11.01.2014 Views

Calculus II Final Exam Problems - Solutions 1 1. Use the definition of ...

Calculus II Final Exam Problems - Solutions 1 1. Use the definition of ...

Calculus II Final Exam Problems - Solutions 1 1. Use the definition of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Calculus</strong> <strong>II</strong> <strong>Final</strong> <strong>Exam</strong> <strong>Problems</strong> - <strong>Solutions</strong> 1<br />

<strong>1.</strong> <strong>Use</strong> <strong>the</strong> <strong>definition</strong> <strong>of</strong> <strong>the</strong> definite integral to evaluate 1<br />

∫ 1<br />

−1<br />

(3x − x 2 ) dx.<br />

Solution: Recall <strong>the</strong> limit <strong>definition</strong> <strong>of</strong> <strong>the</strong> definite integral:<br />

∫ b<br />

a<br />

f(x) dx = lim<br />

n→∞<br />

i=1<br />

n∑<br />

f(x ∗ i )∆x<br />

where ∆x = b−a<br />

n , x i = a + i∆x and x ∗ i is an arbitrary point between x i−1 and x i . In<br />

our case above, f(x) = 3x − x 2 , a = −1, and b = <strong>1.</strong> Thus, for a particular value <strong>of</strong> n,<br />

∆x = (1)−(−1)<br />

n<br />

= 2 n and x i = −1 + i 2 n . Therefore, using x∗ i = x i for i = 1, 2, . . . , n,<br />

∫ 1<br />

−1<br />

(3x − x 2 ) dx = lim<br />

n→∞<br />

i=1<br />

= lim<br />

n→∞<br />

= lim<br />

n→∞<br />

= lim<br />

n→∞<br />

2<br />

= lim<br />

n→∞ n<br />

2<br />

= lim<br />

n→∞ n<br />

n∑<br />

f(x i )∆x<br />

n∑<br />

[3(x i ) − (x i ) 2 ] 2 n<br />

i=1<br />

n∑<br />

[<br />

3(−1 + 2i<br />

]<br />

2i 2<br />

) − (−1 +<br />

n n )2 n<br />

i=1<br />

n∑<br />

[<br />

(−3 + 6i<br />

]<br />

) − (1 − 22i<br />

n n + 4i2 2<br />

n 2 ) n<br />

i=1<br />

n∑<br />

[−4 + 10 n i − 4 ]<br />

n 2 i2<br />

i=1<br />

[<br />

−4(<br />

]<br />

n∑<br />

1) + 10 n n ( ∑<br />

i) − 4 n n 2 ( ∑<br />

i 2 )<br />

i=1<br />

i=1<br />

[<br />

2<br />

= lim −4(n) + 10 ( n(n + 1)<br />

n→∞ n<br />

n 2<br />

[<br />

= lim (−8) + 20 n(n + 1)<br />

n→∞ n 2 2<br />

= lim<br />

n→∞<br />

i=1<br />

)<br />

− 4 ( n(n + 1)(2n + 1)<br />

n 2 6<br />

]<br />

− 8 n 3 n(n + 1)(2n + 1)<br />

6<br />

[<br />

n(n + 1)<br />

(−8) + 10<br />

n 2 − 4 ]<br />

n(n + 1)(2n + 1)<br />

3 n 3<br />

= (−8) + 10(1) − 4 3 (2) = 2 − 8 3 = −2 3 .<br />

To check that this answer is correct, we can use <strong>the</strong> Fundamental Theorem <strong>of</strong> <strong>Calculus</strong>:<br />

∫ 1<br />

−1 (3x − x2 ) dx = [3 x2<br />

2 − x3<br />

3 ]1 −1 = [(3 1 2 − 1 3 ) − (3 1 2 − −1<br />

3 )] = − 2 3 .<br />

2. The Sierpinski Triangle is constructed in <strong>the</strong> following way: Start with an equilateral triangle<br />

<strong>of</strong> side length s and area A. Remove <strong>the</strong> equilateral triangle which has its vertices<br />

at <strong>the</strong> midpoint <strong>of</strong> each <strong>of</strong> <strong>the</strong> original sides from <strong>the</strong> center <strong>of</strong> <strong>the</strong> original triangle. What<br />

)]<br />

1<br />

n∑<br />

i =<br />

i=1<br />

n(n + 1)<br />

2<br />

n∑<br />

i 2 =<br />

i=1<br />

n(n + 1)(2n + 1)<br />

6<br />

n∑<br />

i=1<br />

i 3 = n2 (n + 1) 2<br />

4


<strong>Calculus</strong> <strong>II</strong> <strong>Final</strong> <strong>Exam</strong> <strong>Problems</strong> - <strong>Solutions</strong> 2<br />

remains is a collection <strong>of</strong> three triangles, each with side length s/2 and area A/4. Perform<br />

