17.01.2014 Views

Slides - Physics Seminar - Desy

Slides - Physics Seminar - Desy

Slides - Physics Seminar - Desy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

m-<br />

Heavy flavour <br />

physics with<br />

the CMS experiment<br />

m+<br />

Vincenzo Chiochia<br />

Physik-Institut - University of Zurich<br />

19-20 November 2013<br />

DESY<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013 !1


Why heavy flavor physics?<br />

Recent<br />

results!<br />

<strong>Physics</strong> of beauty and charm quarks in p-p collisions<br />

Research area with rich of phenomenology:<br />

Heavy flavor production measurements<br />

• Tests of QCD (hard scattering, fragmentation, NRQCD, etc.)<br />

Spectroscopy and particle properties<br />

• Heavy baryon spectroscopy<br />

• Spectrum of standard and exotic quarkonium states<br />

• Particle lifetimes, masses, etc.<br />

Rare beauty decays<br />

• Complementary to direct searches: can access multi-TeV<br />

energy scales through loop contributions<br />

CMS published 24 journal articles in the heavy flavor domain<br />

https://twiki.cern.ch/twiki/bin/view/CMSPublic/<strong>Physics</strong>ResultsBPH<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!2


The Large Hadron Collider<br />

pp, B-<strong>Physics</strong>,
<br />

Our “toys”.<br />

CP Violation<br />

General<br />

Purpose,<br />

pp, heavy ions<br />

Heavy ions, pp<br />

G. Tonelli, CERN/INFN/UNIPI CHIPP_Grindelwald January 21-25 2012 3<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!3


LHC performance - pp run<br />

LHC : Performance Limitations<br />

Parameter/Effects Limitations Now<br />

Beam energy<br />

limited by maximum dipole field. Industrially<br />

available technology.<br />

Bunch and total beam intensity<br />

beam-beam effect (tune spread), small allowed<br />

space in Q-space, collimators (impedance,<br />

collective instabilities), electron cloud, radiation<br />

Legend:<br />

7 TeV 3.5 -> 4 TeV<br />

N ~ 1.5 10 11<br />

0.6 m<br />

σ ~ 20 µm<br />

N < 1.7 10 11<br />

N nom = 1.15 10 11<br />

I < 0.85 A<br />

Normalized emittance<br />

Limited by injectors and main dipole aperture ε n


Datasets and luminosity<br />

CMS Integrated Luminosity, pp<br />

Total Integrated Luminosity (fb ¡1 )<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1 Apr<br />

Data included from 2010-03-30 11:21 to 2012-12-16 20:49 UTC<br />

1 May<br />

1 Jun<br />

2010, 7 TeV, 44.2 pb ¡1<br />

2011, 7 TeV, 6.1 fb ¡1<br />

2012, 8 TeV, 23.3 fb ¡1 £ 100<br />

5<br />

0<br />

1 Jul<br />

1 Aug<br />

1 Sep<br />

Date (UTC)<br />

1 Oct<br />

1 Nov<br />

1 Dec<br />

25<br />

20<br />

15<br />

10<br />

CMS Peak Luminosity Per Day, pp<br />

2010: ~40/pb at Linst~10 32 cm -2 s -1<br />

2011: ~6/fb at Linst


The CMS detector<br />

CMS DETECTOR<br />

Total weight<br />

Overall diameter<br />

Overall length<br />

Magnetic field<br />

: 14,000 tonnes<br />

: 15.0 m<br />

: 28.7 m<br />

: 3.8 T<br />

COMPACT<br />

STEEL RETURN YOKE<br />

12,500 tonnes<br />

SILICON TRACKERS<br />

Pixel (100x150 μm) ~16m2 ~66M channels<br />

Microstrips (80x180 μm) ~200m2 ~9.6M channels<br />

SUPERCONDUCTING SOLENOID<br />

Niobium titanium coil carrying ~18,000A<br />

MUON CHAMBERS<br />

Barrel: 250 Drift Tube, 480 Resistive Plate Chambers<br />

Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers<br />

PRESHOWER<br />

Silicon strips ~16m2 ~137,000 channels<br />

FORWARD CALORIMETER<br />

Steel + Quartz fibres ~2,000 Channels<br />

CRYSTAL<br />

ELECTROMAGNETIC<br />

CALORIMETER (ECAL)<br />

~76,000 scintillating PbWO4 crystals<br />

HADRON CALORIMETER (HCAL)<br />

Brass + Plastic scintillator ~7,000 channels<br />

MULTI-PURPOSE!<br />

SOLENOID<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!6


CMS: Tracker<br />

Insertion of the CMS<br />

pixel detector<br />

Tracker inner barrel during<br />

final integration<br />

CMS is equipped with a full-silicon tracking detector<br />

Three layers and two disks of pixel sensors (~66M channels)<br />

Ten barrel layers and 3+9 endcap wheels of strip sensors (~10M channels)<br />

Pseudorapidity coverage up to 2.4. Transverse momentum resolution 2-3%.<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!7


to the primary vertex; and (d) longitudinal impact parameter, d z , with respect to the primary<br />

vertex.<br />

CMS: Pixel detector<br />

3.2 Track Impact Parameter Resolution<br />

The analysis described in this section is based on the 7 TeV data collected by CMS up to the<br />

27th of May 2010 and corresponding to 10.9 nb 1 . In addition ~98% to the operational general selection during detailed data taking<br />

in Section 1.1, the events used for the measurement of the IP resolutions are required also to<br />

pass the uncorrected 6 GeV jet trigger. The usage of a common Hit efficiency trigger ensures >99% that the tracks<br />

used in both data and simulation are comparable in terms of track multiplicity and distribution<br />

of particle kinematic variables. The measurement of the Excellent impact parameter understanding resolution starts of detector resolution:<br />

from the selection of high quality tracks that have a high probability<br />

Hit position,<br />

of havingimpact been produced<br />

parameter, vertices<br />

promptly in the pp collision: a track must have its p T greater than 0.3 GeV/c and valid measurements<br />

on at least 7 consecutive layers of the tracker, including a measurement on the innermost<br />

Hit resolution vs. cluster size<br />

Transverse ~ 10 mm<br />

pixel layers (either the barrel or one of the endcap disks). Simulation studies predict that this<br />

Longitudinal ~ 20 mm<br />

simple selection is expected to reduce the fraction of fake tracks to the per mil level. For transverse<br />

momenta smaller than 4 GeV/c (20 GeV/c), the<br />

4<br />

fraction of non-prompt tracks that are<br />

2 Pr<br />

selected is less than 2% (10%) of the total.<br />

CMS preliminary 2010<br />

110<br />

Transv.Impact Parameter Resolution (µm)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Data track | η | < 0.4<br />

Simulation track | η | < 0.4<br />

Excellent modeling<br />

of pixel hit resolution,<br />

multiple scattering,<br />

alignment<br />

s = 7 TeV<br />

2 4 6 8 10 12 14 16 18 20<br />

Track p (GeV/c)<br />

T<br />

CMS preliminary 2010<br />

130<br />

Longit.Impact Parameter Resolution (µm)<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

Data track | η | < 0.4<br />

Simulation track | η | < 0.4<br />

s = 7 TeV<br />

Vertex resolution vs.<br />

number of tracks and<br />

average pT<br />

2 4 6 8 10 12 14 16 18 20<br />

Track p (GeV/c)<br />

T<br />

CMS-PAS-TRK-10-005<br />

Eur.Phys.J. C70 (2010) p.1165<br />

V. Chiochia (Zürich University) (a) – Heavy flavour physics with the CMS experiment (b) - 19-20/11/2013 (a)<br />

!8


CMS: Muon system<br />

Tracks:<br />

Excellent pT resolution ≈ 2-3%<br />

Efficiency above 99% for central muons<br />

Impact parameter resolution ~15 mm<br />

Muon candidates:<br />

Match between muon segments and a silicon<br />

track<br />

Large pseudorapidity coverage: |η| < 2.4<br />

Muon efficiencies evaluated with<br />

MC methods<br />

Data-driven methods: Tag & Probe<br />

Muon misidentification rates from data:<br />

D*→D 0 p, D 0 →Kp<br />

Ks→pp<br />

L→pp<br />

CMS-PAS-MUO-10-002<br />

DT coverage<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!9


quark production at the LHC<br />

LHC RUN 1<br />

~ 2 MHz at<br />

7.5x10 33 cm -2 s -1<br />

Enormous b quark production<br />

rate at the LHC Run 1<br />

Expected to more than<br />

double in Run 2<br />

High rates implies very<br />

selective requirements at<br />

trigger level to store<br />

interesting b decays<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!10


Triggers for heavy flavor physics<br />

Trigger selections based on:<br />

• pT and |η| of dimuons<br />

• dimuon invariant mass<br />

• secondary vertex probability<br />

• impact parameter<br />

• flight length significance<br />

• pointing angle<br />

Trigger requirements tightened following the increase in instantaneous luminosity.<br />

About 10% of CMS bandwidth assigned to heavy flavor physics<br />

Single muon trigger efficiencies measured from data (tag&probe), dimuon correlations from MC<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!11


Understanding the rates:<br />

Production<br />

measurements<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013 !12


dy (pb/GeV)<br />

σ/dp<br />

2<br />

b-jet d<br />

T<br />

9<br />

10<br />

8<br />

10<br />

7<br />

10<br />

10<br />

6<br />

5<br />

10<br />

4<br />

10<br />

3<br />

10<br />

2<br />

10<br />

10<br />

Inclusive B production<br />

-1<br />

CMS L = 34 pb<br />

MC@NLO<br />

Exp. uncertainty<br />

Anti-k T<br />

R=0.5<br />

s = 7 TeV<br />

|y| < 0.5 (×625)<br />

0.5 < |y| < 1 (×125)<br />

1 < |y| < 1.5 (×25)<br />

1.5 < |y| < 2 (×5)<br />

2 < |y| < 2.2<br />

1<br />

20 30 40 50 100 200<br />

b-jet p (GeV)<br />

T<br />

(pb/GeV)<br />

b-jet dσ/dp<br />

T<br />

6<br />

10 |y | < 2.2<br />

b-jet<br />

5<br />

10<br />

4<br />

10<br />

3<br />

10<br />

2<br />

10<br />

-1<br />

CMS L = 3-34 pb<br />

Jet based<br />

Muon based<br />

MC@NLO<br />

ATLAS jet<br />

ATLAS muon<br />

s = 7 TeV<br />

20 40 60 80 100 120 140 160 180 200<br />

b-jet p (GeV)<br />

T<br />

1<br />

0 0.05 0.1 0.15 0.2<br />

2<br />

0<br />

d xy [cm]<br />

-2<br />

pp ! bX ! µX 6 1 |⌘| < 2.1 1.32 ± 0.01 ± 0.30 ± 0.15 0.95 +0.41<br />

0.21<br />

[1]<br />

pp ! b¯bX ! µµX 4 1 |⌘| < 2.1 (26.18 ± 0.14 ± 2.82 ± 1.05) ⇥ 10 3 (19.95 +4.68<br />

4.33 ) ⇥ 10 3 [4]<br />

pp ! b jet X 30 1 |y| < 2.4 2.14 ± 0.01 ± 0.41 ± 0.09 1.83 +0.64<br />

0.42<br />

[5]<br />

pp ! B + X 5 1 |y| < 2.4 28.3 ± 2.4 ± 2.0 ± 1.1 25.5 +8.8<br />

5.4<br />

[9]<br />

pp ! B 0 X 5 1 |y| < 2.2 33.2 ± 2.5 ± 3.1 ± 1.3 25.2 +9.6<br />

6.2<br />

[10]<br />

pp ! B s X ! J/ X 8 50 |y| < 2.4 (6.9 ± 0.6 ± 0.5 ± 0.3) ⇥ 10 3 (4.9 +1.9<br />

1.7 ) ⇥ 10 3 [11]<br />

Source: http://arxiv.org/abs/1201.6677<br />

JHEP 04 (2012) 084<br />

Table 1. Summary of measured b-quark cross sections in inclusive (top) and exclusive (bottom) channels and comparison with NLO JHEP 06 (2012) 110<br />

QCD expectations. The experimental uncertainties indicate (from left to right) the statistical, systematic and luminosity. Theoretical<br />

V. Chiochia uncertainties (Zürich University) are obtained– from Heavy scaleflavour variations. 4physics with the CMS experiment - 19-20/11/2013<br />

