13.01.2014 Views

Interstellar dust

Interstellar dust

Interstellar dust

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Interstellar</strong> <strong>dust</strong>:<br />

The hidden protagonist<br />

Stéphanie Cazaux<br />

Marco Spaans<br />

Vincent Cobut<br />

Paola Caselli<br />

Rowin Meijerink<br />

15 th February 2012


Overview<br />

Star form in clouds made of gas + <strong>dust</strong><br />

Catalyst: Enrich gas<br />

H 2<br />

,H 2<br />

O, O 2<br />

, H 2<br />

O 2<br />

Reservoir:<br />

Stealing the gas<br />

Formation of ices<br />

Impact of <strong>dust</strong> on the gas? Impact of <strong>dust</strong> on star formation?


Dust as catalyst/ reservoir<br />

H 2<br />

in MW NOT explained by gas phase reactions : Grain Gould & Salpeter 1963<br />

In the MW, H 2<br />

formation <strong>dust</strong> >> gas<br />

Reaction exothermic → products gas<br />

H 2<br />

(60-70 %)<br />

Extinction Av ~3<br />

Gas phase species → <strong>dust</strong> and make ices<br />

Hollenbach et al. 2009 ApJ, 690, 1497


Dust as catalyst:<br />

H 2<br />

observations<br />

Diffuse clouds<br />

Planetary Nebulae<br />

Dying stars<br />

Supernovae remnants<br />

T grain<br />

= 40-80K<br />

T gas<br />

< 6000K<br />

T grain<br />

~ 20K<br />

T gas<br />

~ 100K<br />

T grain<br />

~ 125K<br />

T gas<br />

~ 1000K<br />

Photodissociation Regions<br />

T grain<br />

=10 - 100K<br />

T gas<br />

= 300 - 1000K<br />

PAHs<br />

Newly born stars<br />

T grain<br />

~ 70K<br />

T gas<br />

= 1500 - 2000K<br />

Active galactic nuclei<br />

CO H 2<br />

T grain<br />

= 15- 70K<br />

T gazs<br />

~ 2000K<br />

H 2<br />

forms for a wide range of physical conditions


Dust as a reservoir:<br />

interstellar ices<br />

CO depleted from the gas<br />

H 2<br />

O ices absorption in embedded<br />

protostars (VLT-ISAAC)


Dust as reservoir:<br />

interstellar ices


<strong>Interstellar</strong> <strong>dust</strong> grains<br />

Grain size distribution<br />

PAHs<br />

Amorphous carbon<br />

Weingartner & Draine 2001<br />

Mathis, Rumpl & Nordsieck 1977<br />

DUST= Silicates, Amorphous carbon, PAHs<br />

PAHs = 50% of surface available for chemistry


Formation of molecules on <strong>dust</strong><br />

1) Interactions atom/surface<br />

Experiments: TPD<br />

Ab-initio calculations<br />

2) Mobility on the surface<br />

Rate equations and Monte carlo simulations<br />

Comparison with observations


Interaction atom/surface:<br />

experiments<br />

Experiments on graphite, amorphous carbon, silicates<br />

Pirronello et al. 1997, 1999, Zecho et al. 2002, Perets et al. 2007, Vidali et al. 2007<br />

