18.01.2014 Views

The Finite Element Method for the Analysis of Non-Linear and ...

The Finite Element Method for the Analysis of Non-Linear and ...

The Finite Element Method for the Analysis of Non-Linear and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong> <strong>for</strong> <strong>the</strong> <strong>Analysis</strong> <strong>of</strong><br />

<strong>Non</strong>-<strong>Linear</strong> <strong>and</strong> Dynamic Systems<br />

Pr<strong>of</strong>. Dr. Eleni Chatzi<br />

Lecture 1 - 17 September, 2013<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 1


Course In<strong>for</strong>mation<br />

Instructor<br />

Pr<strong>of</strong>. Dr. Eleni Chatzi, email: chatzi@ibk.baug.ethz.ch<br />

Office Hours: HIL E14.3, Wednesday 10:00-12:00 or by email<br />

Assistant<br />

Juan Escalln Osorio, HIL E10.2, email: ejuan@student.ethz.ch<br />

Course Website<br />

Lecture Notes <strong>and</strong> Homeworks will be posted at:<br />

http://www.ibk.ethz.ch/ch/education<br />

Suggested Reading<br />

<strong>Non</strong>linear <strong>Finite</strong> <strong>Element</strong>s <strong>for</strong> Continua <strong>and</strong> Structures by T.<br />

Belytschko, W. K. Liu, <strong>and</strong> B. Moran, John Wiley <strong>and</strong> Sons, 2000<br />

<strong>The</strong> <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong>: <strong>Linear</strong> Static <strong>and</strong> Dynamic <strong>Finite</strong><br />

<strong>Element</strong> <strong>Analysis</strong> by T. J. R. Hughes, Dover Publications, 2000<br />

<strong>The</strong> <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong> Vol. 2 Solid Mechanics by O.C.<br />

Zienkiewicz <strong>and</strong> R.L. Taylor, Ox<strong>for</strong>d : Butterworth Heinemann, 2000<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 2


Course Outline<br />

Review <strong>of</strong> <strong>the</strong> <strong>Finite</strong> <strong>Element</strong> method - Introduction to<br />

<strong>Non</strong>-<strong>Linear</strong> <strong>Analysis</strong><br />

<strong>Non</strong>-<strong>Linear</strong> <strong>Finite</strong> <strong>Element</strong>s in solids <strong>and</strong> Structural Mechanics<br />

- Overview <strong>of</strong> Solution <strong>Method</strong>s<br />

- Continuum Mechanics & <strong>Finite</strong> De<strong>for</strong>mations<br />

- Lagrangian Formulation<br />

- Structural <strong>Element</strong>s<br />

Dynamic <strong>Finite</strong> <strong>Element</strong> Calculations<br />

- Integration <strong>Method</strong>s<br />

- Mode Superposition<br />

Eigenvalue Problems<br />

Special Topics<br />

- Extended <strong>Finite</strong> <strong>Element</strong>s, Multigrid <strong>Method</strong>s, Meshless <strong>Method</strong>s<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 3


Grading Policy<br />

Per<strong>for</strong>mance Evaluation - Homeworks (100%)<br />

Homework<br />

Homeworks are due in class 2-3 weeks after assignment<br />

Computer Assignments may be done using any coding language<br />

(MATLAB, Fortran, C, MAPLE) - example code will be<br />

provided in MATLAB<br />

Commercial s<strong>of</strong>tware such as CUBUS, ABAQUS <strong>and</strong> SAP will<br />

also be used <strong>for</strong> certain Assignments<br />

Homework Sessions will be pre-announced <strong>and</strong> it is advised to bring<br />

a laptop along <strong>for</strong> those sessions<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 4


Review <strong>of</strong> <strong>the</strong> <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong> (FEM)<br />

Classification <strong>of</strong> Engineering Systems<br />

Discrete<br />

Continuous<br />

q|y+dy<br />

h 1<br />

q|x<br />

dy<br />

q|x+dx<br />

dx<br />

q|y<br />

h 2<br />

L<br />

Flow<br />

<strong>of</strong> water<br />

Permeable Soil<br />

F = KX<br />

Direct Stiffness <strong>Method</strong><br />

( )<br />

k ∂ 2 φ<br />

∂ 2 x + ∂2 φ<br />

∂ 2 y<br />

Impermeable Rock<br />

= 0<br />

Laplace Equation<br />

FEM: Numerical Technique <strong>for</strong> approximating <strong>the</strong> solution <strong>of</strong> continuous<br />

systems. We will use a displacement based <strong>for</strong>mulation <strong>and</strong> a stiffness<br />

based solution (direct stiffness method).<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 5


Review <strong>of</strong> <strong>the</strong> <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong> (FEM)<br />

How is <strong>the</strong> Physical Problem <strong>for</strong>mulated?<br />

<strong>The</strong> <strong>for</strong>mulation <strong>of</strong> <strong>the</strong> equations governing <strong>the</strong> response <strong>of</strong> a system under<br />

specific loads <strong>and</strong> constraints at its boundaries is usually provided in <strong>the</strong><br />

<strong>for</strong>m <strong>of</strong> a differential equation. <strong>The</strong> differential equation also known as <strong>the</strong><br />

strong <strong>for</strong>m <strong>of</strong> <strong>the</strong> problem is typically extracted using <strong>the</strong> following sets<br />