!13<br />

6<br />

Number / 0.004 cm<br />

Pull<br />

5<br />

10 CMS s = 7 TeV, L = 27.9/pb Data<br />

int<br />

BB<br />

µ<br />

µ<br />

p > 4 GeV, |η | < 2.1 CC<br />

4<br />

T<br />

10<br />

DD<br />

BD<br />

BC<br />

3<br />

10<br />

CD<br />

PP<br />

2<br />

10<br />

10<br />

0 0.05 0.1 0.15 0.2<br />

d xy [cm]<br />

Inclusive B cross sections using tagged jets and events with two semileptonic muons<br />

NLO in agreement with data but systematically below<br />

Further measurements needed to pin down high-pt and rapidity regions<br />

• MC@NLO and POWHEG EPJgiving Web ofsomewhat Conferences different predictions<br />

Process p T range (Pseudo)-rapidity Cross section NLO QCD Ref.<br />

[GeV/c] range [µb] [µb]


6.6 ± 0.4, and n(L b )=7.6 ± 0.4.<br />

recent<br />

The larger<br />

result [42]<br />

n value<br />

from the<br />

for<br />

LHCb<br />

L b indicates<br />

Collaboration<br />

a more<br />

measures<br />

steeply<br />

a strong<br />

falling<br />

p<br />

p T<br />

distribution than observed for the mesons, also suggesting that the production of L hadron production<br />

T dependence of the ratio of<br />

L b production to B-meson production, f Lb /( f u + f d ), with f Lbb ⌘baryons,<br />

B(b ! L b ) and f q ⌘ B(b !<br />

relative to B mesons, varies as a function B q ). Largerof f Lb pvalues T , with areaobserved larger at Llower b /B ratio p T , which at lower suggests transverse that the discrepancy observed<br />

between the LEP and<br />

momentum. The right plot of Fig. 3 shows the p L Tevatron b<br />

T spectrum data may shape be due compared to the lower to p B+ T of the L<br />

and B b 0 baryons produced at<br />

,<br />

the Tevatron.<br />

where the distributions are normalized to the common bin with p T = 10 13 GeV.<br />

(pp→ b-hadron X) (µb/GeV)<br />

dσ/dp<br />

T<br />

-1<br />

10<br />

-2<br />

10<br />

10<br />

10<br />

1<br />

-3<br />

(10-13 GeV))<br />

)/(dσ/dp<br />

(dσ/dp<br />

T<br />

T<br />

-2<br />

10<br />

10 20 30 40 50<br />

10 20 30 40 50<br />

b-hadron p (GeV)<br />

b-hadron p (GeV)<br />

T<br />

T<br />

Figure CMS 3: Preliminary, Comparison s=7 of TeV production rates Spring for 2012 B + [6], B 0 [7], B 0 s [9], and L b versus p T . The left<br />

4.8<br />

plot shows the absolute comparison, where the inner error bars correspond to the total bin-tobin<br />

uncertainties, while the outer error bars represent the total bin-to-bin and normalization<br />

value ± stat. ± syst. ± lum. error<br />

(luminosity)<br />

NLO predictions compatible with data<br />

pp → Λ b<br />

X → J/ψ Λ X<br />

11.6 ± 0.6 ± 1.2 ± 2.0<br />

uncertainties P T>10 GeV, |y|5 GeV, |y|


Spectroscopy:<br />

A new heavy baryon<br />

and other peaks<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013 !15


On the media<br />

First particle discovery at CMS!<br />

May 1st, 2012<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!16


Ξ<br />

-<br />

b<br />

B<br />

Y<br />

The Jb baryon family<br />

B=-1<br />

Σ -<br />

bbb<br />

J=3/2 +<br />

Σ<br />

*- ddb<br />

udb uub Σ<br />

*+<br />

b b<br />

dsb usb<br />

π"<br />

ssb<br />

dsb<br />

usb<br />

Δ - ddd<br />

uuu Δ ++<br />

ssb<br />

dds<br />

uus<br />

uds<br />

dss<br />

Σ +<br />

n<br />

$<br />

-<br />

b p<br />

uss<br />

Ξ - sss<br />

Ξ o<br />

5791 γ" ddu<br />

duu<br />

"<br />

Ω - ! - dds<br />

J=1/2 +<br />

uds ! o uus<br />

Y<br />

dss<br />

uss<br />

dbb<br />

ubb<br />

#<br />

Ξ’ o<br />

b I 3<br />

sbb<br />

!<br />

dsb<br />

usb • Charm sector cousin: c(2645)<br />

ssb<br />

!<br />

0 !<br />

n<br />

Ω<br />

-<br />

b p<br />

ddu<br />

duu<br />

Λ<br />

dds uds Σ o uus Σ +<br />

Width < 1MeV <br />

dss<br />

uss<br />

Ξ - Ξ o<br />

I 3<br />

B=-2<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

Ξ b<br />

*<br />

Σ<br />

-<br />

ddb udb Λ b<br />

uub<br />

b Σ<br />

+<br />

b<br />

• B-baryon multiplets:<br />

B<br />

Mass [MeV]<br />

Analog to charmed baryon spectrum<br />

Q value: M(Jb *0 )-M(Jb - )-M(p + )≈11-29 MeV<br />

“Heavy neutron” with u-s-b quarks<br />

• Given the predicted Q, Γ(Ξb* 0 ) < 1 MeV.<br />

Introduction<br />

J=1/2 +<br />

#<br />

- dbb<br />

ubb<br />

b<br />

#’ b<br />

sbb<br />

!<br />

-<br />

ddb udb " b<br />

uub<br />

b !<br />

+<br />

b<br />

?<br />

?<br />

" - dd<br />

(known)<br />

# b<br />

*-<br />

# - + c ⇡<br />

Phys. Rev. Let<br />

Phys. Rev. D 66, 014502 (2002)<br />

• Expected Q(Ξb* 0 ) = M(Ξb* 0 ) − M(Ξb − ) − M(π + ) ~ 11-29 M<br />

! +<br />

Phys. Rev. D 77, 034012 (2008)<br />

Phys. Rev. D 79, 014502 (2009)<br />

Phys. Rev. D 84, 014025 (2011)<br />

arXiv:1203.3378v1 [hep-lat]<br />

arXiv:1203.3378v1 !17


Jb* 0 decay chain<br />

Introduction<br />

• Ξb *0 decay chain:<br />

p +<br />

Secondary<br />

vertices<br />

⇡ ⇤<br />

c ( 0 )=7.89 cm<br />

c (<br />

)=4.91 cm<br />

⇤ 0<br />

Can decay beyond pixel volume<br />

Requires reconstruction of very<br />

displaced tracks and vertices<br />

⇡ ⌅<br />

c ( b<br />

) = 470 µm<br />

⌅<br />

PV<br />

⌅ ⇤0<br />

b<br />

⌅ b<br />

⇡ + PV<br />

J/<br />

µ<br />

µ +<br />

Displaced J/c decay vertex<br />

within pixel volume<br />

& c.c.<br />

Ernest Aguiló (HEPHY) 6<br />

June 26th 2012<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!18


candidates per 20 MeV<br />

-<br />

Ξ b<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Observation of the Jb* 0 baryon<br />

CMS<br />

pp, s = 7 TeV<br />

-1<br />

L = 5.3 fb<br />

Jb→JJ/c<br />

-<br />

Ξ b<br />

data<br />

Opposite-sign pπ Ξ<br />

Same-sign pπ Ξ<br />

Signal+background fit<br />

Background fit<br />

108 ± 14 candidates<br />

M=5795.0 ± 3.1 MeV<br />

s=23.7 ± 3.2 MeV<br />

0<br />

5.6 5.7 5.8 5.9 6 6.1<br />

-<br />

M(J/ψΞ ) [GeV]<br />

Additional<br />

prompt pion<br />

candidates per 2 MeV<br />

*0<br />

Ξ b<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

21 events observed, 3.0±1.4<br />

background expected<br />

Resolution from MC: sMC=1.9±0.1 MeV<br />

CMS<br />

pp, s = 7 TeV<br />

-1<br />

L = 5.3 fb<br />

(b)<br />

Opposite-sign data<br />

Signal+background fit<br />

Background<br />

0<br />

0 10 20 30 40 50<br />

- +<br />

-<br />

M(J/ψΞ π ) - M(J/ψΞ ) - M(π) [MeV]<br />

Q=<br />

Jb *0 →JJ/cp<br />

Q = 14.8 ± 0.7 ± 0.3 MeV<br />

M(Jb) = 5945.0 ± 0.7(stat.) ± 0.3(syst.) ± 2.7(PDG) MeV<br />

GBW=2.1±1.7 MeV (Theory: ! 0.93 MeV)<br />

Significance from ln(Ls+b/Lb)=6.9<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

Phys. Rev. Lett. 108, 252002 (2012)<br />

!19


Possible Speculations<br />

Exotic mesons<br />

Many new charmonium(–like) do not fit into<br />

quark model spectrum easily. Theoretical<br />

speculations include:<br />

• Molecular states: loosely bound states composed of a<br />

pair of mesons, probably bound by the long-range colorsinglet<br />

pion exchange<br />

• Tetraquarks: bound states of four quarks, bound by<br />

colored-force between quarks, decay through<br />

rearrangement, some are charged or carry strangeness, there<br />

are many states within the same multiplet<br />

• Hybrid charmonium: bound states composed of a<br />

pair of quarks and one excited gluon<br />

• Conventional charmonium: quark model spectrum<br />

could be distorted by the coupled-channel effects<br />

9<br />

Courtesy: S.Zhu<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!20


Exotic mesons<br />

TABLE 9: As in Table 4, but for new unconventional states in the c¯c and b¯b regions, ordered by mass. For X(3872), the values<br />

given are based only upon decays to ⇡ + ⇡ J/ . X(3945) and Y (3940) have been subsumed under X(3915) due to compatible<br />

properties. The state known as Z(3930) appears as the c2(2P )inTable4. See also the reviews in [81–84]<br />

Well established<br />

at CMS<br />

JHEP 04 (2013) 154<br />

Seen also at D0<br />

arXiv:1309.6580<br />

Seen also at<br />

D0, Belle<br />

arXiv:1010.5827<br />

State m (MeV) (MeV) J PC Process (mode) Experiment (# ) Year Status<br />

X(3872) 3871.52±0.20 1.3±0.6 1 ++ /2 + B ! K(⇡ + ⇡ J/ ) Belle [85, 86] (12.8),BABAR [87] (8.6) 2003 OK<br />

(


Search for X(4140)<br />

First evidence (3.8s) for a near-threshold<br />

narrow peak in the J/cf system, reported by<br />

CDF in B + →J/c(mm)f(KK)K + decays in 2009,<br />

based on 2.7 fb -1 .<br />

Result updated in 2011 with 6 fb -1 , significance<br />

over 5s. Assuming relativistic BW:<br />

M1=4143.0 +2.9 -3.0(stat)±0.6(syst) MeV<br />

G1=15.3 +10.4 -6.1(stat)±2.5(syst) MeV<br />

Evidence (3.1s) for a second structure:<br />

0<br />

0<br />

5.2 5.3 5.4<br />

1 1.01 1.02<br />

+<br />

2<br />

M2=4274.4 +8.4 -6.7(stat)±1.9(syst) MeV<br />

m(J/ Kφψ ) [GeV/c<br />

] 5 m K<br />

G2=32.3+21.9(stat)±7.6(syst) MeV<br />

PRL 102, 242002 (2009)<br />

Could be cc bound state but well above opencharm<br />

threshold (3740 MeV). Some models: line is a fit to the data with a Gaussian signal fun<br />

FIG. 1: (a) The mass distribution of J/ψφK + arXiv:1101.6058 ;the<br />

40<br />

10<br />

10<br />

6<br />

CDF 2011<br />

a)<br />

Molecular linear background function. (b) The K + K − mass<br />

(Ds Ds) state b)<br />

a)<br />

19±7 b)<br />

L=6 fb c)<br />

-1<br />

8 candidates<br />

8<br />

4<br />

30<br />

tions inside the B mass window (black solid) and<br />

Hybrid particle (qqg)<br />

2<br />

sidebands (red dotted).<br />

Four-quark combination (ccss)<br />

6<br />

6 22±8<br />

20<br />

candidates<br />

0<br />

No significant first structure from Belle 1 1.1 1.2 in 1.3 1.4 1.5 1.6 1.7<br />

6<br />

4<br />

4<br />

exclusive B decays. 3.2s evidence for second<br />

m(µ + µ − K + K − ) − m(µ + µ − 4<br />

) for events in<br />

structure 10 at 4350 MeV in gg→J/cf<br />

2<br />

2<br />

2<br />

mass window. Events from reference [12] and f<br />

Exclusion limits on partial width disfavor<br />

0<br />

data are shown in (a) top and bottom. In the<br />

5.4<br />

1 molecular 1.01 1.02 scenarios 1.03 with 1.040 ++ , 2 ++ 0 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 0<br />