En<br />

Amorphous Carbon<br />

Low temp., Tsurf = 5 K<br />

192s<br />

96s<br />

48s<br />

24s<br />

Physisorption<br />

Van der Waals<br />

Chemisorption<br />

covalent<br />

Graphite<br />

High temp., Tsurf = 150 K


Model:<br />

Interaction and mobility<br />

Energy<br />

600K<br />

Distance from the<br />

surface<br />

Transmission coefficient of the barriers<br />

mobility of H and D atoms<br />

Physisorption<br />

Chemisorption<br />

3Å<br />

Physisorption + chemisorption<br />

tunnel + thermal hopping


Model:<br />

Interaction and mobility<br />

physisorbed H atoms<br />

physisorbed D atoms<br />

chemisorbed H atoms<br />

chemisorbed D atoms<br />

H2<br />

HD<br />

D2<br />

En<br />

Gr<br />

Si<br />

AC<br />

Mechanisms:<br />

LH<br />

ER<br />

Physisorption<br />

Van der Waals<br />

Chemisorption


Rate equations and<br />

Monte Carlo simulations.<br />

Rate equations Monte Carlo<br />

D<br />

H<br />

Follow populations<br />

Big grains → always 1 species<br />

Follow each species<br />

small grains<br />

random accretion and<br />

random walk<br />

detail characteristic of<br />

the surface → para sites


Formation of H 2<br />

on <strong>dust</strong>


Model:<br />

Interaction and mobility<br />

Energy<br />

600K<br />

Distance from the<br />

surface<br />

Transmission coefficient of the barriers<br />

mobility of H and D atoms<br />

Physisorption<br />

Chemisorption<br />

3Å<br />

Physisorption + chemisorption<br />

tunnel + thermal hopping


Interaction atom/surface:<br />

Density functional theory (DFT)<br />

Sha et al, Surface Science 496, 318 (2002)<br />

Eva Rauls


Interaction atom/surface:<br />

experiment<br />

Energy<br />

Distance from the surface<br />

Physisorption<br />

Van der Waals ≈ meV<br />

Graphite:<br />

Chemisorption of H<br />

C puckered out of the basal plane<br />

associated with barrier ~ 0.2 eV.<br />

Jeloaica & Sidis 1999<br />

Sha & Jackson 2002<br />

Chemisorption<br />

Covalent ≈ eV<br />

Recent studies:<br />

Hoernekær et al. 2006<br />

Rougeau et al. 2006<br />

Bachellerie et al. 2007<br />

STM @ 170K<br />

Hornekaer et al. 2006<br />

3 rd atom → no barrier to form H 2<br />

1 st H barrier<br />

2 nd H → no barrier<br />

to enter para site if<br />

spin opposite to 1 st H


Interaction atom/surface:<br />

experiment<br />

● 1 atom sticks → <strong>dust</strong> becomes catalyst → H 2<br />

formation barrier-less<br />

Atoms get grouped as<br />

Dimers (2 atoms)<br />

Trimers (3)<br />

Hexamers (6)<br />

Binding energy increases with number of atoms


Results<br />

Formation of H2 and HD<br />

physisorbed atoms @ low T <strong>dust</strong><br />

chemisorbed atoms @ high T <strong>dust</strong><br />

.<br />

Inclusion para sites<br />

Increase the efficiency >1 mag<br />

PAHs<br />

HD<br />

H2


H 2<br />

formation rate in the ISM<br />

R(H 2<br />

)=(1/2) n H<br />

v H<br />

• n H<br />

number density of H atoms<br />

• v H<br />

speed of H atoms in the gas phase<br />

• σ area of the grain<br />

• n d<br />

number density of <strong>dust</strong> grain<br />

n d<br />

S H<br />

• S H<br />

sticking coefficient of the H atoms on the grain<br />

• ε H 2<br />

recombination efficiency<br />

Photo-dissociation regions


H 2<br />

formation rate:<br />

Photo-dissociation Regions<br />

ISOCAM MAP (in the LW2 filter)<br />

Rotational transitions of H 2<br />

and PAHs emission<br />

ISO SWS<br />

Rotational transitions of H 2<br />

ISO LWS<br />

ISOCAM- CVF<br />

Spectro- imaging<br />

Rotational transitions of H 2<br />

Abergel et al. 1996<br />

Habart et al. 2003<br />

Gas temperature<br />

Photodissocation of H 2<br />

Formation rate of H 2<br />

Grain temperature


H 2<br />

formation rate:<br />

Photo-dissociation Regions<br />

Observations of several PDRs<br />

(Abergel et al. 1996; Habart et al. 2003)<br />

T <strong>dust</strong><br />

= 15 - 90K<br />

T gas<br />

= 60 - 620K<br />

R(H 2<br />

)= 3 10 -17 - 1.5 10 -16 cm 3 s -1<br />

H 2<br />

formation @ high T<strong>dust</strong> and Tgas → para sites<br />

properties<br />

Other factors: R(H 2<br />

)=(1/2) n H<br />

v H<br />

n d<br />

S H<br />

abundances PAHs/very small grains (AC)<br />

(Compiegne et al. 2008, Joblin et al )<br />

Gry et al. 2002<br />

Habart et al. 2004


H 2<br />

: Summary and Conclusions<br />

H 2<br />

formation wide range of physical conditions (Shocks, high UV,<br />

low metallicity).<br />

Understand the formation of H 2<br />

on cold and warm <strong>dust</strong> grains →<br />

2 interactions atom/surface: physisorption and chemisorption.<br />

Mobility: tunnelling effects and thermal hopping<br />

Observations of PDRs → efficiency of H 2<br />

formation on warm<br />

grains is important<br />

The inclusions of the barrier-less route to form H 2<br />

on PAHs →<br />

necessary to reproduce the observations of PDRs.


