10.01.2014 Views

Event Simulation for the LHC - High Energy Physics Group ...

Event Simulation for the LHC - High Energy Physics Group ...

Event Simulation for the LHC - High Energy Physics Group ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong><br />

Large Hadron Collider<br />

Bryan Webber<br />

Cavendish Laboratory<br />

University of Cambridge<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 1<br />

IFT Colloquium, UAM, 04/04/13


<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong><br />

Large Hadron Collider<br />

• The Standard Model<br />

• Lepton-hadron and hadron-hadron collisions<br />

• <strong>Event</strong> generation, matching and merging<br />

• The Higgs boson<br />

• Beyond <strong>the</strong> Standard Model<br />

• Conclusions and prospects<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 2<br />

IFT Colloquium, UAM, 04/04/13


The Standard Model<br />

Matter<br />

fermions<br />

Gauge<br />

bosons<br />

Scalar<br />

boson<br />

Electroweak<br />

SU(2)xU(1)<br />

QCD<br />

SU(3)<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 3<br />

IFT Colloquium, UAM, 04/04/13


Lepton-Hadron<br />

Collisions<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 4<br />

IFT Colloquium, UAM, 04/04/13


Deep Inelastic Scattering<br />

1fm↔ 0.2GeV<br />

e<br />

M p c 2 ≈ 1GeV<br />

u<br />

u<br />

~10 -15 m<br />

= 1 fm<br />

d<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 5<br />

IFT Colloquium, UAM, 04/04/13


Deep Inelastic Scattering<br />

e<br />

u<br />

u<br />

d<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 6<br />

IFT Colloquium, UAM, 04/04/13


Deep Inelastic Scattering<br />

e<br />

u<br />

u<br />

u<br />

u<br />

d<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 7<br />

IFT Colloquium, UAM, 04/04/13


Deep Inelastic Scattering<br />

e<br />

u<br />

u<br />

u<br />

u<br />

d<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 8<br />

IFT Colloquium, UAM, 04/04/13


Quark and Gluon<br />

(Parton) Distributions<br />

xf<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

xS<br />

H1 and ZEUS HERA I+II PDF Fit<br />

xd v<br />

xg<br />

xu v<br />

HERAPDF1.5 NNLO (prel.)<br />

exp. uncert.<br />

model uncert.<br />

2<br />

= 2 GeV<br />

parametrization uncert.<br />

0 0.2 0.4 0.6 0.8 1<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 9<br />

IFT Colloquium, UAM, 04/04/13<br />

2<br />

Q<br />

Fraction of proton momentum<br />

x<br />

HERAPDF Structure Function Working <strong>Group</strong> March 2011<br />

Invariant 4-momentum<br />

transfer squared


Quark and Gluon<br />

(Parton) Distributions<br />

xf<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

xS<br />

H1 and ZEUS HERA I+II PDF Fit<br />

xd v<br />

xg<br />

xu v<br />

HERAPDF1.5 NNLO (prel.)<br />

exp. uncert.<br />

2<br />

Q<br />

model uncert.<br />

2<br />

= 10 GeV<br />

parametrization uncert.<br />

0 0.2 0.4 0.6 0.8 1<br />

Fraction of proton momentum<br />

x<br />

HERAPDF Structure Function Working <strong>Group</strong> March 2011<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 10<br />

IFT Colloquium, UAM, 04/04/13


Quark and Gluon<br />

(Parton) Distributions<br />

xf<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

xS<br />

H1 and ZEUS HERA I+II PDF Fit<br />

xd v<br />

xg<br />

xu v<br />

HERAPDF1.5 NNLO (prel.)<br />

exp. uncert.<br />

model uncert.<br />

2<br />

Q<br />

parametrization uncert.<br />

2<br />

= 10000 GeV<br />

0 0.2 0.4 0.6 0.8 1<br />

Fraction of proton momentum<br />

x<br />

HERAPDF Structure Function Working <strong>Group</strong> March 2011<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 11<br />

IFT Colloquium, UAM, 04/04/13


Deep Inelastic Scattering<br />

e<br />

u<br />

u<br />

d<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 12<br />

IFT Colloquium, UAM, 04/04/13


Deep Inelastic Scattering<br />

e<br />

u<br />

u<br />

d<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 13<br />

IFT Colloquium, UAM, 04/04/13


Deep Inelastic Scattering<br />

beam<br />

jet<br />

e<br />

<br />

p<br />

Hard scattering<br />

Gluon radiation<br />

Confinement<br />

quark jet<br />

Hadron <strong>for</strong>mation<br />

<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 14<br />

IFT Colloquium, UAM, 04/04/13


HERA ep Collider<br />

• Located at DESY Hamburg<br />

• Electron-proton collisions at 318 GeV (Mpc 2 ~1 GeV)<br />

• Main experiments H1 and ZEUS<br />

• Closed June 2007<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 15<br />

IFT Colloquium, UAM, 04/04/13


ZEUS Detector<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 16<br />

IFT Colloquium, UAM, 04/04/13


ZEUS <strong>Event</strong> Display<br />

quark<br />

jet<br />

e<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 17<br />

IFT Colloquium, UAM, 04/04/13


eam<br />

jet<br />

e<br />

<br />

Theoretical Status<br />

Exact fixed-order<br />

perturbation <strong>the</strong>ory<br />

Approximate all-order<br />

perturbation <strong>the</strong>ory<br />

Semi-empirical<br />

local models only<br />

Hard scattering<br />

Gluon radiation<br />

Confinement<br />

p<br />

quark jet<br />

Hadron <strong>for</strong>mation<br />

<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 18<br />

IFT Colloquium, UAM, 04/04/13


Hadron-Hadron<br />

Collisions<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 19<br />

IFT Colloquium, UAM, 04/04/13


Tevatron Collider<br />

• Located at Fermilab near Chicago<br />

• Proton-antiproton collisions at 1.96 TeV<br />

• Main experiments CDF and D0<br />

• Closed September 2011<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 20<br />

IFT Colloquium, UAM, 04/04/13


Large Hadron Collider<br />

• Located at CERN near Geneva<br />

• Proton-proton collisions at 7 TeV (2011), 8 TeV (2012)<br />

• Main experiments ATLAS and CMS<br />

• Design energy 14 TeV<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 21<br />

IFT Colloquium, UAM, 04/04/13


<strong>LHC</strong> Experiments<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 22<br />

IFT Colloquium, UAM, 04/04/13


A Toroidal <strong>LHC</strong> ApparatuS<br />

Muon Detectors Tile Calorimeter Liquid Argon Calorimeters<br />

22 m<br />

46 m<br />

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 23<br />

IFT Colloquium, UAM, 04/04/13


ATLAS Muon Detector<br />

Man <strong>for</strong> scale<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 24<br />

IFT Colloquium, UAM, 04/04/13


ATLAS Calorimeters and Central Solenoid<br />

Man <strong>for</strong> scale<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 25<br />

IFT Colloquium, UAM, 04/04/13


ATLAS <strong>Event</strong> Display<br />

• Candidate <strong>for</strong> Higgs decay to e + e − µ + µ −<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 26<br />

IFT Colloquium, UAM, 04/04/13


Compact Muon Solenoid<br />

@A*),(8)*>?)/B2<br />

84*)(+ C4


CMS <strong>Event</strong> Display<br />

• Candidate <strong>for</strong> Higgs decay to e + e − µ + µ −<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 28<br />

IFT Colloquium, UAM, 04/04/13


<strong>LHC</strong> Collision<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 29<br />

IFT Colloquium, UAM, 04/04/13


<strong>LHC</strong> Collision<br />

Dijet production<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 30<br />

IFT Colloquium, UAM, 04/04/13


For small p t min and high energy inclusive parton—parton<br />

cross section is larger than total proton—proton cross<br />

section.<br />

Multiple Interactions<br />

! More than one parton—parton scatter per proton—proton<br />

• A Need feature a model of of hadron-hadron spatial distribution collisions, within protonnot<br />

present<br />

! Perturbation<br />

in lepton-lepton<br />

<strong>the</strong>ory gives n-scatter<br />

or lepton-hadron:<br />

distributions<br />

✤<br />

Multiple parton interactions in same collision<br />

• These give rise to extra hadron production<br />

✤<br />

<strong>LHC</strong> <strong>Simulation</strong>s 3<br />

Often called <strong>the</strong> underlying event<br />

Bryan Webber<br />

✤<br />

Not to be confused with pile-up (multiple<br />

proton collisions in same bunches)<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 31<br />

IFT Colloquium, UAM, 04/04/13


<strong>LHC</strong> Collision<br />

quark jet<br />

beam<br />

jet<br />

p<br />

<br />

<br />

p<br />

beam<br />

jet<br />

quark jet<br />

Hard process<br />

Underlying event<br />

Gluon radiation<br />

Confinement<br />

Hadron <strong>for</strong>mation<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 32<br />

IFT Colloquium, UAM, 04/04/13


A high-mass dijet<br />

Mjj=4 TeV<br />

G. Dissertori : Experimental Summary 44<br />

33<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> IFT Colloquium, UAM, 04/04/13


QCD Factorization<br />

σ pp→X (E 2 pp) =<br />

1<br />

0<br />

dx 1 dx 2 f i (x 1 ,µ 2 ) f j (x 2 ,µ 2 )ˆσ ij→X (x 1 x 2 E 2 pp,µ 2 )<br />

<br />

momentum<br />

fractions<br />

parton<br />

distributions<br />

at scale<br />

µ 2<br />

<br />

hard process<br />

cross section<br />

• Jet <strong>for</strong>mation and underlying event take place over a<br />

much longer time scale, with unit probability<br />

• Hence <strong>the</strong>y cannot affect <strong>the</strong> cross section<br />

• Scale dependences of parton distributions and hard<br />

process cross section are perturbatively calculable,<br />

and cancel order by order<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 34<br />

IFT Colloquium, UAM, 04/04/13


Dijet Mass Distribution<br />

[ATLAS-CONF-2012-110]<br />

DIJETS IN 8 TEV DATA<br />

[CMS PAS EXO-12-016]<br />

<strong>Event</strong>s<br />

5<br />

10<br />

4<br />

10<br />

Data<br />

Fit<br />

!"#$@7#"&,&'$7A)67'8 9: ;<br />

3<br />

10<br />

<br />

s = 8 TeV<br />

L dt = 5.8 fb<br />

-1<br />

2<br />

10<br />

10<br />

1<br />

-1<br />

10<br />

ATLAS Preliminary<br />

Significance<br />

2<br />

0<br />

-2<br />

2000 3000 4000<br />

Reconstructed m jj<br />

2000 3000 4000<br />

Reconstructed m jj<br />

[GeV]<br />

• !"#$%&'()$'*+,"-'$".)/#/%"'+/'.0))-&12'(#11+/3'0#..'.4"%-$50<br />

• 5.8 fb-1 = 5.8 events per fb<br />

! "#$%&'()*#+),$--), ,, ).)/0123)4#5)678,)+7&((#7)$'%)8+9#7):8'-+7$&'+-<br />

• 1 fb =10-15 barn (1 barn = 10 -28 m 2 ~ nuclear size)<br />

• No sign of deviation from Standard Model (yet)<br />

! ;$:8'$")?+<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 35<br />

IFT Colloquium, UAM, 04/04/13


Monte Carlo<br />

<strong>Event</strong> Generation<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 36<br />

