09.01.2014 Views

Aquatic Macrophytes at the Henry's Fork of the Snake River in 2009

Aquatic Macrophytes at the Henry's Fork of the Snake River in 2009

Aquatic Macrophytes at the Henry's Fork of the Snake River in 2009

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Aqu<strong>at</strong>ic</strong> <strong>Macrophytes</strong> <strong>at</strong> <strong>the</strong><br />

Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong> dur<strong>in</strong>g <strong>2009</strong><br />

Photo by Anne Marie Emery Miller<br />

Prepared by:<br />

Adonia R. Henry<br />

Scaup & Willet LLC<br />

70 Grays Lake Rd.<br />

Wayan, ID 83285<br />

Prepared for:<br />

The Henry’s <strong>Fork</strong> Found<strong>at</strong>ion<br />

Ashton, ID<br />

F<strong>in</strong>al Report<br />

January 2010


This page left <strong>in</strong>tentionally blank.<br />

ii


ABSTRACT<br />

<strong>Aqu<strong>at</strong>ic</strong> macrophytes <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho provide important habit<strong>at</strong> for<br />

over-w<strong>in</strong>ter<strong>in</strong>g juvenile ra<strong>in</strong>bow trout (Oncorhynchus mykiss) and macro<strong>in</strong>vertebr<strong>at</strong>es, <strong>in</strong>clud<strong>in</strong>g<br />

Trichoptera, Ephemeroptera, and Diptera, th<strong>at</strong> are important food resources for ra<strong>in</strong>bow trout.<br />

<strong>Aqu<strong>at</strong>ic</strong> macrophytes also provide important components <strong>of</strong> summer habit<strong>at</strong> for adult and subadult<br />

trout, <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>creased w<strong>at</strong>er depths for a given flow, <strong>in</strong>creased channel complexity,<br />

decreased w<strong>at</strong>er velocity, and overhead concealment. Loss <strong>of</strong> habit<strong>at</strong> is one <strong>of</strong> <strong>the</strong> factors<br />

<strong>at</strong>tributed to <strong>the</strong> decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> trout fishery <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong>, but no d<strong>at</strong>a on aqu<strong>at</strong>ic<br />

macrophytes has been collected s<strong>in</strong>ce 2001. <strong>Aqu<strong>at</strong>ic</strong> macrophytes <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> were<br />

periodically sampled from 1958 to 2001. Different sampl<strong>in</strong>g methods make comparisons <strong>of</strong><br />

historical results challeng<strong>in</strong>g. However, decreas<strong>in</strong>g trends <strong>in</strong> veget<strong>at</strong>ion abundance have been<br />

<strong>at</strong>tributed to <strong>in</strong>flux <strong>of</strong> large quantities <strong>of</strong> sediment from draw downs <strong>at</strong> Island Park Reservoir,<br />

extremely high spr<strong>in</strong>g flows, low w<strong>in</strong>ter flows and associ<strong>at</strong>ed ice scour, and forag<strong>in</strong>g by<br />

trumpeter swans and o<strong>the</strong>r w<strong>at</strong>erfowl. The objectives <strong>of</strong> this study are to: 1) assess <strong>the</strong> current<br />

condition <strong>of</strong> aqu<strong>at</strong>ic macrophytes; 2) compare <strong>the</strong> current condition <strong>of</strong> aqu<strong>at</strong>ic macrophytes to<br />

historical surveys; 3) assess river substr<strong>at</strong>e and river channel cross sections <strong>at</strong> ten transects with<strong>in</strong><br />

and adjacent to Harriman St<strong>at</strong>e Park; and 4) explore prelim<strong>in</strong>ary rel<strong>at</strong>ionships between aqu<strong>at</strong>ic<br />

macrophytes and physical stream characteristics. Dur<strong>in</strong>g <strong>2009</strong>, percent cover <strong>of</strong> aqu<strong>at</strong>ic<br />

macrophytes averaged 64% and was significantly lower than 1993, 1994, and 1999. Percent<br />

cover <strong>of</strong> aqu<strong>at</strong>ic macrophytes did not significantly differ between 1988 and years follow<strong>in</strong>g <strong>the</strong><br />

1992 sediment release from Island Park Reservoir. Sampl<strong>in</strong>g transects were dom<strong>in</strong><strong>at</strong>ed by gravel<br />

substr<strong>at</strong>es with <strong>the</strong> occurrence <strong>of</strong> sand and silt generally <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> downstream transects.<br />

<strong>River</strong> bed pr<strong>of</strong>iles <strong>at</strong> Last Chance, Big Bend, and Millionaire’s Pool showed gradual fluctu<strong>at</strong>ions<br />

between “mounds” and “shallow channels.” Transects <strong>at</strong> Harriman East were characterized by a<br />

“deep” channel where w<strong>at</strong>er depths exceeded 132 cm. W<strong>at</strong>er velocity <strong>at</strong> 80% <strong>of</strong> <strong>the</strong> w<strong>at</strong>er<br />

column was <strong>in</strong>versely correl<strong>at</strong>ed with percent cover <strong>of</strong> veget<strong>at</strong>ion. However, correl<strong>at</strong>ions were<br />

weak, likely due to vari<strong>at</strong>ion <strong>in</strong> density and morphology <strong>of</strong> veget<strong>at</strong>ion and biomass <strong>of</strong> algae<br />

among plots. The abundance <strong>of</strong> aqu<strong>at</strong>ic macrophytes <strong>in</strong> river<strong>in</strong>e systems is <strong>in</strong>fluenced by<br />

complex <strong>in</strong>teractions <strong>of</strong> abiotic and biotic conditions. Quantit<strong>at</strong>ive assessments <strong>of</strong> <strong>the</strong> abiotic<br />

and biotic factors affect<strong>in</strong>g aqu<strong>at</strong>ic macrophytes are needed to provide <strong>in</strong>form<strong>at</strong>ion on <strong>the</strong> factors<br />

affect<strong>in</strong>g aqu<strong>at</strong>ic macrophytes <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong>. Additional macrophyte surveys are needed to<br />

determ<strong>in</strong>e if <strong>the</strong> lower percent cover observed dur<strong>in</strong>g <strong>2009</strong> is a long-term decreas<strong>in</strong>g trend <strong>in</strong><br />

aqu<strong>at</strong>ic macrophytes or if it is part <strong>of</strong> <strong>the</strong> n<strong>at</strong>ural variability <strong>of</strong> aqu<strong>at</strong>ic macrophyte life cycles.<br />

iii


TABLE OF CONTENTS<br />

ABSTRACT …………………………………………………….……………………………….iii<br />

LIST OF FIGURES .……………………………………………………………………………..vi<br />

LIST OF TABLES ...……………………………………………………………………………..ix<br />

INTRODUCTION .......................................................................................................................... 1<br />

Ra<strong>in</strong>bow Trout, <strong>Aqu<strong>at</strong>ic</strong> <strong>Macrophytes</strong>, and Macro<strong>in</strong>vertebr<strong>at</strong>es ................................................ 1<br />

<strong>Aqu<strong>at</strong>ic</strong> <strong>Macrophytes</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> ................................................................................... 2<br />

Objectives ................................................................................................................................... 4<br />

STUDY AREA ............................................................................................................................... 5<br />

METHODS ..................................................................................................................................... 7<br />

<strong>Aqu<strong>at</strong>ic</strong> <strong>Macrophytes</strong> .................................................................................................................. 7<br />

D<strong>at</strong>a Collection ....................................................................................................................... 7<br />

Analyses .................................................................................................................................. 9<br />

Physical Characteristics <strong>of</strong> Transects ........................................................................................ 10<br />

D<strong>at</strong>a Collection ..................................................................................................................... 10<br />

Analyses ................................................................................................................................ 11<br />

RESULTS ..................................................................................................................................... 12<br />

Species Composition ................................................................................................................. 12<br />

Percent Cover <strong>of</strong> <strong>Aqu<strong>at</strong>ic</strong> <strong>Macrophytes</strong> .................................................................................... 14<br />

Veget<strong>at</strong>ion Height ..................................................................................................................... 17<br />

Percent Cover <strong>of</strong> Periphyton ..................................................................................................... 18<br />

Comparison with Recent Historical <strong>Aqu<strong>at</strong>ic</strong> Macrophyte D<strong>at</strong>a ............................................... 19<br />

Species Composition and Percent Cover 1993–<strong>2009</strong> ........................................................... 19<br />

Percent Cover Before and After 1992 Sediment Release ..................................................... 19<br />

Veget<strong>at</strong>ion Height 1989–<strong>2009</strong> .............................................................................................. 20<br />

Physical Characteristics <strong>of</strong> Transects ........................................................................................ 23<br />

Substr<strong>at</strong>e ................................................................................................................................ 23<br />

W<strong>at</strong>er Velocity ...................................................................................................................... 24<br />

Transect cross sections .......................................................................................................... 24<br />

DISCUSSION ............................................................................................................................... 33<br />

Overall Trends <strong>of</strong> <strong>Aqu<strong>at</strong>ic</strong> <strong>Macrophytes</strong> ................................................................................... 33<br />

Variability and Inference ...................................................................................................... 33<br />

Recent Historical Trends 1988–<strong>2009</strong>.................................................................................... 33<br />

Trends by Species’ Groups ....................................................................................................... 34<br />

Trends by Species ..................................................................................................................... 35<br />

Stuckenia spp. ....................................................................................................................... 35<br />

Myriophyllum spp. ................................................................................................................ 36<br />

iv


Elodea canadensis, Ranunculus aqu<strong>at</strong>ilis, and Zannichellia palustris ................................. 37<br />

Callitriche spp. and Potamogeton richardsonii .................................................................... 38<br />

Veget<strong>at</strong>ion Height ..................................................................................................................... 39<br />

Periphyton ................................................................................................................................. 39<br />

Physical Stream Characteristics and <strong>Aqu<strong>at</strong>ic</strong> <strong>Macrophytes</strong> ...................................................... 40<br />

Sediment ............................................................................................................................... 40<br />

W<strong>at</strong>er Velocity ...................................................................................................................... 41<br />

Nutrients ................................................................................................................................ 42<br />

<strong>Aqu<strong>at</strong>ic</strong> <strong>Macrophytes</strong> and Macro<strong>in</strong>vertebr<strong>at</strong>es ......................................................................... 43<br />

RECOMMENDATIONS .............................................................................................................. 47<br />

ACKNOWLEDGEMENTS .......................................................................................................... 48<br />

LITERATURE CITED ................................................................................................................. 49<br />

v


LIST OF FIGURES<br />

Fig. 1. The Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong> from Island Park Dam to Upper Mesa Falls. Stream<br />

reaches (shown <strong>in</strong> white) are described by Gregory (2008). .................................................. 5<br />

Fig. 2. Transects used to sample aqu<strong>at</strong>ic macrophytes dur<strong>in</strong>g <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong><br />

<strong>Snake</strong> <strong>River</strong>, Idaho. ................................................................................................................. 6<br />

Fig. 3. Sampl<strong>in</strong>g quadr<strong>at</strong>/plexiglass view box (25 x 25 cm) and PVC pipe (marked <strong>in</strong> 1 cm<br />

<strong>in</strong>tervals) used to measure percent cover, height <strong>of</strong> aqu<strong>at</strong>ic veget<strong>at</strong>ion, and w<strong>at</strong>er depth<br />

dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. ..................................... 8<br />

Fig. 4. Long strands <strong>of</strong> filamentous green algae on Elodea canadensis (left), and globular algae,<br />

brown <strong>in</strong> color (right), <strong>at</strong>tached to submerged aqu<strong>at</strong>ic macrophytes and/or gravel/cobble<br />

substr<strong>at</strong>es dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. ................... 12<br />

Fig. 5. Percent cover <strong>of</strong> aqu<strong>at</strong>ic macrophytes dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong><br />

<strong>Snake</strong> <strong>River</strong>, Idaho. Boxes represent 25 and 75% quartiles, whiskers represent 10 and 90%<br />

quartiles, and solid dots represent outliers; median percent cover is <strong>the</strong> solid horizontal l<strong>in</strong>e<br />

with<strong>in</strong> boxes and mean percent cover is <strong>the</strong> dotted l<strong>in</strong>e with<strong>in</strong> boxes. Potamogeton<br />

richardsonii, a species <strong>in</strong>cluded <strong>in</strong> Group 1 (Shea et al. 1996) is not shown because percent<br />

cover an all transects averaged ≤ 3%. ................................................................................... 15<br />

Fig. 6. Mean percent cover ± SD <strong>of</strong> seven species <strong>of</strong> aqu<strong>at</strong>ic macrophytes, bare ground, all<br />

veget<strong>at</strong>ion comb<strong>in</strong>ed, group 1 and group 2 species, and over-w<strong>in</strong>ter<strong>in</strong>g species for all<br />

transects (n = 10) sampled dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>,<br />

Idaho. Group 1 species <strong>in</strong>clude Stuckenia spp., Potamogeton richardsonii, Myriophyllum<br />

spp., and Elodea canadensis; Group 2 species <strong>in</strong>clude Ranunculus aqu<strong>at</strong>ilis, Zannichellia<br />

palustris, and Callitriche spp. (Shea et al 1996). Over-w<strong>in</strong>ter<strong>in</strong>g species <strong>in</strong>clude<br />

Myriophyllum spp. and R. aqu<strong>at</strong>ilis (Angradi 1991), and E. canadensis (Bowmer et al.<br />

1995; R. Shea, personal communic<strong>at</strong>ion). ............................................................................ 16<br />

Fig. 7. Veget<strong>at</strong>ion height along 10 transects dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong><br />

<strong>Snake</strong> <strong>River</strong>, Idaho. Boxes represent 25 and 75% quartiles, whiskers represent 10 and 90%<br />

quartiles, and solid dots represent outliers; median veget<strong>at</strong>ion height is <strong>the</strong> solid horizontal<br />

bar and mean veget<strong>at</strong>ion height is <strong>the</strong> dotted horizontal l<strong>in</strong>e with<strong>in</strong> boxes. ......................... 17<br />

Fig. 8. Mean ± SD <strong>of</strong> periphyton dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>,<br />

Idaho. .................................................................................................................................... 18<br />

Fig. 9. Mean percent cover ± SE <strong>of</strong> all veget<strong>at</strong>ion comb<strong>in</strong>ed dur<strong>in</strong>g 1988–1997, 1999, 2001, and<br />

<strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>. Historical d<strong>at</strong>a (1988–2001) are summarized<br />

from Shea et al. (1996), Shea (1997), Shea (1999), and Shea (2001). Sampl<strong>in</strong>g methods for<br />

po<strong>in</strong>t <strong>in</strong>tercept cover estim<strong>at</strong>es followed Snyder (1991); visual aerial cover estim<strong>at</strong>es and<br />

presence/absence estim<strong>at</strong>es followed Shea et al. (1996). Transects 2A and 4A were not<br />

sampled dur<strong>in</strong>g 1993 and transect ABar was not sampled dur<strong>in</strong>g 1988–1990. Years <strong>of</strong><br />

visual aerial estim<strong>at</strong>es <strong>of</strong> cover with different letters are significantly different (df = 7, F =<br />

6.2, P < 0.05). Po<strong>in</strong>t <strong>in</strong>tercept cover estim<strong>at</strong>es did not significantly differ between 1988 and<br />

1994 or from o<strong>the</strong>r years, with <strong>the</strong> exception th<strong>at</strong> 1994 po<strong>in</strong>t-<strong>in</strong>tercept estim<strong>at</strong>e <strong>of</strong> cover was<br />

higher than <strong>the</strong> <strong>2009</strong> visual aerial estim<strong>at</strong>e <strong>of</strong> cover (t(25) = 2.4, P = 0.02). Standard error<br />

vi


estim<strong>at</strong>es are not available for 1989. Years with presence/absence d<strong>at</strong>a (1989–1992) were<br />

not st<strong>at</strong>istically analyzed. ...................................................................................................... 20<br />

Fig. 10. Mean percent cover ± SE for all Group 1 species, Group 2 species, and over-w<strong>in</strong>ter<strong>in</strong>g<br />

species dur<strong>in</strong>g 1988, 1993–1997, 1999, 2001, and <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong><br />

<strong>River</strong>, Idaho. Historical d<strong>at</strong>a (1988–2001) are summarized from Shea et al. (1996), Shea<br />

(1997), Shea (1999), and Shea (2001). Sampl<strong>in</strong>g methods for po<strong>in</strong>t <strong>in</strong>tercept cover<br />

estim<strong>at</strong>es dur<strong>in</strong>g 1988 followed Snyder (1991); visual aerial cover estim<strong>at</strong>es and<br />

presence/absence estim<strong>at</strong>es dur<strong>in</strong>g 1993 –<strong>2009</strong> followed Shea et al. (1996). Group 1<br />

species <strong>in</strong>clude Stuckenia spp. (<strong>in</strong>cludes previously reported Potamogeton pect<strong>in</strong><strong>at</strong>us),<br />

Potamogeton richardsonii, Myriophyllum spp., and Elodea canadensis; Group 2 species<br />

<strong>in</strong>clude Ranunculus aqu<strong>at</strong>ilis, Zannichellia palustris, and Callitriche spp. (Shea et al. 1996).<br />

Over-w<strong>in</strong>ter<strong>in</strong>g species <strong>in</strong>clude Myriophyllum spp. and R. aqu<strong>at</strong>ilis (Angradi 1991), and E.<br />

canadensis (Bowmer et al. 1995; R. Shea, personal communic<strong>at</strong>ion). ................................. 21<br />

Fig. 11. Mean veget<strong>at</strong>ion height ± SE and mean w<strong>at</strong>er depth ± SE for 10 transects dur<strong>in</strong>g<br />

October 1989–1997, 1999, 2001, and <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho.<br />

Estim<strong>at</strong>es <strong>of</strong> SE are not available for 1989. Discharge flows <strong>at</strong> Island Park Dam (USGS<br />

gauge st<strong>at</strong>ion 13042500) were averaged for <strong>the</strong> sampl<strong>in</strong>g period each year. For years with<br />

no veget<strong>at</strong>ion sampl<strong>in</strong>g, discharge flows were averaged from October 7–11. ..................... 22<br />

Fig. 12. Mean percent <strong>of</strong> w<strong>at</strong>er column occupied by veget<strong>at</strong>ion ± SD dur<strong>in</strong>g October 1989–<br />

1997, 1999, 2001, and <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. ........................ 22<br />

Fig. 13. Frequency <strong>of</strong> occurrence <strong>of</strong> silt (< 2 mm; < 0.08 <strong>in</strong>), sand (< 2 mm; < 0.08 <strong>in</strong>), gravel<br />

(2.1–64 mm; 0.08–2.5 <strong>in</strong>), cobble (64.1–256 mm; 2.5–10 <strong>in</strong>), and boulder (>256 mm; > 10<br />

<strong>in</strong>) substr<strong>at</strong>es dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. ............. 23<br />

Fig. 14. W<strong>at</strong>er velocity measured <strong>at</strong> 20% (uppermost dots), 50% (middle dots), and 80% (lower<br />

dots) <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column along six transects upstream from Silver Lake Outlet dur<strong>in</strong>g <strong>2009</strong><br />

<strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Velocities were not measured <strong>at</strong> plots 15 and<br />

19 on transect 3 because <strong>of</strong> thick algae. ................................................................................ 25<br />

Fig. 15. W<strong>at</strong>er velocity measured <strong>at</strong> 20% (uppermost dots), 50% (middle dots), and 80% (lower<br />

dots) <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column along four transects <strong>at</strong> Harriman East dur<strong>in</strong>g <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys<br />

<strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Velocities were not measured <strong>at</strong> plot 19 on transect 4A<br />

because <strong>of</strong> thick algae; velocities were not measured <strong>at</strong> plots 13–18 on transect 5B because<br />

<strong>the</strong> w<strong>at</strong>er too deep to wade. ................................................................................................... 26<br />

Fig. 16. W<strong>at</strong>er velocity <strong>at</strong> 80% <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column and percent cover <strong>of</strong> veget<strong>at</strong>ion <strong>at</strong> sampl<strong>in</strong>g<br />

plots along six transects upstream from Osborne Bridge dur<strong>in</strong>g <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong><br />

<strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Spearman Rank Order Correl<strong>at</strong>ion Test results and <strong>the</strong> l<strong>in</strong>ear<br />

regression l<strong>in</strong>e are shown for each transect. St<strong>at</strong>istically significant results (P < 0.05) are <strong>in</strong><br />

bold. ...................................................................................................................................... 27<br />

Fig. 17. W<strong>at</strong>er velocity measured <strong>at</strong> 80% <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column and percent cover <strong>of</strong> veget<strong>at</strong>ion <strong>at</strong><br />

sampl<strong>in</strong>g plot along Harriman East transects dur<strong>in</strong>g <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong><br />

<strong>River</strong>, Idaho. Spearman Rank Order Correl<strong>at</strong>ion Test results and <strong>the</strong> l<strong>in</strong>ear regression l<strong>in</strong>e<br />

are shown for each transect. St<strong>at</strong>istically significant results (P < 0.05) are <strong>in</strong> bold. ........... 28<br />

Fig. 18. <strong>River</strong> bed, veget<strong>at</strong>ion height, and w<strong>at</strong>er surface elev<strong>at</strong>ions (ft) along transect ABar<br />

dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Veget<strong>at</strong>ion height and<br />

vii


w<strong>at</strong>er surface elev<strong>at</strong>ions were calcul<strong>at</strong>ed by add<strong>in</strong>g measured veget<strong>at</strong>ion height and w<strong>at</strong>er<br />

depth to river bed elev<strong>at</strong>ions. LEW = left edge <strong>of</strong> w<strong>at</strong>er and REW = right edge <strong>of</strong> w<strong>at</strong>er<br />

look<strong>in</strong>g downstream. Zero is <strong>at</strong> <strong>the</strong> left edge <strong>of</strong> w<strong>at</strong>er. ........................................................ 29<br />

Fig. 19. <strong>River</strong> bed, w<strong>at</strong>er surface, and veget<strong>at</strong>ion height elev<strong>at</strong>ions along transect 3 dur<strong>in</strong>g<br />

October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Veget<strong>at</strong>ion height and w<strong>at</strong>er<br />

surface elev<strong>at</strong>ions were calcul<strong>at</strong>ed by add<strong>in</strong>g measured veget<strong>at</strong>ion height and w<strong>at</strong>er depth to<br />

river bed elev<strong>at</strong>ions. RB = right river bank look<strong>in</strong>g downstream. D<strong>at</strong>a from <strong>the</strong> LB <strong>of</strong><br />

transect 3 was not collected due to problems with <strong>the</strong> equipment. Zero is <strong>at</strong> <strong>the</strong> right edge<br />

<strong>of</strong> w<strong>at</strong>er. ................................................................................................................................ 29<br />

Fig. 20. <strong>River</strong> bed, veget<strong>at</strong>ion height, and w<strong>at</strong>er surface elev<strong>at</strong>ions along transects 1A, 1B, 2A,<br />

and 2B dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Veget<strong>at</strong>ion<br />

height and w<strong>at</strong>er surface elev<strong>at</strong>ions were calcul<strong>at</strong>ed by add<strong>in</strong>g measured veget<strong>at</strong>ion height<br />

and w<strong>at</strong>er depth to river bed elev<strong>at</strong>ions. LB = left river bank and RB = right river bank<br />

look<strong>in</strong>g downstream. Zero is <strong>at</strong> <strong>the</strong> left edge <strong>of</strong> w<strong>at</strong>er. ........................................................ 30<br />

Fig. 21. <strong>River</strong> bed, veget<strong>at</strong>ion height, and w<strong>at</strong>er surface elev<strong>at</strong>ions along transects 4A and 4B<br />

dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>. Veget<strong>at</strong>ion height and w<strong>at</strong>er<br />

surface elev<strong>at</strong>ions were calcul<strong>at</strong>ed by add<strong>in</strong>g measured veget<strong>at</strong>ion height and w<strong>at</strong>er depth to<br />

river bed elev<strong>at</strong>ions. LB = left river bank and RB = right river look<strong>in</strong>g downstream. Zero<br />

is <strong>at</strong> <strong>the</strong> right edge <strong>of</strong> w<strong>at</strong>er. .................................................................................................. 31<br />

Fig. 22. <strong>River</strong> bed, veget<strong>at</strong>ion height, and w<strong>at</strong>er surface elev<strong>at</strong>ions along transects 5A and 5B<br />

dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>. Veget<strong>at</strong>ion height and w<strong>at</strong>er<br />

surface elev<strong>at</strong>ions were calcul<strong>at</strong>ed by add<strong>in</strong>g measured veget<strong>at</strong>ion height and w<strong>at</strong>er depth to<br />

river bed elev<strong>at</strong>ions. LB = left river bank and RB = right river look<strong>in</strong>g downstream. D<strong>at</strong>a<br />

from <strong>the</strong> middle <strong>of</strong> transect 5B was not collected because <strong>the</strong> w<strong>at</strong>er was too deep to wade.<br />