<strong>the</strong> center-removing operation on each <strong>of</strong> <strong>the</strong>se three triangles. The result will be 9 triangles<br />

<strong>of</strong> side length s/4. Remove <strong>the</strong> centers <strong>of</strong> <strong>the</strong>se 9 triangles, and so on. . . . See <strong>the</strong> figure.<br />

(a) <strong>Use</strong> geometric series arguments to show that <strong>the</strong> total area removed is A, i.e. <strong>the</strong> area<br />

<strong>of</strong> <strong>the</strong> Sierpinski triangle is 0.<br />

Solution: Let A be <strong>the</strong> area <strong>of</strong> <strong>the</strong> original equilateral triangle. In <strong>the</strong> first step<br />

toward constructing <strong>the</strong> Sierpinski Triangle, we remove 1 triangle whose area is A/4,<br />

leaving three triangles each with area A/4. From each <strong>of</strong> <strong>the</strong>se three, we remove <strong>the</strong><br />

middle triangle <strong>of</strong> area 1/4 <strong>the</strong> size <strong>of</strong> <strong>the</strong> triangle from which it was removed and so<br />

produce three new triangles left with area A/16 = A/4 2 . Notice that <strong>the</strong> 3s counting<br />

<strong>the</strong> number <strong>of</strong> triangles that remain compound as we go from stage to stage, for in<br />

each step we remove <strong>the</strong> middle triangle from all <strong>of</strong> <strong>the</strong> ones we currently have and<br />

thus produce 3 from <strong>the</strong> one for each triangle. So we start with 1 triangle and get 3,<br />

from <strong>the</strong> 3 we get 9, from <strong>the</strong> 9 we’ll get 27, and in general <strong>the</strong>re will be 3 n triangles<br />

at <strong>the</strong> end <strong>of</strong> <strong>the</strong> nth step and we remove one from each <strong>of</strong> <strong>the</strong>se in <strong>the</strong> n + 1st step, so<br />

we remove 3 n−1 triangles in step n. The areas <strong>of</strong> <strong>the</strong>se triangles decreases, however,<br />

starting with A/4 for <strong>the</strong> area <strong>of</strong> <strong>the</strong> first triangle we remove, <strong>the</strong>n one fourth <strong>of</strong> that<br />

for each <strong>of</strong> <strong>the</strong> triangles removed in <strong>the</strong> next step (<strong>the</strong>re are three <strong>of</strong> <strong>the</strong>m, so we<br />

remove an area equal to 3A/16 in <strong>the</strong> second step), <strong>the</strong>n one fourth <strong>of</strong> <strong>the</strong> area per<br />

triangle (so now A/64 = A/4 3 ) in <strong>the</strong> third step and <strong>the</strong>re are 9 such triangles, so we<br />

removed <strong>the</strong> area 9A/64 = 3 2 A/4 3 in <strong>the</strong> third step) and so forth. Therefore, at <strong>the</strong><br />

nth step, we remove 3 n−1 triangles, each with area A/4 n , so <strong>the</strong> total area removed<br />

is<br />

∞∑<br />

3 n−1 A ∞ 4 n = ∑<br />

( ) n−1<br />

A 3<br />

= A/4<br />

4 4 1 − (3/4) = A/4<br />

1/4 = A.<br />

n=1<br />

n=1<br />

(b) Show that <strong>the</strong> length <strong>of</strong> <strong>the</strong> boundary <strong>of</strong> <strong>the</strong> Sierpinski triangle is infinite.<br />

Solution: As noted above, at <strong>the</strong> nth step, <strong>the</strong>re are 3 n−1 triangles and <strong>the</strong> perimeters<br />

only decrease by half each time: 3s to start with, <strong>the</strong>n 3s/2 for each triangle <strong>of</strong> <strong>the</strong> 3 in<br />

<strong>the</strong> second figure, (3s/2)/2 = 3s/4 per triangle in <strong>the</strong> third, and 3s/2 n−1 per triangle<br />

in <strong>the</strong> nth. So at <strong>the</strong> nth stage, <strong>the</strong>re are 3 n−1 triangles, each with perimeter equal<br />

to 3s/2 n−1 , so <strong>the</strong> perimeter is <strong>the</strong> product, 3 n−1 (3s/2 n−1 ) = 3s( 3 2 )n−1 . Hence <strong>the</strong><br />

total length <strong>of</strong> <strong>the</strong> Sierpinski Triangle is limit <strong>of</strong> <strong>the</strong>se lengths: lim n→∞ 3s ( 3 n−1,<br />