IFT Colloquium, UAM, 04/04/13


Monte Carlo <strong>Event</strong> Generation<br />

• Aim is to produce simulated (particle-level) datasets like<br />

those from real collider events<br />

✤ i.e. lists of particle identities, momenta, ...<br />

✤<br />

simulate quantum effects by (pseudo)random numbers<br />

• Essential <strong>for</strong>:<br />

✤<br />

✤<br />

✤<br />

✤<br />

Designing new experiments and data analyses<br />

Correcting <strong>for</strong> detector and selection effects<br />

Testing <strong>the</strong> SM and measuring its parameters<br />

Estimating new signals and <strong>the</strong>ir backgrounds<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 37<br />

IFT Colloquium, UAM, 04/04/13


<strong>LHC</strong> <strong>Event</strong> Generation<br />

p<br />

p<br />

Hard process<br />

Underlying event<br />

Parton showers<br />

Confinement<br />

Hadronization<br />

Hadron decays<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 38<br />

IFT Colloquium, UAM, 04/04/13


Parton Shower Approximation<br />

• Keep only most singular parts of QCD matrix elements:<br />

• Collinear dσ n+1 ≈ α <br />

S<br />

dξ i dφ i<br />

P ii (z i ,φ i ) dz i<br />

2π<br />

ξ<br />

• Soft dσ n+1 ≈ α i<br />

i 2π dσ n<br />

<br />

S<br />

p i · p j<br />

(−T i · T j )<br />

2π<br />

p i · kp j · k ωdωdξ dφ i<br />

i<br />

2π dσ n<br />

= α S<br />

2π<br />

≈<br />

α S<br />

2π<br />

i,j<br />

<br />

i,j<br />

(−T i · T j ) ξ ij<br />

ξ i ξ j<br />

dω<br />

ω dξ i<br />

<br />

(−T i · T j )Θ(ξ ij − ξ i ) dω ω<br />

i,j<br />

j<br />

dφ i<br />

2π dσ n<br />

dξ i<br />

ξ i<br />

dσ n<br />

ξ i =1− cos θ i<br />

θ ij >θ i<br />

i<br />

θ i<br />

ω =(1− z i )E i<br />

z i E i<br />

Angular-ordered parton shower<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 39<br />

IFT Colloquium, UAM, 04/04/13


Cluster Hadronization Model<br />

• In parton shower, relative transverse momenta<br />

evolve from a high scale Q towards lower values<br />

• At a scale near LQCD~200 MeV, perturbation<br />

<strong>the</strong>ory breaks down and hadrons are <strong>for</strong>med<br />

Preconfinement<br />

• Be<strong>for</strong>e that, at scales Q0<br />

approximation: gluon = colour—anticolour<br />

~ few<br />

pair.<br />

x LQCD, <strong>the</strong>re is<br />

universal preconfinement of colour<br />

colour structure<br />

•<br />

of Decay parton of preconfined shower: colour-singlet clusters provides pairs a basis<br />

up close in phase <strong>for</strong> space hadronization models<br />

spectrum of colour-singlet pairs asymptotically<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 40<br />

IFT Colloquium, UAM, 04/04/13


Cluster Hadronization Model<br />

• In parton shower, relative transverse momenta<br />

evolve from a high scale Q towards lower values<br />

• At a scale near LQCD~200 MeV, perturbation<br />

<strong>the</strong>ory breaks down and hadrons are <strong>for</strong>med<br />

Preconfinement<br />

• Be<strong>for</strong>e that, at scales Q0 ~ few x LQCD, <strong>the</strong>re is<br />

r approximation: gluon = colour—anticolour pair.<br />

universal preconfinement of colour<br />

colour structure<br />

•<br />

of Decay parton of preconfined shower: colour-singlet clusters provides pairs a basis<br />

up close in phase <strong>for</strong> space hadronization models<br />

spectrum of colour-singlet pairs asymptotically<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 41<br />

IFT Colloquium, UAM, 04/04/13


Cluster Hadronization Model<br />

• In parton shower, relative transverse momenta<br />

evolve from a high scale Q towards lower values<br />

• At a scale near LQCD~200 MeV, perturbation<br />

<strong>the</strong>ory breaks down and hadrons are <strong>for</strong>med<br />

Preconfinement<br />

• Be<strong>for</strong>e that, at scales Q0 ~ few x LQCD, <strong>the</strong>re is<br />

r approximation: gluon = colour—anticolour pair.<br />

universal preconfinement of colour<br />

colour structure<br />

•<br />

of Decay parton of preconfined shower: colour-singlet clusters provides pairs a basis<br />

up close in phase <strong>for</strong> space hadronization models<br />

spectrum of colour-singlet pairs asymptotically<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 42<br />

IFT Colloquium, UAM, 04/04/13


Cluster Hadronization Model<br />

• In parton shower, relative transverse momenta<br />

evolve from a high scale Q towards lower values<br />

• At a scale near LQCD~200 MeV, perturbation<br />

<strong>the</strong>ory breaks down and hadrons are <strong>for</strong>med<br />

Preconfinement<br />

• Be<strong>for</strong>e that, at scales Q0 ~ few x LQCD, <strong>the</strong>re is<br />

r approximation: gluon = colour—anticolour pair.<br />

universal preconfinement of colour<br />

colour structure<br />

•<br />

of Decay parton of preconfined shower: colour-singlet clusters provides pairs a basis<br />

up close in phase <strong>for</strong> space hadronization models<br />

spectrum of colour-singlet pairs asymptotically<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 43<br />

IFT Colloquium, UAM, 04/04/13


Colour Preconfinement<br />

• Mass distribution of preconfined clusters is universal<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 44<br />

IFT Colloquium, UAM, 04/04/13


Monte Carlo <strong>Event</strong> Generators<br />

• Traditionally (imprecise) general-purpose tools<br />

• Much recent work to make <strong>the</strong>m more precise<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 45<br />

IFT Colloquium, UAM, 04/04/13


MC <strong>Event</strong> Generators<br />

HERWIG<br />

http://projects.hep<strong>for</strong>ge.org/herwig/<br />

Angular-ordered parton shower, cluster hadronization<br />

v6 Fortran; Herwig++<br />

PYTHIA<br />

http://www.<strong>the</strong>p.lu.se/∼torbjorn/Pythia.html<br />

Dipole-type parton shower, string hadronization<br />

v6 Fortran; v8 C++<br />

SHERPA<br />

http://projects.hep<strong>for</strong>ge.org/sherpa/<br />

Dipole-type parton shower, cluster hadronization<br />

C++<br />

“General-purpose event generators <strong>for</strong> <strong>LHC</strong> physics”,<br />

A Buckley et al., arXiv:1101.2599, Phys. Rept. 504(2011)145<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 46<br />

IFT Colloquium, UAM, 04/04/13


Parton Shower Monte Carlo<br />

• Hard subprocess:<br />

q¯q → Z 0 /W ±<br />

http://mcplots.cern.ch/<br />

• Leading-order (LO) normalization need next-to-LO (NLO)<br />

• Worse <strong>for</strong> high pT and/or extra jets need multijet merging<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 47<br />

IFT Colloquium, UAM, 04/04/13


Improving <strong>Event</strong> <strong>Simulation</strong><br />

Hard subprocess<br />

e.g.<br />

qq → Z 0 qq<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 48<br />

IFT Colloquium, UAM, 04/04/13


Improving <strong>Event</strong> <strong>Simulation</strong><br />

NLO Hard subprocess<br />

(virtual correction)<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 49<br />

IFT Colloquium, UAM, 04/04/13


Improving <strong>Event</strong> <strong>Simulation</strong><br />

NLO Hard subprocess<br />

(real emission)<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 50<br />

IFT Colloquium, UAM, 04/04/13


Improving <strong>Event</strong> <strong>Simulation</strong><br />

NLO Hard subprocess<br />

+Parton showering<br />

= Double counting??<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 51<br />

IFT Colloquium, UAM, 04/04/13


Improving <strong>Event</strong> <strong>Simulation</strong><br />

Multijet<br />

Hard subprocess<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 52<br />

IFT Colloquium, UAM, 04/04/13


Improving <strong>Event</strong> <strong>Simulation</strong><br />

Multijet<br />

Hard subprocess<br />

+Parton showering<br />

= Double counting??<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 53<br />

IFT Colloquium, UAM, 04/04/13


Matching & Merging<br />

• Two ra<strong>the</strong>r different objectives:<br />

• Matching parton showers to NLO matrix elements, without<br />

double counting<br />

✤<br />

✤<br />

MC@NLO<br />

POWHEG<br />

Frixione, BW, 2002<br />

Nason, 2004<br />

• Merging parton showers with LO n-jet matrix elements,<br />

minimizing jet resolution dependence<br />

✤<br />

✤<br />

✤<br />

CKKW<br />

Dipole<br />

MLM merging<br />

Catani, Krauss, Kühn, BW, 2001<br />

Lönnblad, 2001<br />

Mangano, 2002<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 54<br />

IFT Colloquium, UAM, 04/04/13


MC@NLO matching<br />

S Frixione & BW, JHEP 06(2002)029<br />

• Compute parton shower contributions (real and<br />

virtual) at NLO<br />

✤<br />

Generator-dependent<br />

• Subtract <strong>the</strong>se from exact NLO<br />

✤<br />

Cancels divergences of exact NLO!<br />

• Generate modified no-emission (LO+virtual) and<br />

real-emission hard process configurations<br />

✤<br />

Some may have negative weight<br />

• Pass <strong>the</strong>se through parton shower etc.<br />

✤<br />

Only shower-generated terms beyond NLO<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 55<br />

IFT Colloquium, UAM, 04/04/13


POWHEG matching<br />

P Nason, JHEP 11(2004)040<br />

• POsitive Weight Hardest Emission Generator<br />

•<br />

Use exact real-emission matrix element to generate<br />

hardest (highest relative pT) emission configurations<br />

✤<br />

✤<br />

✤<br />

No-emission probability implicitly modified<br />

(Almost) eliminates negative weights<br />

Some uncontrolled terms generated beyond NLO<br />

• Pass configurations through parton shower etc<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 56<br />

IFT Colloquium, UAM, 04/04/13


Z 0 at Tevatron<br />

http://mcplots.cern.ch/<br />

• Absolute normalization:<br />

LO too low<br />

• POWHEG agrees with<br />

rate and distribution<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 57<br />