Zero is <strong>at</strong> right edge <strong>of</strong> w<strong>at</strong>er. ............................................................................................... 32<br />

Fig. 23. Estim<strong>at</strong>es (mean ± SD) <strong>of</strong> Stuckenia spp., Elodea canadensis, and Myriophyllum spp.,<br />

sediment releases from Island Park Reservoir, and annual peak discharge from Island Park<br />

Dam from 1958 to <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Historical d<strong>at</strong>a<br />

compiled from Shea et al. (1996), Shea (1997), Shea (1999), and Shea (2001). .................. 44<br />

Fig. 24. Estim<strong>at</strong>es (mean ± SD) <strong>of</strong> Ranunculus aqu<strong>at</strong>ilis, Zannichellia palustris, and Callitriche<br />

spp., sediment releases from Island Park Reservoir, and annual peak discharge from Island<br />

Park Dam from 1958 to <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Historical d<strong>at</strong>a<br />

compiled from Shea et al. (1996), Shea (1997), Shea (1999), and Shea (2001). .................. 45<br />

Fig. 25. Mean ± SD <strong>of</strong> total phosphorus and total <strong>in</strong>organic nitrogen dur<strong>in</strong>g 1974, 1994, 1995,<br />

and <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. D<strong>at</strong>a were compiled from Forsgren<br />

(1975), Goodman (1994), Goodman (1995), and McMurray (<strong>2009</strong>). .................................. 46<br />

viii


LIST OF TABLES<br />

Table 1. Overview <strong>of</strong> methods used to sample aqu<strong>at</strong>ic macrophytes dur<strong>in</strong>g 1958–<strong>2009</strong> <strong>at</strong> <strong>the</strong><br />

Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. ................................................................................. 2<br />

Table 2. Channel width, <strong>in</strong>terval between plots, and number <strong>of</strong> plots sampled for each transect<br />

dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. ..................................... 8<br />

Table 3. GPS survey equipment (TopCon HiPer GA) RTK base st<strong>at</strong>ions used to measure cross<br />

sections along each transect and GPS coord<strong>in</strong><strong>at</strong>es (l<strong>at</strong>itude and longitude) <strong>of</strong> transect endpo<strong>in</strong>ts<br />

measured dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. ........ 11<br />

Table 4. Family, genus, and species <strong>of</strong> submerged aqu<strong>at</strong>ic macrophytes, free-flo<strong>at</strong><strong>in</strong>g aqu<strong>at</strong>ic<br />

veget<strong>at</strong>ion, and emergent veget<strong>at</strong>ion observed dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong><br />

<strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Nomencl<strong>at</strong>ure for scientific names follows Crow and Hellquist<br />

(2000a, 2000b). ..................................................................................................................... 13<br />

ix


INTRODUCTION<br />

Ra<strong>in</strong>bow Trout, <strong>Aqu<strong>at</strong>ic</strong> <strong>Macrophytes</strong>, and Macro<strong>in</strong>vertebr<strong>at</strong>es<br />

The Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong> was a notable fishery as early as <strong>the</strong> l<strong>at</strong>e 19 th century<br />

(Van Kirk and Benjam<strong>in</strong> 2000) and is currently an important fishery for wild ra<strong>in</strong>bow trout<br />

(Oncorhynchus mykiss) <strong>in</strong> Idaho (Idaho Department <strong>of</strong> Fish and Game 2007). Accord<strong>in</strong>g to<br />

many anglers, <strong>the</strong> fishery <strong>in</strong> <strong>the</strong> Henrys <strong>Fork</strong> has decl<strong>in</strong>ed s<strong>in</strong>ce <strong>the</strong> 1970s and has been<br />

described to have fewer trout, less robust <strong>in</strong>sect h<strong>at</strong>ches, and a loss <strong>of</strong> habit<strong>at</strong> (Henry’s <strong>Fork</strong><br />

Found<strong>at</strong>ion 2008). The Henry’s <strong>Fork</strong> Found<strong>at</strong>ion <strong>in</strong>iti<strong>at</strong>ed <strong>the</strong> Caldera Project dur<strong>in</strong>g 2008,<br />

aimed <strong>at</strong> assess<strong>in</strong>g factors th<strong>at</strong> affect ra<strong>in</strong>bow trout and identify<strong>in</strong>g habit<strong>at</strong> improvement actions<br />

th<strong>at</strong> benefit: 1) over-w<strong>in</strong>ter<strong>in</strong>g juvenile trout (age 0); and 2) summer habit<strong>at</strong> for sub-adult and<br />

adult trout with<strong>in</strong> Harriman St<strong>at</strong>e Park and adjacent w<strong>at</strong>ers.<br />

Over-w<strong>in</strong>ter survival <strong>of</strong> juvenile trout is rel<strong>at</strong>ed to several factors, <strong>in</strong>clud<strong>in</strong>g w<strong>in</strong>ter flows<br />

out <strong>of</strong> Island Park Reservoir (Mitro et al. 2003) and abundance <strong>of</strong> aqu<strong>at</strong>ic macrophytes (Griffith<br />

and Smith 1995). Juvenile ra<strong>in</strong>bow trout will conceal <strong>the</strong>mselves <strong>in</strong> beds <strong>of</strong> aqu<strong>at</strong>ic<br />

macrophytes, undercut banks, and submerged stems and leaves <strong>of</strong> emergent veget<strong>at</strong>ion dur<strong>in</strong>g<br />

<strong>the</strong> early w<strong>in</strong>ter (Reihle and Griffith 1993). Juvenile fish may shift to cobble/boulder habit<strong>at</strong>s<br />

dur<strong>in</strong>g <strong>the</strong> l<strong>at</strong>e w<strong>in</strong>ter as aqu<strong>at</strong>ic macrophytes decompose and decrease <strong>in</strong> cover (Simpk<strong>in</strong>s et al.<br />

2000; Griffith and Smith 1995).<br />

The role <strong>of</strong> aqu<strong>at</strong>ic macrophytes <strong>in</strong> provid<strong>in</strong>g cover for adult ra<strong>in</strong>bow trout is less clear.<br />

However, important components <strong>of</strong> summer habit<strong>at</strong> for sub-adult and adult trout are <strong>in</strong>fluenced<br />

by aqu<strong>at</strong>ic macrophytes. <strong>Aqu<strong>at</strong>ic</strong> macrophytes <strong>in</strong>crease w<strong>at</strong>er depths for a given flow (V<strong>in</strong>son et<br />

al. 1992), provide <strong>in</strong>creased forag<strong>in</strong>g opportunities (Van Kirk and Mart<strong>in</strong> 2000), decrease w<strong>at</strong>er<br />

velocity (Horv<strong>at</strong>h 2004, Sand-Jensen and Mebus 1996, Gregg and Rose 1982) and <strong>in</strong>crease<br />

channel complexity (e.g., vari<strong>at</strong>ions <strong>in</strong> stream bed) by trapp<strong>in</strong>g f<strong>in</strong>e sediment and particul<strong>at</strong>e<br />

m<strong>at</strong>ter (Horv<strong>at</strong>h 2004, Gregg and Rose 1982, Barko et al. 1991) and acceler<strong>at</strong><strong>in</strong>g flows around<br />

macrophyte p<strong>at</strong>ches compared to with<strong>in</strong> p<strong>at</strong>ches (Sand-Jensen and Mebus 1996). Anecdotal<br />

evidence suggests th<strong>at</strong> macrophytes provide important cover and <strong>in</strong>creased forag<strong>in</strong>g<br />

opportunities on <strong>the</strong> Henrys <strong>Fork</strong>, however, <strong>the</strong> role <strong>of</strong> aqu<strong>at</strong>ic macrophytes <strong>in</strong> provid<strong>in</strong>g summer<br />

cover for adult and sub-adult ra<strong>in</strong>bow trout on <strong>the</strong> Henrys <strong>Fork</strong> has not been studied (Van Kirk<br />

and Mart<strong>in</strong> 2000).<br />

<strong>Aqu<strong>at</strong>ic</strong> macro<strong>in</strong>vertebr<strong>at</strong>es, <strong>in</strong>clud<strong>in</strong>g species from <strong>the</strong> orders Trichoptera (caddisflies),<br />

Ephemeroptera (mayflies), and Diptera (true flies), are important food resources for ra<strong>in</strong>bow<br />

trout on <strong>the</strong> Henrys <strong>Fork</strong> dur<strong>in</strong>g <strong>the</strong> summer (Angradi and Griffith 1990). Throughout <strong>the</strong> world,<br />

aqu<strong>at</strong>ic macrophytes provide important habit<strong>at</strong> for macro<strong>in</strong>vertebr<strong>at</strong>es <strong>in</strong> large and small rivers<br />

(Humphries 1996, Coger<strong>in</strong>o et al. 1995, Wright 1992, Gregg and Rose 1985). <strong>Aqu<strong>at</strong>ic</strong><br />

macrophytes slow w<strong>at</strong>er velocities and provide <strong>at</strong>tachment sites and forage for aqu<strong>at</strong>ic<br />

macro<strong>in</strong>vertebr<strong>at</strong>es, and cover from pred<strong>at</strong>ors. Abundance and species richness <strong>of</strong><br />

macro<strong>in</strong>vertebr<strong>at</strong>es is higher <strong>in</strong> aqu<strong>at</strong>ic macrophyte beds than on m<strong>in</strong>eral substr<strong>at</strong>es (Wright<br />

1992, Gregg and Rose 1985) and also varies by species and/or morphology <strong>of</strong> aqu<strong>at</strong>ic veget<strong>at</strong>ion<br />

(Cheruvelil et al. 2000, Humphries 1996, Gerrish and Bristow 1979, Krull 1970).<br />

The density <strong>of</strong> macro<strong>in</strong>vertebr<strong>at</strong>e taxa th<strong>at</strong> are important food resources for ra<strong>in</strong>bow trout<br />

on <strong>the</strong> Henrys <strong>Fork</strong> has been correl<strong>at</strong>ed to <strong>the</strong> biomass <strong>of</strong> aqu<strong>at</strong>ic macrophytes <strong>in</strong> o<strong>the</strong>r river<strong>in</strong>e<br />

1


systems (Goulart and Callisto 2005, Collier et al. 1999). Therefore changes <strong>in</strong> <strong>the</strong> abundance<br />

and species composition <strong>of</strong> aqu<strong>at</strong>ic macrophytes on <strong>the</strong> Henrys <strong>Fork</strong> likely <strong>in</strong>fluences <strong>the</strong> density<br />

<strong>of</strong> macro<strong>in</strong>vertebr<strong>at</strong>es. The abundance <strong>of</strong> macro<strong>in</strong>vertebr<strong>at</strong>es is also <strong>in</strong>fluenced by w<strong>at</strong>er<br />

chemistry and physical characteristics <strong>of</strong> river reaches.<br />

<strong>Aqu<strong>at</strong>ic</strong> <strong>Macrophytes</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong><br />

<strong>Aqu<strong>at</strong>ic</strong> macrophytes on <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong> have been sampled s<strong>in</strong>ce<br />

1958. Historical macrophyte surveys focused on assess<strong>in</strong>g habit<strong>at</strong> condition for trumpeter swans<br />

(Cygnus bucc<strong>in</strong><strong>at</strong>or) and o<strong>the</strong>r w<strong>at</strong>erfowl. Different methods, <strong>in</strong>clud<strong>in</strong>g visual estim<strong>at</strong>es <strong>of</strong><br />

percent cover (1958, 1993–1997, 1999, and 2001), wet weight biomass (1977, 1979–1980,<br />

1986–1987), po<strong>in</strong>t <strong>in</strong>tercept sampl<strong>in</strong>g (1988 and 1994), and frequency <strong>of</strong> occurrence (1989–<br />

1992), make comparison <strong>of</strong> historical results challeng<strong>in</strong>g (see Table 1 for a summary <strong>of</strong><br />

methods). D<strong>at</strong>a and results <strong>of</strong> <strong>the</strong>se historical studies are detailed by Shea et al. (1996), Shea<br />

(1997), Shea (1999) and Shea (2001).<br />

Table 1. Overview <strong>of</strong> methods used to sample aqu<strong>at</strong>ic macrophytes dur<strong>in</strong>g 1958–<strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong><br />

<strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho.<br />

Sampl<strong>in</strong>g Method Year Description<br />

Visual estim<strong>at</strong>es 1958<br />

1993–1997<br />

1999<br />

2001<br />

<strong>2009</strong><br />

Detailed methods are not known for 1958. For all o<strong>the</strong>r years,<br />

percent cover was visually estim<strong>at</strong>ed for each species and bare<br />

ground us<strong>in</strong>g a 10 x 10 <strong>in</strong> (25 x 25 cm) plexiglass sampl<strong>in</strong>g<br />

quadr<strong>at</strong> <strong>at</strong> 25–30 po<strong>in</strong>ts along 10 transects (Shea et al. 1996,<br />

this study).<br />

Frequency <strong>of</strong> occurrence 1989<br />

1990<br />

1991<br />

1992<br />

Po<strong>in</strong>t-<strong>in</strong>tercept 1988<br />

1994<br />

Wet-weight biomass 1977<br />

1979<br />

1980<br />

1986<br />

1987<br />

Veget<strong>at</strong>ion was recorded as present or absent <strong>at</strong> sampl<strong>in</strong>g<br />

loc<strong>at</strong>ions; percent cover is estim<strong>at</strong>ed by divid<strong>in</strong>g <strong>the</strong> number <strong>of</strong><br />

plots with veget<strong>at</strong>ion by <strong>the</strong> total number <strong>of</strong> plots sampled<br />

(Shea et al. 1996, V<strong>in</strong>son et al. 1992, see also Pl<strong>at</strong>ts et al.<br />

1983). Transects sampled were <strong>the</strong> same transects used for<br />

visual estim<strong>at</strong>es dur<strong>in</strong>g 1993–<strong>2009</strong>.<br />

A rectangular frame with 20 grid po<strong>in</strong>ts was used to sample<br />

veget<strong>at</strong>ion <strong>at</strong> 20 plots along 68 str<strong>at</strong>ified random transects; <strong>the</strong><br />

species <strong>of</strong> veget<strong>at</strong>ion (or bare ground) present under each grid<br />

po<strong>in</strong>t was recorded for each plot (Snyder 1991). This method<br />

was repe<strong>at</strong>ed by Shea et al. (1996). See Elz<strong>in</strong>ga et al. (2001)<br />

for a summary <strong>of</strong> po<strong>in</strong>t-<strong>in</strong>tercepts for measur<strong>in</strong>g cover.<br />

Veget<strong>at</strong>ion was collected along 10 transects us<strong>in</strong>g a Hess<br />

sampler, washed <strong>of</strong> debris and <strong>in</strong>vertebr<strong>at</strong>es, wrung out by<br />

hand, sorted to species, and weighed (Hampton 1981). This<br />

method was repe<strong>at</strong>ed by Angradi and Contor (1989). Dur<strong>in</strong>g<br />

1977 veget<strong>at</strong>ion was collected with a forceps like-like device<br />

th<strong>at</strong> cut and held <strong>the</strong> veget<strong>at</strong>ion (Shea et al. 1996). Transects<br />

differed than those used for visual estim<strong>at</strong>es <strong>of</strong> percent cover.<br />

2


Dur<strong>in</strong>g 1958, <strong>the</strong> Henrys <strong>Fork</strong> was described as hav<strong>in</strong>g an “abundance <strong>of</strong> food to susta<strong>in</strong><br />

<strong>the</strong> present popul<strong>at</strong>ion <strong>of</strong> trumpeter swans” (Hansen 1959). Dur<strong>in</strong>g 1977, aqu<strong>at</strong>ic macrophytes<br />

were aga<strong>in</strong> described as “prolific” with “dense m<strong>at</strong>s <strong>of</strong> macrophytes [reach<strong>in</strong>g] <strong>the</strong> w<strong>at</strong>er<br />

surface” <strong>in</strong> several loc<strong>at</strong>ions (Shea et al 1996). Productivity <strong>of</strong> aqu<strong>at</strong>ic macrophytes dur<strong>in</strong>g <strong>the</strong><br />

mid 1980s (1.77 kg/m 2 dur<strong>in</strong>g 1986 and 2.42 kg/m 2 dur<strong>in</strong>g 1987) decl<strong>in</strong>ed between 43 and 59%<br />

compared to <strong>the</strong> l<strong>at</strong>e 1970s (4.09 kg/m 2 ), based on wet weight biomass. This decl<strong>in</strong>e <strong>in</strong> aqu<strong>at</strong>ic<br />

macrophytes followed low-elev<strong>at</strong>ion draw downs from Island Park Reservoir dur<strong>in</strong>g 1979 th<strong>at</strong><br />

mobilized and transported large quantities <strong>of</strong> sediment <strong>in</strong>to <strong>the</strong> Henrys <strong>Fork</strong> (Gregory 2008) and<br />

maximum annual flows from Island Park Dam th<strong>at</strong> occurred early <strong>in</strong> <strong>the</strong> grow<strong>in</strong>g season dur<strong>in</strong>g<br />

May 1982, 1984, and 1986 (Shea et al. 1996).<br />

By <strong>the</strong> l<strong>at</strong>e 1980s, percent cover estim<strong>at</strong>es (77% dur<strong>in</strong>g 1988) and frequency <strong>of</strong><br />

occurrence (85% dur<strong>in</strong>g 1989) suggested th<strong>at</strong> productivity <strong>of</strong> aqu<strong>at</strong>ic macrophytes may have<br />

<strong>in</strong>creased from <strong>the</strong> mid 1980s. However, long-time researchers and fishermen had perceived a<br />

decl<strong>in</strong>e <strong>in</strong> macrophytes by <strong>the</strong> l<strong>at</strong>e 1980s (Shea et al. 1996, Pa<strong>in</strong>i and Stiehl 1993). Low w<strong>in</strong>ter<br />

flows and extensive w<strong>in</strong>ter ice, followed by an <strong>in</strong>crease <strong>in</strong> flows to melt ice and free food<br />

resources to prevent <strong>in</strong>creased swan mortality dur<strong>in</strong>g <strong>the</strong> w<strong>in</strong>ter 1988–1989 have been <strong>at</strong>tributed<br />

to <strong>the</strong> perceived decrease <strong>in</strong> aqu<strong>at</strong>ic macrophytes (Shea et al. 1996). Increased w<strong>in</strong>ter flows<br />

opened ice-free areas for trumpeter swans and o<strong>the</strong>r w<strong>at</strong>erfowl; however, <strong>in</strong>creased flows and<br />

associ<strong>at</strong>ed ice scour also ripped up and dislodged aqu<strong>at</strong>ic veget<strong>at</strong>ion (Harrop 2004).<br />

<strong>Aqu<strong>at</strong>ic</strong> macrophytes experienced a “massive” decl<strong>in</strong>e dur<strong>in</strong>g <strong>the</strong> w<strong>in</strong>ter <strong>of</strong> 1989–1990<br />

(Shea et al. 1996) when aqu<strong>at</strong>ic macrophytes ranged from 1 to 5% cover on each transect by<br />

March 1990. This decl<strong>in</strong>e co<strong>in</strong>cided with record high numbers <strong>of</strong> swans <strong>at</strong> Harriman St<strong>at</strong>e Park<br />

dur<strong>in</strong>g w<strong>in</strong>ter 1989–1990 and low flows with ice free conditions th<strong>at</strong> cre<strong>at</strong>ed large areas <strong>of</strong><br />

suitable forag<strong>in</strong>g habit<strong>at</strong> for w<strong>in</strong>ter<strong>in</strong>g swans, geese, and ducks (Shea et al. 1996). Dur<strong>in</strong>g<br />

October 1990, aqu<strong>at</strong>ic macrophytes occurred <strong>at</strong> 67% <strong>of</strong> sample sites, recover<strong>in</strong>g from <strong>the</strong> w<strong>in</strong>ter<br />

decl<strong>in</strong>e, but <strong>at</strong> a frequency below October 1989 (85%).<br />

Dur<strong>in</strong>g 1990–1992, <strong>the</strong> frequency <strong>of</strong> aqu<strong>at</strong>ic macrophyte occurrence <strong>in</strong>creased from 67%<br />

to 83%. Increased productivity was also <strong>in</strong>ferred from <strong>in</strong>creased veget<strong>at</strong>ion height dur<strong>in</strong>g this<br />

time period (12 cm [5 <strong>in</strong>] dur<strong>in</strong>g 1990 compared to 28 cm [11 <strong>in</strong>] dur<strong>in</strong>g 1992; Shea et al. 1996).<br />

Visual estim<strong>at</strong>es <strong>of</strong> percent cover dur<strong>in</strong>g 1993–2001 ranged from 67 to 83%, with percent cover<br />

significantly higher dur<strong>in</strong>g 1993 and 1999 than most o<strong>the</strong>r years (this study). Dur<strong>in</strong>g March<br />

1995, percent cover <strong>of</strong> aqu<strong>at</strong>ic macrophytes dur<strong>in</strong>g w<strong>in</strong>ter had <strong>in</strong>creased (range < 5% to 65%;<br />

Shea et al. 1996) compared to <strong>the</strong> low estim<strong>at</strong>es dur<strong>in</strong>g March 1990.<br />

Changes <strong>in</strong> productivity measures <strong>of</strong> aqu<strong>at</strong>ic macrophytes on <strong>the</strong> Henrys <strong>Fork</strong> has been<br />

<strong>at</strong>tributed to low w<strong>in</strong>ter flows with associ<strong>at</strong>ed build up <strong>of</strong> thick ice, high vari<strong>at</strong>ion between<br />

w<strong>in</strong>ter and spr<strong>in</strong>g flows, <strong>in</strong>flux <strong>of</strong> silt from draw downs <strong>at</strong> Island Park Reservoir (e.g., 1966,<br />

1979, and 1992), and w<strong>in</strong>ter forag<strong>in</strong>g by trumpeter swans and o<strong>the</strong>r w<strong>at</strong>erfowl (Shea et al. 1996).<br />

<strong>Aqu<strong>at</strong>ic</strong> macrophytes are also <strong>in</strong>fluenced by light, temper<strong>at</strong>ure, w<strong>at</strong>er depth and chemistry,<br />

current velocities and wave action, nutrients, and physical and chemical properties <strong>of</strong> sediment<br />

(Barko et al. 1991, Barko and Smart 1981, Anderson 1978, Westlake 1967).<br />

<strong>Aqu<strong>at</strong>ic</strong> macrophytes on <strong>the</strong> Henrys <strong>Fork</strong> were last surveyed dur<strong>in</strong>g 2001. The current<br />

condition <strong>of</strong> aqu<strong>at</strong>ic macrophytes and how it rel<strong>at</strong>es to past conditions is not known. This study<br />

upd<strong>at</strong>es our current understand<strong>in</strong>g <strong>of</strong> aqu<strong>at</strong>ic macrophytes on <strong>the</strong> Henrys <strong>Fork</strong> and compares d<strong>at</strong>a<br />

collected dur<strong>in</strong>g October <strong>2009</strong> to historical surveys.<br />

3


Objectives<br />

The objectives <strong>of</strong> this study are to:<br />

1. Assess <strong>the</strong> current condition <strong>of</strong> aqu<strong>at</strong>ic macrophytes <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong><br />

<strong>River</strong> by repe<strong>at</strong><strong>in</strong>g transects and sampl<strong>in</strong>g methods completed dur<strong>in</strong>g 1993–2001.<br />

2. Compare <strong>the</strong> current condition <strong>of</strong> aqu<strong>at</strong>ic macrophytes along on <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong><br />

<strong>Snake</strong> <strong>River</strong> to historical surveys.<br />

3. Assess river substr<strong>at</strong>e and river channel cross sections along 10 transects <strong>at</strong> <strong>the</strong> Henrys<br />

<strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>.<br />

4. Explore prelim<strong>in</strong>ary rel<strong>at</strong>ionships between aqu<strong>at</strong>ic macrophytes and physical stream<br />

characteristics.<br />

4


STUDY AREA<br />

The Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong> is loc<strong>at</strong>ed <strong>in</strong> eastern Idaho. Its headw<strong>at</strong>ers lie with<strong>in</strong><br />

<strong>the</strong> western edge <strong>of</strong> Yellowstone N<strong>at</strong>ional Park and along <strong>the</strong> Cont<strong>in</strong>ental Divide. Gregory<br />

(2008) described seven stream reaches <strong>of</strong> <strong>the</strong> Henrys <strong>Fork</strong> from Island Park Dam to Mesa Falls<br />