2)<br />

which is infinite since 3/2 > 1 so that (3/2) n−1 → ∞ as n → ∞. Therefore, <strong>the</strong> total<br />

length <strong>of</strong> <strong>the</strong> boundary <strong>of</strong> <strong>the</strong> Sierpinski Triangle is infinite.<br />

3. <strong>Use</strong> integration by substitution to show that ∫ f( √ x) dx = ∫ 2uf(u) du. Calculate<br />

∫<br />

sin<br />

√ x dx.<br />

Solution: Let u = √ x = x 1/2 , so du = 1 2 x−1/2 dx. Thus dx = (2x 1/2 ) du = 2 √ x du =


<strong>Calculus</strong> <strong>II</strong> <strong>Final</strong> <strong>Exam</strong> <strong>Problems</strong> - <strong>Solutions</strong> 3<br />

2u du expresses dx in terms <strong>of</strong> just us and du. Therefore, by substitution,<br />

∫<br />

f( √ ∫<br />

∫<br />

x) dx = f(u) [2u du] = 2uf(u) du.<br />

Applying this, we find ∫ sin √ x dx = ∫ 2u sin u du. To compute <strong>the</strong> latter, use integration by<br />

parts with w = 2u (so dw = 2 du) and dv = sin u du (so v = − cos u): ∫ 2u sin u du = wv −<br />

∫<br />

v dw = [2u][− cos u]−<br />

∫<br />

[− cos u][2 du] = −2u cos u+2<br />

∫<br />

cos u du = −2u cos u+2 sin u+C.<br />

Therefore,<br />

∫<br />

sin √ x dx = −2u cos u + 2 sin u + C = −2 √ x cos √ x + 2 sin √ x + C.<br />

Not that we need to, as we’re all experts at integration by now, but remember that we can<br />

always check our work by differentiating. So consider d<br />

dx [−2√ x cos √ x + 2 sin √ x]:<br />

= −2[( √ x)(− sin √ x · [1/2x −1/2 ]) + (cos √ x)(1/2x −1/2 )] + 2 cos √ x · [1/2x −1/2 ]<br />

= −2[− 1 2 sin √ x + 1 2 x−1/2 cos √ x] + x −1/2 cos √ x = sin √ x.<br />

This is <strong>the</strong> integrand <strong>of</strong> <strong>the</strong> original function, and that’s what we must get if we did things<br />

right, so we did things correctly.<br />

4. A ma<strong>the</strong>matical operation that takes a function as input and produces ano<strong>the</strong>r function<br />

as output is sometimes referred to as a transform. An important example is <strong>the</strong> Laplace<br />

transform L, defined by<br />

L[f(x)] =<br />

∫ ∞<br />

0<br />

e −px f(x) dx = F (p).<br />

Notice that L turns a function <strong>of</strong> x into a function <strong>of</strong> <strong>the</strong> parameter p. Find <strong>the</strong> Laplace<br />

transform <strong>of</strong> <strong>the</strong> functions<br />

(a) f(x) = 1,<br />

(b) g(x) = x and<br />

(c) h(x) = e 5x<br />

(assume in <strong>the</strong> first two cases that p > 0 and in <strong>the</strong> third case p > 5).<br />

Solution: The Laplace transform <strong>of</strong> f(x) = 1 with p > 0 is<br />

L[1] =<br />

∫ ∞<br />

0<br />

e −px [1] dx = lim<br />

b→∞<br />

∫ b<br />

The Laplace transform <strong>of</strong> g(x) = x with p > 0 is<br />

L[x] =<br />

∫ ∞<br />

0<br />

0<br />

e −px dx = lim [ 1<br />

b→∞ −p e−px ] b 1<br />

0 = lim<br />

b→∞ −p [e−pb − e 0 ] = 1 p .<br />

e −px [x] dx = lim b→∞ [(x)( 1<br />

−p e−px ) − ∫ 1<br />

−p e−px dx] b 0 = lim b→∞[ 1<br />

−p xe−px 1<br />

p 2 e −px ] b 0<br />

= lim b→∞ [( 1<br />

−p be−bp − 1 p 2 e −pb ) − ( 1<br />

−p 0e0 − 1<br />

p 2 e 0 )] = 1<br />

p 2<br />

using integration by parts with u = x (so du = dx) and dv = e −px (so v = 1<br />

−p e−px ) and<br />

l’Hôpital’s Rule to find that lim x→∞ xe −px = 0. Lastly, <strong>the</strong> Laplace transform <strong>of</strong> h(x) = e 5x<br />

for p > 5 is<br />

L[e 5x ] =<br />

∫ ∞<br />

0<br />

e −px [e 5x ] dx = lim b→∞<br />

∫ b<br />

0 e(5−p)x dx = lim b→∞ [<br />

1<br />

5−p e(5−p)x ] b 0<br />

= lim b→∞<br />

1<br />

5−p [(e(5−p)b ) − (e 0 )] = −1<br />

5−p = 1<br />

p−5 .