IFT Colloquium, UAM, 04/04/13


pp → γγ at Tevatron Run II<br />

gg at Tevatron<br />

dσ/dp γγ<br />

⊥ /dM γγ [pb/GeV 2 ]<br />

10 −2 (a) 50 GeV< M γγ


W asymmetry at <strong>LHC</strong><br />

n II, pp → W → l ¯ν at <strong>LHC</strong> 7 TeV<br />

φ ∗ η<br />

Aµ<br />

MC/data<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

Muon charge asymmetry in W decays<br />

ATLAS data<br />

Herwig++ LO<br />

Herwig++ Powheg<br />

0 0.5 1 1.5 2<br />

A µ = N(µ+ ) − N(µ − )<br />

N(µ + )+N(µ − )<br />

|η µ |<br />

Lepton charge asymmetry<br />

-0.2<br />

-0.3<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 59<br />

IFT Colloquium, UAM, 04/04/13<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

pl<br />

T<br />

s=7 TeV<br />

> 20 GeV<br />

η µ = log tan(θ µ /2)<br />

-1<br />

ATLAS (extrapolated data, W → lν) 35 pb<br />

-1<br />

CMS (W→ µν) 36 pb<br />

-1<br />

<strong>LHC</strong>b (W→ µν) 36 pb<br />

MSTW08 prediction (MC@NLO, 90% C.L.)<br />

CTEQ66 prediction (MC@NLO, 90% C.L.)<br />

HERA1.0 prediction (MC@NLO, 90% C.L.)<br />

(a)<br />

ATLAS+CMS+<strong>LHC</strong>b<br />

Preliminary<br />

Figure 2: The lepton charge asymmetry from W-boson decays in bins of absolute pseudorapidity f<br />

•<br />

three different experiments ATLAS, CMS and <strong>LHC</strong>b. The asymmetry results of <strong>the</strong> <strong>LHC</strong>b and<br />

Asymmetry probes parton distributions<br />

Collaborations are obtained from <strong>the</strong> muon channel only and have been communicated within <strong>the</strong><br />

@ higher orders 5/21<br />

Electroweak Working <strong>Group</strong> by representatives of <strong>the</strong> respective collaborations.<br />

u ¯d → W + → µ + ν 4 Acknowledgments<br />

µ vs dū → W − → µ −¯ν µ<br />

⏐η ⏐<br />

ATLAS-CONF-1211-129<br />

We wish to thank <strong>the</strong> <strong>LHC</strong> Electroweak Working <strong>Group</strong>, in particular M. Mangano, T. Shears, R<br />

Nulty, M. Pioppi, P. Tan and G. H. de Monchenault <strong>for</strong> fruitful discussions on <strong>the</strong> definition of a com<br />

fiducial phase space and <strong>for</strong> <strong>the</strong> communication of <strong>the</strong> <strong>LHC</strong>b and CMS results.


Entries / 10 GeV<br />

Entries / 10 GeV<br />

700<br />

300<br />

600<br />

200<br />

500<br />

100<br />

Data 2011<br />

400<br />

MC@NLO<br />

0<br />

20 40 60 80 100 120 140 160 180 200<br />

300<br />

200<br />

100<br />

!<br />

Top quark at <strong>LHC</strong><br />

600<br />

ATLAS<br />

ATLAS<br />

500<br />

-1<br />

-1<br />

L dt = 2.05 fb<br />

!<br />

L dt = 2.05 fb<br />

5<br />

400<br />

Data 2011<br />

Data 2011<br />

ATLAS<br />

L dt = 2.05 fb<br />

-1<br />

1 The distribution of (a) lepton p T and (b) b-tagged jet p T <strong>for</strong> <strong>the</strong> selected events compared to <strong>the</strong> MC@NLO simulation<br />

events. 0The 0<br />

20<br />

data<br />

40<br />

is<br />

60<br />

shown<br />

80<br />

as<br />

100<br />

closed<br />

120<br />

(black)<br />

140 160<br />

circles<br />

180<br />

with<br />

200<br />

<strong>the</strong> statistical uncertainty.<br />

40 60 80<br />

The<br />

100<br />

MC@NLO<br />

120 140<br />

prediction<br />

160 180<br />

is normalised<br />

e data and is shown as a solid (red) line. The overflow events at high p T are added into <strong>the</strong> final bin of each histogram.<br />

Lepton p [GeV]<br />

b-tagged jet p [GeV]<br />

<strong>Event</strong>s / 20 GeV<br />

(a)<br />

T<br />

Entries / 10 GeV<br />

600 300<br />

500 200<br />

400 100<br />

3000<br />

200<br />

100<br />

!<br />

ATLAS<br />

L dt = 2.05 fb<br />

Data 2011<br />

MC@NLO<br />

40 60 80 100 120 140 160 180<br />

300<br />

-1<br />

1 The distribution of (a) lepton p T and (b) b-tagged jet p T <strong>for</strong> <strong>the</strong> selected events compared to <strong>the</strong> L dt MC@NLO = 2.05 fb<br />

-1<br />

500<br />

simulation<br />

events. The data is shown as closed !<br />

L (black) dt = 2.05 circles fb with <strong>the</strong> statistical uncertainty. The MC@NLO prediction is normalised<br />

250<br />

e data and is shown as a solid (red) line. The overflow events at high p T are added into <strong>the</strong> final bin of each histogram.<br />

400<br />

200<br />

Data 2011<br />

350<br />

MC@NLO<br />

600 300<br />

150<br />

ATLAS<br />

300<br />

ATLAS<br />

-1<br />

-1<br />

500<br />

!<br />

L dt = 2.05 fb<br />

200<br />

100 !<br />

L dt = 2.05 fb<br />

Data 2011<br />

250<br />

50<br />

400 100<br />

MC@NLO<br />

200<br />

Data 2011<br />

MC@NLO<br />

0<br />

3000<br />

150 50 100 150 200 250 300<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2<br />

<strong>Event</strong>s / 20 GeV<br />

700<br />

600<br />

500<br />

400<br />

350<br />

100<br />

50<br />

(a)<br />

!<br />

MC@NLO<br />

Lepton p<br />

T<br />

Leading additional jet p<br />

T<br />

(a)<br />

ATLAS<br />

[GeV]<br />

[GeV]<br />

ATLAS, arXiv:1203.5015<br />

dN / d|y|<br />

2 Distribution of (a) leading additional jet p T and (b) leading additional jet rapidity in <strong>the</strong> selected events compared<br />

e MC@NLO 0 simulation of t¯t events. The data is shown as closed 0 (black) circles with <strong>the</strong> statistical uncertainty. The<br />

NLO prediction is normalised to <strong>the</strong> data and is shown as a solid (red) line. In <strong>the</strong> p T distribution, <strong>the</strong> overflow events<br />

igh p T are added into <strong>the</strong> final bin of <strong>the</strong> histogram. In <strong>the</strong> rapidity distribution, variable bin sizes are used such that <strong>the</strong><br />

Entries / 10 GeV<br />

dN / d|y|<br />

600<br />

200<br />

100<br />

(b)<br />

(b)<br />

Data 2011<br />

(b)<br />

MC@NLO<br />

MC@NLO<br />

• Top pair production<br />

• ATLAS at <strong>LHC</strong> (7 TeV)<br />

• Rapidity<br />

• Both decays leptonic:<br />

S Frixione, P Nason, BW, JHEP 08(2003)007<br />

<strong>Event</strong> <strong>Simulation</strong><br />

50 100<br />

<strong>for</strong><br />

150<strong>the</strong> <strong>LHC</strong><br />

200 250 300<br />

0 0.2 0.4 0.6 0.8 1 1.260<br />

1.4 1.6 1.8 2<br />

IFT Colloquium, UAM, 04/04/13<br />

-1<br />

b-tagged jet p<br />

T<br />

!<br />

T<br />

ATLAS<br />

[GeV]<br />

Leading additional jet |y|<br />

y = 1 E +<br />

2 log pL<br />

E + p L<br />

t¯t → b¯bl + l − ν¯ν


Multijet Merging<br />

• Objective: merge LO n-jet matrix elements *<br />

with parton showers such that:<br />

Qcut<br />

✤<br />

✤<br />

✤<br />

Multijet rates <strong>for</strong> jet resolution > Qcut are<br />

correct to LO (up to Nmax)<br />

Shower generates jet structure below Qcut<br />

(and jets above Nmax)<br />

Leading (and next) Qcut dependence cancels<br />

q<br />

E<br />

* ALPGEN or MadGraph, n


!(W + " n-jets)<br />

!(W)<br />

!(W + " n-jets)<br />

!(W + " (n-1)-jets)<br />

-1<br />

10<br />

-2<br />

10<br />

-3<br />

10<br />

0.2<br />

0.1<br />

0<br />

CMS, JHEP01(2012)010<br />

data<br />

energy scale<br />

unfolding<br />

MadGraph Z2<br />

MadGraph D6T<br />

Pythia Z2<br />

W+jets at <strong>LHC</strong><br />

10 Results<br />

{<br />

merged<br />

(PS only)<br />

-1<br />

36 pb<br />

jet<br />

E T<br />

at<br />

s<br />

W $ e#<br />

= 7 TeV<br />

> 30 GeV<br />

CMS<br />

1 2 3 4<br />

inclusive jet multiplicity, n<br />

s σ(W+ ≥ n jets)/σ(W) (top) and σ(W+ ≥ n jets)/σ(W+ ≥ (n − 1) jets)<br />

tron channel compared with <strong>the</strong> expectations from two MADGRAPH tunes<br />

with error bars correspond to <strong>the</strong> data. The uncertainties due to <strong>the</strong> energy<br />

procedure are shown as yellow and hatched bands, respectively. The error<br />

tal uncertainty.<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 62<br />

IFT Colloquium, UAM, 04/04/13<br />

jets) [pb]<br />

"(W + !N jet<br />

Theory/Data<br />

10<br />

10<br />

10<br />

4<br />

3<br />

2<br />

10<br />

1<br />

1<br />

0<br />

%<br />

Ldt=36 pb<br />

-1<br />

anti-k T<br />

jets, R=0.4<br />

jet<br />

jet<br />

p >30 GeV, |y |


<strong>LHC</strong> Cross Section Summary<br />

The Standard Model in one slide<br />

•<br />

Tuesday, March 26, 2013<br />

Surprisingly good agreement<br />

Natural SUSY with ATLAS - 26th March 2013 - CERN<br />

• No sign of non-Standard-Model phenomena (yet)<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 63<br />

IFT Colloquium, UAM, 04/04/13


But all is not perfect ...<br />

• Dijet flavours versus jet pT<br />

16<br />

ATLAS, arXiv:1210.0441<br />

BB fraction [%]<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

Data stat. uncert. only<br />

Pythia 6.423<br />

Herwig++ 2.4.2<br />

Powheg + Pythia 6.423<br />

Total error<br />

ATLAS<br />

Data 2010,<br />

-1<br />

s= 7 TeV, !<br />

Ldt=39 pb<br />

50 100 200 300<br />

BC fraction [%]<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

!<br />

Data stat. uncert. only<br />

Pythia 6.423<br />

Herwig++ 2.4.2<br />

Powheg + Pythia 6.423<br />

Total error<br />

ATLAS<br />

Data 2010,<br />

Ldt=39 pb<br />

-1<br />

s= 7 TeV<br />

50 100 200 300<br />

CC fraction [%]<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Data stat. uncert. only<br />

