γ yz = 0, σ zz ≠ 0<br />

⎡<br />

⎤<br />

⎡<br />

D =<br />

E 1 ν 0<br />

1 − ν ν 0<br />

⎣ ν 1 0 ⎦<br />

E<br />

D =<br />

⎣ ν 1 − ν 0<br />

1 − ν 2 (1 − ν)(1 + ν)<br />

0 0<br />

0 0<br />

1−ν<br />

2<br />

1−2ν<br />

2<br />

⎤<br />

⎦<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 17


2D FE <strong>for</strong>mulation: Discretization<br />

Divide <strong>the</strong> body into finite elements connected to each o<strong>the</strong>r through<br />

nodes<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 18


2D FE <strong>for</strong>mulation: Iso-Parametric Formulation<br />

Shape Functions in Natural Coordinates<br />

N 1 (ξ, η) = 1 4 (1 − ξ)(1 − η), N 2(ξ, η) = 1 (1 + ξ)(1 − η)<br />

4<br />

N 3 (ξ, η) = 1 4 (1 + ξ)(1 + η), N 4(ξ, η) = 1 (1 − ξ)(1 + η)<br />

4<br />

Iso-parametric Mapping<br />

x =<br />

y =<br />

4∑<br />

N i (ξ, η)xi<br />

e<br />

i=1<br />

4∑<br />

i=1<br />

N i (ξ, η)y e<br />

i<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 19


Bilinear Shape Functions<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 20


Appendix - Axially Loaded Bar Example<br />

Constant End Load<br />

Given: Length L, Section Area A, Young’s modulus E<br />

Find: stresses <strong>and</strong> de<strong>for</strong>mations.<br />

Assumptions:<br />

<strong>The</strong> cross-section <strong>of</strong> <strong>the</strong> bar does not change after loading.<br />

<strong>The</strong> material is linear elastic, isotropic, <strong>and</strong> homogeneous.<br />

<strong>The</strong> load is centric.<br />

End-effects are not <strong>of</strong> interest to us.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 22


Appendix - Axially Loaded Bar Example<br />

Strength <strong>of</strong> Materials Approach<br />

From equilibrium equation, axial <strong>for</strong>ce at r<strong>and</strong>om point x along <strong>the</strong><br />

bar is:<br />

f(x) = R(= const) ⇒ σ(x) = R A<br />

From constitutive equation (Hooke’s Law):<br />

ɛ(x) = σ(x)<br />

E<br />

Hence, <strong>the</strong> de<strong>for</strong>mation is obtained as:<br />

= R<br />

AE<br />

δ(x) = ɛ(x)<br />

x<br />

⇒ δ(x) = Rx<br />

AE<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 23


Appendix - Axially Loaded Bar Example<br />

<strong>Linear</strong>ly Distributed Axial Load<br />

From equilibrium equation, axial <strong>for</strong>ce at r<strong>and</strong>om point x along <strong>the</strong><br />

bar is:<br />

f(x) = R + a(L2 − x 2 )<br />

( depends on x)<br />

2<br />

In order to now find stresses, de<strong>for</strong>mations we have to repeat <strong>the</strong><br />

process <strong>for</strong> every point in <strong>the</strong> bar (computationally inefficient).<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 24


Appendix - Axially Loaded Bar Example<br />

From equilibrium equation, <strong>for</strong> <strong>the</strong> infinitesimal element:<br />

∆σ<br />

dσ<br />

Aσ = q(x)∆x + A(σ + ∆σ) ⇒ A }{{}<br />

lim + q(x) = 0 ⇒ A<br />

∆x dx + q(x) = 0<br />

∆x→0<br />

Also, ɛ = du<br />

dx , ɛ = Eɛ, q(x) = ax ⇒ AE d 2 u<br />

dx 2 + ax = 0<br />

Strong Form<br />

AE d 2 u<br />

dx + ax = 0<br />

2<br />

u(0) = 0 essential BC<br />

f(L) = R ⇒ AE du<br />

dx ∣ = R natural BC<br />

x=L<br />

Analytical Solution<br />

u(x) = u hom + u p ⇒ u(x) = C 1x + C 2 − ax 3<br />

6AE<br />

C 1, C 2 are determined from <strong>the</strong> BC<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 25