0<br />

1 1.1 1.2 1.3 1.4 1.5<br />

1 1.1 1.2 1.3 2<br />

2<br />

eV/c<br />

]<br />

m [GeV/c ]<br />

signal region (∆M < 1.07GeV/c 2 1.4 1.5<br />

- + -<br />

-<br />

2<br />

), the new da<br />

+ -<br />

K K<br />

m(µ + µ K K )-m(µ + - + -<br />

-<br />

2<br />

µ ) GeV/c m(µ + )-m(µ + - + -<br />

-<br />

2<br />

µ K K µ ) [GeV/c ] m(µ + µ K K )-m(µ + µ ) [GeV/c ]<br />

within 1σ of the expectation (6 events compar<br />

expected). Over the entire examined region<br />

stribution V. Chiochia of (Zürich J/ψφK University) + ;thesolidblue<br />

– Heavy flavour physics FIG. with 2: (a) the The CMS experiment mass difference,<br />

data sets<br />

- 19-20/11/2013 ∆M, betweenµ<br />

are consistent at the + µ − K<br />

7% + K<br />

probability −<br />

!22 l<br />

2<br />

Candidates/2 MeV/c<br />

2<br />

Events/10 MeV/c<br />

+ − +<br />

2<br />

Candidates per 5 MeV/c<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

2<br />

Candidates per 10 MeV/c<br />

115±12 B +<br />

candidates<br />

CDF 2011<br />

L=6 fb -1<br />

a)<br />

2<br />

Candidates per 10 MeV/c<br />

2<br />

Candidates/2 MeV/c<br />

40<br />

30<br />

B + X(4140)<br />

→ K + → J/cf K<br />

X(4270)<br />

+<br />

?<br />

20<br />

10


Search for X(4140)<br />

3<br />

5 GeV<br />

8 GeV<br />

round<br />

4 5.45<br />

+<br />

) [GeV]<br />

) / 20 MeV<br />

+<br />

Candidates / 5 MeV<br />

N(B<br />

CMS,<br />

400<br />

100<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

−1<br />

s = 7 TeV, L = 5.2 fb<br />

arXiv:1309.6920<br />

−<br />

1.0125 < m(K<br />

+<br />

K ) < 1.0265 GeV<br />

Δm < 1.568 GeV<br />

Data<br />

Fit<br />

Background<br />

5.15 0<br />

5.2 5.25 5.3 5.35 + −<br />

5.4 +<br />

5.45 5<br />

m(J/ψK K K ) [GeV]<br />

with the standard event selection (left) and the tighter<br />

-1<br />

CMS, s = 7 TeV, L=5.2 fb<br />

300<br />

how the result of fitting these distributions Data to a Gausomial<br />

background 250 while the dashed Three-body curves PS (global showfit)<br />

the<br />

Global fit<br />

±1σ uncertainty band<br />

+<br />

200<br />

Event-mixing (J/ψ, φ, K )<br />

+<br />

Event-mixing (J/ψ, φ K )<br />

1D fit<br />

150<br />

ibed below. With the exception of this cross-check, all<br />

tive criteria.<br />

Search based on 5.2 fb -1 in B + →J/cfK + decays:<br />

Largest sample so far: 2480±160 B + candidates<br />

Fitted Dm distribution corrected for detector<br />

efficiency<br />

Efficiency fairly uniform over mass spectrum (


Searches for Xb<br />

Search for the X(3872) counterpart in the<br />

bottomonium sector - called here Xb<br />

Decay channel Y(1S)p + p -<br />

Mass predicted close to the BB or BB*<br />

threshold. Search scans 10-11 GeV mass<br />

range<br />

Search in two rapidity regions due to<br />

different mass resolution<br />

Dipion mass distribution assumed to be as<br />

for Y(2S) and similar to X(3872)<br />

“R” ratio of observed Xb and Y(2S)<br />

candidates corrected for detector efficiency<br />

R=6.56% motivated by X(3872) case<br />

would yield >5s observation over the full<br />

mass range<br />

No excess observed. 95% CL upper bounds<br />

on R within (0.9 - 5.4)%.<br />

First upper limit on possible Xb state at<br />

hadron collider<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

numbers of U(2S) ! U(1S)p + p events are 7100 ± 150 an<br />

cap regions, where the uncertainties are statistical. The<br />

the U(2S) resonance are shown in Fig. 2 for the barrel and<br />

the fits superimposed.<br />

6 5 Summary<br />

regions. The systematic uncertainties mentioned above are implemented as nuisance parame<br />

ters in the fit, assuming log-normal or flat priors. The expected discovery potential is estimated<br />

by injecting various amounts of signal events into the fits and evaluating the resulting p-values<br />

The expected signal significance for the assumption R = 6.56%, motivated by the ratio of pro<br />

duction cross sections times branching fractions for X(3872) and y(2S) reported in Ref. [8], i<br />

larger than five standard deviations Υ (2S)(s) across Υ(3S)<br />

the explored X b CMS mass barrel range, as shown by th<br />

dashed curve in Fig. 8000 3. The observed p-values displayed in Fig. s = 38 by TeVthe solid line show no<br />

-1<br />

indication of an X L = 20.7 fb<br />

b signal. The smallest local p-value is 0.004 at 10.46 GeV, corresponding 4000 to<br />

p > 13.5 GeV<br />

a statistical significance of 2.6s, which is reduced to 0.8s when taking T into account the “look<br />

6000<br />

|y| < 1.2<br />

elsewhere effect” [29]. The expected and observed 95% confidence level upper limits on R<br />

derived using a modified frequentist approach (CL S ) [30, 31], are shown in Fig. 4 as a function<br />

of the X b mass. The4000<br />

observed upper limits on R are in the range 0.9–5.4% at 95% confidenc<br />

2000<br />

level. The expected upper limits, which are derived for a pure background hypothesis, are les<br />

stringent than those obtained from the p-value calculations. This is because the p-value calcu<br />

lations are only concerned<br />

2000<br />

with the probability of the background fluctuating to a signal-lik<br />

peak in the invariant-mass distribution, while the upper limits on R also include the system<br />

atic uncertainties in the signal normalization from the signal decay model and X b polarization<br />

assumptions. 9.8 10 10.2 10.4 10.6 10.8 11<br />

9.8<br />

[GeV]<br />

p-value<br />

Candidates / 6 MeV<br />

M + Υ(1S)π<br />

-<br />

π<br />

Figure 1 1: The reconstructed invariant-mass distributions<br />

and endcap (right) regions. Peaks corresponding to U(<br />

U(1S)p + 2σ<br />

-2<br />

10<br />

CMS<br />

p decays are indicated with the arrows. 3σ<br />

-4<br />

10<br />

4 10 -6<br />

Results<br />

-8<br />

10<br />

s = 8 TeV<br />

-1<br />

L = 20.7 fb<br />

The search for the X b is performed in the mass<br />

6σ<br />

regions 1<br />

-10<br />

10<br />

Observed<br />

cluding the mass intervals around the U(2S) and U(3S) r<br />

Expected for R=6.56%<br />

-12<br />

10<br />

7σ<br />

10 10.2 10.4 10.6 10.8 11<br />

CMS<br />

M Xb<br />

[GeV]<br />

± 1σ Expected<br />

-1<br />

Figure 3: Observed 10%<br />

(solid s = curve) 8 TeVand expected for R = 6.56% (dotted ± 2σ Expected curve) local p-values, a<br />

a function of the8%<br />

assumed L X b mass. -1<br />

= 20.7 fb<br />

6.56% Median expected<br />

6%<br />

Observed<br />

Upper limit on R<br />

4%<br />

5 Summary<br />

A search for an exotic bottomonium state in the decay channel X b ! U(1S)p + p , followed by<br />

U(1S) ! µ + 2%<br />

µ , in pp collisions at p s = 8 TeV at the LHC has been presented. This analysi<br />

was performed using data collected by the CMS experiment, corresponding to an integrated<br />

luminosity of 20.7 fb 1 -2<br />

. Candidates were reconstructed from two identified muons and two<br />

1% 10<br />

additional charged tracks assumed to be pions. The search was conducted in the kinemati<br />

region p T (U(1S)p + 10 p ) > 10.13.510.2 GeV and 10.3 |y(U(1S)p 10.4 10.5 + p 10.6 )| < 10.7 2.0. The 10.8U(2S) 10.9! 11 U(1S)p + p<br />

process was used as a normalization channel, canceling many of the systematic M Xb<br />

[GeV] uncertainties<br />

Excluding the known U(2S) and U(3S) resonances, no significant excess above the!24<br />

background<br />

Figure 4: Upper limits at the 95% confidence level on R, the production cross section for the X<br />

arXiv:1309.0250<br />

4σ<br />

5σ<br />

Candidates / 6 MeV


Looking outside the box:<br />

Rare B decays<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013 !25


Why searching for Bs,d→m + m - ?<br />

otivation: search for new physics<br />

otivation: Decays highly suppressed search in SM for new physics<br />

Forbidden at tree level<br />

Decays b →s(d) highly FCNC suppressed transitions only through in Standard Penguin or Model<br />

DecaysBox highly diagrams suppressed in Standard Model<br />

⇥ effective FCNC, helicity suppression<br />

⇥ effective Cabibbo FCNC, (|Vtd| |V td |)<br />

⇥ Cabibbo-enhancement of B 0 (|V ts | > |V td |)<br />

s ⇥ µ + µ over B 0 ⇥ µ + µ<br />

Sensitivity to new physics, e.g. extended<br />

of only<br />

Higgs<br />

Bs 0 in ⇥ MFV<br />

sector<br />

µ + µ models<br />

and<br />

over<br />

SUSY<br />

Bparticles:<br />

0 ⇥ µ + µ<br />

only in MFV models<br />

Indirect 2HDM sensitivity branching ~(tanb) to new 4 and physics m(H + )<br />

MSSM branching ~(tanb) 6<br />

Indirect sensitivity to new physics<br />

⇥ 2HDM: Leptoquarks B ⇤ (tan ) 4 ,m H +; MSSM: B ⇤ (tan ) 6<br />

4th generation top<br />

⌅ sensitivity to extended Higgs boson sectors<br />

⌅ sensitivity constraints toon extended parameter Higgs regions boson sectors<br />