Pythia 6.423<br />

Herwig++ 2.4.2<br />

Powheg + Pythia 6.423<br />

Total error<br />

ATLAS<br />

Data 2010,<br />

-1<br />

s= 7 TeV, !<br />

Ldt=39 pb<br />

50 100 200 300<br />

Jet p<br />

T<br />

[GeV]<br />

Jet p<br />

T<br />

[GeV]<br />

Jet p<br />

T<br />

[GeV]<br />

(a)<br />

(b)<br />

(c)<br />

BU fraction [%]<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

Data stat. uncert. only<br />

Pythia 6.423<br />

Herwig++ 2.4.2<br />

Powheg + Pythia 6.423<br />

Total error<br />

ATLAS<br />

Data 2010,<br />

-1<br />

s= 7 TeV, !<br />

Ldt=39 pb<br />

50 100 200 300<br />

[GeV]<br />

• Interesting<br />

(d)<br />

excess of<br />

(e)<br />

(single) b quark<br />

(f)<br />

jets<br />

Fig. 10 The unfolded dijet flavour fractions <strong>for</strong> each leading jet p T bin (black points) with PYTHIA 6.423 (squares), Herwig++ 2.4.2 (circles) and<br />

POWHEG+PYTHIA 6.423 (filled triangles) predictions overlaid. The error bars on <strong>the</strong> data points show statistical uncertainties only, whereas <strong>the</strong><br />

Jet p<br />

T<br />

full uncertainties appear as shaded bands.<br />

CU fraction [%]<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

Data stat. uncert. only<br />

Pythia 6.423<br />

Herwig++ 2.4.2<br />

Powheg + Pythia 6.423<br />

Total error<br />

ATLAS<br />

Data 2010,<br />

-1<br />

s= 7 TeV, !<br />

Ldt=39 pb<br />

50 100 200 300<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 64<br />

IFT Colloquium, UAM, 04/04/13<br />

Jet p<br />

T<br />

[GeV]<br />

UU fraction [%]<br />

94<br />

92<br />

90<br />

88<br />

86<br />

84<br />

82<br />

80<br />

78<br />

76<br />

74<br />

72<br />

Data stat. uncert. only<br />

Pythia 6.423<br />

Herwig++ 2.4.2<br />

Powheg + Pythia 6.423<br />

Total error<br />

ATLAS<br />

Data 2010,<br />

-1<br />

s= 7 TeV, !<br />

Ldt=39 pb<br />

50 100 200 300<br />

Jet p<br />

T<br />

[GeV]


The Higgs Boson<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 65<br />

IFT Colloquium, UAM, 04/04/13


Higgs Boson<br />

Opening ceremony, Paralympic Games, London, August 2012<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 66<br />

IFT Colloquium, UAM, 04/04/13


Higgs Boson<br />

`The Hunt <strong>for</strong> <strong>the</strong> Higgs’, BBC TV, January 2012<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 67<br />

IFT Colloquium, UAM, 04/04/13


The Standard Model<br />

PARADOX!<br />

g g H g g<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 68<br />

IFT Colloquium, UAM, 04/04/13


Higgs Production<br />

t t<br />

H<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 69<br />

IFT Colloquium, UAM, 04/04/13


Higgs Production<br />

t<br />

H<br />

t<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 70<br />

IFT Colloquium, UAM, 04/04/13


Higgs Decay<br />

g<br />

H<br />

t<br />

t<br />

g<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 71<br />

IFT Colloquium, UAM, 04/04/13


Higgs Decay<br />

g<br />

H<br />

W +<br />

W<br />

g<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 72<br />

IFT Colloquium, UAM, 04/04/13


Higgs Production & Decay<br />

g<br />

t<br />

H<br />

t<br />

t<br />

t<br />

g<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 73<br />

IFT Colloquium, UAM, 04/04/13


Higgs Production & Decay<br />

g<br />

t<br />

H<br />

W +<br />

t<br />

W<br />

g<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 74<br />

IFT Colloquium, UAM, 04/04/13


Higgs Production by<br />

Vector Boson Fusion<br />

W +<br />

H<br />

W −<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 75<br />

IFT Colloquium, UAM, 04/04/13


Higgs Production by<br />

Vector Boson Fusion<br />

W +<br />

H<br />

W −<br />

• Forward jets<br />

• Few central jets<br />

• Central jet veto<br />

increases S/B<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 76<br />

IFT Colloquium, UAM, 04/04/13


Higgs Production & Decay<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 77<br />

IFT Colloquium, UAM, 04/04/13


Higgs Production & Decay<br />

is<br />

d<br />

s,<br />

ta<br />

e<br />

i-<br />

s<br />

-<br />

d<br />

e<br />

-<br />

e<br />

-<br />

s-<br />

d<br />

g<br />

e<br />

-<br />

-<br />

).<br />

g<br />

<strong>Event</strong>s / 2 GeV<br />

<strong>Event</strong>s - Bkg<br />

weights / 2 GeV<br />

$<br />

$ weights - Bkg<br />

3500 ATLAS<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

100<br />

80<br />

60<br />

40<br />

20<br />

8<br />

4<br />

0<br />

-4<br />

-8<br />

ATLAS, Phys.Lett. B716(2012)1<br />

-1<br />

s=7 TeV, # Ldt=4.8fb<br />

-1<br />

s=8 TeV, # Ldt=5.9fb<br />

(a)<br />

Data<br />

Sig+Bkg Fit (m =126.5 GeV)<br />

H<br />

Bkg (4th order polynomial)<br />

H<br />

100 110 120 130 140 150 160<br />

(b)<br />

100 110 120 130 140 150 160<br />

(c)<br />

100 110 120 130 140 150 160<br />

(d)<br />

!"<br />

Data S/B Weighted<br />

Sig+Bkg Fit (m =126.5 GeV)<br />

H<br />

Bkg (4th order polynomial)<br />

100 110 120 130 140 150 160<br />

(() (*) (+) (,) (-)<br />

' γγ !"#$%&<br />

-<br />

m ! [GeV]<br />

e<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 78<br />

IFT Colloquium, UAM, 04/04/13<br />

./".01&!2$3456$7!89$:6;!/!(<br />

.01!?36<br />

1!?36!@A'BA:$:6<br />

±(σ<br />

±* σ<br />

89$:6;!/!(


tical leptons is taken into account [53, 55, 56].<br />

Higgs Signal and<br />

Table 1: <strong>Event</strong> generators used to model <strong>the</strong> signal and background<br />

Background<br />

processes. “PYTHIA” indicates that<br />

<strong>Simulation</strong><br />

PYTHIA6 and PYTHIA8 are<br />

used <strong>for</strong> simulations of √ s = 7TeV and √ s = 8TeV data, respectively.<br />

Process<br />

ggF, VBF<br />

WH, ZH, t¯tH<br />

W+jets, Z/γ ∗ +jets<br />

tt, tW, tb<br />

tqb<br />

q¯q → WW<br />

gg → WW<br />

q¯q → ZZ<br />

gg → ZZ<br />

WZ<br />

Wγ+jets<br />

Wγ ∗ [65]<br />

q¯q/gg → γγ<br />

Generator<br />

POWHEG [57, 58]+PYTHIA<br />

PYTHIA<br />

ALPGEN [59]+HERWIG<br />

MC@NLO [60]+HERWIG<br />

AcerMC [61]+PYTHIA<br />

MC@NLO+HERWIG<br />

gg2WW [62]+HERWIG<br />

POWHEG [63]+PYTHIA<br />

gg2ZZ [64]+HERWIG<br />

MadGraph+PYTHIA, HERWIG<br />

ALPGEN+HERWIG<br />

MadGraph+PYTHIA<br />

SHERPA<br />

The event generators used to model signal and backplied<br />

to accou<br />

simulation (e<br />

are used to c<br />

cation efficien<br />

4. H → ZZ (<br />

The search<br />

decay H →<br />

vides good s<br />

600 GeV), la<br />

lution of <strong>the</strong><br />

<strong>for</strong> Higgs bo<br />

isolated lepto<br />

tons with <strong>the</strong><br />

expected cros<br />

√<br />

cess H → ZZ<br />

s = 7TeVa<br />

The large<br />

(Z (∗) /γ ∗ )(Z (∗)<br />

ZZ (∗) . For lo<br />

ground contr<br />

ATLAS, Phys.Lett.B716(2012)1<br />

where charge<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 79<br />

IFT Colloquium, UAM, 04/04/13


Higgs Production & Decay<br />

Standard Model predictions <strong>for</strong> MH = 126 GeV:<br />

σ pp→H (7 TeV) = 17.5pb, σ pp→H (8 TeV) = 22.3pb<br />

Prob(H → γγ)=0.23 %<br />

σ pp→H→γγ (7 TeV) = 39 fb , σ pp→H→γγ (8 TeV) = 50 fb<br />

80+110 events after selection cuts and detector efficiencies<br />

Both ATLAS and CMS saw some excess<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 80<br />