(Fig. 1). This 28 mile section <strong>of</strong> <strong>the</strong> Henrys <strong>Fork</strong> dra<strong>in</strong>s through <strong>the</strong> “Island Park Caldera”, an<br />

area <strong>of</strong> collapsed volcanoes th<strong>at</strong> was once loc<strong>at</strong>ed over <strong>the</strong> “hot spot” now currently under<br />

Yellowstone N<strong>at</strong>ional Park. This section <strong>of</strong> <strong>the</strong> Henrys <strong>Fork</strong> encompasses <strong>the</strong> area referred to as<br />

<strong>the</strong> Caldera Section (Henry’s <strong>Fork</strong> Found<strong>at</strong>ion 2008).<br />

W<strong>at</strong>er flows <strong>in</strong> <strong>the</strong> Caldera Section <strong>of</strong> <strong>the</strong> Henrys <strong>Fork</strong> are primarily controlled by<br />

releases from <strong>the</strong> Island Park Dam as well as <strong>in</strong>puts from spr<strong>in</strong>gs and six tributaries: <strong>the</strong> Buffalo<br />

<strong>River</strong>, Blue Spr<strong>in</strong>g Creek, Antelope Park Creek, Big Bend Creek, Thurmon Creek, and Fish<br />

Creek. Daily mean discharge r<strong>at</strong>es <strong>at</strong> <strong>the</strong> Island Park Dam ranged from 356 to 366 ft 3 /s (10.1 to<br />

10.4 m 3 /s) dur<strong>in</strong>g <strong>the</strong> sampl<strong>in</strong>g period <strong>in</strong> October <strong>2009</strong> (USGS <strong>2009</strong>). Discharge from <strong>the</strong><br />

spr<strong>in</strong>g-fed Buffalo <strong>River</strong> is estim<strong>at</strong>ed <strong>at</strong> 212 ft 3 /s (6 m 3 /s) except dur<strong>in</strong>g <strong>the</strong> spr<strong>in</strong>g snowmelt<br />

period (Mitro et al. 2003). Therefore, total discharge <strong>at</strong> Harriman St<strong>at</strong>e Park dur<strong>in</strong>g <strong>the</strong><br />

sampl<strong>in</strong>g period was approxim<strong>at</strong>ely 573 ft 3 /s (16.2 m 3 /s). The gradient <strong>of</strong> <strong>the</strong> Henrys <strong>Fork</strong><br />

decreases from Box Canyon downstream to Harriman East (Gregory 2008). Field work was<br />

conducted with<strong>in</strong> <strong>the</strong> Caldera Section <strong>of</strong> <strong>the</strong> Henrys <strong>Fork</strong> from Last Chance to <strong>the</strong> <strong>in</strong>let <strong>of</strong> Fish<br />

Creek. All transects, except ABar, are loc<strong>at</strong>ed with<strong>in</strong> <strong>the</strong> boundary <strong>of</strong> Harriman St<strong>at</strong>e Park (Fig.<br />

2).<br />

Fig. 1. The Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong> from Island Park Dam to Upper Mesa Falls. Stream reaches<br />

(shown <strong>in</strong> white) are described by Gregory (2008).<br />

5


Fig. 2. Transects used to sample aqu<strong>at</strong>ic macrophytes dur<strong>in</strong>g <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>,<br />

Idaho.<br />

6


METHODS<br />

<strong>Aqu<strong>at</strong>ic</strong> <strong>Macrophytes</strong><br />

D<strong>at</strong>a Collection<br />

<strong>Aqu<strong>at</strong>ic</strong> macrophytes were sampled dur<strong>in</strong>g October 13–17, <strong>2009</strong> us<strong>in</strong>g methods<br />

described by Shea et al. (1996), <strong>in</strong> order to replic<strong>at</strong>e historical aqu<strong>at</strong>ic macrophyte surveys<br />

conducted dur<strong>in</strong>g 1993–2001. D<strong>at</strong>a were collected <strong>at</strong> 25–30 plots along transects established<br />

dur<strong>in</strong>g 1989 (1A, 1B, 2A, 2B, 3, 4A, 4B, 5A, and 5B) <strong>in</strong> areas historically used by w<strong>in</strong>ter<strong>in</strong>g<br />

trumpeter swans and stream reaches suitable for hydraulic model<strong>in</strong>g (Shea et al. 1996, V<strong>in</strong>son et<br />

al. 1992; Fig. 2). Transect ABar, established dur<strong>in</strong>g 1991, was also sampled. Nomencl<strong>at</strong>ure for<br />

scientific names <strong>of</strong> aqu<strong>at</strong>ic and wetland plants follows Crow and Hellquist (2000a, 2000b).<br />

Transect end po<strong>in</strong>ts and bear<strong>in</strong>gs were re-established based on historical field notes<br />

upd<strong>at</strong>ed dur<strong>in</strong>g September <strong>2009</strong> (R. Shea, personal communic<strong>at</strong>ion). Wooden stakes were<br />

<strong>in</strong>stalled on river left for transects ABar, 1A, 1B, 2A, and 2B and river right for transects 3, 4A,<br />

4B, 5A, and 5B. Wooden stakes were <strong>in</strong>stalled on <strong>the</strong> opposite side <strong>of</strong> <strong>the</strong> river channel after<br />

sampl<strong>in</strong>g was completed for each transect dur<strong>in</strong>g October <strong>2009</strong>.<br />

Sampl<strong>in</strong>g plots <strong>at</strong> each transect were established by estim<strong>at</strong><strong>in</strong>g <strong>the</strong> width (m) <strong>of</strong> <strong>the</strong> river<br />

channel us<strong>in</strong>g a range f<strong>in</strong>der and divid<strong>in</strong>g by 30 to determ<strong>in</strong>e <strong>the</strong> distance between sampl<strong>in</strong>g<br />

po<strong>in</strong>ts to <strong>the</strong> nearest 0.5 m (1.6 ft). The width was divided by 30 <strong>in</strong> order to establish between 25<br />

and 30 sampl<strong>in</strong>g plots along each transect, similar to historical survey methods (R. Shea,<br />

personal communic<strong>at</strong>ion). The distance between plots was paced and <strong>the</strong> number <strong>of</strong> plots<br />

sampled on each transect ranged from 25 to 31 (Table 2). This two-stage sampl<strong>in</strong>g design<br />

enables efficient estim<strong>at</strong>es <strong>of</strong> cover us<strong>in</strong>g small sampl<strong>in</strong>g quadr<strong>at</strong>s while cross<strong>in</strong>g <strong>the</strong> variability<br />

<strong>of</strong> <strong>the</strong> popul<strong>at</strong>ion allow<strong>in</strong>g for more precise estim<strong>at</strong>es <strong>of</strong> means (Elz<strong>in</strong>ga et al. 1998). Us<strong>in</strong>g this<br />

design, <strong>the</strong> transect is <strong>the</strong> primary sampl<strong>in</strong>g unit (n = 10).<br />

At each sampl<strong>in</strong>g plot, a 25 x 25 cm (10 x10 <strong>in</strong>) sampl<strong>in</strong>g quadr<strong>at</strong> was haphazardly<br />

placed upstream <strong>of</strong> <strong>the</strong> observer’s legs without look<strong>in</strong>g <strong>at</strong> <strong>the</strong> veget<strong>at</strong>ion or substr<strong>at</strong>e so as to not<br />

bias <strong>the</strong> sampl<strong>in</strong>g plot loc<strong>at</strong>ion. Percent cover <strong>of</strong> each species present and bare ground were<br />

visually estim<strong>at</strong>ed to <strong>the</strong> nearest 5% (nearest 1% if total coverage was < 5%). Veget<strong>at</strong>ion height<br />

and w<strong>at</strong>er depth were measured to <strong>the</strong> nearest 1 cm <strong>at</strong> <strong>the</strong> center <strong>of</strong> <strong>the</strong> upstream side <strong>of</strong> <strong>the</strong><br />

quadr<strong>at</strong> us<strong>in</strong>g a ¾ <strong>in</strong>ch PVC pipe marked <strong>in</strong> 1 cm <strong>in</strong>crements. When a sampl<strong>in</strong>g plot conta<strong>in</strong>ed<br />

veget<strong>at</strong>ion covered with periphyton (algae <strong>at</strong>tached to a substr<strong>at</strong>e) percent cover <strong>of</strong> algae was<br />

recorded to <strong>the</strong> nearest 5% before carefully remov<strong>in</strong>g <strong>the</strong> algae <strong>in</strong> order to identify aqu<strong>at</strong>ic<br />

macrophytes underne<strong>at</strong>h. Percent cover estim<strong>at</strong>es <strong>of</strong> periphyton were made <strong>in</strong>dependent <strong>of</strong> cover<br />

estim<strong>at</strong>es for macrophytes and bare ground (e.g., a quadr<strong>at</strong> with 100% cover algae could have<br />

between 0 and 100% cover <strong>of</strong> macrophytes). Percent cover <strong>of</strong> bare ground and aqu<strong>at</strong>ic<br />

macrophytes equaled 100%.<br />

The sampl<strong>in</strong>g quadr<strong>at</strong> was constructed from ¼ <strong>in</strong>ch (0.64 cm) mar<strong>in</strong>e grade plywood and<br />

⅛ <strong>in</strong>ch (0.32 cm) plexiglass (Fig. 3). A plywood frame was constructed by form<strong>in</strong>g four lap<br />

jo<strong>in</strong>ts along <strong>the</strong> edges <strong>of</strong> two 10.5 x 6 <strong>in</strong>ch (26.7 x 15 cm) pieces <strong>of</strong> plywood. These pieces were<br />

fit onto two shorter 10 x 6 <strong>in</strong>ch (25.4 x 15 cm) pieces <strong>of</strong> plywood to form a 10 x 10 <strong>in</strong> (25 x 25<br />

cm) square. Before assembly, a ⅛ <strong>in</strong>ch (0.32 cm) dado groove was cut 0.25 <strong>in</strong> (0.64 cm) above<br />

<strong>the</strong> longest edge <strong>of</strong> <strong>the</strong> plywood. The plexiglass (10.25 x 10.25 <strong>in</strong>; 26 x 26 cm) was glued <strong>in</strong> <strong>the</strong><br />

7


dado groove <strong>in</strong> <strong>the</strong> plywood with w<strong>at</strong>erpro<strong>of</strong> glue, form<strong>in</strong>g <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> quadr<strong>at</strong>. The<br />

plywood lap jo<strong>in</strong>ts were glued and secured with wood screws. W<strong>at</strong>ertight seals were assured by<br />

seal<strong>in</strong>g all jo<strong>in</strong>ts and screw holes with silicone sealant. The quadr<strong>at</strong> was divided <strong>in</strong> quarters<br />

us<strong>in</strong>g a w<strong>at</strong>erpro<strong>of</strong> marker.<br />

Table 2. Channel width, <strong>in</strong>terval between plots, and number <strong>of</strong> plots sampled for each transect dur<strong>in</strong>g<br />

October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho.<br />

Transect Channel Width a (m) Interval Between Plots (m) No. <strong>of</strong> Plots b<br />

ABar 100 3 29<br />

1A 140 4.5 31<br />

1B 204 6.5 31<br />

2A 202 7 31<br />

2B 245 8 29<br />

3 200 7 30<br />

4A 120 4 31<br />

4B 116 4 28<br />

5A 110 3.5 29<br />

5B 113 4 25 c<br />

Summary St<strong>at</strong>istics<br />

M<strong>in</strong>imum 113 3 25<br />

Maximum 245 8 31<br />

Mean 155 n/a 29<br />

Total n/a n/a 294<br />

a Channel width was measured with a range f<strong>in</strong>der.<br />

b One plot from transect 1A, 1 plot from transect 2A, 3 plots from transect 3, and 1 plot from transect 4A were<br />

excluded from analyses due to thick m<strong>at</strong>s <strong>of</strong> periphyton and phytoplankton (see Analyses section).<br />

c Four plots <strong>in</strong> <strong>the</strong> middle <strong>of</strong> transect 5B could not be sampled because <strong>of</strong> w<strong>at</strong>er too deep to wade.<br />

Fig. 3. Sampl<strong>in</strong>g quadr<strong>at</strong>/plexiglass view box (25 x 25 cm) and PVC pipe (marked <strong>in</strong> 1 cm <strong>in</strong>tervals) used to<br />

measure percent cover, height <strong>of</strong> aqu<strong>at</strong>ic veget<strong>at</strong>ion, and w<strong>at</strong>er depth dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys<br />

<strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho.<br />

8


Analyses<br />

Mean percent cover <strong>of</strong> aqu<strong>at</strong>ic macrophytes was calcul<strong>at</strong>ed for each species, all<br />

veget<strong>at</strong>ion comb<strong>in</strong>ed, “Group 1” species, “Group 2” species, and over-w<strong>in</strong>ter<strong>in</strong>g veget<strong>at</strong>ion<br />

along each transect. Percent cover <strong>of</strong> algae was not <strong>in</strong>cluded <strong>in</strong> calcul<strong>at</strong>ions <strong>of</strong> total veget<strong>at</strong>ive<br />

cover. Six sampl<strong>in</strong>g plots with thick masses <strong>of</strong> periphyton and phytoplankton encompass<strong>in</strong>g <strong>the</strong><br />

entire w<strong>at</strong>er column were not <strong>in</strong>cluded <strong>in</strong> analyses because percent cover <strong>of</strong> rooted veget<strong>at</strong>ion<br />

could not accur<strong>at</strong>ely be estim<strong>at</strong>ed. Plots excluded from analyses <strong>in</strong>cluded: 1 plot from transect<br />

1A; 1 plot from transect 2A; three plots from transect 3; and 1 plot from transect 4A. <strong>Aqu<strong>at</strong>ic</strong><br />

macrophytes were present with<strong>in</strong> <strong>the</strong>se algal assemblages so it is unlikely th<strong>at</strong> removal <strong>of</strong> <strong>the</strong>se<br />

six plots biased total estim<strong>at</strong>es <strong>of</strong> veget<strong>at</strong>ive cover. D<strong>at</strong>a on aqu<strong>at</strong>ic macrophytes prior to <strong>2009</strong><br />

were summarized from Shea et al. (1996), Shea (1997), Shea (1999), and Shea (2001).<br />

<strong>Aqu<strong>at</strong>ic</strong> macrophytes were grouped <strong>in</strong>to two c<strong>at</strong>egories used by Shea et al. (1996) based<br />

on growth forms described by Chambers (1987) and Wilcox and Meeker (1991). Growth forms<br />

described as tall erect species are classified as Group 1 species and <strong>in</strong>clude Stuckenia spp.<br />

(<strong>in</strong>cludes Potamogeton pect<strong>in</strong><strong>at</strong>us reported dur<strong>in</strong>g historical surveys), Potamogeton richardsonii,<br />

Elodea canadensis, and Myriophyllum spp. Growth forms described as shorter bottom-dwell<strong>in</strong>g<br />

m<strong>at</strong>-form<strong>in</strong>g species are classified as Group 2 species and <strong>in</strong>clude Callitriche spp., Zannichellia<br />

palustris, and Ranunculus aqu<strong>at</strong>ilis. Shea et al. (1996) fur<strong>the</strong>r described Group 1 species<br />

preferr<strong>in</strong>g slow to moder<strong>at</strong>e flows, while Group 2 species can toler<strong>at</strong>e higher velocity flows.<br />

Over-w<strong>in</strong>ter<strong>in</strong>g veget<strong>at</strong>ion <strong>in</strong>cludes Myriophyllum spp. and R. aqu<strong>at</strong>ilis (Angradi 1991), and E.<br />

canadensis (Bowmer et al. 1995; R. Shea, personal communic<strong>at</strong>ion).<br />

All st<strong>at</strong>istical analyses were performed us<strong>in</strong>g <strong>the</strong> st<strong>at</strong>istics module <strong>in</strong> SigmaPlot 11.0<br />

(Syst<strong>at</strong> S<strong>of</strong>tware, Inc. 2008). A general l<strong>in</strong>ear model (GLM) analysis <strong>of</strong> variance (ANOVA) was<br />

used to quantity <strong>the</strong> effect <strong>of</strong> year on veget<strong>at</strong>ive characteristics (Jager and Looman 1995, ter<br />

Braak and Looman 1995). A one-way repe<strong>at</strong>ed measures ANOVA was performed to test for<br />

differences <strong>in</strong> percent cover <strong>of</strong> all veget<strong>at</strong>ion comb<strong>in</strong>ed, Group 1 species, Group 2 species, and<br />

over-w<strong>in</strong>ter<strong>in</strong>g species across years with <strong>the</strong> same sampl<strong>in</strong>g methods (1993–1997, 1999, 2001,<br />

and <strong>2009</strong>). Differences were considered significant <strong>at</strong> P = 0.05. When results <strong>of</strong> <strong>the</strong> ANOVA<br />

were significant, all pairwise multiple comparisons were performed us<strong>in</strong>g Tukey adjustments<br />

(Neter et al. 1996). Results <strong>of</strong> <strong>the</strong> ANOVA cannot be used to draw <strong>in</strong>ferences to <strong>the</strong> entire<br />

Caldera Section <strong>of</strong> <strong>the</strong> Henrys <strong>Fork</strong> because transects were not randomly established.<br />

To explore differences <strong>in</strong> aqu<strong>at</strong>ic macrophytes before and after <strong>the</strong> 1992 sediment release<br />

from Island Park Reservoir, a one-way repe<strong>at</strong>ed measures ANOVA was performed to test for<br />

differences between 1988 and 1994 po<strong>in</strong>t-<strong>in</strong>tercept d<strong>at</strong>a. Because additional comparisons <strong>of</strong><br />

trends among 1988 and subsequent years with different sampl<strong>in</strong>g methods (po<strong>in</strong>t-<strong>in</strong>tercept vs.<br />

visual aerial estim<strong>at</strong>es) were <strong>of</strong> <strong>in</strong>terest, unpaired t-tests were performed to test for differences <strong>in</strong><br />

<strong>the</strong> two sampl<strong>in</strong>g methods on cover estim<strong>at</strong>es <strong>of</strong> all veget<strong>at</strong>ion comb<strong>in</strong>ed, Group 1 species, and<br />

Group 2 species dur<strong>in</strong>g 1994. D<strong>at</strong>a for Group 2 species did not meet <strong>the</strong> assumption <strong>of</strong> equal<br />

variance, so <strong>the</strong> non-parametric Mann-Whitney Rank Sum Test was performed. Mean cover <strong>of</strong><br />

all veget<strong>at</strong>ion comb<strong>in</strong>ed (t[25] = 0.50, P = 0.62), Group 1 species (t[25] = 0.89, P = 0.38), and<br />

Group 2 species (T = 151, P = 0.60) did not significantly differ between sampl<strong>in</strong>g methods<br />

dur<strong>in</strong>g 1994. Therefore, d<strong>at</strong>a from 1988 (po<strong>in</strong>t-<strong>in</strong>tercept estim<strong>at</strong>es) were compared to visual<br />

9


aerial estim<strong>at</strong>es dur<strong>in</strong>g 1993–1997, 1999, 2001, and <strong>2009</strong> us<strong>in</strong>g unpaired t-tests. If d<strong>at</strong>a did not<br />

meet <strong>the</strong> assumption <strong>of</strong> equal variance or were not normally distributed, a non-parametric Mann-<br />

Whitney Rank Sum Test was performed.<br />

Average veget<strong>at</strong>ion height and estim<strong>at</strong>es <strong>of</strong> variance dur<strong>in</strong>g <strong>2009</strong> and 1989–2001<br />

(exclud<strong>in</strong>g non-sampled years) was calcul<strong>at</strong>ed for each transect (n = 10) when d<strong>at</strong>a were<br />

available. Elev<strong>at</strong>ion <strong>of</strong> veget<strong>at</strong>ion dur<strong>in</strong>g <strong>2009</strong> was calcul<strong>at</strong>ed by add<strong>in</strong>g veget<strong>at</strong>ion height to<br />

<strong>the</strong> river bed elev<strong>at</strong>ion <strong>at</strong> each sampl<strong>in</strong>g po<strong>in</strong>t. Elev<strong>at</strong>ion <strong>of</strong> veget<strong>at</strong>ion height was <strong>in</strong>cluded <strong>in</strong><br />

graphs <strong>of</strong> river bed pr<strong>of</strong>iles. To assess <strong>the</strong> amount <strong>of</strong> veget<strong>at</strong>ion encompass<strong>in</strong>g <strong>the</strong> w<strong>at</strong>er column<br />

dur<strong>in</strong>g 1989–<strong>2009</strong>, mean veget<strong>at</strong>ion height was divided by mean w<strong>at</strong>er depth and multiplied by<br />

100 for each transect. D<strong>at</strong>a from each transect were averaged to calcul<strong>at</strong>e <strong>the</strong> percent <strong>of</strong> <strong>the</strong><br />

w<strong>at</strong>er column occupied by veget<strong>at</strong>ion for each year.<br />

Physical Characteristics <strong>of</strong> Transects<br />

D<strong>at</strong>a Collection<br />

Physical characteristics <strong>of</strong> transects were collected while sampl<strong>in</strong>g aqu<strong>at</strong>ic macrophytes,<br />

requir<strong>in</strong>g three field personnel. Substr<strong>at</strong>e was recorded by randomly plac<strong>in</strong>g a f<strong>in</strong>ger along <strong>the</strong><br />

upstream edge <strong>of</strong> <strong>the</strong> sampl<strong>in</strong>g quadr<strong>at</strong>. The size <strong>of</strong> <strong>the</strong> substr<strong>at</strong>e <strong>at</strong> th<strong>at</strong> loc<strong>at</strong>ion was recorded as<br />

silt (< 2 mm, < 0.08 <strong>in</strong>), sand (< 2 mm, < 0.08 <strong>in</strong>), gravel (2.1–64 mm, 0.08–2.5 <strong>in</strong>), cobble<br />

(64.1– 256 mm, 2.51–10 <strong>in</strong>), or boulder (> 256.1 mm, >10.1 <strong>in</strong>).<br />

W<strong>at</strong>er velocity (ft/s) was measured <strong>at</strong> <strong>the</strong> same loc<strong>at</strong>ion as veget<strong>at</strong>ion height and w<strong>at</strong>er<br />

depth. W<strong>at</strong>er velocities were collected <strong>at</strong> every sampl<strong>in</strong>g plot for <strong>the</strong> ABar transect and every<br />

o<strong>the</strong>r sampl<strong>in</strong>g plot for all o<strong>the</strong>r transects due to time constra<strong>in</strong>ts. Velocities were measured <strong>at</strong><br />

20, 50, and 80% <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column us<strong>in</strong>g a Marsh-McBirney Flo-M<strong>at</strong>e Portable Velocity Flow<br />

Meter and a USGS topsett<strong>in</strong>g wad<strong>in</strong>g rod. The velocity meter was held directly <strong>in</strong>to <strong>the</strong><br />

direction <strong>of</strong> flow and <strong>the</strong> d<strong>at</strong>a averag<strong>in</strong>g function <strong>of</strong> <strong>the</strong> meter was used for calcul<strong>at</strong><strong>in</strong>g average<br />

velocity over a 10 second <strong>in</strong>terval. Velocities were not collected when sampl<strong>in</strong>g plots were<br />

loc<strong>at</strong>ed with<strong>in</strong> very thick algal masses <strong>of</strong> periphyton and phytoplankton because <strong>the</strong> meter could<br />

not be positioned with<strong>in</strong> <strong>the</strong> masses.<br />

Transect cross sections were measured us<strong>in</strong>g TopCon GPS-based survey equipment,<br />

<strong>in</strong>clud<strong>in</strong>g two HiPer GA receivers for a RTK base and rover. GPS coord<strong>in</strong><strong>at</strong>es (l<strong>at</strong>itude,<br />

longitude, and elev<strong>at</strong>ion [ft]) were measured <strong>at</strong> <strong>the</strong> center <strong>of</strong> <strong>the</strong> upstream edge <strong>of</strong> every sampl<strong>in</strong>g<br />

plot (same loc<strong>at</strong>ion as w<strong>at</strong>er depth and veget<strong>at</strong>ion height). GPS coord<strong>in</strong><strong>at</strong>es were also measured<br />

<strong>at</strong> transect end-po<strong>in</strong>ts, bank slope breaks, and edges <strong>of</strong> w<strong>at</strong>er along river left and river right<br />

(look<strong>in</strong>g downstream).<br />

Only one known survey monument was <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong> transects, and due to time<br />

constra<strong>in</strong>ts we were not able to tie all transects <strong>in</strong>to one base st<strong>at</strong>ion. Therefore, GPS coord<strong>in</strong><strong>at</strong>es<br />

collected from different base st<strong>at</strong>ions have a 5–10 m ellipse error. Measurements taken from any<br />

one base st<strong>at</strong>ion are accur<strong>at</strong>e to 3 cm rel<strong>at</strong>ive to each o<strong>the</strong>r. Base st<strong>at</strong>ions, transects, and transect<br />

end-po<strong>in</strong>t GPS coord<strong>in</strong><strong>at</strong>es are listed <strong>in</strong> Table 3. GPS coord<strong>in</strong><strong>at</strong>es were downloaded us<strong>in</strong>g<br />