<strong>of</strong> equations:<br />

1 Equilibrium Equations<br />

aL + ax<br />

ex. f (x) = R + (L − x)<br />

2<br />

2 Constitutive Requirements<br />

Equations<br />

ex. σ = Eɛ<br />

3 Kinematics Relationships<br />

ex. ɛ = du<br />

dx<br />

Axial bar Example<br />

q(x)=ax<br />

x<br />

ax aL<br />

f(x)<br />

L-x<br />

R<br />

R<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 6


Review <strong>of</strong> <strong>the</strong> <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong> (FEM)<br />

How is <strong>the</strong> Physical Problem <strong>for</strong>mulated?<br />

Differential Formulation (Strong Form) in 2 Dimensions<br />

Quite commonly, in engineering systems, <strong>the</strong> governing equations are <strong>of</strong> a<br />

second order (derivatives up to u ′′ or ∂2 u<br />

∂ 2 x<br />

) <strong>and</strong> <strong>the</strong>y are <strong>for</strong>mulated in terms<br />

<strong>of</strong> variable u, i.e. displacement:<br />

Governing Differential Equation ex: general 2nd order PDE<br />

A(x, y) ∂2 u<br />

∂ 2 x + 2B(x, y) ∂2 u<br />

∂x∂y + C(x, y) ∂2 u<br />

∂u<br />

∂ 2 y<br />

= φ(x, y, u,<br />

∂y , ∂u<br />

∂y )<br />

Problem Classification<br />

B 2 − AC < 0 ⇒ elliptic<br />

B 2 − AC = 0 ⇒ parabolic<br />

B 2 − AC > 0 ⇒ hyperbolic<br />

Boundary Condition Classification<br />

Essential (Dirichlet): u(x 0 , y 0 ) = u 0<br />

order m − 1 at most <strong>for</strong> C m−1<br />

Natural (Neumann):<br />

∂u<br />

∂y (x 0, y 0 ) = ˙u 0<br />

order m to 2m − 1 <strong>for</strong> C m−1<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 7


Review <strong>of</strong> <strong>the</strong> <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong> (FEM)<br />

Differential Formulation (Strong Form) in 2 Dimensions<br />

<strong>The</strong> previous classification corresponds to certain characteristics <strong>for</strong> each<br />

class <strong>of</strong> methods. More specifically,<br />

Elliptic equations are most commonly associated with a diffusive or<br />

dispersive process in which <strong>the</strong> state variable u is in an equilibrium<br />

condition.<br />

Parabolic equations most <strong>of</strong>ten arise in transient flow problems where<br />

<strong>the</strong> flow is down gradient <strong>of</strong> some state variable u. Often met in <strong>the</strong><br />

heat flow context.<br />

Hyperbolic equations refer to a wide range <strong>of</strong> areas including<br />

elasticity, acoustics, atmospheric science <strong>and</strong> hydraulics.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 8


Strong Form - 1D FEM<br />

Reference Problem<br />

Consider <strong>the</strong> following 1 Dimensional (1D) strong <strong>for</strong>m (parabolic)<br />

d<br />

dx (c(x)du dx ) + f(x) = 0<br />

− c(0) d dx u(0) = C 1<br />

u(L) = 0<br />

(Neumann BC)<br />

(Dirichlet BC)<br />

Physical Problem (1D) Diff. Equation Quantities<br />

One dimensional Heat<br />

flow<br />

Axially Loaded Bar<br />

d dT<br />

Ak<br />

dx dx + Q = 0<br />

d du<br />

AE<br />

dx dx + b = 0<br />

T=temperature<br />

A=area<br />

k=<strong>the</strong>rmal<br />

conductivity<br />

Q=heat supply<br />

u=displacement<br />

A=area<br />

E=Young’s<br />

modulus<br />

B=axial loading<br />

Constitutive<br />

Law<br />

Fourier<br />

q = −k dT/dx<br />

q = heat flux<br />

Hooke<br />

σ = Edu/dx<br />

σ = stress<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 9


Weak Form - 1D FEM<br />

Approximating <strong>the</strong> Strong Form<br />

<strong>The</strong> strong <strong>for</strong>m requires strong continuity on <strong>the</strong> dependent field<br />

variables (usually displacements). Whatever functions define <strong>the</strong>se<br />

variables have to be differentiable up to <strong>the</strong> order <strong>of</strong> <strong>the</strong> PDE that<br />

exist in <strong>the</strong> strong <strong>for</strong>m <strong>of</strong> <strong>the</strong> system equations. Obtaining <strong>the</strong><br />

exact solution <strong>for</strong> a strong <strong>for</strong>m <strong>of</strong> <strong>the</strong> system equation is a quite<br />

difficult task <strong>for</strong> practical engineering problems.<br />

<strong>The</strong> finite difference method can be used to solve <strong>the</strong> system<br />

equations <strong>of</strong> <strong>the</strong> strong <strong>for</strong>m <strong>and</strong> obtain an approximate solution.<br />

However, this method usually works well <strong>for</strong> problems with simple<br />

<strong>and</strong> regular geometry <strong>and</strong> boundary conditions.<br />

Alternatively we can use <strong>the</strong> finite element method on a weak<br />

<strong>for</strong>m <strong>of</strong> <strong>the</strong> system. This weak <strong>for</strong>m is usually obtained through<br />

energy principles which is why it is also known as variational <strong>for</strong>m.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 10


Weak Form - 1D FEM<br />

From Strong Form to Weak <strong>for</strong>m<br />

Three are <strong>the</strong> approaches commonly used to go from strong to weak<br />