IFT Colloquium, UAM, 04/04/13


Ratios to Standard Model<br />

• ;#7/'*,0#%'##K#F:A#L#B:A#<br />

#<br />

• ;''*.%-&#1#3)..)-##G)7#1<br />

./1'*7/./-0'8#3).+10%5%,%0<br />

• ().+10%5%,%02#>%04#!"#KF#><br />

)5'/79/6#./1'*7/./-0#%'#E<br />

#$%&'(()*+,-+.+/'-/%)'-0)*+,-'()*1&%-,12<br />

•<br />

!"#!$%&'()<br />

No sign (yet) of significant deviations from Standard Model<br />

! 34*%&$%05))6789))%:;%/1%05)"7


*)+%,,-)./-01(-<br />

%"&'$&()*%)*+,(-.'/"*$0<br />

',(/"?-@A-)(BB'-$C#=(=CD3-CD-EF)G82.-H3I ('-B?"J(#B<br />

55)&6'$$(7,)89:'/(:)<br />

:/2-" 1+/2-3456<br />

%-$OC##3%'-C?3-$"#'('D3#D-J(DO-DO3-@AN--J(DO(#-&#$3?DC(#D(3'-1'DCD('D($C%%M-="F(#CD3=6<br />

#)/*)9-(&",()2(',8-(2($/)*%)9-*9(-/"(,0<br />

" D',,0) F ) G-829/K-± L/9-1'DCD/6-± L/2-1'M'D/6<br />


• !%.+,/'0#1-1,2'%'#%'#0)#3).+*0/#04/#3).5%-/6#'%&-1,#'07/-&04#8#51'/6#)-#<br />

1,,#191%,15,/#%-+*0':##<br />

ATLAS Higgs Update<br />

• ;-#%-#<br />

04%'#01,?@#<br />

Higgs mass<br />

<br />

# HCP Symposium, • <strong>High</strong> Nov resolution 2012 mass • C7/9%)*'#7/'*,0#%-#D*,2#+1+/78#*'%-&#<br />

measurements<br />

T. Adye, Moriond,<br />

from<br />

March 2013<br />

H and (*) l EBFF#1-1,2'/'#)G##1-6#558#D*,2#<br />

spectra<br />

1-1,2'/'#G)7#8#HI,/+0)-8#1-6#JJ8#<br />

&19/##K#F:H#L#B:A##<br />

#<br />

• M/>#7/'*,0#%'##K#F:A#L#B:A#<br />

#<br />

• ;''*.%-&#1#3)..)-##G)7#1,,#<br />

./1'*7/./-0'8#3).+10%5%,%02#%'#ANO:#<br />

• ().+10%5%,%02#>%04#!"#KF#>%04#<br />

• Combine and 4l mass )5'/79/6#./1'*7/./-0#%'#EAO:#<br />

measurements<br />

<br />

• Signal strengths, and 4l , allowed to<br />

vary independently<br />

!"#!$%&'()%*+,*%,-*.<br />

Don’t assume SM couplings<br />

0.13 (stat) 0.14 (sys)<br />

! " # $%&'& ( )'%* +,-, * ' ' * +.+ GeV<br />

• Use profile likeliho<br />

<br />

# * / 0 <br />

/ 0<br />

m AB#<br />

H confidence inte<br />

• CMS plot corresponds to partial 8 TeV lumin<br />

nuisance paramet<br />

(4.8 fb -1 + 20.7 fb -1 )<br />

• Be careful when comparing numbers in <strong>the</strong> ta<br />

experimental syst<br />

• Previous measurement, Dec<br />

•<br />

2012:<br />

My “combination” between ATLAS and CMS<br />

• Asymptotically, -2<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 83<br />

IFT Colloquium, UAM, 04/04/13


in <strong>the</strong> ratio of <strong>the</strong>ir masses, up to simple factors reflecting <strong>the</strong> parti<br />

really so?<br />

To Be Confirmed<br />

The mass of 125 GeV makes <strong>the</strong> Standard Model Higgs boson exce<br />

to find.<br />

•<br />

However, once we<br />

Spin and parity 0 + have found <strong>the</strong> particle,<br />

: correlations in VV * this special m<br />

decays<br />

advantage. At this mass, <strong>the</strong> Standard Model Higgs boson has a la<br />

decay• channels Production with substantial mechanisms: branching gg, VBF, fractions WH,ZH, available ttH <strong>for</strong> stud<br />

Gianotti put it in her July 4 lecture: “Thank you, Nature.”<br />

• Self-coupling (HH production): difficult at <strong>LHC</strong><br />

• Total width 4.2 MeV: impossible?<br />

Mele reviewed <strong>the</strong> phenomenology of <strong>the</strong> Standard Model Higgs bos<br />

of 126. GeV, referring to it properties as “<strong>the</strong> new set of Standard Mod<br />

rameters” [23,24]. The predicted width of <strong>the</strong> boson is 4.2 MeV. The m<br />

fractions are:<br />

• Decay fractions:<br />

bb 56% τ + τ − 6.2% γγ 0.23%<br />

WW ∗ 23% ZZ ∗ 2.9% γZ 0.16%<br />

gg 8.5% cc 2.8% µ + µ − 0.02%<br />

For all of <strong>the</strong>se modes except cc, <strong>the</strong>re is a strategy to observe <strong>the</strong> deca<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 84<br />

IFT Colloquium, UAM, 04/04/13


Achievable Precision?<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 1: Capabilities of <strong>LHC</strong> <strong>for</strong> model-independent measurements of Higgs boson couplings.<br />

The plot shows 1 σ confidence intervals <strong>for</strong> <strong>LHC</strong> at 14 TeV with 300 fb −1 . No error<br />

is estimated <strong>for</strong> g(hcc). The marked horizontal band represents a 5% deviation from <strong>the</strong><br />

Standard Model prediction <strong>for</strong> <strong>the</strong> coupling.<br />

M Peskin, arXiv:1207.2516<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 85<br />

IFT Colloquium, UAM, 04/04/13


Achievable Precision?<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 2: Comparison of <strong>the</strong> capabilities of <strong>LHC</strong> and ILC <strong>for</strong> model-independent measurements<br />

of Higgs boson couplings. The plot shows (from left to right in each set of error<br />

bars) 1 σ confidence intervals <strong>for</strong> <strong>LHC</strong> at 14 TeV with 300 fb −1 , <strong>for</strong> ILC at 250 GeV and<br />

250 fb −1 (‘ILC1’), <strong>for</strong> <strong>the</strong> full ILC program up to 500 GeV with 500 fb −1 (‘ILC’), and <strong>for</strong> a<br />

program with 1000 fb −1 <strong>for</strong> an upgraded ILC at 1 TeV (‘ILCTeV’). The marked horizontal<br />

band represents a 5% deviation from <strong>the</strong> Standard Model prediction <strong>for</strong> <strong>the</strong> coupling.<br />

M Peskin, arXiv:1207.2516<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 86<br />

IFT Colloquium, UAM, 04/04/13


Status of <strong>the</strong> Standard Model<br />

• It is a respectable (renormalizable) quantum field <strong>the</strong>ory<br />

• All predicted relationships between measurable<br />

quantities are calculable (in principle)<br />

• Calculations need a short-distance (high-energy) cutoff,<br />

but are not sensitive to its scale or nature, as long as it<br />

respects SM symmetries<br />

• So a finite high-energy <strong>the</strong>ory (ultraviolet completion) is<br />

implicitly assumed<br />

• So far, predicted relationships are in satisfactory<br />

agreement with experiment (I believe)<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 87<br />

IFT Colloquium, UAM, 04/04/13


Consistency of SM<br />

• MW, mt predicted from MH<br />

• Pulls on observables<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 88<br />

IFT Colloquium, UAM, 04/04/13


Beyond <strong>the</strong><br />

Standard Model?<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 89<br />

IFT Colloquium, UAM, 04/04/13


Why BSM?<br />

• The Standard Model is incomplete<br />

✤<br />

No Dark Matter or Dark <strong>Energy</strong> (95% of Universe)<br />

✤<br />

✤<br />

✤<br />

No neutrino masses<br />

Not enough matter-antimatter asymmetry<br />

<br />

No unification of fundamental <strong>for</strong>ces<br />

• New phenomena at TeV<br />

scale could solve <strong>the</strong>se<br />

1<br />

<br />

60<br />

50<br />

40<br />

30<br />

20<br />

✤<br />

Leading ideas: Supersymmetry and Extra Dimensions<br />

1<br />

1<br />

<br />

1<br />

2<br />

SM<br />

MSSM<br />

10 1<br />

3<br />

1 am (10 −18 m)<br />

0<br />

2 4 6 8 10 12 14 16 18<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 90<br />

IFT Colloquium, UAM, 04/04/13<br />

log 10<br />

(E/GeV)<br />

<br />

<br />

<br />

Our world<br />

Our directions<br />

Extra directions


Christopher Young<br />

Christopher You<br />

Searching <strong>for</strong> new signals<br />

0-lepton m eff Analysis: Results<br />

0-lepton <strong>High</strong> Multiplicity Analy<br />

Entries / 100 GeV<br />

4<br />

10<br />

3<br />

10<br />

2<br />

10<br />

10<br />

-1<br />

!<br />

L dt = 4.7 fb<br />

Data 2011 ( s = 7 TeV)<br />

SM Total<br />

tt and single top<br />

Z+jets<br />

W+jets<br />

Diboson<br />

multijet<br />

SM+SU(500,570,0,10)<br />

SM+SU(2500,270,0,10)<br />

ATLAS Preliminary<br />

SRA<br />

1/2<br />

Number of Entries events / 100 / 2 GeV<br />

6<br />

10 10<br />

5<br />

10<br />

10<br />

4<br />

10<br />

3<br />

10 10<br />

2<br />

4<br />

3<br />

2<br />

10<br />

10<br />

10<br />

!<br />

L dt ~ 4.7 fb<br />

-1<br />

ATLAS Preliminary<br />

Data -1<br />

L dt =<br />

2011<br />

!<br />

4.7 fb<br />

( s<br />

Data 2011 ( s = 7 TeV)<br />

= 7 TeV)<br />

Background prediction<br />

SM Multi-jets Total (inc. tt# qq)<br />

tt Alpgen and single tt# top ql,ll<br />

Z+jets Alpgen W# (e,µ,%)$<br />

W+jets Alpgen Z# $<br />

Diboson Alpgen Z# %<br />

multijet SUSY m 0 =2960, m 1/2 =240<br />

SM+SU(500,570,0,10)<br />

SM+SU(2500,270,0,10)<br />

" 7 jets p<br />

T<br />

> 55 GeV<br />

ATLAS Preliminary<br />

SRA’<br />

1/2<br />

Number of events / 2 GeV<br />

6<br />

10<br />

5<br />

10<br />

4<br />

10<br />

3<br />

10<br />

10<br />

2<br />

10<br />

A<br />

1<br />

11<br />

1<br />

DATA / SM<br />

10<br />

2.50 500 1000 1500 2000 2500 3000 2.5 0 0 2 500 4 1000 6 1500 8 10 2000 12 250014 3000 16<br />

1.5 2<br />

1.5<br />

0.5 1<br />

1.5 2<br />

1<br />

1 0.5<br />

0<br />

0 0<br />

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000<br />

m eff<br />

(incl.) [GeV]<br />

miss<br />

1/2<br />

m eff / (incl.) [GeV [GeV]<br />

]<br />

DATA / SM<br />

DATA / Prediction<br />

-1<br />

2 20<br />

E T<br />

H T<br />

10<br />

DATA / Prediction<br />

-1<br />

1.5<br />

1<br />

0.5<br />

0<br />

0<br />

• “SUSY” = Constrained Minimal<br />

Supersymmetric Standard Model<br />

14 / 48<br />

• Huge parameter space still to explore<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 91<br />

IFT Colloquium, UAM, 04/04/13


A 7-Jet <strong>Event</strong><br />

Christopher Young<br />

0-lepton <strong>High</strong> Multiplicity Analysis: Re<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 92<br />