⌅ constraints on parameter regions<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

b<br />

b<br />

B s<br />

B s<br />

b<br />

b<br />

s<br />

s<br />

s(d)<br />

s(d)<br />

⇥ 2HDM: B ⇤ (tan ) 4 ,m H +; MSSM: B ⇤ (tan ) 6<br />

B 0 s ⇥ µ + µ<br />

considered as golden channel<br />

t<br />

+ t<br />

Z 0 0 0<br />

+<br />

, H ,h , ...<br />

W , H<br />

+<br />

Z 0 0 0<br />

+<br />

, H ,h , ...<br />

W , H<br />

t<br />

t<br />

+ χ ~ 0<br />

W<br />

+ χ ~ ,<br />

W ,<br />

0<br />

~ ~ t,c,u d l ν<br />

~ ~ t,c,u d l ν<br />

−<br />

W , χ<br />

~ 0<br />

−<br />

W , χ<br />

~ 0<br />

µ − +<br />

µ<br />

µ<br />

l<br />

+<br />

l<br />

l<br />

−<br />

l<br />

µ − +<br />

[1] JHEP 1307 (2013) 77<br />

[2] PRL 109, 041801 (2012), arXiv:1208.0934<br />

[3] Phys. Rev. D85: 033005, 2011<br />

+<br />

−<br />

!26


A 30-years quest!<br />

PHYSICAL REVIEW D VOLUME 30, NUMBER 11 1 DECEMBER 1984<br />

Two-body<br />

decays of B mesons<br />

R. Giles, J. Hassard, M. Hernpstead, K. Kinoshita, W. W. MacKay, F. M. Pipkin, and Richard Wilson<br />

Harvard University, Cambridge, Massachusetts 02138<br />

P. Haas, T. Jensen, H. Kagan, and R. Kass<br />

Ohio State University, Columbus, Ohio, 43210<br />

S. Behrends, K. Chadwick, J. Chauveau, T. Gentile, Jan M-. Guida, Joan A. Guida, A. C. Melissinos,<br />

S. L. Olsen, G. Parkhurst, D. Peterson, R. Poling, C. Rosenfeld, E. H. Thorndike, and P. Tipton<br />

University ofRochester, Rochester, Xetv York 14627<br />

PRL 111, 101804 (2013) PHYSICAL REVIEW LETTERS<br />

week e<br />

6 SEPTEMB<br />

D. Besson, J. Green, R. Namjoshi, F. -Sannes, P. Skubic, f A. Snyder, ~ and R. Stone<br />

Rutgers University, New Brunswick, New Jersey 08854<br />

A. Chen, M. Goldberg, M. E. Hejazifar, N. Horwitz, A. Jawahery, P. Lipari, G. C. Moneti,<br />

C. G. Trahern, and H. van Hecke<br />

Syracuse University, Syracuse, New York 13210<br />

M. S. Alam, S. E. Csorna, L. Garren, M. D. Mestayer, R. S. Panvini, and Xia Yi<br />

Vanderb&lt University, Nashville, Tennessee 37235<br />

P. Avery, C. Bebek, K. Berkelman, D. G. Cassel, J. W. DeWire, R. Ehrlich, T. Ferguson, R. Galik,<br />

M. G. D. Gilchriese, B. Gittelman, M. Hailing, D. L. Hartill, S. Holzner, M. Ito, J. Kandaswamy,<br />

D. L. Kreinick, Y. Kubota, N. B. Mistry, F. Morrow, E. Nordberg, M. Ogg, K. Read, A. Silverman,<br />

P. C. Stein, S. Stone, R. Wilcke, ~ and Xu Kezun<br />

Cornell University, Ithaca, New York 14853<br />

A. J. Sadoff<br />

Ithaca College, Ithaca, New York 14850<br />

(Received 8 June 1984; revised manuscript received 10 September 1984)<br />

Various exclusive and inclusive decays of B mesons have been studied using data taken with the<br />

CLEO detector at the Cornell Electron Storage Ring. The exclusive modes examined are mostly decays<br />

into two hadrons. The branching ratio for a B meson to decay into a charmed meson and a DOI: 10.1103/PhysRevLett.111.101804<br />

charged pion is found to be about 2%. Upper limits are quoted for other final states PE, m.+m<br />

pox, p+p, e+e, and p e+. +— We also give an upper limit on inclusive g production and improved<br />

charged multiplicity measurements.<br />

In the standard model (SM) of particle physics, treelevel<br />

diagrams do not contribute to flavor-changing<br />

neutral-current (FCNC) decays. However, FCNC decays<br />

I. INTRODUCTION<br />

may proceed through higher-order loop diagrams, and this<br />

&4/o at 90% confidence level, a charmed particle should<br />

be present in almost all 8-meson<br />

opens up the possibility for contributions from non-SM<br />

decays.<br />

Even if we assume that the spectator model (Fig. 1) de-<br />

Weak decays of 8 mesons provide a unique testing<br />

ground for both electroweak theory and quantum chromodynamics<br />

(QCD). 8 þ possible have wayssmall to branching fractions of BðB 0 s !<br />

scribes 8 decay, there are still many <br />

mesons are composed of a b antiquark<br />

and a light quark, either a d (8 ) or a u (8+). In final-state primary partons interact þ withÞ¼ð3:57 each other 0:30Þ10 9 , corresponding to the<br />

describe how hadrons might form. In one model, the four<br />

the standard electroweak model' the b quark can decay without regard to color or chargedecay-time and produce integrated hadron branching fraction, and BðB 0 !<br />

into the c quark or the u quark by emitting a virtual intermediate<br />

vector boson. The possible decay schemes of native model is based on the fact that QCD requires had-<br />

states proportional to the available phase space. An alter-<br />

þ Þ¼ð1:07 0:10Þ10 10 [1,2]. Charge conjugation<br />

which is implied we call throughout the this Letter. Several extensions of<br />

V. B and<br />

Chiochia B are shown in<br />

(Zürich<br />

Fig. 1University) for both the b~e and rons<br />

– Heavy<br />

to be color singlets. In this model,<br />

flavour physics with the CMS experiment - 19-20/11/2013<br />

b~u cases. In the "spectator" diagrams the B meson de-<br />

"spectator model without color mixing, " the quarks from<br />

8'<br />

Measurement of the B 0 s ! þ Branching Fraction and Search<br />

for B 0 ! þ with the CMS Experiment<br />

S. Chatrchyan et al.*<br />

(CMS Collaboration)<br />

(Received 18 July 2013; published 5 September 2013)<br />

Results are presented from a search for the rare decays B 0 s ! þ and B 0 ! þ in pp collisions<br />

pffiffi<br />

at s ¼ 7 and 8 TeV, with data samples corresponding to integrated luminosities of 5 and 20 fb 1 ,<br />

respectively, collected by the CMS experiment at the LHC. An unbinned maximum-likelihood fit to the<br />

dimuon invariant mass distribution gives a branching fraction BðB 0 s ! þ Þ¼ð3:0 þ1:0<br />

0:9 Þ10 9 ,<br />

where the uncertainty includes both statistical and systematic contributions. An excess of B 0 s ! þ <br />

events with respect to background is observed with a significance of 4.3 standard deviations. For the decay<br />

B 0 ! þ an upper limit of BðB 0 ! þ Þ < 1:1 10 9 at the 95% confidence level is determined.<br />

Both results are in agreement with the expectations from the standard model.<br />

particles. In the SM, the rare FCNC decays B 0 s ðB 0 Þ !<br />

the SM, such as supersymmetric models with nonuniversal<br />

PACS numbers: 13.20.He, 12.15.Mm<br />

p<br />

corresponding<br />

ffiffi<br />

to integrated luminosities of 5<br />

s ¼ 7 TeV and 20 fb 1 at 8 TeV collected<br />

Compact Muon Solenoid (CMS) experiment at th<br />

Hadron Collider (LHC). For these data, the peak l<br />

ity varied from 3:5 10 30 to 7:7 10 33 cm 2 s<br />

average number<br />

pffiffi<br />

of interactions per bunch crossing<br />

was 9 (21) at s ¼ 7ð8Þ TeV.<br />

The search for the B ! þ signal, w<br />

denotes B 0 s or B 0 ,isperformedinthedimuoni<br />

mass regions around the B 0 s and B 0 masses. T<br />

possible biases, the signal region 5:20


Event characteristics<br />

Key ingredients:<br />

Good dimuon vertex, correct B mass assignment,<br />

isolation, • Signal B s 0 momentum ⇥ µ + pointing to interaction point<br />

µ<br />

Analysis overview<br />

µ<br />

_ µ<br />

B<br />

⇤<br />

two<br />

two<br />

muons<br />

muons<br />

from<br />

from<br />

one<br />

one<br />

decay<br />

decay vertex<br />

vertex<br />

Signal characteristics: mass around m<br />

mass around B 0 0 s s<br />

Two muons from long-lived a well reconstructed B<br />

long-lived decay vertex<br />

well reconstructed<br />

Mass compatible with Bs (or B 0 secondary vertex<br />

well reconstructed)<br />

secondary vertex<br />

momentum aligned with flight direction<br />

momentum aligned with flight direction B<br />

Dimuon momentum aligned with B flight !<br />

• Background<br />

Background<br />

⇤ two semileptonic (B) decays (gluon splitting)<br />

⇤ two semileptonic (B) decays (gluon splitting)<br />

Background sources:<br />

⇤ one semileptonic (B) decay and one misidentified hadron<br />

⇤ one semileptonic (B) decay and one misidentified hadron<br />

Two semi-leptonic ⇤ rare<br />

⇤ rare B single<br />

single decays B decays<br />

decays (e.g. from gluon splitting)<br />

peaking (B<br />

One semi-leptonic peaking B decay (Bs 0 s 0 ⇥ ⇥ + K+ K )<br />

K+ misidentified K ) hadron _<br />

non-peaking (B Hadronic B decays<br />

non-peaking (Bs 0 s 0 ⇥ K µ+ ⇥)<br />

⇥ K µ+ ⇥)<br />

B<br />

⇥ mass resolution<br />

mass resolution<br />

• Peaking: ⇥ notBs→K well-reconstructed - K +<br />

secondary vertex<br />

–<br />

not<br />

More<br />

well-reconstructed<br />

problematic within the B<br />

secondary 0 mass window<br />

vertex B<br />

⇥ pointing angle<br />

• Rare<br />

⇥<br />

semileptonic:<br />

pointing angle<br />

Bs→K - m + n, Lb→pmn<br />

⇤ High signal efficiency and high background reduction<br />

High signal efficiency and high background reduction<br />

⇤<br />

µ<br />

µ<br />

µ<br />

Urs Langenegger Search for B<br />

Urs Langenegger Search for B<br />

s(d) 0 s(d) 0 ⇥ µ+ µ with the CMS experiment (2011/07/22) 5<br />

⇥ µ+ µ with the CMS experiment (2011/07/22) 5<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!28


Discriminating variables<br />

Boosted decision tree (BDT) selection<br />

-1<br />

4<br />

Trained on signal MC sample and dimuon data 10 sidebands<br />

Data (sideband)<br />

Same BDT for normalization (B + →J/cK) and control (Bs→J/cf) channels<br />

3<br />

0 -<br />

" µ + µ (MC)<br />

Candidates<br />

10<br />

10<br />

2<br />

10<br />

! Mass windows: 5.2-5.3 GeV for B and 5.3-5.4<br />

! Split into barrel (both |" ! | < 1.4) and endcap<br />

! l 3D > 15 or 20 , # 3D < 0.050 or 0.025<br />

! p T! > 4.5 or 4.0 GeV, p TB > 6.5 GeV,<br />

! B fit $ 2 /dof < 1.6, dca min > 0.15 mm (endca<br />

12 input variables: kinematic, Tracker only, Muon only,Tracker+Muon variables<br />

Robustness studies<br />

CMS, 1.14 fb s = 7 TeV<br />

Insensitive to invariant mass using MC signal events with shifted mass<br />

Output independent on high- or low-mass sideband<br />

Insensitive to multiple collisions (pileup)<br />

B s<br />

PV<br />

l 3D<br />

µ<br />

Secondary<br />

vertex<br />

µ<br />

! 3D<br />

6000 Dimuon<br />

data sidebands<br />

-<br />

B → µ +<br />

s µ<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

CMS L = 20 fb ( s = 8 TeV)<br />

-1<br />

500<br />

400<br />

300<br />

200<br />

100<br />

CMS L = 20 fb ( s = 8 TeV)<br />

-1<br />

Dimuon<br />

data sidebands<br />

B → µ +<br />

s µ<br />

1<br />

Examples of background separation variables<br />

-1<br />

10<br />

-1<br />

CMS L = 20 fb ( s = 8 TeV)<br />

0 20 40 60 80 100 5000<br />

1000<br />

Dimuon l 3D<br />

/!(l )<br />

3D<br />

" Select best primary vertex based on<br />

consistency with B candidate<br />

momentum<br />

-1<br />

direction<br />

L = 20 fb ( s<br />

" Average of 5.5 primary vertices per<br />

-<br />

-<br />

B → µ µ<br />

9/1/11800<br />

Keith Ulmer -- University of Colorad<br />

+<br />

s<br />

4000<br />

-<br />

B → µ +<br />

s µ<br />

600<br />

400<br />

200<br />

data sidebands<br />

3000<br />

2000<br />

1000<br />

EPS-HEP 2013<br />

CMS = 8 TeV)<br />

Dimuon<br />

data sidebands<br />

0 50 100<br />

l 3D<br />

/σ(l )<br />

3D<br />

Flight length<br />

significance<br />

0 0.05 0.1<br />

α 3D<br />

Pointing<br />

angle<br />

0 1 2 3 4<br />

δ 3D<br />

/σ(δ )<br />

3D<br />

Impact parameter<br />

significance<br />

0 1 2 3 4<br />

χ 2 /dof<br />

B-vertex reduced<br />

chi 2<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!29


Isolation variables<br />

Relative isolation of muon pairs<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