<strong>for</strong>m:<br />

Principle <strong>of</strong> Virtual Work<br />

Principle <strong>of</strong> Minimum Potential Energy<br />

<strong>Method</strong>s <strong>of</strong> weighted residuals (Galerkin, Collocation, Least<br />

Squares methods, etc)<br />

*We will mainly focus on <strong>the</strong> third approach.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 11


Weak Form - 1D FEM<br />

From Strong Form to Weak <strong>for</strong>m - Approach #1<br />

Principle <strong>of</strong> Virtual Work<br />

For any set <strong>of</strong> compatible small virtual displacements imposed on <strong>the</strong> body<br />

in its state <strong>of</strong> equilibrium, <strong>the</strong> total internal virtual work is equal to <strong>the</strong><br />

total external virtual work.<br />

∫<br />

W int =<br />

where<br />

Ω<br />

∫<br />

¯ɛ T τ dΩ = W ext =<br />

Ω<br />

∫<br />

ū T bdΩ + ū ST T S dΓ + ∑<br />

Γ<br />

i<br />

ū iT R C<br />

i<br />

T S : surface traction (along boundary Γ)<br />

b: body <strong>for</strong>ce per unit area<br />

R C : nodal loads<br />

ū: virtual displacement<br />

¯ɛ: virtual strain<br />

τ : stresses<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 12


Weak Form - 1D FEM<br />

From Strong Form to Weak <strong>for</strong>m - Approach #2<br />

Principle <strong>of</strong> Minimum Potential Energy<br />

Applies to elastic problems where <strong>the</strong> elasticity matrix is positive definite,<br />

hence <strong>the</strong> energy functional Π has a minimum (stable equilibrium).<br />

Approach #1 applies in general.<br />

<strong>The</strong> potential energy Π is defined as <strong>the</strong> strain energy U minus <strong>the</strong> work <strong>of</strong><br />

<strong>the</strong> external loads W<br />

Π = U − W<br />

U = 1 ∫<br />

ɛ T CɛdΩ<br />

2 Ω<br />

∫<br />

∫<br />

W = ū T bdΩ + ū ST T s dΓ T + ∑<br />

Ω<br />

Γ T i<br />

ū T i R C<br />

i<br />

(b T s , R C as defined previously)<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 13


Weak Form - 1D FEM<br />

From Strong Form to Weak <strong>for</strong>m - Approach #3<br />

Galerkin’s <strong>Method</strong><br />

Given an arbitrary weight function w, where<br />

S = {u|u ∈ C 0 , u(l) = 0}, S 0 = {w|w ∈ C 0 , w(l) = 0}<br />

C 0 is <strong>the</strong> collection <strong>of</strong> all continuous functions.<br />

Multiplying by w <strong>and</strong> integrating over Ω<br />

∫ l<br />

0<br />

w(x)[(c(x)u ′ (x)) ′ + f (x)]dx = 0<br />

[w(0)(c(0)u ′ (0) + C 1 ] = 0<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 14


Weak Form - 1D FEM<br />

Using <strong>the</strong> divergence <strong>the</strong>orem (integration by parts) we reduce <strong>the</strong><br />

order <strong>of</strong> <strong>the</strong> differential:<br />

∫ l<br />

0<br />

∫ l<br />

wg ′ dx = [wg] l 0 − gw ′ dx<br />

0<br />

<strong>The</strong> weak <strong>for</strong>m is <strong>the</strong>n reduced to <strong>the</strong> following problem. Also, in<br />

what follows we assume constant properties c(x) = c = const.<br />

Find u(x) ∈ S such that:<br />

∫ l<br />

0<br />

w ′ cu ′ dx =<br />

∫ l<br />

0<br />

wfdx + w(0)C 1<br />

S = {u|u ∈ C 0 , u(l) = 0}<br />

S 0 = {w|w ∈ C 0 , w(l) = 0}<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 15


Weak Form<br />

Notes:<br />

1 Natural (Neumann) boundary conditions, are imposed on <strong>the</strong><br />

secondary variables like <strong>for</strong>ces <strong>and</strong> tractions.<br />

For example, ∂u<br />

∂y (x 0, y 0 ) = ˙u 0 .<br />

2 Essential (Dirichlet) or geometric boundary conditions, are imposed<br />

on <strong>the</strong> primary variables like displacements.<br />

For example, u(x 0 , y 0 ) = u 0 .<br />

3 A solution to <strong>the</strong> strong <strong>for</strong>m will also satisfy <strong>the</strong> weak <strong>for</strong>m, but not<br />

vice versa.Since <strong>the</strong> weak <strong>for</strong>m uses a lower order <strong>of</strong> derivatives it can<br />

be satisfied by a larger set <strong>of</strong> functions.<br />

4 For <strong>the</strong> derivation <strong>of</strong> <strong>the</strong> weak <strong>for</strong>m we can choose any weighting<br />

function w, since it is arbitrary, so we usually choose one that satisfies<br />

homogeneous boundary conditions wherever <strong>the</strong> actual solution<br />

satisfies essential boundary conditions. Note that this does not hold<br />

<strong>for</strong> natural boundary conditions!<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 16


FE <strong>for</strong>mulation: Discretization<br />

How to derive a solution to <strong>the</strong> weak <strong>for</strong>m?<br />