IFT Colloquium, UAM, 04/04/13


ATLAS SUSY Search<br />

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 26, 2013)<br />

Inclusive searches<br />

3rd gen.<br />

gluino<br />

mediated<br />

3rd gen. squarks<br />

direct production<br />

EW<br />

direct<br />

RPV Long-lived<br />

particles<br />

MSUGRA/CMSSM : 0 lep + j's + E T ,miss<br />

MSUGRA/CMSSM : 1 lep + j's + E T ,miss<br />

Pheno model : 0 lep + j's + E T ,miss<br />

Pheno model : 0 lep + j's + E T ,miss<br />

±<br />

±<br />

Gluino med.<br />

%<br />

! (<br />

~<br />

g"qq<br />

%<br />

! ) : 1 lep + j's + E<br />

~<br />

T ,miss<br />

GMSB ( l<br />

GMSB NLSP) (<br />

%<br />

# NLSP) : 2 lep : (OS) 1-2 #<br />

+ + j's j's + + E<br />

E T ,miss<br />

T ,miss<br />

GGM (bino NLSP) : & & + E<br />

T ,miss<br />

GGM (wino NLSP) : & + lep + E<br />

T ,miss<br />

GGM (higgsino-bino NLSP) : & + b + E<br />

T ,miss<br />

GGM (higgsino NLSP) : Z + jets + E T ,miss<br />

Gravitino LSP : 'monojet' + E T ,miss<br />

0<br />

g~ "bb! % : 0 lep + 3 b-j's + E<br />

0<br />

g~ "tt! %<br />

1<br />

T ,miss<br />

: 2 SS-lep + (0-3b-)j's + E<br />

1 0<br />

g~ "tt! %<br />

T ,miss<br />

: 0 lep + multi-j's + E<br />

1 0<br />

g~ "tt! %<br />

T ,miss<br />

0<br />

b<br />

~ ~ ~ ±<br />

b<br />

~ 1<br />

"t! % 1<br />

"b! %<br />

: 0 lep + 3 b-j's + E<br />

~ ~ ~ 1<br />

T ,miss<br />

bb,<br />

: 0 lep + 2-b-jets + E<br />

1<br />

T ,miss<br />

bb,<br />

: 2<br />

±<br />

t"b!<br />

~ ~<br />

% SS-lep + (0-3b-)j's + E<br />

~ 1<br />

T ,miss<br />

tt<br />

(light), :<br />

±<br />

t"b!<br />

~ % 1/2 lep (+ b-jet) + E<br />

1<br />

T ,miss<br />

tt<br />

(medium), : 1 lep<br />

±<br />

0<br />

~ ~ 0<br />

tt<br />

(heavy),<br />

~ t"t! % t"t! %<br />

t"b! % + b-jet + E<br />

1 ~<br />

T ,miss<br />

tt<br />

(medium), : 2 lep + E<br />

,miss<br />

~ ~<br />

1<br />

T<br />

tt<br />

(heavy), : 1 lep + b-jet + E<br />

1<br />

T ,miss<br />

: 0 lep + 6(2b-)jets + E<br />

1<br />

T ,miss<br />

tt<br />

(natural GMSB) : Z("ll) + b-jet + E<br />

~ ~ ~ ~<br />

T ,miss<br />

t 2<br />

t 2<br />

, t 2<br />

" t 1<br />

+Z : Z("ll) + 1 lep<br />

~ ~ ~ 0<br />

+ %-<br />

+ ~<br />

!% ! , ! " l$(l$<br />

% +%<br />

% l l l"l! %<br />

+ b-jet + E<br />

T ,miss<br />

L L<br />

,<br />

% : 2 lep + E<br />

1<br />

T ,miss<br />

)<br />

- % + %<br />

± % !<br />

0 ~ ~<br />

l l L<br />

l($ % $) : 3 lep + E<br />

% ±% 0 L<br />

l($ % ! , !<br />

$), l$ % "#$(#$ + E<br />

~<br />

% : 2 lep + E<br />

1 1 1<br />

T ,miss<br />

) : 2 #<br />

1 1 1<br />

T ,miss<br />

!% ! " l L<br />

$<br />

1 2<br />

( )% 0 ( )% 0<br />

T ,miss<br />

! ! " W * ! Z * ! : 3 lep + E<br />

% ± 1 2<br />

1 1<br />

T ,miss<br />

% ±<br />

Direct ! pair prod. (AMSB) : long-lived !<br />

1<br />

Stable<br />

~<br />

g, R-hadrons : low %<br />

', '&<br />

1<br />

GMSB, % ! 0 "& G ~ GMSB, stable # : low '<br />

: non-pointing photons<br />

% 0<br />

1<br />

! " qqµ (RPV) : µ<br />

LFV : pp"$ % + heavy<br />

LFV : pp"$ % #+X,<br />

#+X, $ % $ % displaced vertex<br />

1<br />

#"e+µ resonance<br />

#"e(µ)+# resonance<br />

Bilinear RPV CMSSM : 1 lep + 7 j's + E T ,miss<br />

%<br />

!<br />

+% % % %<br />

- + 0 0<br />

! , ! "W!<br />

, ! "ee$<br />

% +% %<br />

µ ,eµ$ : 4 lep + E<br />

1 1 -1<br />

0 1 1<br />

e<br />

T ,miss<br />

! ! , ..., ! "##$ : 3 lep + 1 # + E<br />

,miss<br />

~ e<br />

,e#$<br />

1 1 1<br />

#<br />

T<br />

~ ~<br />

g " qqq : 3-jet resonance pair<br />

g~ " tt, t"bs : 2 SS-lep + (0-3b-)j's + E<br />

T ,miss<br />

Scalar gluon : 2-jet resonance pair<br />

WIMP interaction (D5, Dirac !) : 'monojet' + E<br />

T ,miss<br />

-1<br />

L=5.8 fb , 8 TeV [ATLAS-CONF-2012-109]<br />

-1<br />

L=5.8 fb , 8 TeV [ATLAS-CONF-2012-104]<br />

-1<br />

L=5.8 fb , 8 TeV [ATLAS-CONF-2012-109]<br />

-1<br />

L=5.8 fb , 8 TeV [ATLAS-CONF-2012-109]<br />

-1<br />

L=4.7 fb , 7 TeV [1208.4688]<br />

-1<br />

L=4.7 fb , 7 TeV [1208.4688]<br />

-1<br />

L=20.7 fb , 8 TeV [1210.1314]<br />

-1<br />

L=4.8 fb , 7 TeV [1209.0753]<br />

-1<br />

L=4.8 fb , 7 TeV [ATLAS-CONF-2012-144]<br />

-1<br />

L=4.8 fb , 7 TeV [1211.1167]<br />

-1<br />

L=5.8 fb , 8 TeV [ATLAS-CONF-2012-152]<br />

-1<br />

L=10.5 fb , 8 TeV [ATLAS-CONF-2012-147]<br />

-1<br />

L=12.8 fb , 8 TeV [ATLAS-CONF-2012-145]<br />

-1<br />

L=20.7 fb , 8 TeV [ATLAS-CONF-2013-007]<br />

-1<br />

L=5.8 fb , 8 TeV [ATLAS-CONF-2012-103]<br />

-1<br />

L=12.8 fb , 8 TeV [ATLAS-CONF-2012-145]<br />

-1<br />

L=12.8 fb , 8 TeV [ATLAS-CONF-2012-165]<br />

-1<br />

L=20.7 fb , 8 TeV [ATLAS-CONF-2013-007]<br />

-1<br />

L=4.7 fb , 7 TeV [1208.4305, 1209.2102]<br />

-1<br />

L=20.7 fb , 8 TeV [ATLAS-CONF-2013-037]<br />

-1<br />

L=13.0 fb , 8 TeV [ATLAS-CONF-2012-167]<br />

-1<br />

L=20.7 fb , 8 TeV [ATLAS-CONF-2013-037]<br />

-1<br />

L=20.5 fb , 8 TeV [ATLAS-CONF-2013-024]<br />

-1<br />

L=20.7 fb , 8 TeV [ATLAS-CONF-2013-025]<br />

-1<br />

L=20.7 fb , 8 TeV [ATLAS-CONF-2013-025]<br />

-1<br />

L=4.7 fb , 7 TeV [1208.2884]<br />

-1<br />

L=4.7 fb , 7 TeV [1208.2884]<br />

-1<br />

L=20.7 fb , 8 TeV [ATLAS-CONF-2013-028]<br />

-1<br />

L=20.7 fb , 8 TeV [ATLAS-CONF-2013-035]<br />

-1<br />

L=20.7 fb , 8 TeV [ATLAS-CONF-2013-035]<br />

-1<br />

L=4.7 fb , 7 TeV [1210.2852]<br />

-1<br />

L=4.7 fb , 7 TeV [1211.1597]<br />

-1<br />

L=4.7 fb , 7 TeV [1211.1597]<br />

-1<br />

L=4.7 fb , 7 TeV [ATLAS-CONF-2013-016]<br />

-1<br />

L=4.4 fb , 7 TeV [1210.7451]<br />

-1<br />

L=4.6 fb , 7 TeV [1212.1272]<br />

-1<br />

L=4.6 fb , 7 TeV [1212.1272]<br />

-1<br />

L=4.7 fb , 7 TeV [ATLAS-CONF-2012-140]<br />

-1<br />

L=20.7 fb , 8 TeV [ATLAS-CONF-2013-036]<br />

-1<br />

L=20.7 fb , 8 TeV [ATLAS-CONF-2013-036]<br />

-1<br />

L=4.6 fb , 7 TeV [1210.4813]<br />

-1<br />

L=20.7 fb , 8 TeV [ATLAS-CONF-2013-007]<br />

-1<br />

L=4.6 fb , 7 TeV [1210.4826]<br />

-1<br />

L=10.5 fb , 8 TeV [ATLAS-CONF-2012-147]<br />

167 GeV<br />

85-195 GeV<br />

~ ~<br />

1.50 TeV q = g mass<br />

~ ~<br />

1.24 TeV q = g mass<br />

~<br />

g mass<br />

~<br />

% 0<br />

1.18 TeV<br />

(m( q) < 2 TeV, light ! ) ATLAS<br />

1<br />

~<br />

q mass<br />

~<br />

% 0<br />

1.38 TeV<br />

(m( g) < 2 TeV, light ! )<br />

Preliminary<br />

1<br />

~<br />

0<br />

±<br />

0<br />

900 GeV g mass (m(<br />

%<br />

! ) < 200 GeV, m(<br />

%<br />

! ) =<br />

1<br />

(m(<br />

%<br />

! )+m(<br />

~<br />

g))<br />

1<br />

~<br />

2<br />

1.24 TeV g mass (tan" < 15)<br />

~<br />

1.40 TeV g mass (tan" > 18)<br />

~<br />

g mass<br />

% 0<br />

1.07 TeV<br />

(m(!<br />

) > 50 GeV)<br />

1<br />

-1<br />

~<br />

619 GeV g mass ) Ldt = (4.4 - 20.7) fb<br />

~<br />

g mass<br />

% 0<br />

900 GeV<br />

~<br />

g mass (m(H ~ (m(!<br />

) > 220 GeV)<br />

1<br />

s = 7, 8 TeV<br />

690 GeV<br />

) > 200<br />

1/2<br />

-4<br />

F scale (m(G ~ GeV)<br />

645 GeV<br />

) > 10 eV)<br />

~<br />

0<br />

1.24 TeV g mass (m(<br />

%<br />

! ) < 200 GeV)<br />

1<br />

~<br />

g mass<br />

% 0<br />

900 GeV<br />

(any m( ! ))<br />

8 TeV, all 2012 data<br />

1<br />

~<br />

g mass<br />

% 0<br />

1.00 TeV<br />

(m(!<br />

) < 300 GeV)<br />

1<br />

~<br />

g mass<br />

% 0<br />

8 TeV, partial 2012 data<br />

1.15 TeV<br />

(m(!<br />

) < 200 GeV)<br />

~<br />

1<br />

0<br />

620 GeV<br />

~<br />

b mass (m(<br />

%<br />

! ) < 120 GeV)<br />

7 TeV, all 2011 data<br />

1<br />

~<br />

b mass<br />

% ± % 0<br />

430 GeV<br />

(m(!<br />

) = 2 m( ! ))<br />

1<br />

1<br />

0<br />

t mass (m(<br />

%<br />

! ) = 55 GeV)<br />

1 ~<br />

t mass<br />

% 0<br />

% ±<br />

160-410 GeV<br />

(m(!<br />

) = 0 GeV, m( ! ) = 150 GeV)<br />

~<br />

1<br />

1<br />

0<br />

~ ±<br />

160-440 GeV t mass (m(<br />

%<br />

! ) = 0 GeV, m( t)-m(<br />

%<br />

! ) = 10 GeV)<br />

~<br />

1<br />

1<br />

t<br />

~<br />

mass<br />

% 0<br />

200-610 GeV<br />

(m(!<br />

) = 0)<br />

1<br />

~<br />

t mass<br />

% 0<br />

320-660 GeV<br />

(m(!<br />

) = 0)<br />

1<br />

0<br />

t mass<br />

%<br />

500 GeV<br />

(m(!<br />

) > 150 GeV)<br />

~<br />

1<br />

~<br />

0<br />

520 GeV<br />

~<br />

t 2<br />

mass (m( t ) = m(<br />

%<br />

! ) + 180 GeV)<br />

1 1<br />

0<br />

l mass (m(<br />

%<br />

! ) = 0)<br />

1<br />

% ±<br />

0<br />

~<br />

± 0<br />

! mass (m(<br />

%<br />

! ) < 10 GeV, m( l,$ % ) =<br />

1<br />

(m(<br />

%<br />

! ) + m(<br />

%<br />

110-340 GeV<br />

! )))<br />

% ± 1<br />

1<br />

0<br />

± 0<br />

! mass (m(<br />

%<br />

! ) < 10 GeV, m(<br />

%<br />

#,$ % 2 1 1<br />

) =<br />

1<br />

(m(<br />

%<br />

! ) + m(<br />

%<br />

180-330 GeV<br />

! )))<br />

1<br />

1<br />

2 1 1<br />

% ±<br />

± 0 0 ~<br />

600 GeV ! mass (m(<br />

%<br />

! ) = m(<br />

%<br />

! ), m(<br />

%<br />

! ) = 0, m( l,$ % ) as above)<br />

% ±<br />

1<br />

1 2 1<br />

± 0 0<br />

! mass (m(<br />

%<br />

! ) = m(<br />

%<br />

! ), m(<br />

%<br />

315 GeV<br />

! ) = 0, sleptons decoupled)<br />

% ± 1<br />

1 2 1<br />

±<br />

! mass (1 < #(<br />

%<br />

! ) < 10 ns)<br />

1<br />

1<br />

~<br />

985 GeV g mass<br />

%<br />

300 GeV # mass (5 < tan' < 20)<br />

% 0<br />

0<br />

! mass (0.4 < #(<br />

%<br />

! ) < 2 ns)<br />

1<br />

1~<br />

q mass (1 mm<br />

~<br />

700 GeV<br />

$ % $ % < c# < 1 m, g decoupled)<br />

,<br />

1.61 TeV # mass (! =0.10, ! =0.05)<br />

311<br />

132<br />

,<br />

1.10 TeV # mass (! =0.10, ! =0.05)<br />

311<br />

1(2)33<br />

% +<br />

!<br />

% +<br />

!<br />

~<br />

q =<br />

~<br />

1.2 TeV g mass (c# < 1 mm)<br />

mass (m(<br />

%<br />

760 GeV<br />

!<br />

0<br />

LSP<br />

) > 300 GeV, (<br />

1<br />

> 0)<br />

mass (m(<br />

%<br />

350 GeV<br />

!<br />

0<br />

1<br />

121<br />

) > 80 GeV, (<br />

1<br />

~<br />

> 0)<br />

1<br />

133<br />

666 GeV g mass<br />

~<br />

~<br />

880 GeV g mass (any m( t))<br />

sgluon mass (incl. limit from 1110.2693)<br />

704 GeV M* scale (m ! < 80 GeV, limit of < 687 GeV <strong>for</strong> D8)<br />

220 GeV<br />

230 GeV<br />

100-287 GeV<br />

*Only a selection of <strong>the</strong> available mass limits on new states or phenomena shown.<br />

All limits quoted are observed minus 1# <strong>the</strong>oretical signal cross section uncertainty.<br />

