18.01.2014 Views

“Formulation and calculation of isoparametric finite element matrixes ...

“Formulation and calculation of isoparametric finite element matrixes ...

“Formulation and calculation of isoparametric finite element matrixes ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Date: 13.12.2006<br />

<strong>“Formulation</strong> <strong>and</strong> <strong>calculation</strong> <strong>of</strong><br />

<strong>isoparametric</strong> <strong>finite</strong> <strong>element</strong> <strong>matrixes</strong>”<br />

-Formulation <strong>of</strong> structural <strong>element</strong>s<br />

(plate <strong>and</strong> general shell <strong>element</strong>s)<br />

Andres Mena (PhD student)<br />

Institute <strong>of</strong> Structural Engineering, ETH


Plate <strong>and</strong> general shell <strong>element</strong><br />

Shell <strong>element</strong> definition<br />

τ zz = 0 (stress perpendicular to the midsurface)


Plate <strong>and</strong> general shell <strong>element</strong><br />

Content<br />

- Formulation <strong>of</strong> the plane stress <strong>element</strong><br />

- Formulation <strong>of</strong> the plate <strong>element</strong><br />

- Rotational stiffness perpendicular to the <strong>element</strong> surface<br />

- The patch test <strong>and</strong> the incompatible displacement modes<br />

- The general shell <strong>element</strong>


Plate <strong>and</strong> general shell <strong>element</strong><br />

Plane stress <strong>element</strong> (4 nodes)<br />

u 1<br />

K δ = F<br />

2<br />

1<br />

v 4<br />

k 13 .<br />

u 3 3<br />

4 u 4<br />

k 22 k 23<br />

v k 33<br />

4<br />

y<br />

u 2<br />

v 2<br />

v 1<br />

K =<br />

Linear static analysis<br />

Stiffness matrix (K)<br />

k 11 k 12 . k 17 k 18<br />

. . k 27 k 28<br />

. . .<br />

. . .<br />

symm k 77 k 78<br />

k 88<br />

x<br />

δ T = [u 1<br />

, v 1<br />

, u 2<br />

, v 2<br />

, u 3<br />

, v 3<br />

, u 4<br />

, v 4<br />

]<br />

F T = [F u1<br />

, F v1<br />

, F u2<br />

, F v2<br />

, F u3<br />

, F v3<br />

, F u4<br />

, F v4<br />

]


Plate <strong>and</strong> general shell <strong>element</strong><br />

Plane stress <strong>element</strong> (4 nodes)<br />

-1 ≤ r ≤ 1<br />

-1 ≤ s ≤ 1<br />

u 2<br />

v 2<br />

s<br />

v 1<br />

u 1<br />

2<br />

1<br />

r = 1, s = 1<br />

r<br />

v 4<br />

3<br />

4 u 4<br />

Displacement <strong>and</strong> Coordinate Interpolation<br />

4<br />

u(r,s) = Σ h i<br />

(r,s) u<br />

i = 1<br />

i<br />

4<br />

v(r,s) = Σ h i<br />

(r,s) v<br />

i = 1<br />

i<br />

h 1 = (1+r) (1+s) / 4<br />

h 2 = (1-r) (1+s) / 4<br />

h 3 = (1-r) (1-s) / 4<br />

h 4 = (1+r) (1-s) / 4<br />

y<br />

x


Plate <strong>and</strong> general shell <strong>element</strong><br />

Target:<br />

Volume evaluated in natural coordinates<br />

where<br />

by using numerical integration instead <strong>of</strong> explicit integration,<br />

where t ij = thickness at the integration point<br />

α ij = weighting factor<br />

Integration points (r i , s j ) to evaluate F ij <strong>of</strong> a 4-node plane stress <strong>element</strong><br />

-1 ≤ r ≤ 1<br />

-1 ≤ s ≤ 1<br />

B ij , J ij , C are unknowns ?????