Experiment<br />

H 2<br />

formed on PAHs<br />

L. Boschman, T Schlathoelter, Kernfysisch Versneller Instituut (KVI) Groningen<br />

+ helium cryostat<br />

Fix temperature<br />

Increase temp.<br />

H<br />

H


H 2<br />

forms on PAHs??<br />

For different H beam energy → H does or does not stick?<br />

Model the amount of H on the PAHs surface with various<br />

conditions<br />

Efficiency of the formation of H2 on PAHs


More complex species<br />

Star form in clouds made of gas + <strong>dust</strong><br />

Molecules: CO, O 2<br />

, H 2<br />

O cool the gas (Neufeld et al. 1995)<br />

Impact of grain surface chemistry on<br />

interstellar gas?<br />

Formation and evolution of ices during SF


Grain surface chemistry:<br />

Ingredients<br />

Flux density Binding energies:<br />

Van der Waals<br />

Cuppen & Herbst 2007<br />

Bergeron et al. 2008<br />

Mobility:<br />

Tunnel & thermal<br />

Formation<br />

→no barrier<br />

→barrier overcome<br />

Prob(<strong>dust</strong>)<br />

Prob(gas)


Grain surface chemistry:<br />

Monte carlo simulations<br />

Atoms arrive randomly from gas phase<br />

Flux=n X<br />

v X<br />

σ (s -1 )<br />

On the grid<br />

random walk<br />

UV + CR<br />

Evaporation<br />

O<br />

H<br />

Grain surface = grid<br />

Each point of the grid:<br />

site atom/molecule<br />

Formation of molecules<br />

D<br />

H 2<br />

, HD, D 2<br />

, OH, OD, O 2<br />

, H 2<br />

O, HDO, D 2<br />

O, O 3<br />

, HO 2<br />

, DO 2<br />

, H 2<br />

O 2<br />

, HDO 2<br />

, D 2<br />

O 2


Grain surface chemistry:<br />

Monte carlo simulations<br />

2 species in 1 site: probability react VS probability escape.<br />

P(escape)<br />

P(reac)<br />

reaction<br />

product directly released in the gas<br />

H + O OH 36 %<br />

OH + H H 2<br />

O 15 %<br />

H 2<br />

+ O OH + H 4 %<br />

H 2<br />

+ OH H 2<br />

O + H 0.8 %<br />

O + O O2 36 %<br />

O + O2 O3 0.2 %<br />

Based experiments (H 2<br />

) Pironello et al. 1997, 1999<br />

P(free)<br />

P(stay)<br />

binding energy<br />

enthalpy of reaction.


Grain surface chemistry:<br />

Monte carlo simulations<br />

Based on experiments H 2<br />

: Pironello et al. 1997, 1999<br />

P(free)<br />

60-70%<br />

On bare grains: reaction product released in gas.<br />

Depend on: binding energy and enthalpy of reaction.<br />

H + O OH 36 %<br />

OH + H H 2<br />

O 15 %<br />

H 2<br />

+ O OH + H 4 %<br />

H 2<br />

+ OH H 2<br />

O + H 0.8 %<br />

O + O O2 36 %<br />

O + O2 O3 0.2 %<br />

Empirical!!!<br />

10%<br />

AC<br />

Si<br />

30%<br />

50%<br />

70%<br />

90%<br />

H 2


Grain surface<br />

Results<br />

Gas phase<br />

Test case:<br />

Grain 10K<br />

nH=10 3<br />

D/H =0.1<br />

O/H=0.1<br />

P0<br />

P1<br />

O+ H OH+ H H 2<br />

O<br />

O+ H OH+ H H 2<br />

O<br />

h h<br />

Grain 10K<br />

Hydrogenated species<br />

UV boosts water desorption


Grain surface<br />

Results<br />

Gas phase<br />

Test case:<br />

Grain 30K<br />

nH=10 3<br />

D/H =0.1<br />

O/H=0.1<br />

P0<br />

P1<br />

O+ H OH+ H H 2<br />

O<br />

O+ H OH+ H H 2<br />

O<br />

h h<br />

Grain 30K<br />

Species rich in oxygen<br />

UV boosts H 2<br />

O desorption


Results<br />

Grains 10 K favours hydrogenation<br />

Warmer grains (30 K) favours oxygenation<br />

UV photons dissociate species that recombine. “dissociationformation-dissociation”<br />

boost gas phase.<br />

P free<br />

Etc.<br />

Species released in gas photo-dissociated.<br />

Boost VS photo-dissociation?