<strong>Calculus</strong> <strong>II</strong> <strong>Final</strong> <strong>Exam</strong> <strong>Problems</strong> - <strong>Solutions</strong> 4<br />

5. Find <strong>the</strong> limit:<br />

lim<br />

h→0<br />

∫ 1+h √<br />

x5 + 8 dx<br />

1<br />

.<br />

h<br />

√<br />

x5 + 8 dx = F (1 + h) − F (1) and<br />

√<br />

t5 + 8 dt. Then ∫ 1+h<br />

1<br />

Solution: Let F (x) = ∫ x<br />

0<br />

F ′ (x) = √ x 5 + 8 by <strong>the</strong> Fundamental Theorem <strong>of</strong> <strong>Calculus</strong>, so<br />

lim<br />

h→0<br />

∫ 1+h √<br />

x5 + 8 dx<br />

1<br />

F (1 + h) − F (1)<br />

= lim<br />

= F ′ (1) = √ (1)<br />

h<br />

h→0 h<br />

5 + 8 = 3.<br />

6. Starting with<br />

find <strong>the</strong> sum <strong>of</strong> <strong>the</strong> series:<br />

∞∑<br />

f(x) = x n ,<br />

n=0<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

∞∑<br />

nx n−1 , |x| < 1<br />

n=1<br />

∞∑<br />

n=1<br />

n<br />

2 n<br />

∞∑<br />

n(n − 1)x n , |x| < 1<br />

n=2<br />

∞∑<br />

n=2<br />

n 2 − n<br />

2 n<br />

∞∑<br />

n=1<br />

Solution: This is Problem 36 from Section 8.6.<br />

The first sum is related to f(x) by differentiating (nx n−1 = d/dx[x n ]), so<br />

n 2<br />

2 n<br />

∞∑<br />

nx n−1 = f ′ (x), |x| < <strong>1.</strong><br />

n=1<br />

The second sum is related to <strong>the</strong> first by multiplying by x and <strong>the</strong>n evaluating when x = 1/2,<br />

so<br />

∞∑ n<br />

2 n = 1 ∞∑<br />

[n(1/2) n−1 ] = 1 2<br />

2 f ′ (1/2).<br />

n=1<br />

n=1<br />

The third is just x 2 times <strong>the</strong> derivative <strong>of</strong> <strong>the</strong> first, so<br />

∞∑<br />

n(n − 1)x n = x 2<br />

n=2<br />

∞ ∑<br />

n=2<br />

d<br />

dx [nxn−1 ] = x 2 f ′′ (x), |x| < <strong>1.</strong>


<strong>Calculus</strong> <strong>II</strong> <strong>Final</strong> <strong>Exam</strong> <strong>Problems</strong> - <strong>Solutions</strong> 5<br />

The 4th is <strong>the</strong> value <strong>of</strong> <strong>the</strong> third when x = 1/2, so it is<br />

∞∑<br />

n=2<br />

n 2 − n<br />

2 n = [1/2] 2 f ′′ (1/2) = [1/4]f ′′ (1/2).<br />

The last is <strong>the</strong> sum <strong>of</strong> <strong>the</strong> second and <strong>the</strong> 4th, since in <strong>the</strong> 4th when n = 1 <strong>the</strong> term is 0,<br />

so ∑ ∞<br />

n=2 = ∑ ∞<br />

n=1<br />

for that expression, which implies<br />

∞∑<br />

n=1<br />

n 2 ∞<br />

2 n = ∑<br />

n=1<br />

n 2 − n<br />

2 n + n 2 n = ∞ ∑<br />

n=1<br />

n 2 − n<br />

2 n +<br />

∞∑<br />

n=1<br />

n<br />

2 n = [1/4]f ′′ (1/2) + [1/2]f ′ (1/2).<br />

7. <strong>Use</strong> ei<strong>the</strong>r a direct comparison or <strong>the</strong> limit comparison test to decide <strong>the</strong> convergence or<br />

divergence <strong>of</strong> each <strong>of</strong> <strong>the</strong> following:<br />