Plate <strong>and</strong> general shell <strong>element</strong><br />

Matrixes J ij <strong>and</strong> B ij<br />

Shape functions to calculate the Jacobian (J ij )<br />

4<br />

x(r,s) = Σ h i<br />

(r,s) x<br />

i = 1<br />

i<br />

Shape functions to interpolate displacements<br />

4<br />

u(r,s) = Σ h i<br />

(r,s) u i<br />

i = 1


Plate <strong>and</strong> general shell <strong>element</strong><br />

= B ij3x8<br />

*<br />

8x1<br />

3x1<br />

B ij evaluated at the integration points (r i ,s j )


Plate <strong>and</strong> general shell <strong>element</strong><br />

Plane stress <strong>and</strong> isotropic material<br />

=<br />

3x3<br />

8x8<br />

8x3<br />

3x3<br />

3x8<br />

v 1<br />

u 2<br />

u 1<br />

2<br />

1<br />

3<br />

4 u 4<br />

v 2<br />

K =<br />

8x8<br />

u 3<br />

v 4<br />

Stiffness matrix (K)<br />

k 11 k 12 k 13 . . k 17 k 18<br />

k 22 k 23 . . k 27 k 28<br />

k 33 . . .<br />

. . .<br />

symm k 77 k 78<br />

k 88


Plate <strong>and</strong> general shell <strong>element</strong><br />

Calculation <strong>of</strong> stress<br />

T<br />

=<br />

T<br />

Strains <strong>and</strong> stresses are calculated at the integration points<br />

This example correspond to a 9-node<br />

<strong>element</strong> with 3x3 Gauss points


Plate <strong>and</strong> general shell <strong>element</strong><br />

Plate bending <strong>element</strong> (4 nodes)<br />

θ x1<br />

w 1<br />

w 2 θx2<br />

1<br />

θ y2<br />

2<br />

4<br />

w 3<br />

4<br />

3<br />

θ y3<br />

4<br />

θ x3<br />

4<br />

θ y1<br />

K =<br />

K δ = F<br />

Stiffness matrix (K)<br />

k 11 k 12 k 13 . . k 111 k 112<br />

k 22 k 23 . . k 211 k 212<br />

k 33 . . .<br />

. . .<br />

symm k 1111 k 1112<br />

k 1212<br />

z<br />

y<br />

δ T = [w 1<br />

, θ x1<br />

, θ y1<br />

, w 2<br />

, θ x2<br />

, θ y2<br />

, w 3<br />

, θ x3<br />

, θ y3<br />

, w 4<br />

, θ x4<br />

, θ y4<br />

]<br />

x<br />

F T = [F z1<br />

, M x1<br />

, M y1<br />

, F z2<br />

, M x2<br />

, M y2<br />

, F z3<br />

, M x3<br />

, M y3<br />

, F z4<br />

, M x4<br />

, M y4<br />

]


Plate <strong>and</strong> general shell <strong>element</strong><br />

-1 ≤ r ≤ 1<br />

-1 ≤ s ≤ 1<br />

Plate bending <strong>element</strong> (4 nodes)<br />

Displacement, Rotation <strong>and</strong> Coordinate Interpolation<br />

4<br />

w(r,s) = Σ h i<br />

(r,s) w<br />

i = 1<br />

i<br />

4<br />

β x<br />

(r,s)= -Σ h i<br />

(r,s) θ<br />

i = 1<br />

yi<br />

4<br />

β y<br />

(r,s) = Σ h i<br />

(r,s) θ<br />

i = 1<br />

xi<br />

h 1 = (1+r) (1+s) / 4<br />

h 2 …


Plate <strong>and</strong> general shell <strong>element</strong><br />

Area evaluated in natural coordinates<br />

dA = det J dr ds<br />

Bending moment<br />

Shear force<br />

k (shear correction factor for rectangular<br />

cross sections) = 5/6


Plate <strong>and</strong> general shell <strong>element</strong><br />

3x1 3x12 12x1 2x1 2x12 12x1<br />

12x1<br />

12x12 12x3 3x3 3x12 12x2 2x2 2x12<br />

B k <strong>and</strong> B γ are valuated at the integration points (r i ,s j )<br />