Diffuse clouds<br />

Diffuse clouds: H atomic<br />

T <strong>dust</strong><br />

=18K, T gas<br />

=100K<br />

nH=100 cm -3, O/H =3 10 -4 , D/H=2 10 -5<br />

Grain surface<br />

0.36 0.09<br />

O+ H → OH+ H → H 2<br />

O<br />

h<br />

O+ H ← OH+ H ← H 2<br />

O<br />

Gas phase<br />

h<br />

95 % confidence level


Photo-dissociation regions<br />

PDR: H molecular<br />

T <strong>dust</strong><br />

=30K, T gas<br />

=30K, G 0<br />

=10 3 , Av=5 H 2<br />

O forms with O 2<br />

and O 3<br />

nH=1000 cm -3 , O/H =3 10 -4 , D/H=2 10 -5<br />

Grain surface<br />

Gas phase<br />

95 % confidence level


UV and X-rays star forming regions<br />

Makarian 231:<br />

Ultraluminous infrared galaxy (ULIRGS)<br />

Hosting accreting Black hole<br />

Very important amount of warm water<br />

N(H2O)=5*10 17 cm -2<br />

Spire/Hershel<br />

González-Alfonso et al. 2010, A&A, 518, L43<br />

van der Werf et al. 2010, A&A, 518, L42


Impact of <strong>dust</strong> on gas:<br />

Xray dominated regions<br />

MRN <strong>dust</strong><br />

Mathis, Rumpl,& Nordsieck 1977<br />

↑ amount of warm H 2<br />

O<br />

~1 order of magnitude<br />

WD <strong>dust</strong><br />

Weingartner & Draine 2001<br />

↑ H 2<br />

= ↑ OH and H 2<br />

O<br />

Meijerink, R., Cazaux, S., & Spaans, M. 2012, A&A, 537, A102


Dust grains as catalyst<br />

Formation species on <strong>dust</strong> → impact gas phase<br />

Temperature <strong>dust</strong> → which chemistry (H or O)<br />

Reactions with ≠ exothermicity: ≠ impact on gas<br />

Chemistry gas + <strong>dust</strong> → enhancement of water (XDRs)<br />

Uncertainties: fraction of new species formed on <strong>dust</strong> → gas


Impact of <strong>dust</strong> on gas:<br />

uncertainties<br />

Leaving the grain upon formation<br />

<br />

<br />

Enthalpy of reaction<br />

Binding energy<br />

P(free)<br />

What do we know:<br />

<br />

<br />

P(stay)<br />

Experimentally: H2 desorbs upon formation for 60-70 % on<br />

Amorphous carbon/silicates grains<br />

Dynamic calculations: H2 and OH 100% (but OH stays longer before<br />

leaving the <strong>dust</strong>)


Impact of <strong>dust</strong> on gas:<br />

experiments<br />

Existing setup + minor modifications<br />

O 2<br />

+ H<br />

+ helium cryostat<br />

Fix temperature<br />

Increase temp.<br />

H 2<br />

+ O 2<br />

H 2<br />

+ O<br />

H 2<br />

O + H<br />

O 3<br />

+ H<br />

enthalpy<br />

H<br />

O 2<br />

Determine a trend between P(free) and enthalpy/binding energy.


Summary and Conclusions<br />

Very first stages of star formation: atomic / molecular<br />

H2 forms onto <strong>dust</strong>.<br />

Efficiency depends on sticking??<br />

still unknown? Efficiency on PAHs??<br />

Water forms on <strong>dust</strong> through different routes<br />

Reactions involve different routes with exothermicity: impact on gas<br />

UV photo-dissociate species that reform enhance fraction released in the gas.<br />

Chemistry gas + <strong>dust</strong> during the collapse of a cloud<br />

<strong>Interstellar</strong> gas<br />

thermal balance<br />

star formation efficiency


Dust in Flash<br />

Flash + cooling at different Z ⊙<br />

(from PDR)<br />

Fragmentation of Molecular cloud (Hocuk & Spaans 2010).<br />

Include fully <strong>dust</strong> impact → Z ⊙<br />

, gas composition &<br />

depletion (gas + <strong>dust</strong>)<br />

Impact of <strong>dust</strong> on fragmentation/ star formation<br />

efficiency and IMF.


Neufeld et al. 1995

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!