Cone with DR=0.7 around di-muon momentum<br />

Include all tracks with pT>0.9 GeV from same PV or<br />

dCA


Signal normalization<br />

Branching ratios calculated w.r.t. normalization channel B + →J/c(m + m - )K +<br />

Many systematic uncertainties cancel in ratio<br />

No need for absolute luminosity and b-quark cross section<br />

Large B + yield and well known branching ratio to J/cK + (3% uncertainty)<br />

Ratio of b-quark fragmentation fractions to Bs/B + : fs/fu=(256±20)×10 -3 [JHEP 04 (2013) 001]<br />

From LHCb<br />

Br(B s ! µ + µ )= N(B s ! µ + µ ) f u ✏ B+<br />

tot<br />

N(B + ! J/ K + ) f s<br />

✏ B s<br />

tot<br />

Br(B + ! J/ K + )<br />

Candidates / 0.010 GeV<br />

CMS L = 20 fb ( s = 8 TeV)<br />

40000<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

-1<br />

Barrel<br />

~82’700<br />

candidates<br />

Candidates / 0.010 GeV<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

CMS L = 20 fb ( s = 8 TeV)<br />

-1<br />

Endcap<br />

2011-12<br />

B + Candidates:<br />

380×10 3 barrel<br />

90×10 3 endcap<br />

5 5.2 5.4 5.6 5.8<br />

[GeV]<br />

m µµK<br />

5 5.2 5.4 5.6 5.8<br />

[GeV]<br />

m µµK<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!31


Branching ratio measurement<br />

BDT output divided into 4 (2) bins for 2012 (2011) data and barrel/endcap categories<br />

Simultaneous UML fit of Bs and B 0 candidates:<br />

B s and B 0 decays signal<br />

Peaking backgrounds (e.g. B 0 →Kp, Bs→KK)<br />

Rare s-l backgrounds (e.g. Lb→pmn)<br />

Combinatorial background<br />

Event-per-event mass resolution included<br />

BR(B S<br />

→ µµ) = ( 3.0 +0.9 −0.8<br />

(stat) +0.6 −0.4<br />

(syst))×10 −9<br />

BR(B d<br />

→ µµ) = ( 3.5 +2.1 −1.8<br />

(stat+syst))×10 −10<br />

Significances<br />

Bs→µµ: 4.3 σ (exp. median 4.8 σ)<br />

B 0 →µµ: 2.0 σ<br />

CMS+LHCb combination<br />

(~24% precision)<br />

CMS-PAS-BPH-13-007<br />

−1<br />

LHCb 3fb<br />

SM<br />

−1<br />

CMS 25fb<br />

CMS+LHCb<br />

preliminary<br />

(2.9±0.7)×10 -9<br />

0 1 2 3 4 5 6 7<br />

0 − −9<br />

B(Bs→ µ + µ ) [10 ]<br />

CMS: Phys.Rev.Lett. 111 (2013) 101804<br />

LHCb: Phys. Rev. Lett. 08 (2013) 117<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!32


Exclusion limits on B 0 →m + m - !33<br />

No significant excess observed in the B0 mass window<br />

Upper limit on BR computed using CLs method<br />

BR(B d<br />

→ µµ)


4 References<br />

Future sensitivity<br />

Table 1: Number of expected events for B 0 s ! µ + µ and B 0 ! µ + µ at different integrated<br />

Table luminosity 1: Number values. of We expected also report events the expected for B 0 uncertainty in the branching fraction measurement<br />

for the B 0 s ! µ + µ and B 0 ! µ + s ! µ + µ and B 0 ! µ + µ at different integrated<br />

luminosity values. We also report the expected µ , the range uncertainty of significance in theof branching B 0 ! µ + µ fraction (the range measurement<br />

indicates for the the B±1s 0 of the distribution of significance), and the relative uncertainty on the B 0 to<br />

B 0 s ! µ + µ and B 0 ! µ + µ , the range of significance of B 0 ! µ + µ (the range<br />

s branching fractions.<br />

indicates the ±1s of the distribution of significance), and the relative uncertainty on the B 0 to<br />

B 0 s branching fractions.<br />

CMS PAS FTR-13-022<br />

L (fb 1 ) No. of B 0 s No. of B 0 dB/B(B 0 s ! µ + µ ) dB/B(B 0 ! µ + µ ) B 0 sign. d B(B0 !µ + µ )<br />

B(B 0 s !µ + µ )<br />

20 16.5 2.0 35% >100% 0.0–1.5 s >100%<br />

L (fb 1 ) No. of B 0 s No. of B 0 dB/B(B 0 s ! µ + µ ) dB/B(B 0 ! µ + µ ) B 0 sign. d B(B0 !µ + µ )<br />

100 144 18 15% 66% 0.5–2.4 s 71% B(B 0 s !µ + µ )<br />

20 300 16.5 433 54 2.0 12% 35% 45% >100% 1.3–3.3 0.0–1.5 s s 47% >100%<br />

100 3000 2096 144 256 18 12% 15% 18% 66% 5.4–7.6 0.5–2.4 s s 21% 71%<br />

300 433 54 12% 45% 1.3–3.3 s 47%<br />

3000 2096 256 12% 18% 5.4–7.6 s 21%<br />

S/(S+B) weighted events / ( 0.02 GeV)<br />

S/(S+B) weighted events / ( 0.02 GeV)<br />

120<br />

100<br />

120<br />

80<br />

100<br />

60<br />

80<br />

40<br />

60<br />

40<br />

CMS Simulation - Scaled to L = 300 fb<br />

-1<br />

CMS Simulation - Scaled to L = 300 fb<br />

20<br />

-1<br />

data<br />

full PDF<br />

-<br />

B s →µ + µ<br />

-<br />

B d<br />

→µ + µ<br />

data<br />

combinatorial bkg<br />

full PDF<br />

semileptonic - bkg<br />

B<br />

peaking s →µ + µ<br />

bkg -<br />

B d<br />

→µ + µ<br />

combinatorial bkg<br />

semileptonic bkg<br />

peaking bkg<br />

0<br />

0<br />

4.9 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9<br />

4.9 100 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9<br />

20<br />

m µµ (GeV)<br />

m µµ (GeV)<br />

50<br />

Figure 1: Fit results of the invariant mass distribution for 300 fb 1 and 3000 fb 1 . The improvement in<br />

0<br />

the mass resolution for the 3000 fb 1 0<br />

4.9 5 5.1 5.2 5.3 5.4 5.5 5.6projection 5.7 5.8 is 5.9expected from 4.9 an 5 improved 5.1 5.2 5.3 inner 5.4tracker 5.5 5.6 system 5.7 and 5.8 5.9<br />

removing endcap candidates.<br />

(GeV)<br />

(GeV)<br />

Figure<br />

5 Summary<br />

1: Fit results of the invariant mass distribution for 300 fb 1 and 3000 fb 1 . The improvement in<br />

the mass resolution for the 3000 fb 1 projection is expected from an improved inner tracker system and<br />

removing In the coming endcapyears, candidates. the LHC accelerator and the CMS detector will undergo a series of upgrades<br />

in two major steps. The first will result in a data sample corresponding to 300 fb 1<br />

5of integrated Summary luminosity and the second to 3000 fb<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment 1 . With the increased data sample sizes it<br />

- 19-20/11/2013<br />

will be possible to reduce both systematic and statistical errors leading to high precision mea-<br />

m µµ<br />

S/(S+B) weighted events / ( 0.01 GeV)<br />

S/(S+B) weighted events / ( 0.01 GeV)<br />

CMS Simulation - Scaled to L = 3000 fb<br />

450<br />

data<br />

full -1PDF<br />

400 CMS Simulation - Scaled to L = 3000 -<br />

B<br />

fb s →µ + µ<br />

-<br />

450<br />

B d<br />

→µ + µ<br />

350<br />

data<br />

combinatorial bkg<br />

full PDF<br />

400<br />

semileptonic bkg -<br />

300<br />

B<br />

peaking s →µ<br />

bkg<br />

+ µ<br />

-<br />

350<br />

250<br />

200300<br />

150250<br />

100200<br />

50150<br />

-1<br />

B d<br />

→µ + µ<br />

combinatorial bkg<br />

semileptonic bkg<br />

peaking bkg<br />

m µµ<br />

!34


H eff =<br />

New physics in b→s transitions?<br />

4 Analysis method<br />

Described by effective hamiltonian in operator product expansion<br />

b→s transitions sensitive to O (‘) 7,9,104 Analysis method<br />

4G F<br />

p<br />

2<br />

V tb V ⇤<br />

ts<br />

2<br />

4<br />

i=1<br />

Decay B 0 →K*l - l + provides<br />

samples sufficiently large to<br />

measure observables sensitive to<br />

effective coefficients. E.g:<br />

One very famous variable:<br />

A FB ∝−Re[(2C eff<br />

7 + q2<br />

C eff<br />

m 2 9 )C 10 ]<br />

b<br />

requirement are greater thanselections 99%. and haveGeneral a reconstructed description B 0 compatible of Hamiltonian with the in operator generatedproduct B 0 in theexp<br />

ev<br />

to the number of events that pass the acceptance criteria. The compatibility of gen<br />

reconstructed p particles is enforced by requiring the reconstructed K + , p , µ + , and<br />

(Dh)2 +(Dj) 2 < 0.3 for hadrons and 0.004 for muons, where Dh and Dj are the<br />

The analysis measures A in h and j between the reconstructed and generated particles, and j is the azimuth<br />

FB , F L , and dB/dq 2 of the decay B 0 ! K ⇤0 µ + µ as a function of q 2 .<br />

Figure 1 shows the relevantthe angular planeobservables perpendicular needed to thetobeam define direction. the decay: Theq efficiency and purity of this co<br />

K is the angle<br />

requirement are greater than 99%.<br />

between the kaon momentum and the direction opposite to the B<br />

b → s transitions 0 B 0 in the K<br />

are sensitive ⇤0 K<br />

to O (′ ⇤0 )<br />

7 , rest )<br />

O(′ 9 , )<br />

frame, q O(′ l is the angle between the positive (negative) muon momentum and the direction op-<br />

10<br />

posite to the B 0 B 0 in the dimuon rest frame, and f is the angle between the plane containing<br />

the two muons and the plane containing the kaon and pion. Since the extracted<br />

The analysis measures 3 i=1,2 Tree A FB , F L , and dB/dq 2 angular parameters<br />

A<br />

of the decay B 0 ! K ⇤0 µ + µ as a fun<br />

FB and F L and the acceptance times efficiency i-3-6,8 Gluon dopenguin<br />

not depend on f, f is integrated out.<br />

6X<br />

Although<br />

X<br />

the K<br />

C(µ)O(µ)+<br />

+ p invariant<br />

Figure<br />

mass<br />

1 shows the relevant angular observables needed to define the decay: q<br />

(C(µ)O(µ)+C 0 must<br />

(µ)O 0 (µ)) 5bei=7 consistent Photon penguin with a K ⇤0 , there can be contributions<br />

K i<br />

from a spinless (S-wave) K between the kaon i=9,10 momentum Electroweak and penguin the direction opposite to the B 0 B 0 in the K ⇤0<br />

i=7,. . . ,10,P,S<br />

i=S Higgs (scalar) penguin<br />

LH LH + p combination. This is parametrized with two terms related to<br />

the S-wave fraction, F S , andframe, theRH<br />

interference q l is the angle between the positive (negative) muon momentum and the di<br />

i=P amplitude Pseudoscalar between penguin the S-wave and P-wave decays,<br />

A posite to B 0 B 0 S . Including this component, the angular distribution in the dimuon of rest B 0 ! frame, K ⇤0 µ and + µ fcan is the be written angle between the plane<br />

as [18]:<br />

the two muons and the plane containing the kaon and pion. Since the extracted angu<br />

eters A FB and F L and the acceptance times efficiency do not depend on f, f is inte<br />

1 d 3 G<br />

Although the K + p invariant mass must be consistent with a K ⇤0 , there can be co<br />