∞∑<br />

n=1<br />

1<br />

√<br />

1 + n<br />

5<br />

∞∑<br />

n=3<br />

n ∑<br />

∞ 1<br />

(n + 3) 2 2n 2 − n<br />

n=1<br />

∞∑<br />

n=1<br />

5 sin 2 n<br />

n √ n<br />

Solution: The first series, ∑ √ 1<br />

1+n<br />

, converges by <strong>the</strong> Direct Comparison Test since<br />

5<br />

1<br />

√<br />

1 + n<br />

5 ≤ 1 √<br />

n<br />

5 = 1<br />

n 5/2<br />

and <strong>the</strong> series ∑ 1<br />

is a p-series with p = 5/2 > 1 so that it converges.<br />

n 5/2<br />

The second series, ∑ n<br />

(n+3)<br />

, diverges by <strong>the</strong> Limit Comparison Test since<br />

2<br />

lim<br />

n→∞<br />

n<br />

(n+3) 2<br />

1<br />

n<br />

n 2<br />

= lim<br />

n→∞ (n + 3) 2 = 1 > 0<br />

and <strong>the</strong> series ∑ 1<br />

n<br />

diverges (p = 1 ≤ 1).<br />

The third series, ∑ 1<br />

2n 2 −n<br />

, converges by <strong>the</strong> Limit Comparison Test since<br />

lim<br />

n→∞<br />

1<br />

2n 2 −n<br />

1<br />

n 2<br />

n 2<br />

= lim<br />

n→∞ 2n 2 − n = 1 2 > 0<br />

and ∑ 1<br />

n 2 converges (p = 2 > 1).<br />

The last series converges by <strong>the</strong> Direct Comparison Test because 0 ≤ sin 2 x ≤ 1 implies<br />

that 0 ≤ 5 sin 2 n ≤ 5 for all n, so that<br />

5 sin 2 n<br />

n √ n ≤ 5<br />

n √ n = 5<br />

n 3/2<br />

and <strong>the</strong> series ∑ 5<br />

n 3/2 = 5 ∑ 1<br />

n 3/2 converges (p = 3/2 > 1).<br />

8. Consider a thin, homogeneous, rigid rod <strong>of</strong> length L cm and density d g/cm, aligned on <strong>the</strong><br />

x-axis with one end fixed at <strong>the</strong> origin.<br />

Now suppose <strong>the</strong> rod is rotating around <strong>the</strong> y-axis with angular velocity ω rev/sec, like a<br />

helicopter rotor. Set up and calculate <strong>the</strong> integral to find <strong>the</strong> total kinetic energy <strong>of</strong> <strong>the</strong><br />

rotating rod.


<strong>Calculus</strong> <strong>II</strong> <strong>Final</strong> <strong>Exam</strong> <strong>Problems</strong> - <strong>Solutions</strong> 6<br />

The procedure: Go back to basic principles. Dissect <strong>the</strong> rod into small pieces, figure out<br />

<strong>the</strong> kinetic energy <strong>of</strong> each small bit, and <strong>the</strong>n add all <strong>the</strong> contributions to <strong>the</strong> total kinetic<br />

energy with an appropriate integral. The kinetic energy <strong>of</strong> a point mass m is 1 2 mv2 where<br />

v is <strong>the</strong> linear velocity, measured in units <strong>of</strong> cm/sec. The linear velocity <strong>of</strong> a point on <strong>the</strong><br />

rotating rod r units away from <strong>the</strong> origin is 2πrω.<br />

Solution: Suppose we divide <strong>the</strong> rod into n parts <strong>of</strong> equal length, and thus equal mass<br />

since <strong>the</strong> rod is homogeneous <strong>of</strong> density d g/cm. Then each part has length ∆x = L n and<br />

mass d · ∆x = d L n = dL n . Now select points x∗ i in each part <strong>of</strong> <strong>the</strong> rod, x i−1 ≤ x ∗ i ≤ x i<br />

where x i = 0 + i∆x = iL n . In fact, take x∗ i = x i. Then <strong>the</strong> kinetic energy <strong>of</strong> <strong>the</strong> rotating<br />

rod is approximated by <strong>the</strong> sum <strong>of</strong> <strong>the</strong> kinetic energies <strong>of</strong> <strong>the</strong> rotating points x i , with <strong>the</strong><br />

approximation improving as we let n → ∞, so <strong>the</strong> total kinetic energy will be<br />