Step #1:Follow <strong>the</strong> FE approach:<br />

Divide <strong>the</strong> body into finite elements, e, connected to each o<strong>the</strong>r<br />

through nodes.<br />

e<br />

x 1<br />

e<br />

x 2<br />

e<br />

<strong>The</strong>n break <strong>the</strong> overall integral into a summation over <strong>the</strong> finite<br />

elements:<br />

[<br />

∑ ∫ x e ∫ ]<br />

2<br />

x e<br />

w ′ cu ′ 2<br />

dx − wfdx − w(0)C 1 = 0<br />

x1<br />

e x1<br />

e<br />

e<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 17


1D FE <strong>for</strong>mulation: Galerkin’s <strong>Method</strong><br />

Step #2: Approximate <strong>the</strong> continuous displacement using a discrete<br />

equivalent:<br />

Galerkin’s method assumes that <strong>the</strong> approximate (or trial) solution, u, can<br />

be expressed as a linear combination <strong>of</strong> <strong>the</strong> nodal point displacements u i ,<br />

where i refers to <strong>the</strong> corresponding node number.<br />

u(x) ≈ u h (x) = ∑ i<br />

N i (x)u i = N(x)u<br />

where bold notation signifies a vector <strong>and</strong> N i (x) are <strong>the</strong> shape functions.<br />

In fact, <strong>the</strong> shape function can be any ma<strong>the</strong>matical <strong>for</strong>mula that helps us<br />

interpolate what happens at points that lie within <strong>the</strong> nodes <strong>of</strong> <strong>the</strong> mesh.<br />

In <strong>the</strong> 1-D case that we are using as a reference, N i (x) are defined as 1st<br />

degree polynomials indicating a linear interpolation.<br />

As will be shown in <strong>the</strong> application presented in <strong>the</strong> end <strong>of</strong> this lecture, <strong>for</strong> <strong>the</strong><br />

case <strong>of</strong> a truss element <strong>the</strong> linear polynomials also satisfy <strong>the</strong> homogeneous<br />

equation related to <strong>the</strong> bar problem.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 18


1D FE <strong>for</strong>mulation: Galerkin’s <strong>Method</strong><br />

Shape function Properties:<br />

Bounded <strong>and</strong> Continuous<br />

One <strong>for</strong> each node<br />

Ni e(x j e) = δ ij, where<br />

{ 1 if i = j<br />

δ ij =<br />

0 if i ≠ j<br />

<strong>The</strong> shape functions can be written as piecewise functions <strong>of</strong> <strong>the</strong> x<br />

coordinate:<br />

This is not a convenient notation.<br />

⎧<br />

x − x i−1<br />

Instead <strong>of</strong> using <strong>the</strong> global coordinate<br />

, x i−1 ≤ x < x i<br />

⎪⎨ x i − x i−1 x, things become simplified when<br />

N i (x) = xi + 1 − x<br />

, x i ≤ x < x<br />

using coordinate ξ referring to <strong>the</strong><br />

i+1<br />

⎪⎩<br />

x i+1 − x i local system <strong>of</strong> <strong>the</strong> element (see page<br />

0, o<strong>the</strong>rwise 25).<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 19


1D FE <strong>for</strong>mulation: Galerkin’s <strong>Method</strong><br />

Step #2: Approximate w(x) using a discrete equivalent:<br />

<strong>The</strong> weighting function, w is usually (although not necessarily) chosen to<br />

be <strong>of</strong> <strong>the</strong> same <strong>for</strong>m as u<br />

w(x) ≈ w h (x) = ∑ i<br />

N i (x)w i = N(x)w<br />

i.e. <strong>for</strong> 2 nodes:<br />

N = [N 1 N 2 ] u = [u 1 u 2 ] T w = [w 1 w 2 ] T<br />

Alternatively we could have a Petrov-Galerkin <strong>for</strong>mulation, where w(x) is<br />

obtained through <strong>the</strong> following relationships:<br />

w(x) = ∑ i<br />

(N i + δ he<br />

σ<br />

δ = coth( Pee<br />

2 ) − 2<br />

Pe e<br />

dN i<br />

dx )w i<br />

coth = ex + e −x<br />

e x − e −x<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 20


1D FE <strong>for</strong>mulation: Galerkin’s <strong>Method</strong><br />

Note: Matrix vs. Einstein’s notation:<br />

In <strong>the</strong> derivations that follow it is convenient to introduce <strong>the</strong><br />

equivalence between <strong>the</strong> Matrix <strong>and</strong> Einstein’s notation. So far we<br />

have approximated:<br />

u(x) = ∑ i<br />

N i (x)u i (Einstein ′ s notation) = N(x)u (Matrix notation)<br />

w(x) = ∑ i<br />

N i (x)w i = N(x)w<br />

(similarly)<br />

As an example, if we consider an element <strong>of</strong> 3 nodes:<br />

3∑<br />

u(x) = N i (x)u i = N 1 u 1 + N 2 u 2 + N 3 u 3 ⇒<br />

i<br />

⎡<br />

u(x) = [N 1 N 2 N 3 ] ⎣<br />

⎤<br />

u 1<br />

u 2<br />

⎦ = N(x)u<br />

u 3<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 21


1D FE <strong>for</strong>mulation: Galerkin’s <strong>Method</strong><br />

Step #3: Substituting into <strong>the</strong> weak <strong>for</strong>mulation <strong>and</strong> rearranging<br />