Topcon L<strong>in</strong>k v.7.2.3. Files were <strong>the</strong>n converted to comma separ<strong>at</strong>ed files and ArcGIS shapefiles<br />

for analyses. Each transect was completed us<strong>in</strong>g one base st<strong>at</strong>ion set up, with <strong>the</strong> exception <strong>of</strong><br />

transect 5A. Assum<strong>in</strong>g <strong>the</strong> w<strong>at</strong>er level was constant, <strong>the</strong> elev<strong>at</strong>ion <strong>of</strong> plots 1–17 on transect 5A<br />

10


were adjusted by 6.5 ft (2 m) to correspond to elev<strong>at</strong>ions taken from Base St<strong>at</strong>ion 6. L<strong>at</strong>itude<br />

and longitude measures for plots along transect 5A taken from <strong>the</strong> two different base st<strong>at</strong>ions<br />

appeared rel<strong>at</strong>ively accur<strong>at</strong>e to each o<strong>the</strong>r.<br />

Table 3. GPS survey equipment (TopCon HiPer GA) RTK base st<strong>at</strong>ions used to measure cross sections along<br />

each transect and GPS coord<strong>in</strong><strong>at</strong>es (l<strong>at</strong>itude and longitude) <strong>of</strong> transect end-po<strong>in</strong>ts measured dur<strong>in</strong>g October<br />

<strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho.<br />

Base<br />

Transect End-Po<strong>in</strong>t (<strong>River</strong> Left)<br />

Transect End-Po<strong>in</strong>t (<strong>River</strong> Right)<br />

Transect<br />

St<strong>at</strong>ion<br />

L<strong>at</strong>itude Longitude L<strong>at</strong>itude Longitude<br />

1 ABar 44°21'55.46517" -111°24'05.63861" 44°21'55.92654" -111°24'10.85738"<br />

2 1A 44°21'27.43455" -111°26'21.31637" 44°21'31.46405" -111°26'17.98092"<br />

2 1B 44°21'31.18496" -111°26'35.66106" 44°21'38.15793" -111°26'35.04979"<br />

2 2A 44°21'25.49866" -111°26'45.78092" 44°21'28.82283" -111°26'55.78511"<br />

2 2B 44°21'22.56052" -111°26'46.53681" 44°21'19.73911" -111°26'57.59987"<br />

3 3 (plots 1-19) No d<strong>at</strong>a 44°20'13.51173" -111°27'56.44607"<br />

4 4A 44°19'02.18074" -111°26'26.42661" 44°18'58.39032" -111°26'23.69947"<br />

4 4B 44°19'04.38476" -111°26'13.96180" 44°19'00.86403" -111°26'11.40184"<br />

5 5A (plots 1-17) n/a 44°18'38.04923" -111°26'09.87441"<br />

6 5A (plots 18-29) 44°18'37.77689" -111°26'04.06301" n/a<br />

6 5B 44°18'26.17892" -111°26'06.24766" 44°18'27.15790" -111°26'11.98793"<br />

Analyses<br />

The frequency <strong>of</strong> each substr<strong>at</strong>e types was calcul<strong>at</strong>ed for each transect by divid<strong>in</strong>g <strong>the</strong><br />

number <strong>of</strong> plots for each substr<strong>at</strong>e type by <strong>the</strong> total number <strong>of</strong> plots sampled. Mean w<strong>at</strong>er<br />

velocity <strong>at</strong> 20, 50, and 80% <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column was calcul<strong>at</strong>ed for each transect. Spearman<br />

Rank Order Correl<strong>at</strong>ions were performed to exam<strong>in</strong>e <strong>the</strong> rel<strong>at</strong>ionship between w<strong>at</strong>er velocity <strong>at</strong><br />

80% <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column and percent cover <strong>of</strong> veget<strong>at</strong>ion. L<strong>in</strong>ear regression l<strong>in</strong>es were graphed<br />

for each transect.<br />

11


RESULTS<br />

Species Composition<br />

Dur<strong>in</strong>g October <strong>2009</strong>, we observed 10 genera from 9 different families <strong>of</strong> aqu<strong>at</strong>ic and<br />

wetland plants and 1 genus <strong>of</strong> plant-like algae (Table 4). All submerged aqu<strong>at</strong>ic macrophyte<br />

genera and/or species, with <strong>the</strong> exception <strong>of</strong> Callitriche spp. and Myriophyllum hippuroides,<br />

were observed on all transects. Callitriche spp. was observed on all transects except ABar. M.<br />

hippuroides was only observed <strong>at</strong> Harriman East <strong>in</strong> 6 plots on transects 4A and 5A. Due to <strong>the</strong><br />

similarities <strong>of</strong> species <strong>in</strong> <strong>the</strong> genus Myriophyllum and <strong>the</strong> limited occurrence <strong>of</strong> M. hippuroides,<br />

it is <strong>in</strong>cluded <strong>in</strong> Myriophyllum spp.<br />

In <strong>the</strong> 288 sampled plots used for analyses, Stuckenia spp. was observed <strong>in</strong> 61% (n =<br />

176) <strong>of</strong> plots, followed by Ranunculus aqu<strong>at</strong>ilis <strong>in</strong> 59% (n = 169) <strong>of</strong> plots. O<strong>the</strong>r commonly<br />

observed species <strong>in</strong>cluded Zannichellia palustris (47%; n = 135), Callitriche spp. (47%; n =<br />

135), Elodea canadensis (41%; n = 119), Potamogeton richardsonii (25%; n = 71), and<br />

Myriophyllum spp. (24%; n = 69). Eleocharis sp., Alisma sp., Nitella sp., and Lemna trisulca all<br />

occurred <strong>in</strong> less than 7% (n ≤ 18) <strong>of</strong> plots.<br />

At least two k<strong>in</strong>ds <strong>of</strong> macroscopic periphyton were observed <strong>at</strong>tached to aqu<strong>at</strong>ic plants<br />

and gravel/cobble substr<strong>at</strong>es (Fig. 4). Long strands <strong>of</strong> green filamentous algae were observed on<br />

197 (68%) <strong>of</strong> <strong>the</strong> sample plots. An epiphytic globular algae, brown <strong>in</strong> color was observed on 76<br />

(26%) <strong>of</strong> sample plots and primarily occurred on veget<strong>at</strong>ion along <strong>the</strong> shallowly-flooded edges<br />

<strong>of</strong> <strong>the</strong> river bed. Large thick flo<strong>at</strong><strong>in</strong>g masses <strong>of</strong> periphyton and phytoplankton extend<strong>in</strong>g through<br />

<strong>the</strong> entire w<strong>at</strong>er column were observed <strong>at</strong> six sample plots.<br />

Fig. 4. Long strands <strong>of</strong> filamentous green algae on Elodea canadensis (left), and globular algae, brown <strong>in</strong><br />

color (right), <strong>at</strong>tached to submerged aqu<strong>at</strong>ic macrophytes and/or gravel/cobble substr<strong>at</strong>es dur<strong>in</strong>g October<br />

<strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho.<br />

12


Table 4. Family, genus, and species <strong>of</strong> submerged aqu<strong>at</strong>ic macrophytes, free-flo<strong>at</strong><strong>in</strong>g aqu<strong>at</strong>ic veget<strong>at</strong>ion, and<br />

emergent veget<strong>at</strong>ion observed dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho.<br />

Nomencl<strong>at</strong>ure for scientific names follows Crow and Hellquist (2000a, 2000b).<br />

Scientific Name<br />

Notes with Common Names<br />

Submerged <strong>Aqu<strong>at</strong>ic</strong> Veget<strong>at</strong>ion<br />

Potamogetonaceae (pondweed family)<br />

Stuckenia spp.<br />

Long, narrow-leaved pondweeds with no flo<strong>at</strong><strong>in</strong>g leaves; <strong>in</strong>cludes S. pect<strong>in</strong><strong>at</strong>a<br />

(sago pondweed), S. filiformis (slender-leaved pondweed), and S. vag<strong>in</strong><strong>at</strong>a<br />

(she<strong>at</strong>h<strong>in</strong>g pondweed). S. pect<strong>in</strong><strong>at</strong>a is synonymous with Potamogeton pect<strong>in</strong><strong>at</strong>us,<br />

sago pondweed historically reported from <strong>the</strong> Henrys <strong>Fork</strong> dur<strong>in</strong>g 1958–2001. No<br />

Stuckenia plants observed dur<strong>in</strong>g October <strong>2009</strong> had fruits or flowers present to<br />

positively identify to <strong>the</strong> species level.<br />

Potamogeton richardsonii<br />

Richardson’s pondweed<br />

Zannichelliaceae (horned pondweed family)<br />

Zannichellia palustris Horned pondweed<br />

Ranunculaceae (buttercup family)<br />

Ranunculus aqu<strong>at</strong>ilis White w<strong>at</strong>er-buttercup, w<strong>at</strong>er crowfoot<br />

Callitrichaceae (callitriche family)<br />

Callitriche spp.<br />

W<strong>at</strong>er-starwort; <strong>in</strong>cludes C. hermaphroditica (nor<strong>the</strong>rn or autumnal w<strong>at</strong>erstarwort),<br />

C. heterophylla (different-leaved w<strong>at</strong>er-starwort), and C. verna (spr<strong>in</strong>g<br />

w<strong>at</strong>er-starwort). C. verna and C. hermaphroditica were both historically reported<br />

from <strong>the</strong> Henrys <strong>Fork</strong>. Both <strong>of</strong> <strong>the</strong>se species as well as plants with no fruits were<br />

observed dur<strong>in</strong>g <strong>2009</strong>.<br />

Haloragaceae (w<strong>at</strong>er milfoil family)<br />

Myriophyllum spp. Includes M. sibiricum (nor<strong>the</strong>rn milfoil; synonymous with M. exalbescens) and M.<br />

hippuroides (western milfoil) observed dur<strong>in</strong>g <strong>2009</strong>. Both species, as well as M.<br />

quitense (Andean milfoil), were historically reported from <strong>the</strong> Henrys <strong>Fork</strong>; M.<br />

verticill<strong>at</strong>um has also been reported from Idaho. Individuals with no flower<strong>in</strong>g<br />

stalks dur<strong>in</strong>g <strong>2009</strong> limited identific<strong>at</strong>ion <strong>of</strong> all plants to <strong>the</strong> species level.<br />

Hydrocharitaceae (tape-grass family)<br />

Elodea canadensis Common w<strong>at</strong>erweed<br />

Free-flo<strong>at</strong><strong>in</strong>g <strong>Aqu<strong>at</strong>ic</strong> Veget<strong>at</strong>ion<br />

Lemnaceae (duckweed family)<br />

Lemna trisulca<br />

Star duckweed or ivy duckweed. Observed along <strong>the</strong> shallow river marg<strong>in</strong>s <strong>of</strong><br />

transects 1B and 2A and <strong>in</strong> <strong>the</strong> middle <strong>of</strong> transect 5A.<br />

Emergent Veget<strong>at</strong>ion<br />

Alism<strong>at</strong>aceae (w<strong>at</strong>er-planta<strong>in</strong> family)<br />

Alisma sp.<br />

Includes A. triviale, also referred to as A. plantago-aqu<strong>at</strong>ica (nor<strong>the</strong>rn w<strong>at</strong>er<br />

planta<strong>in</strong>), and A. gram<strong>in</strong>eum (narrow-leaf w<strong>at</strong>er planta<strong>in</strong>). Only observed along<br />

shallow edges <strong>of</strong> <strong>the</strong> river bed. Alisma spp. are similar to o<strong>the</strong>r basal ribbon<br />

leaved species such as Sagittaria. Observ<strong>at</strong>ion <strong>of</strong> seeds confirmed <strong>the</strong> genus<br />

Alisma was present on <strong>the</strong> Henrys <strong>Fork</strong> dur<strong>in</strong>g <strong>2009</strong>.<br />

Cyperaceae (sedge family)<br />

Eleocharis sp.<br />

Spikerush; only observed along shallow edges <strong>of</strong> <strong>the</strong> river bed<br />

Plant-like Algae<br />

Characeae (stonewort family)<br />

Nitella sp.<br />

Brittlewort. It’s similar to Chara sp. (muskgrass), ano<strong>the</strong>r plant-like alga.<br />

13


Percent Cover <strong>of</strong> <strong>Aqu<strong>at</strong>ic</strong> <strong>Macrophytes</strong><br />

Percent cover <strong>of</strong> most aqu<strong>at</strong>ic macrophytes varied considerably among transects and plots<br />

with<strong>in</strong> a transect (Fig. 5). Zannichellia palustris and Ranunculus aqu<strong>at</strong>ilis showed <strong>the</strong> highest<br />

vari<strong>at</strong>ion <strong>in</strong> percent cover among transects. Mean percent cover <strong>of</strong> Z. palustris ranged from 2 to<br />

36%, and mean percent cover <strong>of</strong> R. aqu<strong>at</strong>ilis ranged from 2 to 32%. Mean percent cover <strong>of</strong><br />

Myriophyllum spp. ranged from 0.5 to 25%, but cover on 9 <strong>of</strong> 10 transects averaged ≤ 14%.<br />

Mean percent cover <strong>of</strong> Elodea canadensis ranged from 0.4 to 9% from transect ABar<br />

downstream to transect 3; mean percent cover <strong>at</strong> Harriman East transects (4A, 4B, 5A, 5B)<br />

ranged from 16 to 23%. Mean percent cover <strong>of</strong> Callitriche spp. ranged from 1 to 12% on<br />

transects where it occurred. Mean percent cover <strong>of</strong> Stuckenia spp. varied from 17% on transect<br />

ABar to 3% on transect 1B, but when compared to o<strong>the</strong>r aqu<strong>at</strong>ic macrophyte groups percent<br />

cover <strong>of</strong> Stuckenia spp. was rel<strong>at</strong>ively consistent among transects averag<strong>in</strong>g between 9 and 13%<br />

for 8 <strong>of</strong> 10 transects. Mean percent cover <strong>of</strong> Potamogeton richardsonii was also rel<strong>at</strong>ively<br />

consistent averag<strong>in</strong>g between 0.2 and 3.5% for all transects.<br />

Percent cover <strong>of</strong> all veget<strong>at</strong>ion comb<strong>in</strong>ed for all transects (n = 10) averaged 64% ± 11<br />

(SD; range 41–81%). Species with <strong>the</strong> highest mean percent cover <strong>in</strong>cluded R. aqu<strong>at</strong>ilis (14% ±<br />

11 SD), Z. palustris (14% ± 12 SD), Stuckenia spp. (11% ± 4 SD), and E. canadensis (11% ± 9<br />

SD; Fig. 6). Percent cover <strong>of</strong> Myriophyllum spp., Callitriche spp., and P. richardsonii along<br />

each transect averaged ≤ 6% for each species.<br />

Mean percent cover <strong>of</strong> Group 1 (30% ± 12 [SD], range 5–45%) and Group 2 (33% ± 18<br />

SD, range 13–50%) species were similar (Fig. 6). Species known to over-w<strong>in</strong>ter <strong>at</strong> <strong>the</strong> Henrys<br />

<strong>Fork</strong>, Myriophyllum spp., E. canadensis and R. aqu<strong>at</strong>ilis, averaged 31% ± 16 (SD; range 14–<br />

52%) among transects.<br />

14


Fig. 5. Percent cover <strong>of</strong> aqu<strong>at</strong>ic macrophytes dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>,<br />

Idaho. Boxes represent 25 and 75% quartiles, whiskers represent 10 and 90% quartiles, and solid dots<br />

represent outliers; median percent cover is <strong>the</strong> solid horizontal l<strong>in</strong>e with<strong>in</strong> boxes and mean percent cover is<br />

<strong>the</strong> dotted l<strong>in</strong>e with<strong>in</strong> boxes. Potamogeton richardsonii, a species <strong>in</strong>cluded <strong>in</strong> Group 1 (Shea et al. 1996) is not<br />

shown because percent cover an all transects averaged ≤ 3%.<br />

15


Fig. 6. Mean percent cover ± SD <strong>of</strong> seven species <strong>of</strong> aqu<strong>at</strong>ic macrophytes, bare ground, all veget<strong>at</strong>ion<br />

comb<strong>in</strong>ed, group 1 and group 2 species, and over-w<strong>in</strong>ter<strong>in</strong>g species for all transects (n = 10) sampled dur<strong>in</strong>g<br />

October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Group 1 species <strong>in</strong>clude Stuckenia spp.,<br />

Potamogeton richardsonii, Myriophyllum spp., and Elodea canadensis; Group 2 species <strong>in</strong>clude Ranunculus<br />

aqu<strong>at</strong>ilis, Zannichellia palustris, and Callitriche spp. (Shea et al 1996). Over-w<strong>in</strong>ter<strong>in</strong>g species <strong>in</strong>clude<br />

Myriophyllum spp. and R. aqu<strong>at</strong>ilis (Angradi 1991), and E. canadensis (Bowmer et al. 1995; R. Shea, personal<br />

communic<strong>at</strong>ion).<br />

16


Veget<strong>at</strong>ion Height<br />

Overall veget<strong>at</strong>ion height (n = 10 transects) averaged 14.9 cm ± 2.8 SD; (5.9 <strong>in</strong> ± 1.1 SD;<br />

Fig. 7) and occupied 27% <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column. Veget<strong>at</strong>ion height rarely exceeded 40 cm (15.7<br />

<strong>in</strong>) dur<strong>in</strong>g <strong>2009</strong>. Tall stands <strong>of</strong> aqu<strong>at</strong>ic macrophytes were observed <strong>at</strong> Harriman East, reach<strong>in</strong>g<br />

up to 80 cm (31.5 <strong>in</strong>).<br />

Fig. 7. Veget<strong>at</strong>ion height along 10 transects dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>,<br />

Idaho. Boxes represent 25 and 75% quartiles, whiskers represent 10 and 90% quartiles, and solid dots<br />

represent outliers; median veget<strong>at</strong>ion height is <strong>the</strong> solid horizontal bar and mean veget<strong>at</strong>ion height is <strong>the</strong><br />

dotted horizontal l<strong>in</strong>e with<strong>in</strong> boxes.<br />

17


Percent Cover <strong>of</strong> Periphyton<br />

Percent cover <strong>of</strong> periphyton varied considerably among transects and plots with<strong>in</strong> a<br />

transect (Fig. 8). Percent cover <strong>of</strong> algae averaged 51% ± 20 (SD) across all transects and<br />

ranged from 22% ± 28 (SD) on transect ABar to 81% ± 26 (SD) on transect 4A. Upstream <strong>of</strong><br />

Silver Lake Outlet, percent cover <strong>of</strong> algae averaged 39% compared to 68% <strong>at</strong> Harriman East.<br />

Fig. 8. Mean ± SD <strong>of</strong> periphyton dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho.<br />

18


Comparison with Recent Historical <strong>Aqu<strong>at</strong>ic</strong> Macrophyte D<strong>at</strong>a<br />

Species Composition and Percent Cover 1993–<strong>2009</strong><br />

All <strong>of</strong> <strong>the</strong> primary species and/or genera reported from historical surveys <strong>of</strong> <strong>the</strong> Henrys<br />

<strong>Fork</strong> were observed dur<strong>in</strong>g October <strong>2009</strong>. Three species, <strong>in</strong>frequently observed dur<strong>in</strong>g historical<br />

surveys were not observed dur<strong>in</strong>g <strong>2009</strong>. Myriophyllum quitense, observed <strong>in</strong> <strong>the</strong> Henrys <strong>Fork</strong><br />

dur<strong>in</strong>g 1988 (Angradi 1991) and 1995 (Shea et al. 1996) was not observed dur<strong>in</strong>g this study,<br />

however <strong>the</strong> lack <strong>of</strong> flower<strong>in</strong>g stalks present dur<strong>in</strong>g October <strong>2009</strong> prevented identific<strong>at</strong>ion <strong>of</strong><br />

most Myriophyllum to <strong>the</strong> species level. Potamogeton pusillus, observed dur<strong>in</strong>g 1993, and<br />

Chara sp., a plant-like algae observed dur<strong>in</strong>g 1997, were also not observed dur<strong>in</strong>g this study.<br />

Ano<strong>the</strong>r similar plant-like alga, Nitella sp., not previously reported from <strong>the</strong> Henrys <strong>Fork</strong>, was<br />

observed dur<strong>in</strong>g <strong>2009</strong>.<br />

Mean percent cover <strong>of</strong> all veget<strong>at</strong>ion comb<strong>in</strong>ed significantly differed between years (P <<br />

0.001; Fig. 9). Percent cover <strong>of</strong> all veget<strong>at</strong>ion was significantly lower dur<strong>in</strong>g <strong>2009</strong> (64% ± 4 SE)<br />

and 1995 (67% ± 3 SE) than 1993 (83% ± 3 SE; P ≤ 0.001) and 1999 (83% ± 2 SE; P ≤ 0.007).<br />

Percent cover was also lower dur<strong>in</strong>g 1996 (71% ± 4 SE; P = 0.03) than 1999. Percent cover<br />

dur<strong>in</strong>g <strong>2009</strong> did not significantly differ from percent cover dur<strong>in</strong>g 1994–1997 and 2001.<br />

Mean percent cover <strong>of</strong> Group 1 species also significantly differed between years (P <<br />

0.001; Fig. 10). Percent cover <strong>of</strong> Group 1 species was significantly lower dur<strong>in</strong>g <strong>2009</strong> (30% ± 4<br />

SE) than 1993 (59% ± 5 SE; P < 0.001), 1994 (47% ± 5 SE; P = 0.002), 1995 (44% ± 5 SE; P =<br />

0.03), 1996 (46% ± 4 SE; P = 0.006), and 1999 (53% ± 4 SE; P < 0.001). In addition to differ<strong>in</strong>g<br />

from <strong>2009</strong>, percent cover <strong>of</strong> Group 1 species dur<strong>in</strong>g 1993 was also higher than 1995 (P = 0.03),<br />

1997 (42% ± 4 SE; P = 0.008), and 2001 (37% ± 2 SE; P < 0.001). Mean percent cover <strong>of</strong><br />

Group 2 species did not differ among years (P = 0.06; Fig. 10).<br />

Mean percent cover <strong>of</strong> over-w<strong>in</strong>ter<strong>in</strong>g species significantly differed between years (P <<br />

0.001; Fig. 10). Percent cover <strong>of</strong> over-w<strong>in</strong>ter<strong>in</strong>g species dur<strong>in</strong>g 2001 (25% ± 4 SE) was<br />

significantly lower than 1993 (39% ± 5 SE, P = 0.04), 1997 (41% ±5 SE, P < 0.001), and 1999<br />

(38% ± 5 SE, P = 0.01). Percent cover dur<strong>in</strong>g 1997 was also higher than 1995 (28% ± 4 SE, P =<br />

0.02). Percent cover <strong>of</strong> over-w<strong>in</strong>ter<strong>in</strong>g species dur<strong>in</strong>g <strong>2009</strong> did not significantly differ from<br />

o<strong>the</strong>r years.<br />

Percent Cover Before and After 1992 Sediment Release<br />

Percent cover estim<strong>at</strong>es <strong>of</strong> total veget<strong>at</strong>ion between 1988 (77% ± 6 [SE]) and 1994 (79%<br />

± 4 [SE]) did not st<strong>at</strong>istically differ (P = 0.7). Percent cover dur<strong>in</strong>g 1988 did not significantly<br />

differ from visual cover estim<strong>at</strong>es follow<strong>in</strong>g <strong>the</strong> 1992 sediment release (i.e., 1993–1997, 1999,<br />

2001, and <strong>2009</strong>; Fig. 9). Percent cover Group 1 species, Group 2 species, and overw<strong>in</strong>ter<strong>in</strong>g<br />

species dur<strong>in</strong>g 1988 was similar to cover estim<strong>at</strong>es dur<strong>in</strong>g 1993 (Fig. 10).<br />

19


Veget<strong>at</strong>ion Height 1989–<strong>2009</strong><br />

Dur<strong>in</strong>g 1989–<strong>2009</strong> (exclud<strong>in</strong>g non-sampled years), mean veget<strong>at</strong>ion height for all<br />

transects comb<strong>in</strong>ed peaked dur<strong>in</strong>g 1989 <strong>at</strong> 38 cm compared to 11 cm dur<strong>in</strong>g 1995 (Fig. 11).<br />