θ x1<br />

θ y2<br />

w 2 θx2<br />

2<br />

w 1<br />

1<br />

θ y1<br />

F ext = K * u<br />

12x1<br />

12x12<br />

12x1<br />

4<br />

w 3<br />

4<br />

3<br />

θ y3<br />

4<br />

F ext =<br />

4<br />

Linear shape functions to interpolate area forces<br />

θ x3


Plate <strong>and</strong> general shell <strong>element</strong><br />

Shear locking elimination<br />

4<br />

w(r,s) = Σ h i<br />

(r,s) w<br />

i = 1<br />

i<br />

Shear strains<br />

Incorrect interpolation<br />

at the corner nodes<br />

4<br />

β x<br />

(r,s)= -Σ h i<br />

(r,s) θ<br />

i = 1<br />

yi<br />

4<br />

β y<br />

(r,s) = Σ h i<br />

(r,s) θ<br />

i = 1<br />

xi<br />

h 1 = (1+r) (1+s) / 4<br />

h 2 …<br />

Correct evaluation that eliminates the shear locking<br />

in the 4-node plate bending <strong>element</strong>


Plate <strong>and</strong> general shell <strong>element</strong><br />

Shell <strong>element</strong><br />

Rotational stiffness perpendicular to<br />

the <strong>element</strong> surface is not defined<br />

Easy solution<br />

One elegant solutions is to add a “real” rotational stiffness for θ z ,


Plate <strong>and</strong> general shell <strong>element</strong><br />

Patch <strong>element</strong>s to test the performance <strong>of</strong> the shell <strong>element</strong><br />

Test <strong>of</strong> the plane stress <strong>element</strong><br />

It shows incompatibility <strong>of</strong> displacements<br />

To overcome this deficiency, incompatible displacement modes are added


Plate <strong>and</strong> general shell <strong>element</strong><br />

Incompatible displacement modes<br />

Stiffness matrix (K)<br />

Correction <strong>of</strong> the incompatible<br />

strain-displacement matrix<br />

12x1<br />

12x1<br />

12x12<br />

Stiffness matrix (8x8) is obtained by applying static condensation<br />

(k CC –k CI k II -1 k IC ) u = R<br />

8x8 8x1 8x1


Plate <strong>and</strong> general shell <strong>element</strong><br />

Higher order patch tests<br />

For the plane stress <strong>element</strong><br />

For the plate bending <strong>element</strong>


Plate <strong>and</strong> general shell <strong>element</strong><br />

General Shell <strong>element</strong><br />

Analysis <strong>of</strong> complex shell geometries<br />

-1 ≤ r ≤ 1<br />

-1 ≤ s ≤ 1<br />

-1 ≤ t ≤ 1<br />

r = 1, s = 1


Plate <strong>and</strong> general shell <strong>element</strong><br />

General Shell <strong>element</strong><br />

Coordinate interpolation<br />

z<br />

y<br />

x<br />

in plane yz<br />

r = 1, s = 1<br />

-1 ≤ t ≤ 1<br />

For t = 1<br />

x = x 1<br />

y = y 1 + 0.5 * 0.8√0.2 * (-1/√2)<br />

z = z 1 + 0.5 * 0.8√0.2 * (1/√2)<br />

For t = -1<br />

x = x 1<br />

y = y 1 + -0.5 * 0.8√0.2 * (-1/√2)<br />

z = z 1 + -0.5 * 0.8√0.2 * (1/√2)


Plate <strong>and</strong> general shell <strong>element</strong><br />

General Shell <strong>element</strong><br />

Displacement interpolation<br />

Strain – displacement matrix B(r,s,t)<br />

B(r,s,t)


Plate <strong>and</strong> general shell <strong>element</strong><br />

General Shell <strong>element</strong><br />

Stress-strain law


Plate <strong>and</strong> general shell <strong>element</strong><br />

General Shell <strong>element</strong><br />

Shear locking<br />

9-node shell <strong>element</strong>


Plate <strong>and</strong> general shell <strong>element</strong><br />

Boundary conditions<br />

Solid <strong>element</strong><br />

Shell <strong>element</strong>


CONCLUSIONS<br />

- To select properly plane stress, bending plate or shell.<br />

- Compatibility <strong>of</strong> <strong>element</strong> degrees <strong>of</strong> freedom.<br />

- Methodology to overcome shear locking.<br />

- Evaluate the <strong>element</strong> performance <strong>of</strong> FEM programs or codes<br />

using the patch tests.<br />

- To use shell <strong>element</strong>s instead <strong>of</strong> 3D <strong>element</strong>s<br />

- To use quadrilateral shell <strong>element</strong>s instead <strong>of</strong> triangular.


THANK YOU

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!