17.01.2014 Views

Stability of a bubble expanding and translating through an inviscid ...

Stability of a bubble expanding and translating through an inviscid ...

Stability of a bubble expanding and translating through an inviscid ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Proc. Indi<strong>an</strong> Acad. Sci. (Math. Sci.) Vol. 112, No. 2, May 2002, pp. 361–365.<br />

© Printed in India<br />

<strong>Stability</strong> <strong>of</strong> a <strong>bubble</strong> <strong>exp<strong><strong>an</strong>d</strong>ing</strong> <strong><strong>an</strong>d</strong> <strong>tr<strong>an</strong>slating</strong> <strong>through</strong><br />

<strong>an</strong> <strong>inviscid</strong> liquid<br />

DINESH KHATTAR <strong><strong>an</strong>d</strong> B B CHAKRABORTY ∗<br />

Department <strong>of</strong> Mathematics, Kirori Mal College, Delhi University, Delhi 110 007, India<br />

∗ Department <strong>of</strong> Mathematics, Delhi University, Delhi 110 007, India<br />

MS received 27 August 2001; revised 2 February 2002<br />

Abstract. A <strong>bubble</strong> exp<strong><strong>an</strong>d</strong>s adiabatically <strong><strong>an</strong>d</strong> tr<strong>an</strong>slates in <strong>an</strong> incompressible <strong><strong>an</strong>d</strong><br />

<strong>inviscid</strong> liquid. We investigate the number <strong>of</strong> equilibrium points <strong>of</strong> the <strong>bubble</strong> <strong><strong>an</strong>d</strong> the<br />

nature <strong>of</strong> stability <strong>of</strong> the <strong>bubble</strong> at these points. We find that there is only one equililbrium<br />

point <strong><strong>an</strong>d</strong> the <strong>bubble</strong> is stable there.<br />

Keywords.<br />

function.<br />

Bubble; Rayleigh’s equation; stability; Hamiltoni<strong>an</strong>; Liapounov’s<br />

1. Introduction<br />

The basic equation, describing the mathematical model for <strong>an</strong> <strong>exp<strong><strong>an</strong>d</strong>ing</strong> <strong>bubble</strong> in <strong>an</strong><br />

incompressible liquid has been given by Rayleigh [8], Plesset [6] <strong><strong>an</strong>d</strong> others (Noltingk<br />

<strong><strong>an</strong>d</strong> Neppiras [5] <strong><strong>an</strong>d</strong> Poritsky [7]). This mathematical model, <strong><strong>an</strong>d</strong> the equation describing<br />

it, have been generalized (Chakraborty [1], Chakraborty <strong><strong>an</strong>d</strong> Tuteja [3]) when the <strong>bubble</strong><br />

exp<strong><strong>an</strong>d</strong>s as well as tr<strong>an</strong>slates in a liquid.<br />

The equation, governing the variation <strong>of</strong> R with time t, is a highly non-linear equation.<br />

The progress in the study <strong>of</strong> this equation is, therefore, generally expected numerically.<br />

However, when liquid outside the <strong>bubble</strong> is <strong>inviscid</strong>, after tr<strong>an</strong>sforming the equation suitably,<br />

we prove <strong>an</strong>alytically, that the <strong>exp<strong><strong>an</strong>d</strong>ing</strong> <strong><strong>an</strong>d</strong> <strong>tr<strong>an</strong>slating</strong> <strong>bubble</strong> has only one equilibrium<br />

point <strong><strong>an</strong>d</strong> the <strong>bubble</strong> is stable at this equilibrium point. In our discussion, we use<br />

Liapounov’s first stability theorem [4]. This stability problem in the absence <strong>of</strong> tr<strong>an</strong>slation<br />

was eariler studied by Chakraborty <strong><strong>an</strong>d</strong> Khattar [2].<br />

2. Mathematical formulation <strong><strong>an</strong>d</strong> <strong>an</strong>alysis<br />

As the <strong>bubble</strong> exp<strong><strong>an</strong>d</strong>s adiabatically <strong><strong>an</strong>d</strong> tr<strong>an</strong>slates with velocity U, its radius R satisfies<br />

the equations (Chakraborty [1], Chakraborty <strong><strong>an</strong>d</strong> Tuteja [3])<br />