terms we obtain <strong>the</strong> following in matrix notation:<br />

∫ l<br />

0<br />

∫ l<br />

0<br />

w ′ cu ′ dx −<br />

∫ l<br />

(w T N T ) ′ c(Nu) ′ dx −<br />

0<br />

wfdx − w(0)C 1 = 0 ⇒<br />

∫ l<br />

0<br />

w T N T fdx − w T N(0) T C 1 = 0<br />

Since w, u are vectors, each one containing a set <strong>of</strong> discrete values<br />

corresponding at <strong>the</strong> nodes i, it follows that <strong>the</strong> above set <strong>of</strong> equations can<br />

be rewritten in <strong>the</strong> following <strong>for</strong>m, i.e. as a summation over <strong>the</strong> w i , u i<br />

components (Einstein notation):<br />

∫ l<br />

0<br />

( ∑<br />

i<br />

)<br />

dN i (x)<br />

u i c<br />

dx<br />

⎛<br />

⎝ ∑ j<br />

⎞<br />

dN j (x)<br />

w j<br />

⎠ dx<br />

dx<br />

∫ l<br />

− f ∑<br />

0<br />

j<br />

w j N j (x)dx − ∑ j<br />

w j N j (x)C 1<br />

∣ ∣∣∣∣∣x=0<br />

= 0<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 22


1D FE <strong>for</strong>mulation: Galerkin’s <strong>Method</strong><br />

This is rewritten as,<br />

[<br />

∑ ∫ (<br />

l ∑<br />

w j<br />

j<br />

0<br />

i<br />

cu i<br />

dN i (x)<br />

dx<br />

) ]<br />

dN j (x)<br />

− fN j (x)dx + (N j (x)C 1 )|<br />

dx<br />

x=0<br />

= 0<br />

<strong>The</strong> above equation has to hold ∀w j since <strong>the</strong> weighting function w(x) is<br />

an arbitrary one. <strong>The</strong>re<strong>for</strong>e <strong>the</strong> following system <strong>of</strong> equations has to hold:<br />

∫ ( )<br />

l ∑ dN i (x) dN j (x)<br />

cu i − fN j (x)dx + (N j (x)C 1 )|<br />

0<br />

dx dx<br />

x=0<br />

= 0 j = 1, ..., n<br />

i<br />

After reorganizing <strong>and</strong> moving <strong>the</strong> summation outside <strong>the</strong> integral, this<br />

becomes:<br />

[<br />

∑ ∫ ]<br />

l<br />

c dN ∫<br />

i(x) dN j (x)<br />

l<br />

u i = fN j (x)dx + (N j (x)C 1 )|<br />

dx dx<br />

x=0<br />

= 0 j = 1, ..., n<br />

0<br />

i<br />

0<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 23


1D FE <strong>for</strong>mulation: Galerkin’s <strong>Method</strong><br />

We finally obtain <strong>the</strong> following discrete system in matrix notation:<br />

Ku = f<br />

where writing <strong>the</strong> intagral from 0 to l as a summation over <strong>the</strong><br />

subelements we obtain:<br />

K = A e K e −→ K e =<br />

∫ x e<br />

2<br />

x1<br />

e<br />

N Ț xcN ,x dx =<br />

∫ x e<br />

2<br />

x1<br />

e<br />

B T cBdx<br />

f = A e f e −→ f e =<br />

∫ x e<br />

2<br />

x e 1<br />

N T fdx + N T h| x=0<br />

where A is not a sum but an assembly (see page <strong>and</strong>, x denotes<br />

differentiation with respect to x.<br />

In addition, B = N ,x = dN(x) is known as <strong>the</strong> strain displacement<br />

dx<br />

matrix.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 24


1D FE <strong>for</strong>mulation: Iso-Parametric Formulation<br />

Iso-Parametric Mapping<br />

This is a way to move from <strong>the</strong> use <strong>of</strong> global coordinates (i.e.in<br />

(x, y)) into normalized coordinates (usually (ξ, η)) so that <strong>the</strong> finally<br />

derived stiffness expressions are uni<strong>for</strong>m <strong>for</strong> elements <strong>of</strong> <strong>the</strong> same<br />

type.<br />

x<br />

x 1<br />

e<br />

x 2<br />

e<br />

−1 1<br />

ξ<br />

Shape Functions in Natural Coordinates<br />

x(ξ) = ∑<br />

N i (ξ)xi e = N 1 (ξ)x1 e + N 2 (ξ)x2<br />

e<br />

i=1,2<br />

N 1 (ξ) = 1 2 (1 − ξ), N 2(ξ) = 1 (1 + ξ)<br />

2<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 25


1D FE <strong>for</strong>mulation: Iso-Parametric Formulation<br />

Map <strong>the</strong> integrals to <strong>the</strong> natural domain −→ element stiffness matrix.<br />

Using <strong>the</strong> chain rule <strong>of</strong> differentiation <strong>for</strong> N(ξ(x)) we obtain:<br />

K e =<br />

∫ x<br />

e<br />

2<br />

x e 1<br />

where N ,ξ = d dξ<br />

<strong>and</strong> x ,ξ = dx<br />

dξ = x 2 e − x1<br />

e<br />

2<br />

N Ț xcN ,xdx =<br />

∫ 1<br />

−1<br />

(N ,ξ ξ ,x) T c(N ,ξ ξ ,x)x ,ξ dξ<br />

[ 1 (1 − ξ) 1<br />

(1 + ξ) ] = [ −1<br />

2 2 2<br />

= h = J (Jacobian) <strong>and</strong> h is <strong>the</strong> element length<br />