Appendix - Axially Loaded Bar Example<br />

An analytical solution cannot always be found<br />

Approximate Solution - <strong>The</strong> Galerkin Approach: Multiply by <strong>the</strong> weight function w <strong>and</strong><br />

integrate over <strong>the</strong> domain<br />

Apply integration by parts<br />

∫ L<br />

0<br />

∫ L<br />

0<br />

[<br />

AE d2 u<br />

dx 2 wdx = AE du ] l<br />

dx w −<br />

0<br />

AE d2 u<br />

dx 2 wdx = [<br />

∫ L<br />

∫<br />

AE d2 u<br />

L<br />

0 dx 2 wdx + axwdx = 0<br />

0<br />

AE du<br />

dx<br />

∫ L<br />

0<br />

AE du dw<br />

dx dx dx ⇒<br />

(L)w(L) − AE<br />

du<br />

dx (0)w(0) ]<br />

−<br />

∫ L<br />

0<br />

AE du dw<br />

dx dx dx<br />

But from BC we have u(0) = 0, AE du (L)w(L) = Rw(L), <strong>the</strong>re<strong>for</strong>e <strong>the</strong> approximate<br />

dx<br />

weak <strong>for</strong>m can be written as<br />

∫ L<br />

AE du<br />

∫<br />

dw<br />

L<br />

0 dx dx dx = Rw(L) + axwdx<br />

0<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 26


Appendix - Axially Loaded Bar Example<br />

In Galerkin’s method we assume that <strong>the</strong> approximate solution, u can be expressed as<br />

u(x) =<br />

n∑<br />

u j N j (x)<br />

w is chosen to be <strong>of</strong> <strong>the</strong> same <strong>for</strong>m as <strong>the</strong> approximate solution (but with arbitrary<br />

coefficients w i ),<br />

w(x) =<br />

j=1<br />

n∑<br />

w i N i (x)<br />

i=1<br />

Plug u(x),w(x) into <strong>the</strong> approximate weak <strong>for</strong>m:<br />

∫ L n∑ dN j (x)<br />

AE u j<br />

0<br />

dx<br />

j=1<br />

n∑<br />

i=1<br />

w i<br />

dN i (x)<br />

dx<br />

w i is arbitrary, so <strong>the</strong> above has to hold ∀ w i :<br />

n∑<br />

∫ L n∑<br />

dx = R w i N i (L) + ax w i N i (x)dx<br />

i=1<br />

0<br />

i=1<br />

n∑<br />

[∫ L dN j (x)<br />

AE dN ]<br />

∫<br />

i (x)<br />

L<br />

dx u j = RN i (L) + axN i (x)dx<br />

j=1<br />

0 dx dx<br />

0<br />

i = 1 . . . n<br />

which is a system <strong>of</strong> n equations that can be solved <strong>for</strong> <strong>the</strong> unknown coefficients u j .<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 27


Appendix - Axially Loaded Bar Example<br />

<strong>The</strong> matrix <strong>for</strong>m <strong>of</strong> <strong>the</strong> previous system can be expressed as<br />

K ij u j = f i where K ij =<br />

<strong>and</strong> f i = RN i (L) +<br />

∫ L<br />

0<br />

∫ L<br />

0<br />

dN j (x)<br />

dx<br />

axN i (x)dx<br />

AE dN i(x)<br />

dx<br />

dx<br />

<strong>Finite</strong> <strong>Element</strong> Solution - using 2 discrete elements, <strong>of</strong> length h (3 nodes)<br />

From <strong>the</strong>[ iso-parametric ] <strong>for</strong>mulation we know <strong>the</strong> element stiffness matrix<br />

1 −1<br />

K e = AE . Assembling <strong>the</strong> element stiffness matrices we get:<br />

h −1 1<br />

⎡<br />

K tot = ⎣<br />

K11 e K12 1 0<br />

K12 1 K22 1 + K11 2 K12<br />

2<br />

0 K12 2 K22<br />

2<br />

⎤<br />

⎦ ⇒<br />

K tot = AE h<br />

⎡<br />

⎣<br />

1 −1 0<br />

−1 2 −1<br />

0 −1 1<br />

⎤<br />

⎦<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 28

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!