G dcos q K dcos<br />

from<br />

q l dq<br />

a 2 = 9 ⇢apple 2<br />

spinless<br />

16<br />

(S-wave)<br />

3 F S + 4 3 A K + S cos q K 1 cos 2 q l<br />

h p combination. This is parametrized with two term<br />

the S-wave + (1 fraction, F S ) 2F<br />

B 0 F S L , cos and 2 qthe → K ∗ K<br />

l + 1interference l − cos 2 amplitude SM between theBSM<br />

q l<br />

S-wave and<br />

cays, A S . Including this component, the is angular the most distribution prominent of(large B 0 ! statistic K ⇤0 µ and + µ flavou can<br />

as [18]: + 1 (1)<br />

2 (1 F f-integrated Studies L) 1 cos 2 q<br />

statistical K angular 1 + cos<br />

limited 2 distribution<br />

q l<br />

B s → φµ + µ − , Λ b → Λµ + µ<br />

1 d 3 G<br />

G dcos q K dcos q l dq 2 = 9 ⇢apple 2<br />

+ 4 i<br />

16 3 F S + 4 3 A S cos q K 1 cos 2 q<br />

3 A FB 1 cos 2 q K cos q l .<br />

l<br />

h<br />

+ (1 F S ) 2F L cos 2 q K 1 cos 2 q l<br />

Angular ϕanalysis<br />

forward<br />

μ −<br />

θl<br />

B 0<br />

backward<br />

θK<br />

+ 1 2 (1 F L) 1 cos 2 q K 1 + cos 2 q l<br />

+ 4 i<br />

3 A FB 1 cos 2 q K cos q l .<br />

q 2 = dimuon invariant mass<br />

ϕ<br />

μ + K + π −<br />

Introduce 3 relative angles to describe angular distribution of final state particles.<br />

Ci eff are linear combinations of C(m)<br />

Folding φ → φ + π if φ < 0 increase Figure sensitivity 1: Sketchfor showing some coefficients.<br />

the definition of the angular observables for the decay B 0 !<br />

K ⇤0 (K + p )µ + µ .<br />

B 0<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the e.g. CMS A FB<br />

experiment = 3 - 19-20/11/2013<br />

4 (1 − F L)A Re θl<br />

T<br />

μ − K + θK<br />

!35


B 0 →K*mm angular analysis<br />

K* longitudinal polarization Muon F-B asymmetry Differential branching fraction<br />

CMS data: arXiv:1308.3409<br />

SM: Phys. Rev. D 87 (2013) 034016<br />

Angular fit of the Kpmm system in bins of dimuon invariant mass q 2<br />

Signal yields ranging from 23 to 103 events in each bin<br />

Vertical shaded bands correspond to J/c and c(2S) resonances<br />

Results consistent with SM predictions and previous<br />

measurements<br />

World’s most precise measurement of AFB and FL at high q 2 !36<br />

Next: analyze 2012 samples and measure more angular variables<br />

see the localized excesses observed by LHCb [arXiv:1308.1707] and interpretations<br />

[e.g.: arXiv:1308.1501, arXiv:1309.2466, ...]<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013


Summary<br />

The excellent performance of the CMS detector and LHC<br />

have allowed key contributions to the field heavy flavor<br />

physics<br />

Wide range of topics covered: Standard Model physics<br />

and the great beyond<br />

Several aspects of heavy flavor production are not yet<br />

well understood and spectroscopy is not a closed chapter!<br />

No sign of physics beyond the Standard Model yet, but we<br />

keep on searching!<br />

Analysis of the large datasets collected in 2012 is in<br />

progress. Expect new results (and perhaps surprises?) at<br />

the forthcoming conferences!<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!37


BACKUP SLIDES<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!38


Future upgrades<br />

The HL-LHC scenario<br />

40 fb -1 /year<br />

13/14 TeV<br />

>50 fb -1 /year<br />

13/14 TeV<br />

End of Phase 1<br />

300-500 fb -1<br />

PHASE 1 PHASE 2<br />

HL-LHC<br />

14 TeV<br />

>250 fb-1/year<br />

LHCb Upgrade<br />

ATLAS/CMS Upgrades phase 1<br />

ATLAS/CMS<br />

Upgrades phase 2<br />

At HL-LHC ~140 events/bx spread over ±15 cm (3 σ)<br />

~3000 fb -1 expected in 10 years running<br />

~3000 fb -1 expected in 10 years running<br />

Excellent opportunity to search for (rare) and new phenomena<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!39


in Table 2.3. Comparing the efficiencies at zero pileup with and without the dynamic ROC data<br />

Figure 2.1 shows a conceptual layout for the Phase 1 upgrade pixel detector. The current 3-layer<br />

loss expected for 2 ⇥ 10<br />

barrel (BPIX),<br />

Phase<br />

2-disk endcap (FPIX)<br />

1:<br />

system<br />

CMS<br />

is replaced with<br />

Pixel<br />

a 4-layer 34 cm<br />

barrel, 2 s 1 (25 ns crossing time), the dynamic data losses cause a only<br />

upgrade<br />

3-disk endcap<br />

3.5% (4.0%) loss of tracking efficiency for muons (t¯t) with the current pixel detector. However<br />

system for four hit coverage. Moreover the addition of the fourth barrel layer at a radius of<br />

at the pileup conditions for 2 ⇥ 10<br />

16 cm provides a safety margin in case the first silicon strip layer of the Tracker 34 cm<br />

Inner 2 s<br />

Barrel<br />

1 (25 ns crossing time) simulations show that the<br />

expected loss in efficiency due to the dynamic data loss increases to 8.6% (5.2%) for muons (t¯t).<br />

2.1.<br />

(TIB)<br />

Simulation<br />

degrades more<br />

Setup<br />

rapidly<br />

and Reconstruction<br />

than expected, but its main role is in providing redundancy in<br />

With much lower dynamic data loss for the upgrade 17 pixel detector, the resultant loss in tracking<br />

pattern recognition and reducing fake rates with high pile-up.<br />

efficiency is less than 0.5% in both pileup conditions. The track fake rate is hardly affected by<br />

the dynamic data loss.<br />

Table 2.2: Total material weight for the pixel barrel and forward pixel detectors, and for the carbon<br />

fiber tube outside of the pixel barrel thatTo is isolate neededthe foreffects Upgrade<br />

the TIB ofand highfor pileup, beamwe pipe canbakeout.<br />

compare the performance at zero pileup with those<br />

Upgrade<br />

Outer rings at high pileup without any ROC dynamic data loss simulated. The results in Table 2.3 for which<br />

=0 =0.5 =1.0<br />

=1.5<br />

=2.0<br />

Four barrel layers and three endcap<br />

Volume<br />

28 the ROC data loss was not implemented Chaptershow 2. Expected that thePerformance pileup conditions & <strong>Physics</strong> for 2Capabilities<br />

⇥ 10<br />

Mass (g)<br />

34 cm 2 s 1<br />

=2.5 (25 ns crossing time) by itself would cause a 7.3% disks (4.7%) on each loss of side tracking efficiency for muons<br />

Inner rings<br />

Present (t¯t) in Detector the current Phase pixel 1 detector. UpgradeThe Detector extra pixel layer in the upgrade detector adds information<br />

that reduces this loss in efficiency by more thanCarbon half to 3.2%<br />

fibre<br />

(1.3%)<br />

structure,<br />

for muons<br />

CO2 (t¯t), and decreases<br />

50.0 cm<br />

BPIX |h| < 2.16 16801 6686<br />

the fake rate by about a factor of two. evaporative cooling, first layer closer<br />

FPIX |h| < 2.50 Current 8582 7040 to interaction point (2.9 cm)<br />

=2.5 With both 3 barrel the layerseffects of dynamic data loss and the high pileup expected for 2 ⇥ 10 34 cm 2 s 1<br />

Current<br />

Barrel Outer Tube |h| < 2.16 9474 9474 Analog readout with on-chip<br />

=2.0 (25 ns crossing time), the loss in tracking efficiency for the current detector is 15.9% (9.9%) for<br />

=0<br />

=0.5<br />

=1.0<br />

=1.5<br />

muons (t¯t), while for the upgraded detector itdigitization<br />

is reduced by more than a factor of 4 (6) to 3.7%<br />

Figure 2.1: Left: Conceptual layout comparing(1.5%) the different for muons layers (t¯t). andAlthough disks in the thiscurrent not catastrophic, and the degradation is worse than linear<br />

New (Old): 79 (48) million pixel cells<br />

black<br />

upgrade<br />

points.<br />

pixel<br />

Note<br />

detectors.<br />

that the<br />

Right:<br />

“barrel<br />

Transverse-oblique<br />

outer tube”<br />

and<br />

mentioned<br />

is expected view comparing<br />

above<br />

to become<br />

and<br />

the<br />

in<br />

unacceptable pixel<br />

Table<br />

barrel<br />

2.2 is included<br />

layers at moderately in<br />

in<br />

higher pileup as illustrated in Figure 2.6.<br />

the two detectors.<br />

distributed over 1184 (768) detector<br />

the material budget for both present and upgrade<br />

The track<br />

pixel<br />

fake<br />

detectors<br />

rate also<br />

for<br />

rapidly<br />

the comparisons<br />

increases with<br />

shown<br />

pileup is about a factor of two lower for the<br />

upgrade pixel detector.<br />

modules<br />

in Figure 2.2.<br />

Pixels<br />

Pixels<br />

Current Pixel Detector<br />

Upgrade Pixel Detector<br />

100 50<br />

45<br />

0.7<br />

Current Pixel Detector δR, TTbar Upgrade Events Pixel Detector<br />

(a)<br />

90 0.18 40<br />

Current Detector No Pileup<br />

35<br />

Upgrade Detector No Pileup<br />

0.6<br />

0.16<br />

like the electronic boards and connections, out of the30<br />

80 tracking volume.<br />

0.5<br />

0.14 25<br />

20<br />

70 0.12<br />

15<br />

0.4<br />

detector and of the Phase 1 upgrade pixel detector. 0.1 10<br />

60<br />

5<br />

0.3<br />

0.08<br />

30<br />

50 0 10 20 30 40 50 60 70 80 90 100<br />

0.06<br />

for a0.2<br />

limited range in h that covers most of the tracking 2.5 region. Current Pixel Detector<br />

40<br />

0.04 2 Upgrade Pixel Detector<br />

radlen<br />

Transverse Resolution nuclen [um]<br />

4 barrel layers<br />

Since the extra pixel layer could easily increase the material of the pixel detector, the upgrade<br />

50<br />

detector, support, and services are redesigned to be lighter than the present system, using an45<br />

40<br />

ultra-lightweight support with CO 2 cooling, and by relocating much of the passive material,<br />

Average Tracking Efficiency (%)<br />

20<br />

Table 2.2 shows a comparison of the total material mass in the simulation of the present pixel<br />

15<br />

Since significant mass reduction was10<br />

5<br />

achieved by moving material further out in z from the interaction point, the masses are given<br />

Ratio<br />

0.1<br />

Also shown in Table 2.2 is the mass of the carbon 0.02 fiber 1.5 tube that sits outside of the pixel detector0and<br />

is needed by the Tracker Inner Barrel (TIB) 0 0 and 1020 20for3040 bakeout 40 5060 60 of the 7080 80 beampipe. 90100<br />

100<br />

1.5<br />

30 1<br />

0 1<br />

By0 10 0 20 30 20 40 50 40 60 70 60 80 90 80 100 100<br />

-3 -2 -1 0 1 2 3<br />

-3 -2 -1 Number 0of Tracks 1 Average 2Pileup<br />

3<br />

Number of Tracks<br />

Average Pileup<br />

eta<br />

eta<br />

convention,<br />

Radiation<br />

the material<br />

lengths<br />

for this tube is usually included as part of the pixel system “material<br />

Figure budget”; 2.2: this The tube amount is expected of material to remain the unchanged pixel<br />