n∑<br />

KE = lim KE(x i )<br />

n→∞<br />

= lim<br />

n→∞<br />

i=1<br />

n∑ 1<br />

2 (d∆x) v(x i) 2<br />

i=1<br />

d<br />

= lim<br />

n→∞ 2<br />

d<br />

= lim<br />

n→∞ 2<br />

n∑<br />

(2πx i ω) 2 ∆x<br />

i=1<br />

n∑<br />

( ) 2 iL<br />

[4π 2 ω 2 ][ L n n ]<br />

i=1<br />

= lim<br />

n→∞ 4π2 ω 2 dL3<br />

2n 3<br />

∑<br />

n i 2<br />

i=1<br />

[ ]<br />

= 2π 2 ω 2 dL 3 1 n(n + 1)(2n + 1)<br />

lim<br />

n→∞ n 3 6<br />

[ ] 2<br />

= 2π 2 ω 2 dL 3 = 2 6 3 π2 ω 2 dL 3 .<br />

Observe that all <strong>of</strong> this work was really computing <strong>the</strong> definite integral ∫ L<br />

d<br />

2 [4π2 ω 2 ] ∫ L<br />

0 x2 dx = 2π 2 ω 2 d[ x3<br />

3<br />

9. Evaluate <strong>the</strong> definite integral<br />

L<br />

0 = 2π2 ω 2 d[ L3<br />

3 ].<br />

∫ 1<br />

0<br />

f(x) dx<br />

where f is <strong>the</strong> function whose graph is shown below<br />

0<br />

1<br />

2 (d)(2πxω)2 dx =<br />

1<br />

...<br />

1/8 1/2<br />

1/16 1/4 1<br />

Solution: Remembering that <strong>the</strong> definite integral <strong>of</strong> a non-negative function measures <strong>the</strong><br />

area under <strong>the</strong> curve, we can compute this integral geometrically since we know <strong>the</strong> area


<strong>Calculus</strong> <strong>II</strong> <strong>Final</strong> <strong>Exam</strong> <strong>Problems</strong> - <strong>Solutions</strong> 7<br />

formula for a triangle: A = 1 2bh. In all <strong>of</strong> <strong>the</strong> triangles in <strong>the</strong> graph <strong>of</strong> y = f(x), <strong>the</strong> height<br />

h = 1, but <strong>the</strong> base decreases: b = 1/2 to b = 1/4 to b = 1/8 and so on from <strong>the</strong> rightmost<br />

triangle working to <strong>the</strong> left. So<br />

∫ 1<br />

0<br />

f(x) dx =<br />

∞∑<br />

n=1<br />

1<br />

2 [(1/2)n ][1] =<br />

∞∑<br />

( ) n+1 1<br />

=<br />

2<br />

n=1<br />

1/4<br />

1 − (1/2) = 1 2<br />

because <strong>the</strong> inital term (n = 1) is <strong>the</strong> area <strong>of</strong> <strong>the</strong> first triangle, which is a = 1/2[1/2][1] = 1/4<br />

and <strong>the</strong> ratio is r = 1/2 (what happens to <strong>the</strong> width <strong>of</strong> <strong>the</strong> triangles) and this is a geometric<br />

series.<br />

10. If F (x) = ∫ 3<br />

0 t√ t + 9 dt, <strong>the</strong>n F ′ (1) = 0. Why?<br />

Solution: The definite integral ∫ 3<br />

0 t√ t + 9 dt measures <strong>the</strong> area under <strong>the</strong> curve y =<br />

x √ x + 9 over <strong>the</strong> interval [0, 3], and this is some constant. Thus F (x) is a constant function,<br />

and <strong>the</strong> derivative <strong>of</strong> a constant is 0, so F ′ (x) = 0 for every x. In particular, F ′ (1) = 0.<br />

1<strong>1.</strong> Suppose you have a large supply <strong>of</strong> books, all <strong>the</strong> same size, and you stack <strong>the</strong>m at <strong>the</strong><br />

edge <strong>of</strong> a table, with each book extending far<strong>the</strong>r beyond <strong>the</strong> edge <strong>of</strong> <strong>the</strong> table than <strong>the</strong><br />

book beneath it: <strong>the</strong> top book extends half its length beyond <strong>the</strong> second book, <strong>the</strong> second<br />

book extends a quarter <strong>of</strong> its length beyond <strong>the</strong> third, <strong>the</strong> third extends one sixth <strong>of</strong> its<br />

length beyond <strong>the</strong> fourth, and so on.<br />

(a) Show, by considering <strong>the</strong> center <strong>of</strong> mass <strong>of</strong> <strong>the</strong> stack, that it is possible to stack <strong>the</strong><br />

books so that <strong>the</strong> top book extends entirely beyond <strong>the</strong> table. Work from <strong>the</strong> top<br />

down. First find <strong>the</strong> center <strong>of</strong> mass <strong>of</strong> two books. Then use this result to find <strong>the</strong><br />

center <strong>of</strong> mass when a third book has been added to <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> stack.<br />