Mean veget<strong>at</strong>ion height dur<strong>in</strong>g <strong>2009</strong> was <strong>the</strong> 4 th lowest average height reported for 12 years <strong>of</strong><br />

sampl<strong>in</strong>g dur<strong>in</strong>g 1989–<strong>2009</strong>. <strong>Aqu<strong>at</strong>ic</strong> macrophytes occupied up to 71% <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column<br />

dur<strong>in</strong>g 1989 and as low as 20% <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column dur<strong>in</strong>g 1995 (Fig. 12). Dur<strong>in</strong>g <strong>2009</strong>,<br />

veget<strong>at</strong>ion height was <strong>the</strong> 3 rd lowest percentage <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column (27%) reported for 12 years<br />

<strong>of</strong> sampl<strong>in</strong>g dur<strong>in</strong>g 1989–<strong>2009</strong>.<br />

Fig. 9. Mean percent cover ± SE <strong>of</strong> all veget<strong>at</strong>ion comb<strong>in</strong>ed dur<strong>in</strong>g 1988–1997, 1999, 2001, and <strong>2009</strong> <strong>at</strong> <strong>the</strong><br />

Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>. Historical d<strong>at</strong>a (1988–2001) are summarized from Shea et al. (1996), Shea<br />

(1997), Shea (1999), and Shea (2001). Sampl<strong>in</strong>g methods for po<strong>in</strong>t <strong>in</strong>tercept cover estim<strong>at</strong>es followed Snyder<br />

(1991); visual aerial cover estim<strong>at</strong>es and presence/absence estim<strong>at</strong>es followed Shea et al. (1996). Transects<br />

2A and 4A were not sampled dur<strong>in</strong>g 1993 and transect ABar was not sampled dur<strong>in</strong>g 1988–1990. Years <strong>of</strong><br />

visual aerial estim<strong>at</strong>es <strong>of</strong> cover with different letters are significantly different (df = 7, F = 6.2, P < 0.05).<br />

Po<strong>in</strong>t <strong>in</strong>tercept cover estim<strong>at</strong>es did not significantly differ between 1988 and 1994 or from o<strong>the</strong>r years, with<br />

<strong>the</strong> exception th<strong>at</strong> 1994 po<strong>in</strong>t-<strong>in</strong>tercept estim<strong>at</strong>e <strong>of</strong> cover was higher than <strong>the</strong> <strong>2009</strong> visual aerial estim<strong>at</strong>e <strong>of</strong><br />

cover (t(25) = 2.4, P = 0.02). Standard error estim<strong>at</strong>es are not available for 1989. Years with<br />

presence/absence d<strong>at</strong>a (1989–1992) were not st<strong>at</strong>istically analyzed.<br />

20


Fig. 10. Mean percent cover ± SE for all Group 1 species, Group 2 species, and over-w<strong>in</strong>ter<strong>in</strong>g species dur<strong>in</strong>g<br />

1988, 1993–1997, 1999, 2001, and <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Historical d<strong>at</strong>a (1988–<br />

2001) are summarized from Shea et al. (1996), Shea (1997), Shea (1999), and Shea (2001). Sampl<strong>in</strong>g methods<br />

for po<strong>in</strong>t <strong>in</strong>tercept cover estim<strong>at</strong>es dur<strong>in</strong>g 1988 followed Snyder (1991); visual aerial cover estim<strong>at</strong>es and<br />

presence/absence estim<strong>at</strong>es dur<strong>in</strong>g 1993 –<strong>2009</strong> followed Shea et al. (1996). Group 1 species <strong>in</strong>clude Stuckenia<br />

spp. (<strong>in</strong>cludes previously reported Potamogeton pect<strong>in</strong><strong>at</strong>us), Potamogeton richardsonii, Myriophyllum spp., and<br />

Elodea canadensis; Group 2 species <strong>in</strong>clude Ranunculus aqu<strong>at</strong>ilis, Zannichellia palustris, and Callitriche spp.<br />

(Shea et al. 1996). Over-w<strong>in</strong>ter<strong>in</strong>g species <strong>in</strong>clude Myriophyllum spp. and R. aqu<strong>at</strong>ilis (Angradi 1991), and E.<br />

canadensis (Bowmer et al. 1995; R. Shea, personal communic<strong>at</strong>ion).<br />

21


Fig. 11. Mean veget<strong>at</strong>ion height ± SE and mean w<strong>at</strong>er depth ± SE for 10 transects dur<strong>in</strong>g October 1989–1997,<br />

1999, 2001, and <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Estim<strong>at</strong>es <strong>of</strong> SE are not available for<br />

1989. Discharge flows <strong>at</strong> Island Park Dam (USGS gauge st<strong>at</strong>ion 13042500) were averaged for <strong>the</strong> sampl<strong>in</strong>g<br />

period each year. For years with no veget<strong>at</strong>ion sampl<strong>in</strong>g, discharge flows were averaged from October 7–11.<br />

Fig. 12. Mean percent <strong>of</strong> w<strong>at</strong>er column occupied by veget<strong>at</strong>ion ± SD dur<strong>in</strong>g October 1989–1997, 1999, 2001,<br />

and <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho.<br />

22


Physical Characteristics <strong>of</strong> Transects<br />

Substr<strong>at</strong>e<br />

Gravel substr<strong>at</strong>es dom<strong>in</strong><strong>at</strong>ed on transects ABar, 1A, 1B, 2A, and 5A occurr<strong>in</strong>g <strong>at</strong> ≥ 60%<br />

<strong>of</strong> plots sampled on each transect (Fig. 13). Gravel substr<strong>at</strong>es occurred on approxim<strong>at</strong>ely half <strong>of</strong><br />

<strong>the</strong> plots (48–52%) on transects 2B and 5B and less than 41% <strong>of</strong> plots on transects 3, 4A, and<br />

4B. The occurrence <strong>of</strong> sandy substr<strong>at</strong>es <strong>in</strong>creased from transect 1B (23%) downstream to<br />

transect 3 (53%). Sandy substr<strong>at</strong>es recorded on transects <strong>at</strong> Harriman East occurred on 43%<br />

(4A), 50% (4B), 17% (5A) and 40% (5B) <strong>of</strong> plots sampled on each transect. Silt was recorded<br />

on 5 <strong>of</strong> 10 transects and occurred on 6% (1B), 20% (4A), 4% (4B), 7% (5A), and 12% (5B) <strong>of</strong><br />

plots sampled on each transect. Silt and sand substr<strong>at</strong>es were not recorded on <strong>the</strong> most upstream<br />

transects sampled, ABar and 1A. Boulder and cobble substr<strong>at</strong>es were recorded on transects<br />

ABar, 1A, and 4B and occurred on < 17% <strong>of</strong> plots sampled on those transects.<br />

Fig. 13. Frequency <strong>of</strong> occurrence <strong>of</strong> silt (< 2 mm; < 0.08 <strong>in</strong>), sand (< 2 mm; < 0.08 <strong>in</strong>), gravel (2.1–64 mm;<br />

0.08–2.5 <strong>in</strong>), cobble (64.1–256 mm; 2.5–10 <strong>in</strong>), and boulder (>256 mm; > 10 <strong>in</strong>) substr<strong>at</strong>es dur<strong>in</strong>g October<br />

<strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho.<br />

23


W<strong>at</strong>er Velocity<br />

Velocity <strong>of</strong> w<strong>at</strong>er generally decreased from <strong>the</strong> top to <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column<br />

(Fig. 14 and Fig. 15). For all transects comb<strong>in</strong>ed, w<strong>at</strong>er velocity averaged 1.25 ft/s (0.38 m/s)<br />

<strong>at</strong> <strong>the</strong> top (20%) <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column, 0.93 ft/s (0.28 m/s) <strong>at</strong> <strong>the</strong> middle <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column, and<br />

0.29 ft/s (0.088 m/s) <strong>at</strong> <strong>the</strong> bottom (80%) <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column. Mean top <strong>of</strong> w<strong>at</strong>er column flow<br />

on <strong>the</strong> 3 most upstream transects (ABar, 1A, and 1B) ranged from 1.90 to 1.44 ft/s (0.58 to 0.44<br />

m/s). Mean top <strong>of</strong> w<strong>at</strong>er column flow on all o<strong>the</strong>r transects except 2B ranged from 0.93 to 1.23<br />

ft/s (0.28 to 0.37 m/s). Top <strong>of</strong> w<strong>at</strong>er column flow on transect 2B averaged 0.75 ft/s (0.23 m/s).<br />

W<strong>at</strong>er velocity <strong>at</strong> <strong>the</strong> bottom (80%) <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column was neg<strong>at</strong>ively correl<strong>at</strong>ed with<br />

percent cover <strong>of</strong> aqu<strong>at</strong>ic macrophytes for four <strong>of</strong> <strong>the</strong> ten transects sampled (Fig. 16 and Fig. 17).<br />

Transects 1B (r s = -0.564, P = 0.02), 2B (r s = -0.572, P = 0.03), 4A (r s = -0.630, P = 0.01), and<br />

5B (r s = -0.604, P = 0.04) showed significant, but weak <strong>in</strong>verse rel<strong>at</strong>ionships between percent<br />

cover and w<strong>at</strong>er velocity. O<strong>the</strong>r transects also showed <strong>in</strong>verse rel<strong>at</strong>ionships between w<strong>at</strong>er<br />

velocity and aqu<strong>at</strong>ic macrophytes, but correl<strong>at</strong>ions were not significant.<br />

Transect cross sections<br />

<strong>River</strong> bed pr<strong>of</strong>iles <strong>at</strong> Last Chance (ABar; Fig. 18), Big Bend (1A, 1B, 2A, 2B; Fig. 20),<br />

and Millionaire’s Pool (3; Fig. 19) had 1 or 2 areas characterized by elev<strong>at</strong>ions with gradual<br />

fluctu<strong>at</strong>ions between “mounds” and “shallow channels.” Harriman East transects (4A, 4B, 5A,<br />

and 5B) had a “deep” channel toward <strong>the</strong> middle or left bank (Fig. 21 and Fig. 22). Maximum<br />

w<strong>at</strong>er depth with<strong>in</strong> <strong>the</strong> deep channels <strong>at</strong> Harriman East transects ranged from 92 to > 132 cm (36<br />

to > 52 <strong>in</strong>). Maximum w<strong>at</strong>er depths on transects upstream from <strong>the</strong> Outlet <strong>of</strong> Silver Lake ranged<br />

from 51 to 75 cm (20 to 30 <strong>in</strong>).<br />

24


Fig. 14. W<strong>at</strong>er velocity measured <strong>at</strong> 20% (uppermost dots), 50% (middle dots), and 80% (lower dots) <strong>of</strong> <strong>the</strong><br />

w<strong>at</strong>er column along six transects upstream from Silver Lake Outlet dur<strong>in</strong>g <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong><br />

<strong>Snake</strong> <strong>River</strong>, Idaho. Velocities were not measured <strong>at</strong> plots 15 and 19 on transect 3 because <strong>of</strong> thick algae.<br />

25


Fig. 15. W<strong>at</strong>er velocity measured <strong>at</strong> 20% (uppermost dots), 50% (middle dots), and 80% (lower dots) <strong>of</strong> <strong>the</strong><br />

w<strong>at</strong>er column along four transects <strong>at</strong> Harriman East dur<strong>in</strong>g <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>,<br />

Idaho. Velocities were not measured <strong>at</strong> plot 19 on transect 4A because <strong>of</strong> thick algae; velocities were not<br />

measured <strong>at</strong> plots 13–18 on transect 5B because <strong>the</strong> w<strong>at</strong>er too deep to wade.<br />

26


Fig. 16. W<strong>at</strong>er velocity <strong>at</strong> 80% <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column and percent cover <strong>of</strong> veget<strong>at</strong>ion <strong>at</strong> sampl<strong>in</strong>g plots along<br />

six transects upstream from Osborne Bridge dur<strong>in</strong>g <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho.<br />

Spearman Rank Order Correl<strong>at</strong>ion Test results and <strong>the</strong> l<strong>in</strong>ear regression l<strong>in</strong>e are shown for each transect.<br />

St<strong>at</strong>istically significant results (P < 0.05) are <strong>in</strong> bold.<br />

27


Fig. 17. W<strong>at</strong>er velocity measured <strong>at</strong> 80% <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column and percent cover <strong>of</strong> veget<strong>at</strong>ion <strong>at</strong> sampl<strong>in</strong>g<br />

plot along Harriman East transects dur<strong>in</strong>g <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Spearman<br />

Rank Order Correl<strong>at</strong>ion Test results and <strong>the</strong> l<strong>in</strong>ear regression l<strong>in</strong>e are shown for each transect. St<strong>at</strong>istically<br />

significant results (P < 0.05) are <strong>in</strong> bold.<br />

28


Fig. 18. <strong>River</strong> bed, veget<strong>at</strong>ion height, and w<strong>at</strong>er surface elev<strong>at</strong>ions (ft) along transect ABar dur<strong>in</strong>g October<br />

<strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Veget<strong>at</strong>ion height and w<strong>at</strong>er surface elev<strong>at</strong>ions were<br />

calcul<strong>at</strong>ed by add<strong>in</strong>g measured veget<strong>at</strong>ion height and w<strong>at</strong>er depth to river bed elev<strong>at</strong>ions. LEW = left edge <strong>of</strong><br />

w<strong>at</strong>er and REW = right edge <strong>of</strong> w<strong>at</strong>er look<strong>in</strong>g downstream. Zero is <strong>at</strong> <strong>the</strong> left edge <strong>of</strong> w<strong>at</strong>er.<br />

Fig. 19. <strong>River</strong> bed, w<strong>at</strong>er surface, and veget<strong>at</strong>ion height elev<strong>at</strong>ions along transect 3 dur<strong>in</strong>g October <strong>2009</strong> <strong>at</strong><br />

<strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Veget<strong>at</strong>ion height and w<strong>at</strong>er surface elev<strong>at</strong>ions were calcul<strong>at</strong>ed<br />

by add<strong>in</strong>g measured veget<strong>at</strong>ion height and w<strong>at</strong>er depth to river bed elev<strong>at</strong>ions. RB = right river bank look<strong>in</strong>g<br />

downstream. D<strong>at</strong>a from <strong>the</strong> LB <strong>of</strong> transect 3 was not collected due to problems with <strong>the</strong> equipment. Zero is<br />

<strong>at</strong> <strong>the</strong> right edge <strong>of</strong> w<strong>at</strong>er.<br />

29


Fig. 20. <strong>River</strong> bed, veget<strong>at</strong>ion height, and w<strong>at</strong>er surface elev<strong>at</strong>ions along transects 1A, 1B, 2A, and 2B dur<strong>in</strong>g<br />

October <strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Veget<strong>at</strong>ion height and w<strong>at</strong>er surface elev<strong>at</strong>ions<br />

were calcul<strong>at</strong>ed by add<strong>in</strong>g measured veget<strong>at</strong>ion height and w<strong>at</strong>er depth to river bed elev<strong>at</strong>ions. LB = left<br />

river bank and RB = right river bank look<strong>in</strong>g downstream. Zero is <strong>at</strong> <strong>the</strong> left edge <strong>of</strong> w<strong>at</strong>er.<br />

30


Fig. 21. <strong>River</strong> bed, veget<strong>at</strong>ion height, and w<strong>at</strong>er surface elev<strong>at</strong>ions along transects 4A and 4B dur<strong>in</strong>g October<br />

<strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>. Veget<strong>at</strong>ion height and w<strong>at</strong>er surface elev<strong>at</strong>ions were calcul<strong>at</strong>ed<br />

by add<strong>in</strong>g measured veget<strong>at</strong>ion height and w<strong>at</strong>er depth to river bed elev<strong>at</strong>ions. LB = left river bank and RB<br />

= right river look<strong>in</strong>g downstream. Zero is <strong>at</strong> <strong>the</strong> right edge <strong>of</strong> w<strong>at</strong>er.<br />

31


Fig. 22. <strong>River</strong> bed, veget<strong>at</strong>ion height, and w<strong>at</strong>er surface elev<strong>at</strong>ions along transects 5A and 5B dur<strong>in</strong>g October<br />

<strong>2009</strong> <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>. Veget<strong>at</strong>ion height and w<strong>at</strong>er surface elev<strong>at</strong>ions were calcul<strong>at</strong>ed<br />

by add<strong>in</strong>g measured veget<strong>at</strong>ion height and w<strong>at</strong>er depth to river bed elev<strong>at</strong>ions. LB = left river bank and RB<br />

= right river look<strong>in</strong>g downstream. D<strong>at</strong>a from <strong>the</strong> middle <strong>of</strong> transect 5B was not collected because <strong>the</strong> w<strong>at</strong>er<br />

was too deep to wade. Zero is <strong>at</strong> right edge <strong>of</strong> w<strong>at</strong>er.<br />

32


DISCUSSION<br />

Overall Trends <strong>of</strong> <strong>Aqu<strong>at</strong>ic</strong> <strong>Macrophytes</strong><br />

Variability and Inference<br />

The distribution <strong>of</strong> aqu<strong>at</strong>ic macrophytes was highly variable with<strong>in</strong> transects as well as<br />

among transects. This observ<strong>at</strong>ion is similar to differences <strong>in</strong> wet weight biomass <strong>of</strong> aqu<strong>at</strong>ic<br />

macrophytes among transects (Hampton 1981) and <strong>the</strong> clustered distribution <strong>of</strong> macrophyte<br />

species (Snyder 1991) for <strong>the</strong> same study area. The variable and clustered distribution <strong>of</strong> aqu<strong>at</strong>ic<br />

macrophytes supports establish<strong>in</strong>g a str<strong>at</strong>ified random sampl<strong>in</strong>g design <strong>in</strong> order to <strong>in</strong>fer results to<br />

<strong>the</strong> target popul<strong>at</strong>ion <strong>of</strong> <strong>in</strong>terest (<strong>the</strong> Henrys <strong>Fork</strong> from Last Chance to Harriman East).<br />

Results from this study and 1989–2001 should not be <strong>in</strong>ferred to <strong>the</strong> entire reach <strong>of</strong> <strong>the</strong><br />

Henrys <strong>Fork</strong> from Last Chance to Harriman East because transects were not randomly<br />

distributed. However, because transects were placed <strong>in</strong> areas historically used by forag<strong>in</strong>g<br />

trumpeter swans and o<strong>the</strong>r w<strong>at</strong>erfowl, <strong>the</strong>se surveys will likely detect changes <strong>in</strong> veget<strong>at</strong>ion<br />

result<strong>in</strong>g from biological impacts <strong>of</strong> forag<strong>in</strong>g w<strong>at</strong>erfowl, as well as from physical characteristics<br />

<strong>of</strong> sampled stream reaches (see V<strong>in</strong>son et al. 1992).<br />

Percent cover <strong>of</strong> aqu<strong>at</strong>ic macrophytes prior to 1988 cannot directly be compared to more<br />

recent d<strong>at</strong>a due to differences <strong>in</strong> sampl<strong>in</strong>g methods. Percent cover estim<strong>at</strong>es from 1958 can<br />

provide a general historical basel<strong>in</strong>e to compare with l<strong>at</strong>er studies. However, bare ground was<br />

not recorded dur<strong>in</strong>g 1958 so cover estim<strong>at</strong>es <strong>of</strong> aqu<strong>at</strong>ic macrophytes may be high compared to<br />

recent estim<strong>at</strong>es because it is unlikely (although not impossible) th<strong>at</strong> aqu<strong>at</strong>ic veget<strong>at</strong>ion covered<br />

100% <strong>of</strong> each sample. Percentage estim<strong>at</strong>es <strong>of</strong> veget<strong>at</strong>ion based on wet-weight biomass also do<br />

not provide a measure <strong>of</strong> bare ground.<br />

Recent Historical Trends 1988–<strong>2009</strong><br />

St<strong>at</strong>istical analyses <strong>of</strong> aqu<strong>at</strong>ic macrophyte cover dur<strong>in</strong>g 1988 compared to estim<strong>at</strong>es <strong>of</strong><br />

cover follow<strong>in</strong>g <strong>the</strong> sediment release dur<strong>in</strong>g 1992 did not detect any significant differences.<br />

However, <strong>the</strong> st<strong>at</strong>istical power compar<strong>in</strong>g d<strong>at</strong>a from two different sampl<strong>in</strong>g methods dur<strong>in</strong>g 1994<br />

and from <strong>the</strong> same methods dur<strong>in</strong>g 1988 and 1994 was low (power = 0.05) <strong>in</strong>dic<strong>at</strong><strong>in</strong>g th<strong>at</strong> it is<br />

less likely to detect a difference when one actually exists. Despite low st<strong>at</strong>istical power, cover<br />

estim<strong>at</strong>es from 1988 to 1994 were similar and rel<strong>at</strong>ively high, rang<strong>in</strong>g from 77 to 85%, with <strong>the</strong><br />

exception <strong>of</strong> 1990 when aqu<strong>at</strong>ic macrophyte cover averaged 67%. The lower cover dur<strong>in</strong>g 1990<br />

was likely a result <strong>of</strong> <strong>in</strong>creased w<strong>in</strong>ter<strong>in</strong>g trumpeter swans and <strong>in</strong>creased availability <strong>of</strong> optimal<br />

forag<strong>in</strong>g habit<strong>at</strong> (e.g. shallow w<strong>at</strong>er and ice-free conditions) dur<strong>in</strong>g <strong>the</strong> preced<strong>in</strong>g w<strong>in</strong>ter (Shea et<br />

al. 1996).<br />

Dur<strong>in</strong>g 1989 aqu<strong>at</strong>ic macrophytes on <strong>the</strong> Henrys <strong>Fork</strong> were described as “dense” and<br />

averaged 85% cover (V<strong>in</strong>son et al. 1992). Experienced researchers on <strong>the</strong> Henrys <strong>Fork</strong> noted<br />

th<strong>at</strong> <strong>the</strong> abundance <strong>of</strong> aqu<strong>at</strong>ic macrophytes dur<strong>in</strong>g <strong>the</strong> early 1990s appeared to be much less than<br />

dur<strong>in</strong>g 1988 (Shea et al. 1996). If <strong>the</strong> subjective observ<strong>at</strong>ion <strong>of</strong> decreased abundance is correct,<br />

it appears th<strong>at</strong> cover estim<strong>at</strong>es did not detect changes between 1988 and <strong>the</strong> early 1990s.<br />

Changes <strong>in</strong> total abundance <strong>of</strong> aqu<strong>at</strong>ic macrophytes may not be detected by percent cover<br />

33


estim<strong>at</strong>es, however, compared to density and frequency, percent cover estim<strong>at</strong>es are <strong>the</strong> most<br />

closely rel<strong>at</strong>ed to biomass or annual production (Elz<strong>in</strong>ga et al. 2001).<br />

Percent cover <strong>of</strong> aqu<strong>at</strong>ic macrophytes dur<strong>in</strong>g <strong>2009</strong> did not significantly differ from 4 <strong>of</strong><br />

<strong>the</strong> 7 years <strong>of</strong> sampl<strong>in</strong>g dur<strong>in</strong>g 1993–2001, but was significantly lower than 1993, 1994, and<br />

1999. Due to a gap <strong>in</strong> d<strong>at</strong>a from 2002–2008, it cannot be determ<strong>in</strong>ed if <strong>the</strong> aqu<strong>at</strong>ic macrophytes<br />

are experienc<strong>in</strong>g a long-term decl<strong>in</strong>e or if <strong>the</strong> current abundance is part <strong>of</strong> <strong>the</strong> n<strong>at</strong>ural variability<br />

(e.g. cyclical) <strong>of</strong> aqu<strong>at</strong>ic macrophytes on <strong>the</strong> Henrys <strong>Fork</strong>.<br />

Differences may also be rel<strong>at</strong>ed to observer bias and/or annual vari<strong>at</strong>ion <strong>in</strong> phenology <strong>of</strong><br />

veget<strong>at</strong>ion. Percent cover <strong>of</strong> aqu<strong>at</strong>ic macrophytes dur<strong>in</strong>g <strong>2009</strong> was approxim<strong>at</strong>ely 20% lower<br />

than 1993 and 1999. Some authors suggest th<strong>at</strong> differences <strong>in</strong> cover estim<strong>at</strong>es need to be gre<strong>at</strong>er<br />

than 20–25% before <strong>the</strong>y can be <strong>at</strong>tributed to factors o<strong>the</strong>r than observer bias and annual<br />

vari<strong>at</strong>ion (Kennedy and Addison 1987, Hope-Simpson 1940). The 20% difference observed<br />

between this study and peak estim<strong>at</strong>es dur<strong>in</strong>g 1993 and 1999 may, <strong>in</strong> part, be <strong>at</strong>tributed to<br />

observer bias. However, estim<strong>at</strong>es <strong>of</strong> cover are most variable <strong>at</strong> moder<strong>at</strong>e levels (40–60%;<br />