R d2 R<br />

dt 2 + 3 ( ) {<br />

dR<br />

2<br />

− U 2<br />

2 dt 4 + 1 ( ) }<br />

3γ R0<br />

p e − p g0 + 2σ = 0 (1)<br />

ρ<br />

R R<br />

<strong><strong>an</strong>d</strong><br />

UR 3 = U 0 R0 3 = k, (2)<br />

361


362 Dinesh Khattar <strong><strong>an</strong>d</strong> B B Chakraborty<br />

where k is a const<strong>an</strong>t, σ <strong><strong>an</strong>d</strong> ρ are the surface tension coefficient <strong><strong>an</strong>d</strong> density <strong>of</strong> the liquid<br />

outside the <strong>bubble</strong> respectively, p g0 , R 0 <strong><strong>an</strong>d</strong> U 0 are the gas pressure, radius <strong>of</strong> the <strong>bubble</strong><br />

<strong><strong>an</strong>d</strong> its speed initially, respectively, p e is the pressure in the liquid at a large dist<strong>an</strong>ce from<br />

the <strong>bubble</strong> <strong><strong>an</strong>d</strong> γ is the ratio <strong>of</strong> the two specific heats <strong>of</strong> the gas.<br />

We find that eq. (1) c<strong>an</strong> be written, in view <strong>of</strong> (2), as<br />

{<br />

d 2 (<br />

dt 2 R 5/2) − 5 8 k2 R −11/2 + 5<br />

( ) }<br />

3γ R0<br />

2ρ R1/2 p e − p g0 + 2σ = 0. (3)<br />

R R<br />

Defining r as<br />

r = R 5/2<br />

<strong><strong>an</strong>d</strong> taking γ = 4/3 for simplicity, we finally get from (3) the equation<br />

d 2 r<br />

dt 2 − 5 8 k2 r −11/5 + 5 { ( r0<br />

) 8/5<br />

2ρ r1/5 p e − p g0 + 2σr<br />

−2/5}<br />

= 0 (4)<br />

r<br />

where<br />

r 0 = R 5/2 .<br />

We use p g0 <strong><strong>an</strong>d</strong> U 0 as characteristic pressure <strong><strong>an</strong>d</strong> speed respectively <strong><strong>an</strong>d</strong> r 0 as the characteristic<br />

value <strong>of</strong> r <strong><strong>an</strong>d</strong> T 0 as that <strong>of</strong> time, where T 0 = R 0 /U 0 . We define the dimensionless<br />

qu<strong>an</strong>tities r ′ ,t ′ <strong><strong>an</strong>d</strong> p ′ e as<br />

r ′ = r/r 0 , t ′ = t/T 0 , p ′ e = p e/p g0 .<br />

Using the relation k = U 0 R0 3 [cf. (2)], we c<strong>an</strong> write eq. (4) as<br />

{<br />

d 2 r ′<br />

dt ′2 = 5 8 r′−11/5 1 + 4p (<br />

g 0<br />

ρU0<br />

2 p e ′ r′12/5 − r ′4/5 +<br />

2σ ) }<br />

r ′2 . (5)<br />

p g0 R 0<br />

Omitting the dashes from r ′ ,t ′ <strong><strong>an</strong>d</strong> P e ′ <strong><strong>an</strong>d</strong> using from now on these undashed symbols for<br />

the corresponding qu<strong>an</strong>tities, we find that eq. (5) c<strong>an</strong> be written in dimensionless form as<br />

{<br />

d 2 r<br />

dt 2 = 5 8 r−11/5 1 − 4p (<br />

g 0<br />

ρU0<br />

2 p e r 12/5 − r 4/5 +<br />

2σ ) }<br />

r 2 . (6)<br />

p g0 R 0<br />

Finally, defining x <strong><strong>an</strong>d</strong> y by the equations<br />

x = r, y = dr<br />

dt<br />

we c<strong>an</strong> write eq. (6) as<br />

⎡<br />

⎢<br />

⎣<br />

dx<br />

dt<br />

dy<br />

dt<br />

⎤ ⎡<br />

⎥<br />

⎦ = ⎢<br />

⎣<br />

y<br />

{<br />

5<br />

8 x−11/5 1 − 4p (<br />

g 0<br />

ρU0<br />

2 p e x 12/5 − x 4/5 +<br />

(7)<br />

⎤<br />

2σ ) } ⎥<br />

x 2 ⎦ . (8)<br />

p g0 R 0


<strong>Stability</strong> <strong>of</strong> a <strong>bubble</strong> 363<br />