Solution: Don’t worry about this part!! We didn’t cover center <strong>of</strong> mass.<br />

(b) How many books does it take before <strong>the</strong> top book extends completely beyond <strong>the</strong> edge<br />

<strong>of</strong> <strong>the</strong> table?<br />

Solution: Call <strong>the</strong> length <strong>of</strong> <strong>the</strong> books L, as <strong>the</strong>y are all <strong>the</strong> same size. Assuming<br />

<strong>the</strong> result <strong>of</strong> part (a), that we can make this stack, we want to find <strong>the</strong> number N so<br />

that <strong>the</strong> total overhang is L, <strong>the</strong> length <strong>of</strong> one book. The amount <strong>of</strong> overhang from<br />

<strong>the</strong> top book is L/2, <strong>the</strong> second is L/4, <strong>the</strong> third is L/6, and, in general, <strong>the</strong> nth is<br />

L/(2n). So we want to find N so that ∑ N<br />

n=1 L 2n ≥ L but ∑ N−1<br />

n=1 L 2n<br />

< L. Factoring<br />

out <strong>the</strong> L on <strong>the</strong> left hand side and cancelling it on each side, we want to find <strong>the</strong> first<br />

N with ∑ N<br />

n=1 1<br />

2n = 1 ∑ N<br />

2 n=1 1 n ≥ 1, so ∑ N<br />

n=1 1 n<br />

≥ 2. Starting at N = 1, <strong>the</strong> sum is<br />

s 1 = 1 1 = 1, which is too small. The partial sum s 2 = 1 1 + 1 2 = 3 2<br />

is also too small, as<br />

is s 3 = 1 1 + 1 2 + 1 3 = 11<br />

6 , but s 4 = 1 1 + 1 2 + 1 3 + 1 4 = 25<br />

12<br />

> 2. Therefore, N = 4 works, so<br />

it only takes 4 books before <strong>the</strong> top book extends completely beyond <strong>the</strong> edge <strong>of</strong> <strong>the</strong><br />

table.<br />

(c) By considering <strong>the</strong> harmonic series, show that <strong>the</strong> top book can extend any distance<br />

at all beyond <strong>the</strong> edge <strong>of</strong> <strong>the</strong> table if <strong>the</strong> stack is high enough.<br />

Solution: As we can see in our solution to part (b), <strong>the</strong> distance that <strong>the</strong> top book<br />

extends beyond <strong>the</strong> edge <strong>of</strong> <strong>the</strong> table is<br />

N∑<br />

n=1<br />

L<br />

2n = L 2<br />

Since <strong>the</strong> harmonic series ∑ ∞<br />

n=1 1 n<br />

diverges, its sequence <strong>of</strong> partial sums is not bounded,<br />

so for any distance D <strong>the</strong>re must be an integer N so that L ∑ N<br />

2 n=1 1 n<br />

> D. (If not, <strong>the</strong>n<br />

N∑<br />

n=1<br />

1<br />

n .


<strong>Calculus</strong> <strong>II</strong> <strong>Final</strong> <strong>Exam</strong> <strong>Problems</strong> - <strong>Solutions</strong> 8<br />

<strong>the</strong> sequence <strong>of</strong> partial sums <strong>of</strong> <strong>the</strong> harmonic series would be increasing and bounded,<br />

so it would converge.)<br />

12. Here is a “pro<strong>of</strong>” that 1=0. Your job is to find <strong>the</strong> bug.<br />

On <strong>the</strong> one hand,<br />

2<br />

π<br />

∫ π<br />

0<br />

∫ π<br />

cos 2 θ dθ = 2 1 + cos 2θ<br />

dθ<br />

π 0 2<br />

= 2 ( 1<br />

π 2 θ + 1 )<br />

4 sin 2θ | π 0<br />

= 2 π<br />

π<br />

2 = <strong>1.</strong><br />

On <strong>the</strong> o<strong>the</strong>r hand, let u = sin θ. Then cos θ = √ 1 − sin 2 θ = √ 1 − u 2 and du = cos θ dθ,<br />

so<br />

2<br />

π<br />

∫ π<br />

0<br />

cos 2 θ dθ = 2 π<br />

= 2 π<br />

∫ π<br />

0<br />

∫ sin π<br />

sin 0<br />

(cos θ)(cos θ) dθ<br />

√<br />

1 − u2 du = 0.<br />

∫<br />

2 π<br />

Solution: The first computation is correct,<br />

π 0 cos2 θ dθ = <strong>1.</strong> The second makes <strong>the</strong><br />

mistake by assuming cos θ = √ 1 − sin 2 θ as if cos θ were always positive on <strong>the</strong> interval<br />