H<strong>at</strong>ton et al. 1986) and <strong>the</strong> changes detected <strong>in</strong> this study were between 84 and 64%.<br />

Differences <strong>in</strong> cover may be rel<strong>at</strong>ed to differences <strong>in</strong> phenology <strong>of</strong> veget<strong>at</strong>ion between<br />

years. Tim<strong>in</strong>g <strong>of</strong> peak growth and level <strong>of</strong> senescence by October likely varies between years<br />

depend<strong>in</strong>g on environmental conditions (e.g. temper<strong>at</strong>ure, tim<strong>in</strong>g <strong>of</strong> peak spr<strong>in</strong>g flows, etc).<br />

Biomass <strong>of</strong> aqu<strong>at</strong>ic macrophytes <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> generally peaked dur<strong>in</strong>g September–October<br />

1987 and 1988, but also varied by species and year (Angradi 1991). For example, Ranunculus<br />

aqu<strong>at</strong>ilis ma<strong>in</strong>ta<strong>in</strong>ed rel<strong>at</strong>ively high biomass dur<strong>in</strong>g September and October 1988, whereas<br />

biomass <strong>of</strong> Zannichellia palustris dropped by almost 40% from September to October 1987.<br />

Myriophyllum quitense showed a bimodal peak with <strong>the</strong> highest biomass <strong>in</strong> June 1988 and<br />

ano<strong>the</strong>r smaller peak dur<strong>in</strong>g October <strong>of</strong> both years (Angradi 1991). Most species also exhibited<br />

a rapid decl<strong>in</strong>e <strong>in</strong> biomass follow<strong>in</strong>g peak estim<strong>at</strong>es, suggest<strong>in</strong>g th<strong>at</strong> cover estim<strong>at</strong>es l<strong>at</strong>e <strong>in</strong> <strong>the</strong><br />

grow<strong>in</strong>g season may be more susceptible to vari<strong>at</strong>ion <strong>in</strong> annual growth p<strong>at</strong>terns. To reduce <strong>the</strong><br />

vari<strong>at</strong>ion rel<strong>at</strong>ed to phenology <strong>of</strong> veget<strong>at</strong>ion, cover measurements should be made dur<strong>in</strong>g <strong>the</strong><br />

same stage <strong>of</strong> <strong>the</strong> grow<strong>in</strong>g season, which will probably not occur on <strong>the</strong> same calendar d<strong>at</strong>e due<br />

to vari<strong>at</strong>ion <strong>in</strong> annual we<strong>at</strong>her (Elz<strong>in</strong>ga et al. 2001).<br />

Peak grow<strong>in</strong>g season dur<strong>in</strong>g <strong>2009</strong> may have been earlier than <strong>in</strong> o<strong>the</strong>r years. For<br />

example, veget<strong>at</strong>ion rarely reached <strong>the</strong> w<strong>at</strong>er surface dur<strong>in</strong>g October <strong>2009</strong>. However, dense m<strong>at</strong>s<br />

<strong>of</strong> veget<strong>at</strong>ion were observed on <strong>the</strong> w<strong>at</strong>er surface <strong>at</strong> Millionaire’s Pool (near <strong>the</strong> Ranch Houses)<br />

dur<strong>in</strong>g mid-August <strong>2009</strong>. By October <strong>the</strong> veget<strong>at</strong>ion along transect 3 <strong>at</strong> Millionaire’s Pool had<br />

senesced, occupy<strong>in</strong>g on average 28% (range 9–56%) <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column.<br />

Trends by Species’ Groups<br />

S<strong>in</strong>ce 1988, it appears th<strong>at</strong> <strong>the</strong> cover <strong>of</strong> Group 1 species has gradually decl<strong>in</strong>ed, likely<br />

due to decl<strong>in</strong><strong>in</strong>g cover estim<strong>at</strong>es <strong>of</strong> Elodea canadensis and Stuckenia spp. (Fig. 23). A peak <strong>in</strong><br />

Group 1 dur<strong>in</strong>g 1997 may be <strong>the</strong> result <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g cover <strong>of</strong> Myriophyllum spp. from 1993 to<br />

1997. No significance difference <strong>in</strong> <strong>the</strong> abundance <strong>of</strong> Group 1 species dur<strong>in</strong>g <strong>2009</strong> compared to<br />

2001 suggests th<strong>at</strong> <strong>the</strong> decl<strong>in</strong>e <strong>of</strong> Group 1 species may have stabilized. However, any trend<br />

analysis should be considered cautiously due to <strong>the</strong> d<strong>at</strong>a gap between 2002 and 2008.<br />

34


Percent cover <strong>of</strong> Group 2 species has rema<strong>in</strong>ed rel<strong>at</strong>ively consistent s<strong>in</strong>ce 1988. Factors<br />

affect<strong>in</strong>g <strong>the</strong> virtual disappearance <strong>of</strong> two dom<strong>in</strong>ant Group 2 species, Zannichellia palustris and<br />

Ranunculus aqu<strong>at</strong>ilis, from <strong>the</strong> Henrys <strong>Fork</strong> dur<strong>in</strong>g 1977–1981 have not re-occurred s<strong>in</strong>ce 1988.<br />

Species with<strong>in</strong> each <strong>of</strong> <strong>the</strong> growth form groups have different morphologies, habit<strong>at</strong><br />

niches, and pal<strong>at</strong>ability to w<strong>at</strong>erfowl. <strong>Aqu<strong>at</strong>ic</strong> macrophytes with different plant morphologies<br />

(e.g. f<strong>in</strong>ely dissected leaves versus broad leaves) have different abundances <strong>of</strong><br />

macro<strong>in</strong>vertebr<strong>at</strong>es (Cheruvelil et al. 2000). Individual species also have different affects on<br />

river processes (e.g., current velocity, sediment<strong>at</strong>ion p<strong>at</strong>terns). Due to this variability, species<br />

with<strong>in</strong> a group likely respond differently to environmental factors and have different effects on<br />

biological processes. Therefore, trends <strong>of</strong> species and/or closely rel<strong>at</strong>ed species (e.g., f<strong>in</strong>e-leaved<br />

pondweeds) should also be considered <strong>in</strong> <strong>the</strong> analyses <strong>of</strong> river processes.<br />

Trends by Species<br />

Stuckenia spp.<br />

It appears th<strong>at</strong> <strong>the</strong> abundance <strong>of</strong> Stuckenia spp. (<strong>in</strong>cludes Potamogeton pect<strong>in</strong><strong>at</strong>us<br />

reported throughout historical surveys <strong>of</strong> <strong>the</strong> Henrys <strong>Fork</strong>) has gradually decl<strong>in</strong>ed from 1958 to<br />

<strong>2009</strong> (Fig. 23). Despite <strong>the</strong> limited sample size dur<strong>in</strong>g 1958, Stuckenia spp. was described as<br />

widespread and “abundant,” averag<strong>in</strong>g 40% (Hansen 1959). Percent cover <strong>of</strong> Stuckenia spp.<br />

averaged 16–26% dur<strong>in</strong>g <strong>the</strong> mid to l<strong>at</strong>e 1990s (Shea 1999, Shea et al. 1996,). Stuckenia spp.<br />

was widespread dur<strong>in</strong>g this study occurr<strong>in</strong>g <strong>in</strong> 61% <strong>of</strong> sampled plots; however, percent cover<br />

only averaged 10%. This decl<strong>in</strong>e (30%) is gre<strong>at</strong>er than <strong>the</strong> 20–25% difference th<strong>at</strong> can be<br />

<strong>at</strong>tributed to observer bias (Kennedy and Addison 1987, Hope-Simpson 1940).<br />

Stuckenia pect<strong>in</strong><strong>at</strong>a is tolerant <strong>of</strong> a wide range <strong>of</strong> abiotic conditions and its occurrence<br />

and biomass <strong>in</strong> wetlands, shallow eutrophic lakes, and rivers have been rel<strong>at</strong>ed to many factors.<br />

S. pect<strong>in</strong><strong>at</strong>a competes well with Myriophyllum sibiricum (synonymous with previously reported<br />

M. exalbescens; Moen and Cohen 1989), a species th<strong>at</strong> shares a similar niche (French and<br />

Chambers 1996), so its occurrence on <strong>the</strong> Henrys <strong>Fork</strong> is likely rel<strong>at</strong>ed to abiotic conditions,<br />

w<strong>at</strong>erfowl herbivory, or a comb<strong>in</strong><strong>at</strong>ion <strong>of</strong> both.<br />

S. pect<strong>in</strong><strong>at</strong>a was most abundant <strong>at</strong> current speeds between 0.0–0.2 m/s (0.0-0.7 ft/s),<br />

w<strong>at</strong>er depths < 1.5 m (4.9 ft), and <strong>in</strong> silt sediments <strong>at</strong> <strong>the</strong> Nechako <strong>River</strong> <strong>in</strong> British Columbia<br />

(French and Chambers 1996). The biomass <strong>of</strong> S. pect<strong>in</strong><strong>at</strong>a <strong>at</strong> Badfish Creek <strong>in</strong> Wiscons<strong>in</strong> did<br />

not significantly differ between substr<strong>at</strong>es, but tended to be higher <strong>in</strong> silt and gravel substr<strong>at</strong>es<br />

compared to sand (Madsen and Adams 1989). Biomass significantly differed among stream<br />

reaches and correl<strong>at</strong>ions with <strong>in</strong>dividual physical stream <strong>at</strong>tributes were weak, suggest<strong>in</strong>g th<strong>at</strong> S.<br />

pect<strong>in</strong><strong>at</strong>a responds to many environmental factors (Madsen and Adams 1989). O<strong>the</strong>r substr<strong>at</strong>e<br />

characteristics, <strong>in</strong>clud<strong>in</strong>g organic m<strong>at</strong>ter (and <strong>the</strong> associ<strong>at</strong>ed availability <strong>of</strong> nitrogen released<br />

dur<strong>in</strong>g <strong>the</strong> m<strong>in</strong>eraliz<strong>at</strong>ion <strong>of</strong> organic m<strong>at</strong>ter), available soil phosphorus, and available soil<br />

potassium are important factors affect<strong>in</strong>g distribution and/or biomass <strong>of</strong> S. pect<strong>in</strong><strong>at</strong>a (van Wijck<br />

et al. 1992, Anderson 1978).<br />

Germ<strong>in</strong><strong>at</strong>ion and early growth <strong>of</strong> S. pect<strong>in</strong><strong>at</strong>a is primarily affected by spr<strong>in</strong>g w<strong>at</strong>er<br />

temper<strong>at</strong>ure and to a lesser degree light (Scheffer et al. 1992, Madsen and Adams 1988, Spencer<br />

1986). Lack <strong>of</strong> calcium and/or magnesium <strong>in</strong> solution may also <strong>in</strong>hibit or reduce <strong>the</strong> growth <strong>of</strong><br />

35


S. pect<strong>in</strong><strong>at</strong>a (Barko et al. 1986). Increased current velocity over <strong>the</strong> range <strong>of</strong> 0.17–0.73 m/s<br />

(0.56–2.4 ft/s) dur<strong>in</strong>g <strong>in</strong> situ experiments <strong>at</strong> <strong>the</strong> Pemb<strong>in</strong>a <strong>River</strong> <strong>in</strong> Alberta co<strong>in</strong>cided with<br />

decreased biomass <strong>of</strong> S. pect<strong>in</strong><strong>at</strong>a regardless <strong>of</strong> sediment type (Chambers et al. 1991). In<br />

greenhouse studies, <strong>the</strong> growth r<strong>at</strong>e <strong>of</strong> S. pect<strong>in</strong><strong>at</strong>a from small tubers (< 10 mg) was less than<br />

from larger tubers (> 31 mg) and biomass decreased with <strong>in</strong>creased plant<strong>in</strong>g depth and decreased<br />

tuber size (Spencer 1987). Therefore, abundance <strong>of</strong> S. pect<strong>in</strong><strong>at</strong>a <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> may<br />

neg<strong>at</strong>ively <strong>in</strong>fluenced by large quantities <strong>of</strong> sediment from draw downs <strong>of</strong> Island Park Reservoir<br />

and/or high current velocities dur<strong>in</strong>g <strong>the</strong> early to mid–grow<strong>in</strong>g season. However, percent cover<br />

<strong>of</strong> Stuckenia spp. did not appear to be affected by <strong>the</strong> 1992 sediment release from Island Park<br />

Reservoir (Fig. 23).<br />

W<strong>at</strong>erfowl herbivory can also impact submerged aqu<strong>at</strong>ic macrophyte popul<strong>at</strong>ions,<br />

particularly <strong>in</strong> shallow sheltered areas (Idestam-Almquist 1998). S. pect<strong>in</strong><strong>at</strong>a tubers are an<br />

important food source for trumpeter swans <strong>in</strong> <strong>the</strong> Gre<strong>at</strong>er Yellowstone Area where tubers<br />

accounted for 23.4% <strong>of</strong> <strong>the</strong>ir diet dur<strong>in</strong>g <strong>the</strong> w<strong>in</strong>ter (Squires 1995). Biomass <strong>of</strong> S. pect<strong>in</strong><strong>at</strong>a was<br />

reduced by 17% <strong>in</strong> <strong>the</strong> Lauwersmeer, a man-made lake <strong>in</strong> The Ne<strong>the</strong>rlands (Van Wijk 1988), and<br />

density was reduced 10–80 times <strong>in</strong> <strong>the</strong> Baltic Sea (Idestam-Almquist 1998) by forag<strong>in</strong>g<br />

w<strong>at</strong>erfowl. S. pect<strong>in</strong><strong>at</strong>a may exhibit compens<strong>at</strong>ory growth responses to forag<strong>in</strong>g by w<strong>at</strong>erfowl.<br />

Trumpeter swans <strong>in</strong> <strong>the</strong> Canadian subpopul<strong>at</strong>ion <strong>of</strong> <strong>the</strong> Rocky Mounta<strong>in</strong> popul<strong>at</strong>ion reduced <strong>the</strong><br />

biomass <strong>of</strong> tubers and rhizomes by 24% dur<strong>in</strong>g <strong>the</strong> spr<strong>in</strong>g, but shoot density and biomass <strong>of</strong> S.<br />

pect<strong>in</strong><strong>at</strong>a did not differ <strong>the</strong> follow<strong>in</strong>g summer (LaMontagne et al. 2003).<br />

Myriophyllum spp.<br />

Percent cover estim<strong>at</strong>es for Myriophyllum spp. were rel<strong>at</strong>ively similar between 1958,<br />

1988, 1993–2001, and <strong>2009</strong> rang<strong>in</strong>g from 6 to 17% (Fig. 23). Based on wet weigh biomass,<br />

Myriophyllum sibiricum (previously reported as M. exalbescens) accounted for 25% <strong>of</strong> <strong>the</strong> total<br />

biomass dur<strong>in</strong>g 1979 and <strong>in</strong>creased to 42% dur<strong>in</strong>g 1986 (Shea et al. 1996). However, dur<strong>in</strong>g this<br />

time biomass <strong>of</strong> M. sibiricum decreased from 10.1 to 7.5 kg/m 2 . Its decl<strong>in</strong>e was less than o<strong>the</strong>r<br />

species, <strong>the</strong>refore account<strong>in</strong>g for a higher percentage <strong>of</strong> <strong>the</strong> total biomass <strong>in</strong> 1986 compared to<br />

1979 (Shea et al. 1996). By 1987, total biomass (9.6 kg/m 2 ) was similar to 1979 (Shea et al.<br />

1996).<br />

Limited <strong>in</strong>form<strong>at</strong>ion is available on <strong>the</strong> factors affect<strong>in</strong>g n<strong>at</strong>ive species <strong>of</strong> Myriophyllum.<br />

M. sibiricum was most abundant <strong>at</strong> slow current speeds (0.0–0.2 m/s; 0.0–0.7 ft/s), w<strong>at</strong>er depths<br />

< 1.5 m (4.9 ft; but ⅓ <strong>of</strong> <strong>the</strong> biomass occurred <strong>in</strong> w<strong>at</strong>er 1.5–3.0 m [4.9–9.8 ft]), and <strong>in</strong> silt<br />

sediments on <strong>the</strong> Nechako <strong>River</strong>, British Columbia (French and Chambers 1996). M. sibiricum<br />

occupied similar niches as S. pect<strong>in</strong><strong>at</strong>a, C. hermaphroditica, E. canadensis, although it was able<br />

to occupy deeper habit<strong>at</strong>s when compared to S. pect<strong>in</strong><strong>at</strong>a (French and Chambers 1996).<br />

Myriophyllum spp. is not considered an important food source for trumpeter swans.<br />

Trumpeter swans <strong>in</strong> <strong>the</strong> Gre<strong>at</strong>er Yellowstone area avoided consum<strong>in</strong>g M. sibiricum (Squires<br />

1995). Therefore <strong>the</strong> popul<strong>at</strong>ion <strong>of</strong> w<strong>in</strong>ter<strong>in</strong>g trumpeter swans on <strong>the</strong> Henrys <strong>Fork</strong> probably does<br />

not directly affect <strong>the</strong> abundance <strong>of</strong> Myriophyllum spp. S. pect<strong>in</strong><strong>at</strong>a competes well with<br />

Myriophyllum sibiricum (Moen and Cohen 1989), but preferential forag<strong>in</strong>g by trumpeter swans<br />

on S. pect<strong>in</strong><strong>at</strong>a or o<strong>the</strong>r preferred foods (e.g. Elodea canadensis) may give Myriophyllum spp. an<br />

<strong>in</strong>direct competitive advantage.<br />

36


Elodea canadensis, Ranunculus aqu<strong>at</strong>ilis, and Zannichellia palustris<br />

It appears th<strong>at</strong> <strong>the</strong> distribution, frequency, and abundance <strong>of</strong> Elodea canadensis has<br />

fluctu<strong>at</strong>ed s<strong>in</strong>ce 1958 when it was only observed <strong>at</strong> three loc<strong>at</strong>ions from <strong>the</strong> Railroad Ranch<br />

Bridge downstream to Harriman Spr<strong>in</strong>g (likely <strong>the</strong> same loc<strong>at</strong>ion as Cold Spr<strong>in</strong>g). E. canadensis<br />

appears to have <strong>in</strong>creased from 1958 to <strong>the</strong> l<strong>at</strong>e 1970s and <strong>the</strong>n decreased dur<strong>in</strong>g <strong>the</strong> mid 1980s<br />

(Fig. 23). Dur<strong>in</strong>g 1993–<strong>2009</strong>, percent cover <strong>of</strong> E. canadensis decl<strong>in</strong>ed to a low <strong>of</strong> 7% dur<strong>in</strong>g<br />

1997 and appears to have slightly <strong>in</strong>creased s<strong>in</strong>ce <strong>the</strong>n.<br />

Its distribution from Last Chance to Harriman East has also shifted throughout <strong>the</strong> period<br />

<strong>of</strong> historical surveys. By 1979 E. canadensis occurred <strong>in</strong> 69% <strong>of</strong> samples from Last Chance to<br />

Harriman East (similar <strong>in</strong> distribution to this study) and accounted for 25% <strong>of</strong> total biomass with<br />

almost ⅓ <strong>of</strong> <strong>the</strong> biomass collected from Last Chance (upstream <strong>of</strong> <strong>the</strong> Railroad Ranch Bridge).<br />

But by 1985 no E. canadensis was noted upstream from Osborne Bridge. This was confirmed<br />

with sampl<strong>in</strong>g dur<strong>in</strong>g 1986 and 1987 when E. canadensis was observed from <strong>the</strong> Railroad Bridge<br />

downstream and accounted for ≤ 1% <strong>of</strong> total biomass. Dur<strong>in</strong>g <strong>2009</strong>, percent cover <strong>of</strong> E.<br />

canadensis appeared to be higher <strong>at</strong> Harriman East compared to transects upstream <strong>of</strong> Silver<br />

Lake Outlet and Osborne Bridge.<br />

Percent cover estim<strong>at</strong>es for Zannichellia palustris and Ranunculus aqu<strong>at</strong>ilis were<br />

rel<strong>at</strong>ively similar between 1958, 1988, 1993–2001, and <strong>2009</strong>; Z. palustris ranged from 6 to 16%<br />

and R. aqu<strong>at</strong>ilis ranged from 7 to 16% (Fig. 24). However, nei<strong>the</strong>r species was detected <strong>in</strong> any<br />

biomass samples dur<strong>in</strong>g 1977 (trace amounts <strong>of</strong> R. aqu<strong>at</strong>ilis were noted), 1979, or 1980, but both<br />

were present aga<strong>in</strong> <strong>in</strong> surveys dur<strong>in</strong>g 1986–<strong>2009</strong>.<br />

Given <strong>the</strong>ir dist<strong>in</strong>ct changes <strong>in</strong> distribution throughout <strong>the</strong> Henrys <strong>Fork</strong> and lack <strong>of</strong><br />

occurrence dur<strong>in</strong>g some sampl<strong>in</strong>g periods, growth and/or germ<strong>in</strong><strong>at</strong>ion requirements for E.<br />

canadensis, Z. palustris, and R. aqu<strong>at</strong>ilis may be more specific than o<strong>the</strong>r species <strong>of</strong> aqu<strong>at</strong>ic<br />

macrophytes. Dur<strong>in</strong>g a survey <strong>of</strong> six wetlands on <strong>the</strong> Caribou-Targhee N<strong>at</strong>ional Forest dur<strong>in</strong>g<br />

2002–2003, E. canadensis and R. aqu<strong>at</strong>ilis were each observed <strong>at</strong> one site while o<strong>the</strong>r aqu<strong>at</strong>ic<br />

macrophytes were found <strong>at</strong> multiple sites (Henry 2004).<br />

E. canadensis can rapidly propag<strong>at</strong>e through veget<strong>at</strong>ive means, exhibits a life cycle th<strong>at</strong><br />

favors cool we<strong>at</strong>her, is opportunistic when obta<strong>in</strong><strong>in</strong>g nutrients, and has several mechanisms to<br />

enhance photosyn<strong>the</strong>tic efficiency (Nichols and Shaw 1986). Due to <strong>the</strong>se characteristics, E.<br />

canadensis is <strong>of</strong>ten considered a nuisance species outside <strong>of</strong> its n<strong>at</strong>ive North America, <strong>in</strong>clud<strong>in</strong>g<br />

region <strong>of</strong> Asia, Africa, Australia, and New Zealand (Bowmer et al. 1995). Conditions on <strong>the</strong><br />

Henrys <strong>Fork</strong> may be limit<strong>in</strong>g one or more <strong>of</strong> its growth requirements. Productivity <strong>of</strong> E.<br />

canadensis may be controlled by photorespir<strong>at</strong>ion (Simpson and E<strong>at</strong>on 1986), dissolved<br />

<strong>in</strong>organic carbon (Madsen and Sand-Jensen 1987), nitrogen (Ozimek et al. 1993), and <strong>the</strong><br />

rel<strong>at</strong>ionship among oxygen, pH and carbon dioxide (Simpson et al. 2006).<br />

Shift<strong>in</strong>g occurrence <strong>of</strong> E. canadensis may also be due to forag<strong>in</strong>g by trumpeter swans<br />

(Paull<strong>in</strong> 1973) or due to a n<strong>at</strong>ural decl<strong>in</strong>e result<strong>in</strong>g from m<strong>in</strong>eral depletion (Sculthorpe 1967).<br />

The rel<strong>at</strong>ionship between number <strong>of</strong> w<strong>in</strong>ter<strong>in</strong>g swans and percent cover <strong>of</strong> E. canadensis is not<br />

consistent, however, high numbers <strong>of</strong> w<strong>in</strong>ter<strong>in</strong>g swans dur<strong>in</strong>g 1994–1996 and 2000 (summarized<br />

by Van Kirk and Mart<strong>in</strong> 2000) co<strong>in</strong>cided with lower estim<strong>at</strong>es <strong>of</strong> percent cover dur<strong>in</strong>g <strong>the</strong><br />

follow<strong>in</strong>g grow<strong>in</strong>g season.<br />

E. canadensis grew <strong>in</strong> rel<strong>at</strong>ively deep clear w<strong>at</strong>er with substr<strong>at</strong>es low <strong>in</strong> silt <strong>at</strong> Red Rock<br />

Lakes N<strong>at</strong>ional Wildlife Refuge (Paull<strong>in</strong> 1973). E. canadensis was also found <strong>in</strong> deeper w<strong>at</strong>er<br />

37


(up to 3 m; 10 ft) <strong>in</strong> British Columbia and had a higher biomass <strong>in</strong> silt compared to sand<br />

substr<strong>at</strong>es (French and Chambers 1996). Biomass <strong>of</strong> E. canadensis <strong>at</strong> Badfish Creek <strong>in</strong><br />