2<br />

ξ ,x = dξ<br />

dx = J−1 = 2/h<br />

From all <strong>the</strong> above,<br />

[ ]<br />

K e c 1 −1<br />

=<br />

x2 e − x 1<br />

e −1 1<br />

Similary, we obtain <strong>the</strong> element load vector:<br />

f e =<br />

∫ x<br />

e<br />

2<br />

x e 1<br />

N T fdx + N T h| x=0 =<br />

∫ 1<br />

−1<br />

1<br />

2<br />

N T (ξ)fx ,ξ dξ + N T (x)h| x=0<br />

Note: <strong>the</strong> iso-parametric mapping is only done <strong>for</strong> <strong>the</strong> integral.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 26<br />

]


1D FE <strong>for</strong>mulation: Galerkin’s <strong>Method</strong><br />

So what is meant by assembly? (A e )<br />

It implies adding <strong>the</strong> components <strong>of</strong> <strong>the</strong> stiffness matrix that correspond to<br />

<strong>the</strong> same degrees <strong>of</strong> freedom (d<strong>of</strong>).<br />

In <strong>the</strong> case <strong>of</strong> a simple bar, it is trivial as <strong>the</strong> degrees <strong>of</strong> freedom (axial<br />

displacement) are as many as <strong>the</strong> nodes:<br />

1:K 1 2:K 2<br />

1 2 3<br />

Red indicates <strong>the</strong> node each<br />

component corresponds to<br />

1 2<br />

2 3<br />

<strong>Element</strong> Stiffness Matrices (2x2): K 1 = c 1 −1<br />

h −1 1 1<br />

, K2 = c 1 −1<br />

2 h −1 1 <br />

2<br />

3<br />

1 2 3<br />

1 −1 0<br />

Total Stiffness Matrix (4x4): K = c −1 1 + 1 −1<br />

h<br />

0 −1 1<br />

1<br />

2<br />

3<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 27


1D FE <strong>for</strong>mulation: Galerkin’s <strong>Method</strong><br />

In <strong>the</strong> case <strong>of</strong> a frame with beam elements, <strong>the</strong> stiffness matrix <strong>of</strong> <strong>the</strong> elements is<br />

typically <strong>of</strong> 4x4 size, corresponding to 2 d<strong>of</strong>s on each end (a displacement <strong>and</strong> a<br />

rotation):<br />

φ1<br />

φ2<br />

*<strong>The</strong> process will be shown explicitly<br />

during <strong>the</strong> HW sessions<br />

u1<br />

u2y<br />

φ2<br />

1 1:K 1 2<br />

2:K 2<br />

u2x<br />

Green indicates <strong>the</strong> d<strong>of</strong> each<br />

component corresponds to<br />

φ3<br />

u3<br />

u1 φ1<br />

3<br />

⎡ K 11<br />

1 1 K 12<br />

<strong>Element</strong> Stiffness Matrices (4x4): K 1 1 1<br />

⎢K = 12 K 22<br />

⎢ 1 1<br />

⎢<br />

K 13 K 23<br />

1 1 ⎣K 14 K 24<br />

u2y φ2<br />

1 K 13<br />

1 K 14<br />

1 K 23<br />

1 K 24<br />

1 K 33<br />

1 K 34<br />

1 K 34 K 44<br />

u2x<br />

φ2<br />

⎡ K 11<br />

2 2<br />

u1<br />

K 12<br />

, K 2 2 2<br />

φ1 ⎢K = 12 K 22<br />

1 ⎦ ⎥⎥⎥⎤ u2y ⎢ 2 2<br />

⎢<br />

K 13 K 23<br />

φ2<br />

2 2 ⎣K 14 K 24<br />

u3 φ3<br />

2 2 K 13 K 14<br />

2 2 K 23 K 24<br />

2 2 K 33 K 34<br />

2 K 34 K 2 44 ⎦ ⎥⎥⎥⎤<br />

u2x<br />

φ2<br />

u3<br />

φ3<br />

φ2 u2y u2x<br />

K 2<br />

44 + K 22<br />

1 K 34 0 φ2<br />

Total Stiffness Matrix (2x2): K = 1 K 34<br />

1 K 33<br />

2 K 24 u2y<br />

0 2 K 24<br />

2 K 11<br />

u2x<br />

Fixed d<strong>of</strong>s are<br />

not included in<br />

<strong>the</strong> total<br />

stiffness matrix<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 28


Axially Loaded Bar Example<br />

A. Constant End Load<br />

Given: Length L, Section Area A, Young’s modulus E<br />

Find: stresses <strong>and</strong> de<strong>for</strong>mations.<br />

Assumptions:<br />

<strong>The</strong> cross-section <strong>of</strong> <strong>the</strong> bar does not change after loading.<br />

<strong>The</strong> material is linear elastic, isotropic, <strong>and</strong> homogeneous.<br />

<strong>The</strong> load is centric.<br />

End-effects are not <strong>of</strong> interest to us.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 29