Equation (9) defines a Hamiltoni<strong>an</strong> system, with Hamiltoni<strong>an</strong> H(x,y) so that<br />

<strong><strong>an</strong>d</strong><br />

dx<br />

dt<br />

dy<br />

dt<br />

= ∂H<br />

∂Y<br />

=− ∂H<br />

∂x . (10)<br />

In view <strong>of</strong> (8), eqs (9) <strong><strong>an</strong>d</strong> (10) give<br />

H = y2<br />

2 + 25<br />

+ 5p g 0<br />

2pU 2 0<br />

48 x−6/5<br />

{ 5<br />

6 p ex 6/5 + 5 2 x−2/5 + 5σ<br />

2p g0 R 0<br />

x 4/5 }<br />

+ C (11)<br />

where C is <strong>an</strong> arbitrary const<strong>an</strong>t.<br />

The equilibrium point (x, y) for the basic dynamical system, defined by (8), is given by<br />

∂H<br />

∂x = ∂H<br />

∂y<br />

= 0. (12)<br />

Equation (12), in view <strong>of</strong> (11), shows that <strong>an</strong> equilibrium point (x, y) satisfies the equations.<br />

(9)<br />

y = 0,<br />

p e x 12/5 + 2σx2<br />

p g0 R 0<br />

−x 4/5 − ρU2 0<br />

4p g0<br />

= 0. (13)<br />

In view <strong>of</strong> (7) <strong><strong>an</strong>d</strong> the fact that r = R 5/2 , we find from (13) that at <strong>an</strong> equilibrium, R<br />

satisfies the equation<br />

p e R 6 +<br />

2σ<br />

p g0 R 0<br />

R 5 − R 2 − ρU2 0<br />

4p g0<br />

= 0.<br />

There is only one ch<strong>an</strong>ge in sign in the coefficients <strong>of</strong> powers <strong>of</strong> R in this algebraic equation.<br />

Therefore, by Decartes’ rule <strong>of</strong> sign [9], there is atmost one positive real root for R.<br />

When R → 0,<br />

f(R)=p e R 6 +<br />

which is negative <strong><strong>an</strong>d</strong> when R →∞,<br />

f(R)→+∞.<br />

2σ<br />

p g0 R 0<br />

R 5 −R 2 − ρU2 0<br />

4p g0<br />

→ −ρU2 0<br />

4p g0<br />

This confirms that f(R) = 0 has only one positive root R <strong><strong>an</strong>d</strong> the <strong>exp<strong><strong>an</strong>d</strong>ing</strong> <strong><strong>an</strong>d</strong><br />

<strong>tr<strong>an</strong>slating</strong> <strong>bubble</strong> has only one equilibrium point given by this root.<br />

Writing (8) as<br />

dx<br />

dt<br />

= F(x), (14)


364 Dinesh Khattar <strong><strong>an</strong>d</strong> B B Chakraborty<br />

where<br />

⎡<br />

x = ⎣ x ⎤<br />

⎦<br />

y<br />

<strong><strong>an</strong>d</strong><br />

F(x) =<br />

⎡<br />

⎢<br />

⎣<br />

y<br />

{<br />

5<br />

8 x−11/5 1 − 4p (<br />

g 0<br />

ρU0<br />

2 p e x 12/5 − x 4/5 +<br />

⎤<br />

2σ ) } ⎥<br />

x 2 ⎦ . (15)<br />

p g0 R 0<br />

We find that F(x) v<strong>an</strong>ishes at the equilibrium point. Also, H <strong><strong>an</strong>d</strong> its partial derivatives are<br />

continuous at all points except when x = 0. If α is a positive real root <strong>of</strong> (13), then eq. (15)<br />

shows that x = α <strong><strong>an</strong>d</strong> y = 0 is the equilibrium point <strong>of</strong> (14). Let us choose C in (11) in<br />

such a way that at this equilibrium point, the value <strong>of</strong> H v<strong>an</strong>ishes. Hence,<br />