Wiscons<strong>in</strong> was positively correl<strong>at</strong>ed with w<strong>at</strong>er depth and organic m<strong>at</strong>ter, neg<strong>at</strong>ively correl<strong>at</strong>ed<br />

with current velocity, and was higher <strong>in</strong> silt compared to sand and gravel substr<strong>at</strong>es (Madsen and<br />

Adams 1989). Similar results were observed dur<strong>in</strong>g this study. Percent cover <strong>of</strong> E. canadensis<br />

was higher along transects <strong>at</strong> Harriman East th<strong>at</strong> had deeper w<strong>at</strong>er and higher silt content. The<br />

associ<strong>at</strong>ion <strong>of</strong> E. canadensis with silt substr<strong>at</strong>es may be a result <strong>of</strong> its effect on sediment<strong>at</strong>ion<br />

p<strong>at</strong>terns (Sand-Jensen 2008) r<strong>at</strong>her than a factor determ<strong>in</strong><strong>in</strong>g its distribution. Regardless <strong>of</strong> <strong>the</strong><br />

causal rel<strong>at</strong>ionship, E. canadensis likely benefits from this associ<strong>at</strong>ion.<br />

R. aqu<strong>at</strong>ilis had a unique distribution compared with o<strong>the</strong>r species <strong>of</strong> aqu<strong>at</strong>ic<br />

macrophytes, occurr<strong>in</strong>g <strong>in</strong> moder<strong>at</strong>ely fast flow<strong>in</strong>g currents (0.4–0.6 m/s; 1.3–2.0 ft/s) where<br />

o<strong>the</strong>r species were limited (French and Chambers 1996). In addition R. aqu<strong>at</strong>ilis was more<br />

abundant <strong>in</strong> w<strong>at</strong>er 1.5–3.0 m (4.9–9.8 ft) deep than <strong>in</strong> shallower w<strong>at</strong>er and on sandy substr<strong>at</strong>es<br />

compared to silt substr<strong>at</strong>es. Flow velocities with<strong>in</strong> stands <strong>of</strong> Ranunculus <strong>at</strong> two river reaches <strong>in</strong><br />

<strong>the</strong> United K<strong>in</strong>gdom were slow (< 0.1 m/s; 0.3 ft/s) and acceler<strong>at</strong>ed to 0.8 m/s (2.6 ft/s) <strong>in</strong><br />

unveget<strong>at</strong>ed areas (Cotton et al. 2006). Increase <strong>in</strong> area <strong>of</strong> Ranunculus spp. dur<strong>in</strong>g <strong>the</strong> spr<strong>in</strong>g<br />

was positively correl<strong>at</strong>ed with mean discharge (Ham et al. 2006).<br />

Little <strong>in</strong>form<strong>at</strong>ion is known about <strong>the</strong> abiotic factors affect<strong>in</strong>g <strong>the</strong> growth <strong>of</strong> Zannichellia<br />

palustris; however it appears to be highly sensitive to sediment<strong>at</strong>ion. Z. palustris decreased <strong>in</strong><br />

<strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> construction zones <strong>in</strong> Alaska (Crow 1979) and disappeared from <strong>the</strong> upper portion<br />

<strong>of</strong> <strong>the</strong> Fall <strong>River</strong>, California where 0.6 to 1.2 m (1.3–3.9 ft) <strong>of</strong> sandy sediment accumul<strong>at</strong>ed<br />

(Spencer and Ksander 2002). Germ<strong>in</strong><strong>at</strong>ion <strong>of</strong> Z. palustris <strong>in</strong> experimental studies was <strong>in</strong>hibited<br />

by as little as 2 cm (0.8 <strong>in</strong>) <strong>of</strong> sediment<strong>at</strong>ion (Spencer and Ksander 2002).<br />

This same rel<strong>at</strong>ionship between Z. palustris and sediment<strong>at</strong>ion is not apparent on <strong>the</strong><br />

Henrys <strong>Fork</strong>. Z. palustris was not observed on any transects dur<strong>in</strong>g 1977, two years prior to <strong>the</strong><br />

1979 sediment release from Island Park Dam (Fig. 24) suggest<strong>in</strong>g th<strong>at</strong> some o<strong>the</strong>r factor may<br />

have contributed to its decl<strong>in</strong>e s<strong>in</strong>ce 1958. In addition, Z. palustris was present <strong>at</strong> 8 <strong>of</strong> 10<br />

transects dur<strong>in</strong>g 1993, one year follow<strong>in</strong>g <strong>the</strong> 1992 sediment release from Island Park Dam.<br />

Callitriche spp. and Potamogeton richardsonii<br />

Potamogeton richardsonii and Callitriche spp. were commonly observed throughout<br />

historical surveys <strong>of</strong> aqu<strong>at</strong>ic macrophytes and contributed to species diversity and structural<br />

diversity; however, percent cover estim<strong>at</strong>es s<strong>in</strong>ce 1958 were ≤ 10%. Exceptions to this <strong>in</strong>clude<br />

an estim<strong>at</strong>e <strong>of</strong> 18% <strong>of</strong> <strong>the</strong> total biomass for P. richardsonii dur<strong>in</strong>g 1979 (Shea et al. 1996) and<br />

13% cover <strong>of</strong> Callitriche spp. dur<strong>in</strong>g 2001 (visual estim<strong>at</strong>e; Shea 2001).<br />

Callitriche spp. are <strong>in</strong>tolerant <strong>of</strong> shade from o<strong>the</strong>r aqu<strong>at</strong>ic macrophytes and riparian cover<br />

(NRCS 2004) and were observed <strong>in</strong> rel<strong>at</strong>ively low abundance on <strong>the</strong> Henrys <strong>Fork</strong> (this study), on<br />

wetlands <strong>in</strong> <strong>the</strong> Caribou-Targhee N<strong>at</strong>ional Forest (Henry 2004) and <strong>at</strong> Red Rock Lakes N<strong>at</strong>ional<br />

Wildlife Refuge (Paull<strong>in</strong> 1973). Callitriche spp. may not be as abundant as o<strong>the</strong>r species <strong>of</strong><br />

aqu<strong>at</strong>ic macrophytes <strong>in</strong> wetlands and low gradient rivers <strong>in</strong> eastern Idaho and southwestern<br />

Montana because <strong>of</strong> shad<strong>in</strong>g from o<strong>the</strong>r aqu<strong>at</strong>ic macrophytes. At <strong>the</strong> Nechako <strong>River</strong>, British<br />

Columbia, Callitriche hermaphroditica was more abundant <strong>in</strong> low velocity w<strong>at</strong>er (0.0–0.2 m/s;<br />

0.0–0.6 ft/s) and w<strong>at</strong>er < 1.5 m (4.9 ft), whereas abundance was similar on silt and sand<br />

38


substr<strong>at</strong>es (French and Chambers 1996). P. richardsonii followed a similar distribution with<br />

respect to low velocity w<strong>at</strong>er and w<strong>at</strong>er depth; however it was more abundant on silt substr<strong>at</strong>es<br />

compared to sand substr<strong>at</strong>es.<br />

Veget<strong>at</strong>ion Height<br />

Veget<strong>at</strong>ion height is <strong>of</strong>ten used <strong>in</strong> conjunction with percent cover estim<strong>at</strong>es to provide<br />

additional <strong>in</strong>sights <strong>in</strong>to productivity <strong>of</strong> aqu<strong>at</strong>ic macrophytes. Veget<strong>at</strong>ion height and <strong>the</strong> amount<br />

<strong>of</strong> <strong>the</strong> w<strong>at</strong>er column is occupied by veget<strong>at</strong>ion are important parameters <strong>of</strong> habit<strong>at</strong> available for<br />

fish and macro<strong>in</strong>vertebr<strong>at</strong>es. However, veget<strong>at</strong>ion height is strongly <strong>in</strong>fluenced by phenology,<br />

w<strong>at</strong>er flows, current velocity, and <strong>the</strong> <strong>in</strong>teraction <strong>of</strong> <strong>the</strong>se factors. Annual vari<strong>at</strong>ion <strong>in</strong> <strong>the</strong>se<br />

factors results <strong>in</strong> a complex rel<strong>at</strong>ionship with veget<strong>at</strong>ion height (see Fig. 11 and Fig. 12).<br />

<strong>Aqu<strong>at</strong>ic</strong> macrophytes occupied <strong>the</strong> gre<strong>at</strong>est percent <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column (66–71%) dur<strong>in</strong>g<br />

1989 and 1992 when October flows from Island Park Dam were rel<strong>at</strong>ively low (2–195 ft 3 /s,<br />

0.01–5.5 m 3 /s). Veget<strong>at</strong>ion occupied < 30% <strong>of</strong> <strong>the</strong> w<strong>at</strong>er column dur<strong>in</strong>g 1995–1997 when<br />

October discharge from Island Park Dam was rel<strong>at</strong>ively high (459–643 f 3 /s, 13.0–18.2 m 3 /s).<br />

However, this rel<strong>at</strong>ionship was not consistent among years. Mean veget<strong>at</strong>ion height and mean<br />

w<strong>at</strong>er depth were similar dur<strong>in</strong>g 1997 and <strong>2009</strong>; however discharge from Island Park Dam was<br />

approxim<strong>at</strong>ely 100 ft 3 /s (2.8 m 3 /s) higher dur<strong>in</strong>g 1997 than <strong>2009</strong>. Given <strong>the</strong> variability between<br />

flows and veget<strong>at</strong>ion height and <strong>the</strong> <strong>in</strong>teraction <strong>of</strong> veget<strong>at</strong>ion and w<strong>at</strong>er depth (V<strong>in</strong>son et al.<br />

1992), this suggests th<strong>at</strong> phenology <strong>of</strong> veget<strong>at</strong>ion may account for some <strong>of</strong> <strong>the</strong> observed<br />

variability.<br />

Periphyton<br />

Periphyton and phytoplankton were not identified to any taxonomic level dur<strong>in</strong>g this<br />

study; however, <strong>the</strong>y are important components <strong>of</strong> river processes. Percent cover <strong>of</strong> periphyton<br />

tended to be higher <strong>at</strong> East Harriman than on transects upstream <strong>of</strong> Silver Lake Outlet. Long<br />

strands <strong>of</strong> filamentous green algae were commonly observed associ<strong>at</strong>ed with Elodea canadensis<br />

(see Fig. 4). Epiphytic algae (globular, brown <strong>in</strong> color) were <strong>at</strong>tached to veget<strong>at</strong>ion along <strong>the</strong><br />

shallowly-flooded river marg<strong>in</strong>s.<br />

Dur<strong>in</strong>g <strong>2009</strong>, algae appeared to <strong>in</strong>crease between August and October. In particular, <strong>the</strong><br />

globular brown algae commonly <strong>at</strong>tached to aqu<strong>at</strong>ic macrophytes seemed much more prevalent<br />

dur<strong>in</strong>g October compared to August.<br />

Similar to macrophytes, periphyton assemblages slow w<strong>at</strong>er velocities (Dobbs and Biggs<br />

2002) and likely <strong>in</strong>crease w<strong>at</strong>er depths for a given flow. W<strong>at</strong>er <strong>at</strong>tenu<strong>at</strong>ion by periphyton<br />

assemblages varies by growth form and architecture (Dobbs and Biggs 2002). Identific<strong>at</strong>ion and<br />

quantific<strong>at</strong>ion <strong>of</strong> algae on <strong>the</strong> Henrys <strong>Fork</strong> will contribute to an <strong>in</strong>creased understand<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>teraction <strong>of</strong> algae and river processes.<br />

39


Physical Stream Characteristics and <strong>Aqu<strong>at</strong>ic</strong> <strong>Macrophytes</strong><br />

<strong>Aqu<strong>at</strong>ic</strong> macrophytes are <strong>in</strong>fluenced by a number <strong>of</strong> environmental abiotic factors<br />

<strong>in</strong>clud<strong>in</strong>g light, temper<strong>at</strong>ure, w<strong>at</strong>er depth and chemistry, current velocities and wave action,<br />

nutrients, and physical and chemical properties <strong>of</strong> sediment (Barko et al. 1991, Barko and Smart<br />

1981, Anderson 1978, Westlake 1967). Eutrophic<strong>at</strong>ion and sediment<strong>at</strong>ion <strong>of</strong> aqu<strong>at</strong>ic systems<br />

throughout <strong>the</strong> United St<strong>at</strong>es, Europe, and South Africa have resulted <strong>in</strong> changes <strong>in</strong> <strong>the</strong><br />

abundance and species composition <strong>of</strong> aqu<strong>at</strong>ic macrophytes (Thiébaut 2006, Lehmann and<br />

Lachavanne 1999, Dale and Miller 1997, Schmieder 1997, Cragg et al. 1980, Haramis and Carter<br />

1983, L<strong>in</strong>t and Cottam 1969, Edwards 1968). Agricultural pesticides have also been l<strong>in</strong>ked to<br />

changes <strong>in</strong> <strong>the</strong> abundance <strong>of</strong> aqu<strong>at</strong>ic macrophytes (Correll and Wu 1982).<br />

Changes <strong>in</strong> productivity <strong>of</strong> aqu<strong>at</strong>ic macrophytes on <strong>the</strong> Henrys <strong>Fork</strong> have been <strong>at</strong>tributed<br />

to low w<strong>in</strong>ter flows with associ<strong>at</strong>ed build up <strong>of</strong> thick ice, high vari<strong>at</strong>ion between w<strong>in</strong>ter and<br />

spr<strong>in</strong>g flows, <strong>in</strong>flux <strong>of</strong> silt from draw downs <strong>at</strong> Island Park Reservoir, and w<strong>in</strong>ter forag<strong>in</strong>g by<br />

trumpeter swans and o<strong>the</strong>r w<strong>at</strong>erfowl (Shea et al. 1996).<br />

Sediment<br />

As described <strong>in</strong> <strong>the</strong> previous section, different species <strong>of</strong> aqu<strong>at</strong>ic macrophytes occupy<br />

different habit<strong>at</strong> niches accord<strong>in</strong>g to substr<strong>at</strong>e and/or a comb<strong>in</strong><strong>at</strong>ion <strong>of</strong> substr<strong>at</strong>e and o<strong>the</strong>r abiotic<br />

factors. F<strong>in</strong>e sediments conta<strong>in</strong> important nutrients needed for growth and reproduction <strong>of</strong><br />

aqu<strong>at</strong>ic macrophytes. Once established, aqu<strong>at</strong>ic macrophytes <strong>in</strong>crease retention <strong>of</strong> f<strong>in</strong>e<br />

sediments and coarse and f<strong>in</strong>e particul<strong>at</strong>e organic m<strong>at</strong>ter by trapp<strong>in</strong>g particles and reduc<strong>in</strong>g<br />

velocities to allow suspended particles to settle (Sand-Jensen 2008, Horv<strong>at</strong>h 2004, Koetsier and<br />

McArthur 2000). This positive feedback loop allows macrophytes to cre<strong>at</strong>e an abiotic<br />

environment favorable to <strong>the</strong>ir cont<strong>in</strong>ued growth and expansion.<br />

P<strong>at</strong>terns <strong>of</strong> sediment deposition are rel<strong>at</strong>ed to plant morphology and canopy structure.<br />

F<strong>in</strong>e sediment deposition markedly raised <strong>the</strong> surface bed with<strong>in</strong> dense p<strong>at</strong>ches <strong>of</strong> Callitriche<br />

cophocarpa and Elodea canadensis (Sand-Jensen 2008). The <strong>in</strong>creased occurrence <strong>of</strong> silt along<br />

transects with higher cover <strong>of</strong> E. canadensis <strong>at</strong> Harriman East is likely a result <strong>of</strong> sediment<br />

deposition associ<strong>at</strong>ed with E. canadensis. Dense p<strong>at</strong>ches <strong>of</strong> Ranunculus pelt<strong>at</strong>us showed<br />

variable p<strong>at</strong>terns <strong>of</strong> sediment deposition with f<strong>in</strong>e sediments <strong>in</strong> <strong>the</strong> upstream portion <strong>of</strong> <strong>the</strong><br />

p<strong>at</strong>ches and coarse sediments <strong>in</strong> <strong>the</strong> downstream portion <strong>of</strong> <strong>the</strong> p<strong>at</strong>ches (Sand-Jensen 2008).<br />

Dist<strong>in</strong>ctive p<strong>at</strong>terns <strong>of</strong> flow and f<strong>in</strong>e sediment deposition were also cre<strong>at</strong>ed by different growth<br />

forms <strong>of</strong> Ranunculus between river reaches (Cotton et al. 2006).<br />

Pebble counts <strong>at</strong> 25–30 plots along each transect likely did not account for all <strong>the</strong><br />

variability with<strong>in</strong> a transect (A. Henry and J. DeRito, personal observ<strong>at</strong>ions). However, most <strong>of</strong><br />

<strong>the</strong> f<strong>in</strong>e sediments (silts and sands) deposited on <strong>the</strong> surface dur<strong>in</strong>g <strong>the</strong> 1992 sediment release<br />

from Island Park Reservoir appear to have been transported out <strong>of</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> Harriman St<strong>at</strong>e<br />

Park. Areas <strong>of</strong> f<strong>in</strong>e sediments up to 1 m (3.3 ft) deep <strong>of</strong> were observed <strong>at</strong> Big Bend and<br />

Millionaire’s Pool dur<strong>in</strong>g 1993, (Shea et al. 1996); <strong>the</strong> deepest area observed dur<strong>in</strong>g this study<br />

was approxim<strong>at</strong>ely 0.3 m (1 ft) deep <strong>at</strong> Millionaire’s Pool and transect 2B <strong>at</strong> Big Bend. This<br />

trend was also apparent from <strong>the</strong> pebble counts. The frequency <strong>of</strong> sand on transects 2B and 3<br />

was rel<strong>at</strong>ively high compared to transects fur<strong>the</strong>r upstream. The composition <strong>of</strong> substr<strong>at</strong>e below<br />

<strong>the</strong> surface was not sampled, so f<strong>in</strong>e sediments may still be embedded with<strong>in</strong> <strong>the</strong> river bed.<br />

40


W<strong>at</strong>er Velocity<br />

Surface w<strong>at</strong>er velocity on <strong>the</strong> Henrys <strong>Fork</strong> generally decreased from upstream to<br />

downstream transects, consistent with decreas<strong>in</strong>g river gradient over <strong>the</strong> same area (Gregory<br />

2008). An exception to this was transect 2B, which had lowest surface w<strong>at</strong>er velocity compared<br />

to o<strong>the</strong>r transects. In addition to be<strong>in</strong>g <strong>the</strong> widest transect and <strong>the</strong>refore hav<strong>in</strong>g gre<strong>at</strong>er crosssectional<br />

area to pass <strong>the</strong> same amount <strong>of</strong> flow, w<strong>in</strong>d speed had <strong>in</strong>creased dur<strong>in</strong>g sampl<strong>in</strong>g and<br />

may have decreased surface w<strong>at</strong>er velocities compared to o<strong>the</strong>r transects (J. DeRito, personal<br />

observ<strong>at</strong>ion).<br />

W<strong>at</strong>er velocity also generally decreased from <strong>the</strong> surface to <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> w<strong>at</strong>er<br />

column because measurements lower <strong>in</strong> <strong>the</strong> w<strong>at</strong>er column were typically with<strong>in</strong> stands <strong>of</strong> aqu<strong>at</strong>ic<br />

macrophytes and/or algae. Lower current velocities with<strong>in</strong> macrophyte stands have been<br />

reported for multiple rivers and experimental flume studies. W<strong>at</strong>er velocities with<strong>in</strong> three<br />

species <strong>of</strong> aqu<strong>at</strong>ic macrophytes (Myriophyllum triphyllum, Potamogeton crispus, and Glyceria<br />

fluitans) were lower than w<strong>at</strong>er velocities <strong>at</strong> <strong>the</strong> w<strong>at</strong>er surface (Dodds and Biggs 2002). Flow<br />

velocities <strong>in</strong> stands <strong>of</strong> Ranunculus were < 0.1 m/s (0.3 ft/s), compared to velocities up to 0.8 m/s<br />

(2.6 ft/s) outside <strong>of</strong> <strong>the</strong> macrophyte stands <strong>in</strong> <strong>the</strong> <strong>River</strong> Frome c<strong>at</strong>chment, United K<strong>in</strong>gdom<br />

(Cotton et al. 2006). Flow velocities <strong>in</strong> p<strong>at</strong>ches <strong>of</strong> Callitriche were 11-fold lower than velocities<br />

measured upstream <strong>of</strong> <strong>the</strong> p<strong>at</strong>ches <strong>in</strong> Danish Streams (Sand-Jensen and Mebus 1996).<br />

Macrophyte beds <strong>in</strong> Whakapipi Stream, New Zealand were estim<strong>at</strong>ed to decrease w<strong>at</strong>er velocity<br />

by 41% dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g season (Champion and Tanner 2000).<br />

The <strong>in</strong>verse correl<strong>at</strong>ion <strong>of</strong> current velocity and percent cover <strong>of</strong> aqu<strong>at</strong>ic macrophytes <strong>at</strong><br />

<strong>the</strong> Henrys <strong>Fork</strong> is similar to results from <strong>the</strong> lower <strong>River</strong> Spree <strong>in</strong> Germany (Schulz et al. 2003),<br />

<strong>the</strong> Bow <strong>River</strong> below Calgary (Chambers et al. 1991) and hypo<strong>the</strong>sized for <strong>the</strong> Breitenbach <strong>in</strong><br />

Germany based on vari<strong>at</strong>ion <strong>in</strong> velocity among sites (Horv<strong>at</strong>h 2004). The lack <strong>of</strong> strong<br />

correl<strong>at</strong>ions <strong>in</strong> this study compared to o<strong>the</strong>r studies may be due to differences <strong>in</strong> biomass or stem<br />

density for plots with <strong>the</strong> same percent cover, differences <strong>in</strong> plant morphology, and/or<br />

differences <strong>in</strong> <strong>the</strong> amount and type <strong>of</strong> algae among sampled plots. The loc<strong>at</strong>ion <strong>of</strong> velocity<br />

measurements dur<strong>in</strong>g this study may have also contributed to a weak correl<strong>at</strong>ion with percent<br />

cover. Velocities were measured <strong>at</strong> <strong>the</strong> upstream edge <strong>of</strong> <strong>the</strong> sample plot and were likely<br />

<strong>in</strong>fluenced by veget<strong>at</strong>ive characteristics outside <strong>of</strong> <strong>the</strong> plot.<br />

W<strong>at</strong>er velocity <strong>at</strong>tenu<strong>at</strong>ion by different species <strong>of</strong> aqu<strong>at</strong>ic macrophytes is highly variable<br />

and has been rel<strong>at</strong>ed to plant morphology (Dodds and Biggs 2002). Current velocities with<strong>in</strong><br />

p<strong>at</strong>ches <strong>of</strong> aqu<strong>at</strong>ic macrophytes with large leaf area on bushy shoots (e.g. Elodea canadensis)<br />

reduced velocities more than species with stream-l<strong>in</strong>ed leaves (Sand-Jensen and Mebus 1996).<br />

Because flow p<strong>at</strong>terns were similar between <strong>in</strong>dividual macrophyte stands <strong>of</strong> <strong>the</strong> same species,<br />

macrophyte stands may be suitable functional units for analyz<strong>in</strong>g <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> macrophytes<br />

on flow and associ<strong>at</strong>ed physical and biological processes (Sand-Jensen and Pedersen 1999).<br />

W<strong>at</strong>er velocity <strong>at</strong>tenu<strong>at</strong>ion by assemblages <strong>of</strong> periphyton is also variable, and is<br />

dependent on growth form and architecture. Periphyton assemblages consistently reduced w<strong>at</strong>er<br />

velocities more than different species <strong>of</strong> macrophytes (Dodds and Biggs 2002) and <strong>the</strong>refore may<br />

contribute as much if not more to dynamic river processes.<br />

W<strong>at</strong>er velocity <strong>at</strong>tenu<strong>at</strong>ion has important implic<strong>at</strong>ions for nutrient transport and uptake,<br />

f<strong>in</strong>e sediment deposition, and habit<strong>at</strong> heterogeneity (Dodds and Biggs 2002). Deflected flows<br />

around macrophyte stands contribute to form<strong>in</strong>g a mosaic <strong>of</strong> highly variable substr<strong>at</strong>e which has<br />

41


important implic<strong>at</strong>ions for sp<strong>at</strong>ial variability <strong>of</strong> sediment and biological communities th<strong>at</strong> <strong>the</strong>se<br />

areas support (Sand-Jensen and Mebus 1996). Slower w<strong>at</strong>er velocities with<strong>in</strong> aqu<strong>at</strong>ic<br />

macrophytes <strong>in</strong>creases deposition <strong>of</strong> sediment and organic m<strong>at</strong>ter, and <strong>in</strong>creases nutrient<br />

retention by as much as 12% <strong>of</strong> <strong>the</strong> total nutrient load (Schulz et al. 2003).<br />