-1<br />

10 1 10<br />

Mass scale [TeV]<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 93<br />

IFT Colloquium, UAM, 04/04/13


ATLAS Exotica Search<br />

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: HCP 2012)<br />

New quarks LQ V' CI Extra dimensions<br />

O<strong>the</strong>r Excit.<br />

ferm.<br />

Large ED (ADD) : monojet + E T ,miss<br />

Large ED (ADD) : monophoton + E T ,miss<br />

Large ED (ADD) : diphoton & dilepton, m # # / ll<br />

UED : diphoton + E T ,miss<br />

1<br />

S /Z 2<br />

ED : dilepton, m ll<br />

RS1 : diphoton & dilepton, m # # / ll<br />

RS1 : ZZ resonance, m llll / lljj<br />

RS1 : WW resonance, m T ,l" l"<br />

RS g !tt (BR=0.925) : tt ! l+jets, m<br />

KK<br />

tt,boosted<br />

ADD BH (M TH<br />

/M D<br />

=3) : SS dimuon, N ch. part.<br />

ADD BH (M TH<br />

/M D<br />

=3) : leptons + jets, 'p<br />

Quantum black hole : dijet, F &<br />

(m T<br />

jj<br />

)<br />

qqqq contact interaction : &(m )<br />

jj<br />

qqll CI : ee & µµ, m<br />

ll<br />

uutt CI : SS dilepton + jets + E T ,miss<br />

Z' (SSM) : m ee/µµ<br />

Z' (SSM) : m $$<br />

W' (SSM) : m T,e/µ<br />

W' (! tq, g =1) : m<br />

R tq<br />

W' R<br />

(! tb, SSM) : m<br />

W* : m T,e/µ<br />

Scalar LQ pair (!=1) : kin. vars. in eejj, e"jj<br />

Scalar LQ pair (!=1) : kin. vars. in µµjj, µ"jj<br />

Scalar LQ pair (%=1) : kin. vars. in $$jj, $"jj<br />

th<br />

4 generation : t't'! WbWb<br />

th<br />

4 generation : b'b'(T T 5/3<br />

)! WtWt<br />

5/3<br />

New quark b' : b'b'! Zb+X, m<br />

Top partner : TT ! tt + A 0<br />

A 0<br />

(dilepton, M )<br />

T2<br />

Vector-like quark : CC, m l" q<br />

Vector-like quark : NC, m llq<br />

Excited quarks : #-jet resonance, m<br />

Excited quarks : dijet resonance, m # jet<br />

jj<br />

Excited lepton : l-# resonance, m<br />

l#<br />

Techni-hadrons (LSTC) : dilepton, m ee/µµ<br />

Techni-hadrons (LSTC) : WZ resonance ("lll), m<br />

T ,WZ<br />

Major. neutr. (LRSM, no mixing) : 2-lep + jets<br />

W R<br />

(LRSM, no mixing) : 2-lep + jets<br />

±±<br />

±±<br />

HL<br />

(DY prod., BR(H !ll)=1) : SS ee (µµ), m<br />

±±<br />

L ±±<br />

ll<br />

H (DY prod., BR(H !eµ)=1) : SS eµ, m<br />

L<br />

L<br />

eµ<br />

Color octet scalar : dijet resonance, m jj<br />

tb<br />

Zb<br />

-1<br />

L=4.7 fb , 7 TeV [1210.4491]<br />

-1<br />

L=4.6 fb , 7 TeV [1209.4625]<br />

-1<br />

L=4.7 fb , 7 TeV [1211.1150]<br />

-1<br />

L=4.8 fb , 7 TeV [ATLAS-CONF-2012-072]<br />

-1<br />

L=4.9-5.0 fb , 7 TeV [1209.2535]<br />

-1<br />

L=4.7-5.0 fb , 7 TeV [1210.8389]<br />

-1<br />

L=1.0 fb , 7 TeV [1203.0718]<br />

-1<br />

L=4.7 fb , 7 TeV [1208.2880]<br />

-1<br />

L=4.7 fb , 7 TeV [ATLAS-CONF-2012-136]<br />

-1<br />

L=1.3 fb , 7 TeV [1111.0080]<br />

-1<br />

L=1.0 fb , 7 TeV [1204.4646]<br />

-1<br />

L=4.7 fb , 7 TeV [1210.1718]<br />

-1<br />

L=4.8 fb , 7 TeV [ATLAS-CONF-2012-038]<br />

-1<br />

L=4.9-5.0 fb , 7 TeV [1211.1150]<br />

-1<br />

L=1.0 fb , 7 TeV [1202.5520]<br />

-1<br />

L=5.9-6.1 fb , 8 TeV [ATLAS-CONF-2012-129]<br />

-1<br />

L=4.7 fb , 7 TeV [1210.6604]<br />

-1<br />

L=4.7 fb , 7 TeV [1209.4446]<br />

-1<br />

L=4.7 fb , 7 TeV [1209.6593]<br />

-1<br />

L=1.0 fb , 7 TeV [1205.1016]<br />

-1<br />

L=4.7 fb , 7 TeV [1209.4446]<br />

-1<br />

L=1.0 fb , 7 TeV [1112.4828]<br />

-1<br />

L=1.0 fb , 7 TeV [1203.3172]<br />

-1<br />

L=4.7 fb , 7 TeV [Preliminary]<br />

-1<br />

L=4.7 fb , 7 TeV [1210.5468]<br />

-1<br />

L=4.7 fb , 7 TeV [ATLAS-CONF-2012-130]<br />

-1<br />

L=2.0 fb , 7 TeV [1204.1265]<br />

-1<br />

L=4.7 fb , 7 TeV [1209.4186]<br />

-1<br />

L=4.6 fb , 7 TeV [ATLAS-CONF-2012-137]<br />

-1<br />

L=4.6 fb , 7 TeV [ATLAS-CONF-2012-137]<br />

-1<br />

L=2.1 fb , 7 TeV [1112.3580]<br />

-1<br />

L=13.0 fb , 8 TeV [ATLAS-CONF-2012-148]<br />

-1<br />

L=13.0 fb , 8 TeV [ATLAS-CONF-2012-146]<br />

-1<br />

L=4.9-5.0 fb , 7 TeV [1209.2535]<br />

-1<br />

L=1.0 fb , 7 TeV [1204.1648]<br />

-1<br />

L=2.1 fb , 7 TeV [1203.5420]<br />

-1<br />

L=2.1 fb , 7 TeV [1203.5420]<br />

-1<br />

L=4.7 fb , 7 TeV [1210.5070]<br />

-1<br />

L=4.7 fb , 7 TeV [1210.5070]<br />

-1<br />

L=4.8 fb , 7 TeV [1210.1718]<br />

430 GeV<br />

400 GeV<br />

409 GeV<br />

375 GeV<br />

483 GeV<br />

483 GeV<br />

4.37 TeV M D (-=2)<br />

1.93 TeV M D (-=2)<br />

M S (HLZ -=3, NLO) ATLAS<br />

4.18 TeV<br />

-1<br />

Preliminary<br />

1.41 TeV Compact. scale R<br />

-1<br />

4.71 TeV M KK ~ R<br />

2.23 TeV Graviton mass (k/M Pl = 0.1)<br />

845 GeV Graviton mass (k/M Pl = 0.1)<br />

-1<br />

1.23 TeV Graviton mass (k/M Pl = 0.1) . Ldt = (1.0 - 13.0) fb<br />

1.9 TeV g mass<br />

KK<br />

M (-=6)<br />

s = 7, 8 TeV<br />

1.25 TeV D<br />

1.5 TeV M D (-=6)<br />

4.11 TeV M D (-=6)<br />

7.8 TeV +<br />

13.9 TeV + (constructive int.)<br />

1.7 TeV +<br />

2.49 TeV Z' mass<br />

1.4 TeV Z' mass<br />

2.55 TeV W' mass<br />

W' mass<br />

1.13 TeV W' mass<br />

2.42 TeV W* mass<br />

st<br />

660 GeV 1 gen. LQ mass<br />

nd<br />

685 GeV 2 gen. LQ mass<br />

rd<br />

3 gen. LQ mass<br />

656 GeV t' mass<br />

670 GeV b' (T ) mass<br />

5/3<br />

b' mass<br />

T mass (m(A ) < 100 GeV)<br />

0<br />

1.12 TeV VLQ mass (charge -1/3, coupling , qQ = "/m Q<br />

)<br />

1.08 TeV VLQ mass (charge 2/3, coupling , qQ = "/m Q<br />

)<br />

2.46 TeV q* mass<br />

3.84 TeV q* mass<br />

2.2 TeV l* mass (+ = m(l*))<br />

850 GeV ( T<br />

/* T<br />

mass (m(( /* T<br />

) - m() T<br />

) = M )<br />

T<br />

W<br />

( mass (m(( ) = m() T<br />

) + m W , m(a ) = 1.1 m(( ))<br />

T<br />

T<br />

T<br />

T<br />

1.5 TeV N mass (m(W ) = 2 TeV)<br />

R<br />