Figure Tracking<br />

detector for<br />

2.6:<br />

the shown<br />

Average efficiency<br />

Phase in1 tracking<br />

units upgrade. of radiation<br />

efficiency<br />

length<br />

(a) and<br />

(left),<br />

average Primary trackvertex fake rate resolution<br />

50<br />

50<br />

(b) for the t¯t sample as<br />

45<br />

δZ, TTbar Events<br />

45<br />

δZ, TTbar Events<br />

and in units of nuclear interaction length (right)<br />

a function<br />

40<br />

as a function<br />

of the average<br />

of h; this<br />

Current<br />

pileup.<br />

is<br />

Detector<br />

given<br />

No<br />

Results<br />

Pileup<br />

for the<br />

were<br />

40<br />

current<br />

determined usingCurrent theDetector expected<br />

50 PileupROC data loss<br />

V. Another<br />

pixel<br />

Chiochia comparison<br />

detector<br />

(Zürich<br />

(green<br />

University) of the “material<br />

histogram),<br />

–<br />

and<br />

Heavy budget”<br />

the<br />

flavour for<br />

Phase<br />

expected<br />

1<br />

physics the 35 current<br />

upgrade<br />

for with each and<br />

detector<br />

the given Phase Upgrade<br />

CMS 1 Detector<br />

(black<br />

average experiment pixelNo detectors Pileup<br />

points).<br />

pileup,<br />

The<br />

- and 19-20/11/2013<br />

was<br />

shaded<br />

for<br />

35<br />

Upgrade Detector 50 Pileup<br />

the current pixel detector (blue squares) !40 and<br />

30<br />

30<br />

solution [um]<br />

Transverse Resolution [um]<br />

Ratio<br />

solution [um]<br />

35<br />

30<br />

25<br />

2.5<br />

Average Track Fake Rate (%)<br />

2<br />

25<br />

20<br />

15<br />

10<br />

5<br />

δR, TTbar Events<br />

Current Pixel Current Detector Detector 50 Pileup<br />

Upgrade Detector 50 Pileup<br />

Upgrade Pixel Detector<br />

03 0 10 20 30 40 50 60 70 80 90 100<br />

(b)


Bs(mm) BDT validation<br />

Use differences between data and MC for systematics<br />

B ± →J/ψ K ± 3% ; B s →J/ψ ϕ 9.5% (2011) and 3.5% (2012)<br />

4000<br />

3000<br />

2000<br />

1000<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

CMS L = 5 fb ( s = 7 TeV)<br />

5000<br />

+<br />

+<br />

B → J/ψ K<br />

data<br />

MC simulation<br />

Barrel<br />

-1 -0.5 0 0.5 1<br />

BDT<br />

CMS L = 5 fb ( s = 7 TeV)<br />

450<br />

→ J/ψ φ B s<br />

data<br />

MC simulation<br />

-1<br />

-1<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

CMS L = 5 fb ( s = 7 TeV)<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

CMS L = 5 fb ( s = 7 TeV)<br />

1800<br />

+<br />

+<br />

B → J/ψ K<br />

data<br />

MC simulation<br />

Endcap<br />

-1 -0.5 0 0.5 1<br />

BDT<br />

→ J/ψ φ B s<br />

data<br />

MC simulation<br />

-1<br />

-1<br />

22000<br />

20000<br />

18000<br />

16000<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

1600 B s → J/ψ φ<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

CMS L = 20 fb ( s = 8 TeV)<br />

+<br />

+<br />

B → J/ψ K<br />

data<br />

MC simulation<br />

Barrel<br />

-1 -0.5 0 0.5 1<br />

BDT<br />

CMS L = 20 fb ( s = 8 TeV)<br />

data<br />

MC simulation<br />

-1<br />

-1<br />

+<br />

4000 B<br />

+ → J/ψ K<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

-1 -0.5 0 0.5 1<br />

BDT<br />

CMS<br />

400<br />

-1<br />

L = 20 fb ( s = 8 TeV)<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

CMS L = 20 fb ( s = 8 TeV)<br />

data<br />

MC simulation<br />

Endcap<br />

→ J/ψ φ B s<br />

data<br />

MC simulation<br />

-1<br />

-1 -0.5 0 0.5 1<br />

BDT<br />

-1 -0.5 0 0.5 1<br />

BDT<br />

-1 -0.5 0 0.5 1<br />

BDT<br />

-1 -0.5 0 0.5 1<br />

BDT<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!41


Lifetime measurements<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013 !42


Lb lifetime<br />

Events / ( 0.006 GeV )<br />

-n fit )/<br />

250<br />

200<br />

150<br />

100<br />

obs<br />

(n<br />

[ps]<br />

τ Λb<br />

50<br />

b<br />

CMS<br />

s = 7 TeV L = 5 fb<br />

Fit function<br />

Signal<br />

Prompt background<br />

45.4 5.5 5.6 5.7 5.8 5.9 6<br />

3<br />

Invariant mass J/ [GeV]<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-1<br />

Nonprompt background<br />

5.4 5.5 5.6 5.7 5.8 5.9 6<br />

Invariant mass J/ [GeV]<br />

1.6<br />

1.4<br />

1.2<br />

Lb→J/cL<br />

Events / ( 0.16 ps )<br />

-n fit )/<br />

obs<br />

(n<br />

3<br />

10<br />

b<br />

10<br />

2<br />

10<br />

1<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

CMS<br />

s = 7 TeV L = 5 fb<br />

Fit function<br />

Signal<br />

Prompt background<br />

0 2 4 6 8 10 12 14<br />

Proper decay time [ps]<br />

-1<br />

Nonprompt background<br />

0 2 4 6 8 10 12 14<br />

Proper decay time [ps]<br />

0.7<br />

1.0<br />

PDG 2012 average<br />

Not used in PDG 2012 average<br />

0.6<br />

0.8<br />

Used in PDG 2012 average 0.5<br />

CMS - this measurement<br />

0.6<br />

0.4<br />

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014<br />

Year of publication<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

,PDG2012<br />

0<br />

B<br />

/τ<br />

τ Λb<br />

Lb baryon lifetime in J/cL decays<br />

Theoretical predictions in tension with earlier<br />

measurements<br />

Use dimuon trigger without lifetime<br />

significance cut.<br />

Lifetime from combined maximum-likelihood<br />

mass and proper decay time fit<br />

About 1000 signal events<br />

t(Lb)=1.503 ± 0.052(stat.) ± 0.031(syst.) ps<br />

World average: 1.425 ± 0.032 ps<br />

B 0 lifetime determined in J/cKs decays as<br />

cross check compatible with PDG<br />

Dominant systematic uncertainty from proper<br />

decay time efficiency<br />

Compatible with ATLAS determination and<br />

world average<br />

JHEP 07 (2013) 163<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!43


Bs lifetime difference<br />

-2<br />

-1012345<br />

-3<br />

-4<br />

-5<br />

pull<br />

0.05 0.1 0.15 0.2 0.25 0.3<br />

proper decay length [cm]<br />

B s<br />

troduction<br />

Bs lifetime difference DGs=GH-GL<br />

Figure 3: Proper decay length projection of the five-dimensional maximum CMS PAS likelihood BPH-11-006 fit to<br />

the data. The points are the data distribution, the solid blue line shows the full fit, the green<br />

Events / ( 0.0045 GeV )<br />

2200 CMS preliminary, 5 fb -1<br />

-1<br />

3<br />

CMS preliminary, 5 fb<br />

1<br />

10<br />

2000 s = 7 TeV<br />

Data<br />

s = 7 TeV<br />

1800<br />

Signal<br />

Data<br />

dash-dotted line is the signal model component, with the CP-even (odd) component Signal shown<br />

Background<br />

Background<br />

1600<br />

in blue short dashed line (magenta<br />

~15k<br />

dash-dot-dotted Fit line), and the red long dashed CP line even is the<br />

1400<br />

CP odd<br />

2<br />

10<br />

Fit<br />

SM expectation DGs/Gs= 0.12±0.06<br />

signal<br />

¯B s). The resulting mass eigenstates background from mixing component. The pull between the proper decay length distribution and the fit is<br />

Selecting decays to J/cf candidates,<br />

candidates Bs→J/cf<br />

with J/c→mm and f→KK.<br />

cay of a B s meson is characterized by the possibility that it may go through the mixeen<br />

its two flavour eigenstates (B s<br />

ected to have sizeable mass and decay width difference. Since the CP-violating mixing<br />

s expected to be small in the Standard Model, the two mass eigenstates are approxiequal<br />

to CP eigenstates. The light mass eigenstate is expected to be a CP-even state<br />

shorter lifetime than the heavy mass eigenstate which is a CP-odd state [1]. The decay<br />

ifference of the two B s eigenstates is found to be several percent of the mean decay<br />

. In the decay B s ! J/yf with J/y ! µ + µ and f ! K + K , the final state is an admixthe<br />

CP-even and CP-odd eigenstates. A measurement of the lifetime difference (DG s) of<br />

mass eigenstates can be performed using the proper decay time distribution of B s me-<br />

]. The additional information required to separate the light and heavy mass eigenstates<br />

btained from the angular distribution of the final decay products.<br />

1200<br />

1000<br />

shown in the histogram below.<br />

800 0.05 0.1 0.15 0.2 0.25 0.3<br />

10<br />

600<br />

uncertainty is evaluated by 400 generating pseudo-data with the modified scale factor and fitting<br />

5D fit of mass, proper decay 200<br />

with the time nominal and value. 3<br />

0<br />

angular variables to separate CP states<br />

To evaluate the effect of assuming f s to be zero in the fitting model, pseudo-experiments have<br />

-2<br />

0.048 ± 0.024 (stat.) ± 0.003 (syst.) ps -1<br />

-1012345<br />

-2<br />

-3<br />

-3<br />

been generated with f -1012345<br />

s = 0.04 -4 rad, which is the Standard Model -4 expected value. Similarly,<br />

-5<br />

-5<br />

5.25 5.3 5.35 5.4 5.45<br />

0.05 0.1 0.15 0.2 0.25 0.3<br />

The two CP<br />

+ -<br />

Invariant mass J/ψ K K [GeV]<br />

B proper decay length [cm]<br />

Compatible with world average<br />

the systematic uncertainties due to non-inclusion of S-wave components in the signal<br />

s<br />

PDF is<br />

estimated using pseudo-experiments by adding the model components of the S-wave by setting<br />

the |A s | 2 to 0.03 and the phase equal to previous measurements. In both cases, the pull mean<br />

e B s is a pseudo-scalar meson while the J/y and f are vector mesons, the orbital angular<br />

tum of the two decay products can have the values L = 0, 1, and 2.<br />

ents can be statistically disentangled by measuring the angular distributions of the<br />

cay products. A set of three angles Q =(q T , y T , j T ) in the transversity basis [4], as<br />

ted in Fig. 1, is used to describe the decay topology. Here, q T and j T are the polar and<br />

hal angles of the µ + in the rest frame of the J/y respectively, where the x-axis is defined<br />

irection of the B s and the xy-plane by the decay plane of f ! K + K . The helicity angle<br />

e angle of the K + in the f rest frame with respect to the negative B s flight direction.<br />

T<br />

0<br />

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

cos(ψ )<br />

T<br />

1: Definition of the three angles, (q T , y T and j T ), used for the description of the decay<br />

y.<br />

Events / ( 0.1 )<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

-1<br />

CMS preliminary, 5 fb<br />

pull<br />

s = 7 TeV<br />

1200<br />

5.25 5.3 5.35 5.4 5.45<br />

0<br />

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

cos(θ T )<br />

1200 0.05 0.1 0.15 0.2 0.25 0.3<br />

Figure 4: The angular projection of the five-dimensional maximum likelihood fit to the data.<br />

V. Chiochia (Zürich University) – Heavy Theflavour plots show physics thewith projections the CMS onexperiment the angular- variables 19-20/11/2013 cos(y T ), cos(q T ) and the angle f. The !44<br />

ay of vector mesons is further described by the time evolution of three different ampliith<br />

different angular dependencies. The amplitudes at time t = 0 are defined using the<br />

dinal component A 0 (0) for L = 0, which is CP-even, and the transverse components<br />

T<br />

T<br />

Events / ( 0.1 )<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

-1<br />

CMS preliminary, 5 fb<br />

s = 7 TeV<br />

Events / ( 0.0034 cm )<br />

pull<br />

Events / ( π/10)<br />

1400<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

-1<br />

CMS preliminary, 5 fb<br />

s = 7 TeV<br />

0<br />

-3 -2 -1 0 1 2 3<br />

φ [rad]<br />

T


Summary of CPV in Bs decays<br />

Rather consistent picture from Tevatron and LHC experiments<br />

Closing on the SM value also in this case<br />

CMS currently working on the determination of the CP violating phase fs<br />

0.25<br />

0.20<br />

0.15<br />

LHCb 1.0 fb –1 + CDF 9.6 fb –1 + D 8 fb – 1<br />

+ ATLAS 4.9 fb – 1<br />

D<br />

HFAG<br />

Fall 2012<br />

68% CL contours<br />

( )<br />

LHCb<br />

0.10<br />

Combined<br />

CMS<br />

0.05<br />

CDF<br />

SM<br />

ATLAS<br />

0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!45


Baryon and meson<br />

spectroscopy<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013 !46


Heavy baryons with beauty<br />

In heavy quark effective theory an heavy baryon is made of<br />

Static color field from heavy quark<br />

B baryon spectrum<br />

Cloud corresponding to the light di-quark system<br />

“Hydrogen atom of QCD”<br />

This talk<br />

Q<br />

q<br />

q<br />

Thomas Kuhr, EKP, Uni KA Lattice QCD Workshop, Dec. 11 2007<br />

page 4<br />

Antisymmetric flavor configuration [q1,q2]: L-type baryons<br />

Symmetric flavor configuration {q1,q2}: S-type baryons<br />

Lb 0 =|bdu><br />

Sb=|buu><br />

qi is a strange quark: Jb family - both qi are strange quarks: Vb -<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!47