Axially Loaded Bar Example<br />

A. Constant End Load<br />

Strength <strong>of</strong> Materials Approach<br />

From <strong>the</strong> equilibrium equation, <strong>the</strong> axial <strong>for</strong>ce at a r<strong>and</strong>om point x<br />

along <strong>the</strong> bar is:<br />

f(x) = R(= const) ⇒ σ(x) = R A<br />

From <strong>the</strong> constitutive equation (Hooke’s Law):<br />

ɛ(x) = σ(x)<br />

E<br />

Hence, <strong>the</strong> de<strong>for</strong>mation is obtained as:<br />

δ(x) = ɛ(x)<br />

x<br />

= R<br />

AE<br />

⇒ δ(x) = Rx<br />

AE<br />

Note: <strong>The</strong> stress & strain is independent <strong>of</strong> x <strong>for</strong> this case <strong>of</strong><br />

loading.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 30


Axially Loaded Bar Example<br />

B. <strong>Linear</strong>ly Distributed Axial + Constant End Load<br />

From <strong>the</strong> equilibrium equation, <strong>the</strong> axial <strong>for</strong>ce at r<strong>and</strong>om point x<br />

along <strong>the</strong> bar is:<br />

f(x) = R +<br />

aL + ax<br />

2<br />

(L − x) = R + a(L2 − x 2 )<br />

( depends on x)<br />

2<br />

In order to now find stresses & de<strong>for</strong>mations (which depend on x)<br />

we have to repeat <strong>the</strong> process <strong>for</strong> every point in <strong>the</strong> bar. This is<br />

computationally inefficient.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 31


Axially Loaded Bar Example<br />

From <strong>the</strong> equilibrium equation, <strong>for</strong> an infinitesimal element:<br />

∆σ<br />

dσ<br />

Aσ = q(x)∆x + A(σ + ∆σ) ⇒ A }{{}<br />

lim + q(x) = 0 ⇒ A<br />

∆x dx + q(x) = 0<br />

∆x→0<br />

Also, ɛ = du<br />

dx , σ = Eɛ, q(x) = ax ⇒ AE d 2 u<br />

dx 2 + ax = 0<br />

Strong Form<br />

AE d 2 u<br />

dx + ax = 0<br />

2<br />

u(0) = 0 essential BC<br />

f(L) = R ⇒ AE du<br />

dx ∣ = R natural BC<br />

x=L<br />

Analytical Solution<br />

u(x) = u hom + u p ⇒ u(x) = C 1x + C 2 − ax 3<br />

6AE<br />

C 1, C 2 are determined from <strong>the</strong> BC<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 32


Axially Loaded Bar Example<br />

An analytical solution cannot always be found<br />

Approximate Solution - <strong>The</strong> Galerkin Approach (#3): Multiply by <strong>the</strong> weight function<br />

w <strong>and</strong> integrate over <strong>the</strong> domain<br />

Apply integration by parts<br />

∫ L<br />

0<br />

∫ L<br />

0<br />

[<br />

AE d2 u<br />

dx 2 wdx = AE du ] l<br />

dx w −<br />

0<br />

AE d2 u<br />

dx 2 wdx = [<br />

∫ L<br />

∫<br />

AE d2 u<br />

L<br />

0 dx 2 wdx + axwdx = 0<br />

0<br />

AE du<br />

dx<br />

∫ L<br />

0<br />

AE du dw<br />

dx dx dx ⇒<br />

(L)w(L) − AE<br />

du<br />

dx (0)w(0) ]<br />

−<br />

∫ L<br />

0<br />

AE du dw<br />

dx dx dx<br />

But from BC we have u(0) = 0, AE du (L)w(L) = Rw(L), <strong>the</strong>re<strong>for</strong>e <strong>the</strong> approximate<br />

dx<br />

weak <strong>for</strong>m can be written as<br />

∫ L<br />

AE du<br />

∫<br />

dw<br />

L<br />

0 dx dx dx = Rw(L) + axwdx<br />

0<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 33


Axially Loaded Bar Example<br />

Variational Approach (#1)<br />

Let us signify displacement by u <strong>and</strong> a small (variation <strong>of</strong> <strong>the</strong>) displacement by δu. <strong>The</strong>n<br />

<strong>the</strong> various works on this structure are listed below:<br />

In addition, σ = E du<br />

dx<br />

∫ L<br />

δW int = A σδεdx<br />

0<br />

δW ext = Rδu| x=L<br />

∫ L<br />

δW body = qδudx<br />

0<br />

<strong>The</strong>n, from equilibrium: δW int = δW ext + δW body<br />

→<br />

∫ L<br />

A<br />

0<br />

E du<br />

dx<br />

d(δu)<br />

dx<br />

∫ L<br />

dx = qδudx + Rδu| x=L<br />

0<br />

This is <strong>the</strong> same <strong>for</strong>m as earlier via ano<strong>the</strong>r path.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 34


Axially Loaded Bar Example<br />

In Galerkin’s method we assume that <strong>the</strong> approximate solution, u can be expressed as<br />

u(x) =<br />

n∑<br />

u j N j (x)<br />

w is chosen to be <strong>of</strong> <strong>the</strong> same <strong>for</strong>m as <strong>the</strong> approximate solution (but with arbitrary<br />

coefficients w i ),<br />

w(x) =<br />

j=1<br />

n∑<br />

w i N i (x)<br />

i=1<br />

Plug u(x),w(x) into <strong>the</strong> approximate weak <strong>for</strong>m:<br />