2.4 TeV W R mass (m(N) < 1.4 TeV)<br />

±±<br />

HL<br />

mass (limit at 398 GeV <strong>for</strong> µµ)<br />

±±<br />

HL<br />

mass<br />

Scalar resonance mass<br />

538 GeV<br />

1.86 TeV<br />

*Only a selection of <strong>the</strong> available mass limits on new states or phenomena shown<br />

-1<br />

10 1 10<br />

10<br />

Mass scale [TeV]<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 94<br />

IFT Colloquium, UAM, 04/04/13<br />

2


CMS Exotica Search<br />

CMS EXOTICA 95% CL EXCLUSION LIMITS (TEV)<br />

q* (qg), dijet<br />

q* (qW)<br />

q* (qZ)<br />

q* , dijet pair<br />

q* , boosted Z<br />

e*, ! = 2 TeV<br />

"*, ! = 2 TeV<br />

Z’SSM (ee, µµ)<br />

Z’SSM (##)<br />

Z’ (tt hadronic) width=1.2%<br />

Z’ (dijet)<br />

Z’ (tt lep+jet) width=1.2%<br />

Z’SSM (ll) fbb=0.2<br />

G (dijet)<br />

G (ttbar hadronic)<br />

G (jet+MET) k/M = 0.2<br />

G ($$) k/M = 0.1<br />

G (Z(ll)Z(qq)) k/M = 0.1<br />

W’ (l%)<br />

W’ (dijet)<br />

W’ (td)<br />

W’→ WZ(leptonic)<br />

WR’ (tb)<br />

WR, MNR=MWR/2<br />

WKK " = 10 TeV<br />

&TC, 'TC > 700 GeV<br />

String Resonances (qg)<br />

s8 Resonance (gg)<br />

E6 diquarks (qq)<br />

Axigluon/Coloron (qqbar)<br />

gluino, 3jet, RPV<br />

gluino, Stopped Gluino<br />

stop, HSCP<br />

stop, Stopped Gluino<br />

stau, HSCP, GMSB<br />

hyper-K, hyper-&=1.2 TeV<br />

neutralino, c#


<strong>LHC</strong> Future Prospects<br />

• <strong>LHC</strong> ran pp at 8 TeV until end of 2012<br />

✤<br />

23 fb -1 begins to test main Higgs properties<br />

✤<br />

No sign of beyond-Standard-Model processes yet<br />

• Restart late 2014 at 13 TeV<br />

✤ ~300 fb -1 by 2021: Higgs properties to ~10%<br />

✤<br />

New physics searches to multi-TeV range<br />

• Luminosity upgrade ~2023 3000 fb -1 by 2030?<br />

• <strong>Energy</strong> upgrade > 2035 would need new magnets or tunnel<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 96<br />

IFT Colloquium, UAM, 04/04/13


Conclusions and Prospects<br />

• Standard Model has (so far) been spectacularly<br />

confirmed at <strong>the</strong> <strong>LHC</strong><br />

• Monte Carlo event generation of (SM and BSM)<br />

signals and backgrounds plays a big part<br />

• Matched NLO and merged multi-jet generators<br />

have proved essential<br />

✤ Automation and NLO merging in progress<br />

✤<br />

NNLO much more challenging<br />

• Still plenty of scope <strong>for</strong> new discoveries!<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 97<br />

IFT Colloquium, UAM, 04/04/13


Thanks <strong>for</strong> listening!<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 98<br />

IFT Colloquium, UAM, 04/04/13


Backup<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 99<br />

IFT Colloquium, UAM, 04/04/13


<strong>LHC</strong> Future Prospects<br />

Under way<br />

"#$%&'("#')<br />

<strong>High</strong>ly speculative<br />

Previous machine<br />

!"#$%&'(()'*+&',-.."/0&'1"2&0"3&'-4'567'839'"1.'$,#%89&.)'<br />

Present machine<br />

Brüling et al., CERN-ATS-2012-237<br />

(submission to European Strategy<br />

Symposium, Krakow, Sept 2012)<br />

&'#%(#)*'#+%,,-./'#%+)-%0,#%(#1#2-3*#40'536#728#-0#)*'#728#)900'/:#;-)*#1#+


MC@NLO matching<br />

dσ NLO =<br />

≡<br />

<br />

finite virtual<br />

B (Φ B )+V (Φ B ) −<br />

<br />

B + V −<br />

<br />

C dΦ R<br />

<br />

<br />

i<br />

S Frixione & BW, JHEP 06(2002)029<br />

divergent<br />

C i (Φ B , Φ R )dΦ R<br />

<br />

dΦ B + R (Φ B , Φ R )dΦ B dΦ R<br />

dΦ B + R dΦ B dΦ R<br />

<br />

dσ MC = B (Φ B )dΦ B ∆ MC (0) + R <br />

MC (Φ B , Φ R )<br />

∆ MC (k T (Φ B , Φ R )) dΦ R<br />

B (Φ B )<br />

≡ B dΦ B [∆ MC (0) + (R MC /B) ∆ MC (k T )dΦ R ]<br />

dσ MC@NLO =<br />

<br />

B + V +<br />

<br />

(R MC − C) dΦ R<br />

<br />

dΦ B [∆ MC (0) + (R MC /B) ∆ MC (k T )dΦ R ]<br />

finite > < 0<br />

+(R − R MC )∆ MC (k T )dΦ B dΦ R<br />

• Expanding gives NLO result<br />

MC starting from no emission<br />

MC starting from one emission<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 101<br />

IFT Colloquium, UAM, 04/04/13


POWHEG matching<br />

dσ MC = B (Φ B )dΦ B<br />

<br />

∆ MC (0) + R MC (Φ B , Φ R )<br />

B (Φ B )<br />

dσ PH = B (Φ B )dΦ B<br />

<br />

∆ R (0) + R (Φ B, Φ R )<br />

B (Φ B )<br />

B (Φ B )=B (Φ B )+V (Φ B )+<br />

∆ R (p T )=exp<br />

<br />

−<br />

dΦ R<br />

R (Φ B , Φ R )<br />

B (Φ B )<br />

R (Φ B , Φ R ) − i<br />

P Nason, JHEP 11(2004)040<br />

<br />

∆ MC (k T (Φ B , Φ R )) dΦ R<br />

∆ R (k T (Φ B , Φ R )) dΦ R<br />

<br />

C i (Φ B , Φ R )<br />

<br />

dΦ R<br />

<br />

θ (k T (Φ B , Φ R ) − p T )<br />

• NLO with (almost) no negative weights<br />

• <strong>High</strong> pT always enhanced by<br />

arbitrary NNLO<br />

K = B/B =1+O(α S )<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 102<br />

IFT Colloquium, UAM, 04/04/13


W & Z 0 at Tevatron<br />

Z boson pT spectrum compared to D0 run II data<br />

rell-Yan vector boson production Drell-Yan vector boson production<br />

W boson pT spectrum compared to D0 run I data<br />

D0 Run I: W<br />

D0 Run II: Z 0<br />

(with MEC)<br />

(with MEC)<br />

•<br />

Blue dashes: MC@NLO<br />

Herwig++ includes W/Z+jet (MEC)<br />

• All agree (tuned) at Tevatron<br />

• Normalized to data<br />

lid line: NLO Herwig++ POWHEG<br />

Red dashes: Herwig++ with ME corrections<br />

Solid line: NLO Herwig++ POWHEG Blue dashes: MC@NLO<br />

Red dashes: Herwig++ with ME corrections<br />

Hamilton, Richardson, Tully JHEP10(2008)015<br />

<strong>Event</strong> <strong>Simulation</strong> <strong>for</strong> <strong>the</strong> <strong>LHC</strong> 103<br />

IFT Colloquium, UAM, 04/04/13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!