H (α, 0) = 25<br />

48 α−6/5<br />

+ 5p g 0<br />

2ρU 2 0<br />

H is minimum at the equilibrium point x = α, y = 0if<br />

∂ 2 H<br />

∂x 2 · ∂2 H<br />

∂y 2<br />

{ 5<br />

6 p eα 6/5 + 5 2 α−2/5 + 5σ<br />

2p g0 R 0<br />

α 4/5 }<br />

+ C = 0. (16)<br />

( ∂ 2 ) 2 − H<br />

> 0. (17)<br />

∂x∂y<br />

The condition (17), in view <strong>of</strong> (11), gives us the condition<br />

p e x 12/5 −<br />

2σ x 2 + 7x 4/5 + 11ρU2 0<br />

> 0 (18)<br />

p g0 R 0 4p g0<br />

for the existence <strong>of</strong> a minimum at the equilibrium point (α, 0). Adding the left h<strong><strong>an</strong>d</strong> side<br />

<strong>of</strong> (13) to the left h<strong><strong>an</strong>d</strong> side <strong>of</strong> (18), we find that this condition (18) becomes<br />

p e x 12/5 + 3x 4/5 + 5 ρU0<br />

2 > 0 (19)<br />

4 p g0<br />

which is always satisfied as x is real <strong><strong>an</strong>d</strong> positive. Therefore, H is minimum at the equilibrium<br />

point x = α, y = 0, but H v<strong>an</strong>ishes at (α, 0). Thus H is always positive near (α, 0)<br />

<strong><strong>an</strong>d</strong> is therefore positive definite in the neighborhood <strong>of</strong> the equilibrium point (α, 0). Also<br />

−F · grad H v<strong>an</strong>ishes in view <strong>of</strong> (9), (10) <strong><strong>an</strong>d</strong> (14). Thus, −F · grad H is positive semidefinite.<br />

We c<strong>an</strong> therefore choose H as a Liapounov function <strong><strong>an</strong>d</strong> by Liapounov’s theorem<br />

[4], we have the result that a <strong>bubble</strong> <strong>exp<strong><strong>an</strong>d</strong>ing</strong> <strong><strong>an</strong>d</strong> <strong>tr<strong>an</strong>slating</strong> <strong>through</strong> <strong>an</strong> <strong>inviscid</strong> liquid<br />

is stable at its equilibrium point.<br />

References<br />

[1] Chakraborty B B, Effect <strong>of</strong> a viscous fluid flow past a spherical gas <strong>bubble</strong> on the growth<br />

<strong>of</strong> its radius, Proc. Ind. Acad. Sci. 100 (1990) 185–188


<strong>Stability</strong> <strong>of</strong> a <strong>bubble</strong> 365<br />

[2] Chakraborty B B <strong><strong>an</strong>d</strong> Khattar Dinesh, <strong>Stability</strong> <strong>of</strong> <strong>an</strong> <strong>exp<strong><strong>an</strong>d</strong>ing</strong> <strong>bubble</strong> in the Rayleigh<br />

model, Proc. Ind. Acad. Sci. (Math. Sci.) 109(4) (1999) 453–456<br />

[3] Chakraborty B B <strong><strong>an</strong>d</strong> Tuteja G S, Motion <strong>of</strong> <strong>an</strong> <strong>exp<strong><strong>an</strong>d</strong>ing</strong> gas <strong>bubble</strong> in a viscous liquid<br />

under gravity, Phys. Fluids A5(8) (1993) 1879–1882<br />

[4] Glendinning Paul, <strong>Stability</strong>, Instability <strong><strong>an</strong>d</strong> Chaos (Cambridge: Cambridge University<br />

Press) (1994)<br />

[5] Noltingk B E <strong><strong>an</strong>d</strong> Neppiras E A, Proc. Phys. Soc. London Sec. B63 (1950) 674–685; 64<br />

(1951) 1032–1038<br />

[6] Plesset M S, The dynamics <strong>of</strong> cavitation <strong>bubble</strong>s, J. Appl. Mech. 16 (1949) 277<br />

[7] Poritsky H, The collapse or growth <strong>of</strong> a spherical <strong>bubble</strong> or cavity in a viscous fluid,<br />

Proceedings <strong>of</strong> the first U.S. National Congress on Applied Mech<strong>an</strong>ics (ed) E. Sternberg<br />

(Am. Soc. Mech. Engg., New York, 1952) 813–821<br />

[8] Rayleigh Lord, On the pressure developed in a liquid during the collapse <strong>of</strong> a spherical<br />

void, Philos. Mag. 34 (1917) 94<br />

[9] Turnbulll H W, Theory <strong>of</strong> Equations (London: Oliver <strong><strong>an</strong>d</strong> Boyd) (1957)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!