∫ L n∑ dN j (x)<br />

AE u j<br />

0<br />

dx<br />

j=1<br />

n∑<br />

i=1<br />

w i<br />

dN i (x)<br />

dx<br />

w i is arbitrary, so <strong>the</strong> above has to hold ∀ w i :<br />

n∑<br />

∫ L n∑<br />

dx = R w i N i (L) + ax w i N i (x)dx<br />

i=1<br />

0<br />

i=1<br />

n∑<br />

[∫ L dN j (x)<br />

AE dN ]<br />

∫<br />

i (x)<br />

L<br />

dx u j = RN i (L) + axN i (x)dx<br />

j=1<br />

0 dx dx<br />

0<br />

i = 1 . . . n<br />

which is a system <strong>of</strong> n equations that can be solved <strong>for</strong> <strong>the</strong> unknown coefficients u j .<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 35


Axially Loaded Bar Example<br />

<strong>The</strong> matrix <strong>for</strong>m <strong>of</strong> <strong>the</strong> previous system can be expressed as<br />

K ij u j = f i where K ij =<br />

<strong>and</strong> f i = RN i (L) +<br />

∫ L<br />

0<br />

∫ L<br />

0<br />

dN j (x)<br />

dx<br />

axN i (x)dx<br />

AE dN i(x)<br />

dx<br />

dx<br />

<strong>Finite</strong> <strong>Element</strong> Solution - using 2 discrete elements, <strong>of</strong> length h (3 nodes)<br />

From <strong>the</strong>[ iso-parametric ] <strong>for</strong>mulation we know <strong>the</strong> element stiffness matrix<br />

1 −1<br />

K e = AE . Assembling <strong>the</strong> element stiffness matrices we get:<br />

h −1 1<br />

⎡<br />

K tot = ⎣<br />

K11 e K12 1 0<br />

K12 1 K22 1 + K11 2 K12<br />

2<br />

0 K12 2 K22<br />

2<br />

⎤<br />

⎦ ⇒<br />

K tot = AE h<br />

⎡<br />

⎣<br />

1 −1 0<br />

−1 2 −1<br />

0 −1 1<br />

⎤<br />

⎦<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 36


Axially Loaded Bar Example<br />

We also have that <strong>the</strong> element load vector is<br />

f i = RN i (L) +<br />

∫ L<br />

0<br />

axN i (x)dx<br />

Expressing <strong>the</strong> integral in iso-parametric coordinates N i (ξ) we have:<br />

dξ<br />

dx = 2 h , x = N1(ξ)x 1 e + N 2(ξ)x2 e , ⇒<br />

f i = R| i=4 +<br />

∫ L<br />

0<br />

a(N 1(ξ)x e 1 + N 2(ξ)x e 2 )N i (ξ) 2 h dξ<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 37


Strong Form - 2D <strong>Linear</strong> Elasticity FEM<br />

Governing Equations<br />

Equilibrium Eq: ∇ s σ + b = 0 ∈ Ω<br />

Kinematic Eq: ɛ = ∇ s u ∈ Ω<br />

Constitutive Eq: σ = D · ɛ ∈ Ω<br />

Traction B.C.: τ · n = T s ∈ Γ t<br />

Displacement B.C: u = u Γ ∈ Γ u<br />

Hooke’s Law - Constitutive Equation<br />

Plane Stress<br />

Plane Strain<br />

τ zz = τ xz = τ yz = 0, ɛ zz ≠ 0 ɛ zz = γ xz = γ yz = 0, σ zz ≠ 0<br />

⎡<br />

⎤<br />

⎡<br />

D =<br />

E 1 ν 0<br />

1 − ν ν 0<br />

⎣ ν 1 0 ⎦<br />

E<br />

D =<br />

⎣ ν 1 − ν 0<br />

1 − ν 2 (1 − ν)(1 + ν)<br />

0 0<br />

0 0<br />

1−ν<br />

2<br />

1−2ν<br />

2<br />

⎤<br />

⎦<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 38


2D FE <strong>for</strong>mulation: Discretization<br />

Divide <strong>the</strong> body into finite elements connected to each o<strong>the</strong>r through<br />

nodes<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 39


2D FE <strong>for</strong>mulation: Iso-Parametric Formulation<br />

Shape Functions in Natural Coordinates<br />

N 1 (ξ, η) = 1 4 (1 − ξ)(1 − η), N 2(ξ, η) = 1 (1 + ξ)(1 − η)<br />

4<br />

N 3 (ξ, η) = 1 4 (1 + ξ)(1 + η), N 4(ξ, η) = 1 (1 − ξ)(1 + η)<br />

4<br />

Iso-parametric Mapping<br />

x =<br />

y =<br />

4∑<br />

N i (ξ, η)xi<br />

e<br />

i=1<br />

4∑<br />

i=1<br />

N i (ξ, η)y e<br />

i<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 40


Bilinear Shape Functions<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 41


2D FE <strong>for</strong>mulation: Matrices<br />

from <strong>the</strong> Principle <strong>of</strong> Minimum Potential Energy (see slide #9)<br />

∂Π<br />

∂d = 0 ⇒ K · d = f<br />

where<br />

∫<br />

∫<br />

∫<br />

K e = B T DBdΩ, f e = N T BdΩ +<br />

Ω e Ω e<br />

Γ e T<br />

Gauss Quadrature<br />

I =<br />

∫ 1 ∫ 1<br />

−1 −1<br />

Ngp Ngp<br />

N T t s dΓ<br />

f (ξ, η)dξdη<br />

∑ ∑<br />

= W i W j f (ξ i , η j )<br />

i=1 i=1<br />

where W i , W j are <strong>the</strong> weights <strong>and</strong><br />

(ξ i , η j ) are <strong>the</strong> integration points.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 42

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!