[0, π], which it isn’t. Technically, √ cos 2 θ = | cos θ|, which is only equal to cos θ when<br />

cos θ ≥ 0. However, on <strong>the</strong> interval [0, π], cos θ ≥ 0 only for 0 ≤ θ ≤<br />

√ π 2 . When π 2 ≤ θ ≤ π,<br />

1 − sin 2 θ = | cos θ| = − cos θ.<br />

13. (a) <strong>Use</strong> Taylor’s Theorem to find <strong>the</strong> Maclaurin series for f(x) = e x .<br />

Solution: The Maclaurin series <strong>of</strong> a function f(x) is its Taylor series centered at<br />

x = 0, so we know this to be<br />

∞∑<br />

n=0<br />

x n<br />

n! = 1 + x + x2<br />

2! + x3<br />

3! + · · · + xn<br />

n! + · · · .<br />

The way this is derived using Taylor’s Theorem, which is <strong>the</strong> formula<br />

T (x) =<br />

∞∑<br />

n=0<br />

f (n) (a)<br />

(x − a) n ,<br />

n!<br />

is by realizing that f (n) (x) = e x for all n ≥ 0 since e x is its own derivative, and that<br />

e 0 = 1 implies that every coefficient will be 1 n! .<br />

(b) <strong>Use</strong> part (a) to find <strong>the</strong> Maclaurin series for e −x3 . What is <strong>the</strong> interval <strong>of</strong> convergence<br />

<strong>of</strong> this series? For what x does it converge absolutely?<br />

Solution: By substitution, we have<br />

∞∑ (−x 3 ) n ∞∑ (−1) n x 3n ∞∑<br />

e −x3 =<br />

=<br />

=<br />

n!<br />

n!<br />

n=0<br />

n=0<br />

n=0<br />

(−1) n x3n<br />

The radius <strong>of</strong> convergence for e x = ∑ x n<br />

n!<br />

is R = ∞, so that <strong>the</strong> series converges<br />

absolutely for all |x| < ∞. Thus <strong>the</strong> series we obtained for e −x3 by substitution will<br />

n! .


<strong>Calculus</strong> <strong>II</strong> <strong>Final</strong> <strong>Exam</strong> <strong>Problems</strong> - <strong>Solutions</strong> 9<br />

converge absolutely whenever | − x 3 | = |x 3 | < ∞, which again is for all |x| < ∞.<br />

Hence <strong>the</strong> interval <strong>of</strong> convergence is R = (−∞, ∞), on which <strong>the</strong> series converges<br />

absolutely.<br />

(c) Calculate<br />

∫ 0.2<br />

0<br />

e −x3 dx<br />

to 4-decimal place accuracy. Explain how you know that your answer is sufficiently<br />

accurate.<br />

Solution: Don’t worry about this one, as it requires <strong>the</strong> error bound on Taylor’s<br />

Theorem, that <strong>the</strong> remainder is <strong>of</strong> <strong>the</strong> form<br />

R n (x) = f (n+1) (z)<br />

(x − a)n+1<br />

(n + 1)!<br />

for some z between a and x. All you need to do is find an n sufficiently large so that<br />

for every value <strong>of</strong> z and <strong>of</strong> x between 0 and 0.2, <strong>the</strong> value <strong>of</strong> R n (x) ≤ M for some<br />

constant M such that ∫ 0.2<br />

0<br />

M dx = M(0.2 − 0) = 0.2M < 0.00005 (so M < 0.00025).<br />

The reason this works is that, for this value <strong>of</strong> n, Taylor’s Theorem states that<br />

f(x) = f(a)+ f ′ (a)<br />

1!<br />

(x−a)+ f ′′ (a)<br />

2!<br />

(x−a) 2 +· · ·+ f (n) (a)<br />

(x−a) n +R n (x) = T n (x)+R n (x).<br />

n!<br />

Hence ∫ 0.2<br />

0<br />

f(x) dx = ∫ 0.2<br />

0<br />

[T n (x) + R n (x)] dx = ∫ 0.2<br />

0<br />

T n (x) dx + ∫ 0.2<br />

0<br />

R n (x) dx. Therefore<br />

| ∫ 0.2<br />

f(x) dx − ∫ 0.2<br />

T<br />

0 0 n (x) dx| = | ∫ 0.2<br />

R<br />

0 n (x) dx| ≤ ∫ 0.2<br />

M dx = 0.2M < 0.00005.<br />

0<br />

This means that ∫ 0.2<br />

T<br />

0 n (x) dx approximates ∫ 0.2<br />

f(x) dx accurately to within 4 decimal<br />

0<br />

places.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!