Jb - selection<br />

Ξb − selection<br />

• Full 2011 dataset (5.3 fb −1 )<br />

• Ξb − reconstruction:<br />

• Displaced + prompt J/ψ trigger.<br />

Muons matched to trigger objects.<br />

p +<br />

⇡ ⇤<br />

• Two tracks forming a very displaced<br />

vertex. Proton: highest |p| track.<br />

• Mass constrained kinematic fit<br />

• J/ψ mass constr. kinematic fit<br />

• Same track<br />

not used twice<br />

• Choose closest PV, in 3D,<br />

to Ξb − trajectory.<br />

⌅<br />

µ +<br />

⇤ 0<br />

20 MeV Ks mass veto<br />

J/<br />

PV<br />

µ<br />

PDG: 5790.5 ± 2.7 MeV<br />

V. Chiochia Ernest (Zürich Aguiló University) (HEPHY) – Heavy flavour physics with the CMS 8 experiment - 19-20/11/2013 June 26th 2012!48


Jb - selection<br />

Ξb − selection<br />

• Full 2011 dataset (5.3 fb −1 )<br />

• Ξb − reconstruction:<br />

• Displaced + prompt J/ψ trigger.<br />

Muons matched to trigger objects.<br />

p +<br />

⇡ ⇤<br />

• Two tracks forming a very displaced<br />

vertex. Proton: highest |p| track.<br />

• Mass constrained kinematic fits<br />

• J/ψ mass constr. kinematic fit<br />

• Same track<br />

not used twice<br />

• Choose closest PV, in 3D,<br />

to Ξb − trajectory.<br />

⌅<br />

µ +<br />

⇤ 0<br />

⇡ ⌅<br />

20 MeV Ks mass veto<br />

20 MeV Ω − mass veto<br />

To save CPU time, before the<br />

kinematic fit:<br />

PV<br />

J/<br />

µ<br />

• |Minv(Λπ) −MPDG(Ξ)| < 50 MeV<br />

• 5.5 GeV < Minv(J/ψΞ) < 6.2 GeV<br />

V. Chiochia Ernest (Zürich Aguiló University) (HEPHY) – Heavy flavour physics with the CMS 9 experiment - 19-20/11/2013 June 26th 2012 !49


Jb - selection<br />

Ξb − selection<br />

• Full 2011 dataset (5.3 fb −1 )<br />

• Ξb − reconstruction:<br />

• Displaced + prompt J/ψ trigger.<br />

Muons matched to trigger objects.<br />

p +<br />

⇡ ⇤<br />

• Two tracks forming a very displaced<br />

vertex. Proton: highest |p| track.<br />

• Mass constrained kinematic fits<br />

• J/ψ mass constr. kinematic fit<br />

• Same track<br />

not used twice<br />

• Choose closest PV, in 3D,<br />

to Ξb − trajectory.<br />

⌅<br />

µ +<br />

⇤ 0<br />

20 MeV Ks mass veto<br />

20 MeV Ω − mass veto<br />

⇡ ⌅<br />

To save CPU time, before the<br />

kinematic fit:<br />

PV<br />

⌅ b<br />

J/<br />

µ<br />

• |Minv(Λπ) −MPDG(Ξ)| < 50 MeV<br />

• 5.5 GeV < Minv(J/ψΞ) < 6.2 GeV<br />

PDG: 5790.5 ± 2.7 MeV<br />

V. Chiochia Ernest (Zürich Aguiló University) (HEPHY) – Heavy flavour physics with the 10 CMS experiment - 19-20/11/2013 June 26th 2012 !50


Candidates / 5 MeV<br />

100<br />

80<br />

60<br />

3<br />

×10<br />

X(3872) production<br />

1<br />

10 < p < 50 GeV<br />

T<br />

|y| < 1.2<br />

Candidates / 3.125 MeV<br />

3<br />

×10<br />

16<br />

14<br />

12<br />

CMS<br />

s = 7 TeV<br />

-1<br />

L = 4.8 fb<br />

data<br />

total fit<br />

background<br />

signal<br />

Β [nb/GeV]<br />

⋅<br />

/dp<br />

T<br />

prompt<br />

X(3872)<br />

dσ<br />

R fiducial<br />

10<br />

10<br />

Β [nb/GeV]<br />

-1<br />

⋅<br />

/dp<br />

-2<br />

0.12<br />

0.11<br />

0.1<br />

0.09<br />

10<br />

0.08<br />

T<br />

prompt<br />

X(3872)<br />

LO NRQCD CMS s = 7 TeV<br />

LO NRQCD uncertainty -1<br />

L = 4.8 fb<br />

CMS CMS s = s7 = TeV 7 TeV<br />

|y| < 1.2<br />

-1 -1<br />

L = L 4.8 = 4.8 fb fb<br />

|y| < LO |y| 1.2 < NRQCD 1.2<br />

LO NRQCD uncertainty<br />

LO NRQCD<br />

LO NRQCD uncertainty<br />

40<br />

0.07<br />

0.07<br />

10<br />

-2<br />

3.75 3.8 3.85 3.9 3.95 4 10 10 15 20<br />

m(J/ψ π + π - ) [GeV]<br />

-<br />

0.06<br />

(J/ψ π + 25 30<br />

p π ) [GeV]<br />

0.06<br />

-2<br />

T<br />

20<br />

10<br />

Figure<br />

11910<br />

6: Measured<br />

candidates<br />

differential cross 0.05 section for prompt X(3872) production times 0.05branching<br />

10 15 20<br />

-<br />

(J/ψ π<br />

0<br />

+ 25 30<br />

fraction B(X(3872) ! J/yp + p ) as a function of p T . The inner p error bars π ) [GeV] indicate the statistical<br />

0.04<br />

T<br />

0.04<br />

3.6 3.7 uncertainty 3.8 and3.9 the outer error 4 bars represent 10 10 20 the 15total30 uncertainty. 20<br />

-<br />

p (J/ψ π + 40 50 10 20 30<br />

-<br />

) [GeV]<br />

p (J/ψ π + 40 50<br />

-<br />

m(J/ψ π + -<br />

π ) [GeV]<br />

(J/ψ π + 25Predictions 30 from a NRQCD<br />

model [11] Figure are shown 6: Measured by the solid differential line, withcross the dotted sectionp<br />

lines for prompt representing π ) X(3872) [GeV] theproduction uncertainty. times Thebranching<br />

π ) [GeV]<br />

T T<br />

T<br />

data pointsfraction are placed B(X(3872) where the ! J/yp value + p of the ) astheoretical a function of prediction p T . The inner is equal error tobars its mean indicate value the statistical<br />

uncertainty and Figure outer3: error Ratios barsof represent the X(3872) the total anduncertainty. y(2S) crossPredictions sections times from branching a NRQCD fractions, without<br />

Important measurement<br />

over each bin, according<br />

to better<br />

to the<br />

(R fiducial<br />

constraint<br />

prescription in<br />

, left) andthe [28].<br />

with particle (R, right) nature<br />

model [11] are shown by the solid line, with the dotted acceptance lines representing corrections thefor uncertainty. the muonThe<br />

and pion pairs, as a<br />

function of p T . The inner error bars indicate the statistical uncertainty and the outer error bars<br />

Measured at central data rapidities points are using placed where J/c(mm)pp the valuedecays of the theoretical and assuming prediction Jequal PC =1 to ++ its mean value<br />

these results, over theeach measured bin, according integrated represent tocross the prescription total section uncertainty. for prompt [28]. The X(3872) data points production are placed timesat branching<br />

section fractionlargely is: dominated by prompt production<br />

the centre of each p T bin.<br />

Total cross (~75%)<br />

dσ<br />

Β [nb/GeV]<br />

⋅<br />

/dp<br />

1<br />

T<br />

-1<br />

prompt<br />

X(3872)<br />

dσ<br />

10<br />

1<br />

-1<br />

CMS s = 7 TeV<br />

-1<br />

L = 4.8 fb<br />

|y| < 1.2<br />

Ratio to c(2S) cross these section results, and the measured Table non-prompt 4: integrated Relativefraction variations, cross section independent for percent, prompt ofX(3872) the on integrated pT production cross times section branching<br />

! X(3872)+anything)<br />

ratio R for different<br />

X(3872) and y(2S) polarization hypotheses: transversely (longitudinally) polarized J/y are<br />

NRQCD underestimates s prompt (pp<br />

fraction is:<br />

the measured denoted<br />

·B(X(3872)<br />

as cross CST (CSL) section ! J/yp<br />

in the + p<br />

Collins–Soper<br />

)=1.06 ± 0.11<br />

frame<br />

(stat.)<br />

and<br />

± 0.15<br />

HXT<br />

(syst.)<br />

(HXL)<br />

nb.<br />

in the helicity frame. Unpolarized<br />

scenarios (labelled unpol) are also included.<br />

This result assumes<br />

s prompt that the X(3872) and y(2S) states are unpolarized.<br />

(pp ! X(3872)+anything) ·B(X(3872) Polarization ! J/yp + The NRQCD prediction<br />

Prompt cross section Relative Polarization Relative<br />

for the prompt = X(3872) cross section times branching<br />

X(3872)<br />

fraction<br />

y(2S)<br />

in the p kinematic )=1.06 ±<br />

shifts (%) X(3872)<br />

region 0.11 (stat.)<br />

y(2S)<br />

of this ± 0.15 (syst.) nb.<br />

shifts (%)<br />

NRQCD analysis=<br />

is 4.01 ± 0.88 nb [11],(10 significantly < pT < 30 GeV, above CST |y| the < 1.2) measured CSL (>3s value. larger 28than data) CST unpol 8<br />

Non-prompt fraction = This 0.263±0.028 result assumes that the X(3872) and CSL y(2S) CST states are unpolarized. +31 CSLThe NRQCD unpol prediction +22<br />

for the prompt X(3872) cross sectionHXT times branching HXL fraction +86 in the HXTkinematic unpol region +28 of this<br />

7 Measurement analysis is 4.01 of ± 0.88 thenb p [11], + psignificantly invariant-mass HXL above HXT the measured distribution<br />

49 value. HXL unpol 31<br />

CST CST 1 unpol CST +8<br />

The decay properties of the X(3872) are further investigated with a measurement of the p<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS CSL experiment CSL - 19-20/11/2013<br />

5 unpol CSL + p<br />

22<br />

invariant-mass distribution from X(3872) decays !51<br />

HXT<br />

to J/yp + HXT<br />

p . Here, the<br />

6<br />

same event<br />

unpol<br />

selection<br />

HXT<br />

as<br />

27<br />

R<br />

0.12<br />

0.11<br />

0.1<br />

0.09<br />

0.08<br />

7 Measurement of the p + p invariant-mass distribution<br />

13<br />

JHEP 04 (2013) 154<br />

CMS s = 7 TeV<br />

-1<br />

L = 4.8 fb<br />

|y| < 1.2<br />

9


Summary of X(4140) searches<br />

M1 (MeV) G1 (MeV) M2 (MeV) G2 (MeV)<br />

Belle - - 4350 +4.6 -5.1±0.7 13 +18 -9±4<br />

CDF<br />

4143.0 +2.9 -3.0±0.6 15.3 +10.4 -6.1±2.5 4274.4 +8.4 -6.7±1.9 32.3+21.9±7.6<br />

CMS 4148.0±2.4±6.3 28 +15 -11±19 4313.8±5.3±7.3 38 +30 -16±16<br />

D0 4159.0±4.3±6.6 19.9±12.6 +1.0 -8.0 4328.5±12.0 30 (constrained)<br />

LHCb - - - -<br />

>5s >3s N.A.<br />

V. Chiochia (Zürich University) – Heavy flavour physics with the CMS experiment - 19-20/11/2013<br />

!52

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!