Nutrients<br />

Nutrients <strong>in</strong> aqu<strong>at</strong>ic systems (e.g., phosphorus and nitrogen) are <strong>in</strong>fluenced by a wide<br />

variety factors, <strong>in</strong>clud<strong>in</strong>g geology <strong>of</strong> parent m<strong>at</strong>erials, land uses adjacent to and upstream <strong>of</strong> <strong>the</strong><br />

area <strong>of</strong> <strong>in</strong>terest, septic waste w<strong>at</strong>er, and <strong>in</strong>dustrial run<strong>of</strong>f. Run<strong>of</strong>f with high nutrient<br />

concentr<strong>at</strong>ions will likely contribute to nutrient-rich sediments, provid<strong>in</strong>g favorable conditions<br />

for prolifer<strong>at</strong>ion <strong>of</strong> aqu<strong>at</strong>ic macrophytes (Barko et al. 1991); aqu<strong>at</strong>ic macrophytes <strong>in</strong> turn<br />

accumul<strong>at</strong>e more f<strong>in</strong>e sediments rich <strong>in</strong> nutrients.<br />

<strong>Aqu<strong>at</strong>ic</strong> macrophytes can obta<strong>in</strong> nutrients from <strong>the</strong> sediment and/or from <strong>the</strong> w<strong>at</strong>er<br />

column. The rel<strong>at</strong>ive importance <strong>of</strong> sediments and w<strong>at</strong>er as sources <strong>of</strong> nutrients is complex and<br />

<strong>of</strong>ten <strong>in</strong>conclusive (Clarke and Wharton 2001). However, it is generally accepted th<strong>at</strong> aqu<strong>at</strong>ic<br />

macrophytes fulfill <strong>the</strong>ir requirements for phosphorus, nitrogen, and micronutrients (e.g.,<br />

calcium, potassium, etc) by direct uptake from <strong>the</strong> sediment because <strong>the</strong>se nutrients are less<br />

available <strong>in</strong> aqueous forms (Chambers et al. 1989, Barko et al. 1986). Nutrient-specific<br />

differences <strong>in</strong> <strong>the</strong> sediment and w<strong>at</strong>er column and absorptive capacities <strong>of</strong> <strong>the</strong> roots and shoots<br />

may <strong>in</strong>fluence <strong>the</strong> site (roots vs. shoots) <strong>of</strong> uptake by aqu<strong>at</strong>ic macrophytes (Denny 1980).<br />

Land use changes along <strong>the</strong> Henrys <strong>Fork</strong> th<strong>at</strong> have likely affected w<strong>at</strong>er quality <strong>of</strong> <strong>the</strong><br />

river with<strong>in</strong> <strong>the</strong> study area <strong>in</strong>clude <strong>in</strong>stall<strong>at</strong>ion <strong>of</strong> a centralized sewer system (and discont<strong>in</strong>ued<br />

use <strong>of</strong> <strong>in</strong>dividual septic tanks) and fenc<strong>in</strong>g <strong>of</strong> c<strong>at</strong>tle <strong>of</strong>f from <strong>the</strong> Henrys <strong>Fork</strong>. The centralized<br />

sewer system and tre<strong>at</strong>ment plant was <strong>in</strong>stalled <strong>at</strong> Mack’s Inn dur<strong>in</strong>g 1982 and <strong>at</strong> Last Chance<br />

dur<strong>in</strong>g 1986 (Gregory 2008). C<strong>at</strong>tle were fenced <strong>of</strong>f <strong>of</strong> <strong>the</strong> river <strong>at</strong> Harriman East dur<strong>in</strong>g 1986;<br />

Railroad Ranch dur<strong>in</strong>g 1988; and Last Chance dur<strong>in</strong>g 1989 (J. DeRito, personal communic<strong>at</strong>ion).<br />

Limited <strong>in</strong>form<strong>at</strong>ion on nutrients is available for <strong>the</strong> Henrys <strong>Fork</strong>. No d<strong>at</strong>a on nutrients <strong>in</strong><br />

<strong>the</strong> sediment are available; however, sediments are likely rich <strong>in</strong> phosphorus due to <strong>the</strong><br />

geological form<strong>at</strong>ions with<strong>in</strong> <strong>the</strong> w<strong>at</strong>ershed. Phosphorus concentr<strong>at</strong>ions <strong>in</strong> <strong>the</strong> w<strong>at</strong>er may also be<br />

rel<strong>at</strong>ively high due to geomorphic factors. W<strong>at</strong>er quality d<strong>at</strong>a were collected along <strong>the</strong> Henrys<br />

<strong>Fork</strong> dur<strong>in</strong>g 1974 (Forsgren 1975), 1994 (Goodman 1994), 1995 (Goodman 1995), and <strong>2009</strong><br />

(McMurray <strong>2009</strong>). Concentr<strong>at</strong>ions <strong>of</strong> total <strong>in</strong>organic nitrogen were similar <strong>at</strong> Last Chance,<br />

Osborne Bridge, and P<strong>in</strong>ehaven/<strong>River</strong>side Campground dur<strong>in</strong>g all sampl<strong>in</strong>g periods (Fig. 25).<br />

The concentr<strong>at</strong>ion <strong>of</strong> total phosphorus <strong>at</strong> Last Chance appears to have decreased from 1974 to<br />

<strong>the</strong> mid 1990s; total phosphorus was similar between 1994 and <strong>2009</strong> (Fig. 25).<br />

Nutrient concentr<strong>at</strong>ions <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> prior to <strong>the</strong> l<strong>at</strong>e 1980s may have been<br />

artificially high due to anthropogenic <strong>in</strong>puts. Prior to <strong>in</strong>stall<strong>at</strong>ion <strong>of</strong> a centralized sewer system,<br />

high nutrients from septic tanks likely leached <strong>in</strong>to <strong>the</strong> Henrys <strong>Fork</strong>. “Plumes <strong>of</strong> veget<strong>at</strong>ion”<br />

were observed near summer homes along <strong>the</strong> Henrys <strong>Fork</strong> dur<strong>in</strong>g <strong>the</strong> early–mid 1980s (R. Shea,<br />

personal communic<strong>at</strong>ion).<br />

42


<strong>Aqu<strong>at</strong>ic</strong> <strong>Macrophytes</strong> and Macro<strong>in</strong>vertebr<strong>at</strong>es<br />

The distribution and abundance <strong>of</strong> macro<strong>in</strong>vertebr<strong>at</strong>e species <strong>in</strong> aqu<strong>at</strong>ic habit<strong>at</strong>s is<br />

associ<strong>at</strong>ed with many factors, <strong>in</strong>clud<strong>in</strong>g w<strong>at</strong>er chemistry (e.g., pH, phosphorus, and dissolved<br />

oxygen), river reach characteristics (e.g., erosion vs. deposition zone, riffle vs. pool), substr<strong>at</strong>e,<br />

and aqu<strong>at</strong>ic macrophytes. Macro<strong>in</strong>vertebr<strong>at</strong>es were not sampled dur<strong>in</strong>g this or previous studies<br />

<strong>of</strong> aqu<strong>at</strong>ic macrophytes; however, <strong>the</strong>ir abundance and species richness <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> is<br />

likely associ<strong>at</strong>ed with changes <strong>in</strong> aqu<strong>at</strong>ic macrophytes and associ<strong>at</strong>ed variability <strong>in</strong> substr<strong>at</strong>e and<br />

w<strong>at</strong>er velocity.<br />

Taxa richness, abundance, and biomass <strong>of</strong> macro<strong>in</strong>vertebr<strong>at</strong>es were significantly higher<br />

on Ranunculus, Berula, and Callitriche than on gravel and silt substr<strong>at</strong>es <strong>in</strong> an English chalk<br />

stream (Wright 1992). Higher abundances <strong>of</strong> macro<strong>in</strong>vertebr<strong>at</strong>es are also found on dissectedleaf<br />

plants compared to broadleaf plants (Cheruvelil et al. 2000). For example, <strong>the</strong> density <strong>of</strong><br />

<strong>in</strong>vertebr<strong>at</strong>es on Myriophyllum sibiricum was higher than <strong>the</strong> density on Potamogeton<br />

richardsonii (Gerrish and Bristow 1979). Densities <strong>of</strong> macro<strong>in</strong>vertebr<strong>at</strong>es <strong>in</strong> shallow aqu<strong>at</strong>ic<br />

habit<strong>at</strong>s <strong>in</strong> New York were more than 70% higher <strong>in</strong> p<strong>at</strong>ches Stuckenia pect<strong>in</strong><strong>at</strong>a, Lemna<br />

trisulca, and Cer<strong>at</strong>ophyllum demersum compared to Elodea canadensis (Krull 1970).<br />

<strong>Aqu<strong>at</strong>ic</strong> macro<strong>in</strong>vertebr<strong>at</strong>es th<strong>at</strong> are important food resources for ra<strong>in</strong>bow trout<br />

(Tricoptera, Ephemeroptera, and Diptera; Angradi and Griffith 1990) have variable associ<strong>at</strong>ions<br />

with aqu<strong>at</strong>ic macrophytes. Some species <strong>of</strong> mayflies (order Ephemeroptera) and true flies (order<br />

Diptera) are associ<strong>at</strong>ed with aqu<strong>at</strong>ic macrophytes. Mayfly taxa <strong>in</strong> <strong>the</strong> family Baetidae were<br />

associ<strong>at</strong>ed with aqu<strong>at</strong>ic macrophytes <strong>at</strong> <strong>the</strong> Serra de Cipó <strong>in</strong> sou<strong>the</strong>astern Brazil (Goulart and<br />

Callisto 2005). The densities <strong>of</strong> two species <strong>in</strong> <strong>the</strong> family Chironomidae (order Diptera) were<br />

positively correl<strong>at</strong>ed to biomass <strong>of</strong> Egeria densa and Potamogeton crispus <strong>at</strong> a lowland stream <strong>in</strong><br />

New Zealand (Collier et al. 1999). The densities <strong>of</strong> two genera from <strong>the</strong> Ephydridae and<br />

Culicidae families (order Diptera) were significantly correl<strong>at</strong>ed to <strong>the</strong> biomass <strong>of</strong> S. pect<strong>in</strong><strong>at</strong>a <strong>at</strong><br />

<strong>the</strong> Coyote Hills Marsh <strong>in</strong> California (Bergey et al. 1992).<br />

Caddisflies are <strong>of</strong>ten associ<strong>at</strong>ed with unveget<strong>at</strong>ed areas. Three genera <strong>of</strong> caddisflies and<br />

one genus <strong>of</strong> mayflies were associ<strong>at</strong>ed with unveget<strong>at</strong>ed areas <strong>at</strong> <strong>the</strong> Portneuf <strong>River</strong>, Idaho<br />

(Gregg and Rose 1985); however, only two species <strong>of</strong> aqu<strong>at</strong>ic macrophytes (Ranunculus and<br />

Rorippa) were used for comparison. Caddisfly larvae <strong>at</strong> <strong>the</strong> Henrys <strong>Fork</strong> were <strong>at</strong>tached to leaves<br />

<strong>of</strong> f<strong>in</strong>e-leaved pondweeds (e.g., Stuckenia spp.) but not o<strong>the</strong>r species <strong>of</strong> aqu<strong>at</strong>ic macrophytes<br />

dur<strong>in</strong>g August <strong>2009</strong> (A. Henry, personal observ<strong>at</strong>ion). This suggests th<strong>at</strong> caddisfly larvae may<br />

show associ<strong>at</strong>ions with different species <strong>of</strong> veget<strong>at</strong>ion. The apparent decrease <strong>in</strong> Stuckenia spp.<br />

on <strong>the</strong> Henrys <strong>Fork</strong> may be contribut<strong>in</strong>g to less robust <strong>in</strong>sect h<strong>at</strong>ches.<br />

43


Fig. 23. Estim<strong>at</strong>es (mean ± SD) <strong>of</strong> Stuckenia spp., Elodea canadensis, and Myriophyllum spp., sediment<br />

releases from Island Park Reservoir, and annual peak discharge from Island Park Dam from 1958 to <strong>2009</strong> <strong>at</strong><br />

<strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Historical d<strong>at</strong>a compiled from Shea et al. (1996), Shea (1997),<br />

Shea (1999), and Shea (2001).<br />

44


Fig. 24. Estim<strong>at</strong>es (mean ± SD) <strong>of</strong> Ranunculus aqu<strong>at</strong>ilis, Zannichellia palustris, and Callitriche spp., sediment<br />

releases from Island Park Reservoir, and annual peak discharge from Island Park Dam from 1958 to <strong>2009</strong> <strong>at</strong><br />

<strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Historical d<strong>at</strong>a compiled from Shea et al. (1996), Shea (1997),<br />

Shea (1999), and Shea (2001).<br />

45


Fig. 25. Mean ± SD <strong>of</strong> total phosphorus and total <strong>in</strong>organic nitrogen dur<strong>in</strong>g 1974, 1994, 1995, and <strong>2009</strong> <strong>at</strong> <strong>the</strong><br />

Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. D<strong>at</strong>a were compiled from Forsgren (1975), Goodman (1994),<br />

Goodman (1995), and McMurray (<strong>2009</strong>).<br />

46


RECOMMENDATIONS<br />

1. Monitor<strong>in</strong>g <strong>of</strong> aqu<strong>at</strong>ic macrophytes on transects sampled dur<strong>in</strong>g 1993–<strong>2009</strong> should<br />

cont<strong>in</strong>ue annually or every o<strong>the</strong>r year for 5 years to: 1) assess trends <strong>in</strong> veget<strong>at</strong>ion over<br />

time; and 2) determ<strong>in</strong>e if <strong>the</strong> lower percent cover <strong>of</strong> aqu<strong>at</strong>ic macrophytes dur<strong>in</strong>g <strong>2009</strong><br />

compared to 1993 and 1999 is a long-term decreas<strong>in</strong>g trend <strong>in</strong> cover <strong>of</strong> aqu<strong>at</strong>ic<br />

macrophytes or if is part <strong>of</strong> <strong>the</strong> n<strong>at</strong>ural variability <strong>of</strong> aqu<strong>at</strong>ic macrophytes life cycles.<br />

2. If <strong>in</strong>ferences about trends <strong>in</strong> aqu<strong>at</strong>ic macrophytes need to be made about <strong>the</strong> target<br />

popul<strong>at</strong>ion <strong>of</strong> <strong>in</strong>terest (Henrys <strong>Fork</strong> from Last Chance to Harriman East), random<br />

samples should be established for future assessments. This will meet <strong>the</strong> st<strong>at</strong>istical<br />

analysis assumption th<strong>at</strong> samples are randomly drawn from <strong>the</strong> popul<strong>at</strong>ion (Elz<strong>in</strong>ga et al.<br />

2001).<br />

3. <strong>Aqu<strong>at</strong>ic</strong> macrophytes should be sampled throughout <strong>the</strong> grow<strong>in</strong>g season or dur<strong>in</strong>g <strong>the</strong><br />

peak grow<strong>in</strong>g season to assess maximum habit<strong>at</strong> available to adult ra<strong>in</strong>bow trout and<br />

macro<strong>in</strong>vertebr<strong>at</strong>es. The time <strong>of</strong> peak growth varies between years and species; however,<br />

sampl<strong>in</strong>g veget<strong>at</strong>ion when flower<strong>in</strong>g stalks and seeds are present likely represents a<br />

period <strong>of</strong> peak growth and will aid <strong>in</strong> <strong>the</strong> identific<strong>at</strong>ion <strong>of</strong> species. Sampl<strong>in</strong>g dur<strong>in</strong>g this<br />

time period will also provide <strong>in</strong>form<strong>at</strong>ion on peak available habit<strong>at</strong> dur<strong>in</strong>g <strong>the</strong> angl<strong>in</strong>g<br />

season.<br />

4. To quantit<strong>at</strong>ively assess <strong>the</strong> physical and biological factors affect<strong>in</strong>g aqu<strong>at</strong>ic macrophyte<br />

abundance, multivari<strong>at</strong>e analysis or a priori model<strong>in</strong>g should be conducted. This will<br />

assess which factors and/or <strong>in</strong>teraction <strong>of</strong> factors (e.g., substr<strong>at</strong>e, nutrients, temper<strong>at</strong>ure,<br />

etc.) account for <strong>the</strong> most vari<strong>at</strong>ion <strong>of</strong> aqu<strong>at</strong>ic macrophyte abundance and distribution.<br />

5. Quantit<strong>at</strong>ive assessments should focus on <strong>the</strong> factors affect<strong>in</strong>g Stuckenia spp. on <strong>the</strong><br />

Henrys <strong>Fork</strong> given its apparent decl<strong>in</strong>e <strong>of</strong> s<strong>in</strong>ce 1958 and its importance to forag<strong>in</strong>g<br />

trumpeter swans and macro<strong>in</strong>vertebr<strong>at</strong>es.<br />

47


ACKNOWLEDGEMENTS<br />

The Ishiyama Found<strong>at</strong>ion provided fund<strong>in</strong>g for this study as part <strong>of</strong> <strong>the</strong> Henry’s <strong>Fork</strong><br />

Found<strong>at</strong>ion Caldera Project. Ruth Shea provided <strong>in</strong>valuable assistance by help<strong>in</strong>g us reloc<strong>at</strong>e <strong>the</strong><br />

historical transects, supply<strong>in</strong>g historical d<strong>at</strong>a, and provid<strong>in</strong>g <strong>in</strong>sights on <strong>the</strong> historical changes <strong>in</strong><br />

<strong>the</strong> aqu<strong>at</strong>ic macrophytes along <strong>the</strong> Henrys <strong>Fork</strong>. Harriman St<strong>at</strong>e Park provided lodg<strong>in</strong>g and use<br />

<strong>of</strong> <strong>the</strong>ir “mule” to transport sampl<strong>in</strong>g equipment. I also want to extend a special thanks to Jim<br />

DeRito, Anne Marie Emery Miller, and Jennifer Chutz for <strong>the</strong>ir assistance <strong>in</strong> <strong>the</strong> field dur<strong>in</strong>g<br />

ra<strong>in</strong>, snow, and sun. Jim DeRito, Anne Marie Emery Miller, Ruth Shea, and Carl Mitchell<br />

reviewed earlier versions <strong>of</strong> this manuscript.<br />

48


LITERATURE CITED<br />

Anderson, M. G. 1978. Distribution and production <strong>of</strong> sago pondweed (Potamogeton pect<strong>in</strong><strong>at</strong>us<br />

L.) on a nor<strong>the</strong>rn prairie marsh. Ecology 59:154–160.<br />

Angradi, T. R. 1991. Transport <strong>of</strong> particul<strong>at</strong>e organic m<strong>at</strong>ter <strong>in</strong> an Idaho <strong>River</strong>, USA.<br />

Hydrobiologia 211:171–183.<br />

Angradi, T. R. and C. Contor. 1989. Henry’s <strong>Fork</strong> fisheries <strong>in</strong>vestig<strong>at</strong>ions. Job completion<br />

report for 1986–1987. Project No. F-71-R-12, Subproject III, Jobs 7a and 7b. Idaho<br />

Department <strong>of</strong> Fish and Game, Boise, Idaho, USA.<br />

Angradi, T. R., and J. S. Griffith. 1990. Diel feed<strong>in</strong>g chronology and diet selection <strong>of</strong> ra<strong>in</strong>bow<br />

trout (Oncorhynchus mykiss) <strong>in</strong> <strong>the</strong> <strong>Henry's</strong> <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>, Idaho. Canadian<br />

Journal <strong>of</strong> Fisheries and <strong>Aqu<strong>at</strong>ic</strong> Sciences 47:199–209.<br />

Barko, J. W., M. S. Adams, and N. L. Clesceri. 1986. Environmental factors and <strong>the</strong>ir<br />

consider<strong>at</strong>ion <strong>in</strong> <strong>the</strong> management <strong>of</strong> submersed aqu<strong>at</strong>ic veget<strong>at</strong>ion: a review. Journal <strong>of</strong><br />

<strong>Aqu<strong>at</strong>ic</strong> Plant Management 24:1–10.<br />

Barko, J. W., D. Gunnison, and S. R. Carpenter. 1991. Sediment <strong>in</strong>teractions with submersed<br />

macrophyte growth and community dynamics. <strong>Aqu<strong>at</strong>ic</strong> Botany 41:41-65.<br />

Barko, J. W. and R. M. Smart. 1981. Compar<strong>at</strong>ive <strong>in</strong>fluences <strong>of</strong> light and temper<strong>at</strong>ure on <strong>the</strong><br />

growth and metabolism <strong>of</strong> selected submersed freshw<strong>at</strong>er macrophytes. Ecological<br />

Monographs 51:219–235.<br />

Bergey, E. A., S. F. Ball<strong>in</strong>g, J. N. Coll<strong>in</strong>s, G. A. Lamberti, and V. H. Resh. 1992. Bionomics <strong>of</strong><br />

<strong>in</strong>vertebr<strong>at</strong>es with<strong>in</strong> an extensive Potamogeton pect<strong>in</strong><strong>at</strong>us bed <strong>of</strong> a California marsh.<br />

Hydrobiologia 234:15–24.<br />

Bowmer, K. H., S. W. L. Jacobs, and G. R. Sa<strong>in</strong>ty. 1995. Identific<strong>at</strong>ion, biology and<br />

management <strong>of</strong> Elodea canadensis, Hydrocharitaceae. Journal <strong>of</strong> <strong>Aqu<strong>at</strong>ic</strong> Plant<br />

Management 33:13–19.<br />

Chambers, P. A. 1987. Light and nutrients <strong>in</strong> <strong>the</strong> control <strong>of</strong> aqu<strong>at</strong>ic plant community structure.<br />

II. In situ observ<strong>at</strong>ions. Journal <strong>of</strong> Ecology 75:621-628.<br />

Chambers, P. A., E. E. Prepas, M. L. Bothwell, and H. R. Hamilton. 1989. Roots versus shoots<br />

<strong>in</strong> nutrient uptake by aqu<strong>at</strong>ic macrophytes <strong>in</strong> flow<strong>in</strong>g w<strong>at</strong>ers. Canadian Journal <strong>of</strong><br />

Fisheries and <strong>Aqu<strong>at</strong>ic</strong> Sciences 46:435–439.<br />

Chambers, P. A., E. E. Prepas, H. R. Hamilton, M. L. Bothwell. 1991. Current velocity and its<br />

effect on aqu<strong>at</strong>ic macrophytes <strong>in</strong> flow<strong>in</strong>g w<strong>at</strong>ers. Ecological Applic<strong>at</strong>ions 1:249–257.<br />

Champion, P. D., and C. C. Tanner. 2000. Seasonality <strong>of</strong> macrophytes and <strong>in</strong>teraction with flow<br />

<strong>in</strong> a New Zealand lowland stream. Hydrobiologia 441:1–12.<br />

49


Cheruvelil, K. S., P. A. Soranno, and R. D. Serb<strong>in</strong>. 2000. Macro<strong>in</strong>vertebr<strong>at</strong>es associ<strong>at</strong>ed with<br />

submerged macrophytes: sample size and power to detect effects. Hydrobiologia<br />

441:133–139.<br />

Clarke, S. J., and G. Wharton. 2001. Sediment nutrient characteristics and aqu<strong>at</strong>ic macrophytes<br />

<strong>in</strong> lowland English rivers. The Science <strong>of</strong> <strong>the</strong> Total Environment 266:103–112.<br />

Coger<strong>in</strong>o, L., B. Cellot, and M. Bournaud. 1995. Microhabit<strong>at</strong> diversity and associ<strong>at</strong>ed<br />

macro<strong>in</strong>vertebr<strong>at</strong>es <strong>in</strong> aqu<strong>at</strong>ic banks <strong>of</strong> a large European river. Hydrobiologia 304:103–<br />

115.<br />

Collier, K. J., P. D. Champion, and G. F. Croker. 1999. P<strong>at</strong>ch- and reach-scale dynamics <strong>of</strong> a<br />

macrophyte-<strong>in</strong>vertebr<strong>at</strong>e system <strong>in</strong> a New Zealand lowland stream. Hydrobiologia<br />

392:89–97.<br />

Correll, D. L., and T. L. Wu. 1982. Atraz<strong>in</strong>e toxicity to submersed vascular plants <strong>in</strong> simul<strong>at</strong>ed<br />

estuar<strong>in</strong>e microcosms. <strong>Aqu<strong>at</strong>ic</strong> Botany 14:151–158.<br />

Cotton, J. A, G. Wharton, J. A. B. Bass, C. M. Heppell, and R. S. Wotton. 2006. The effects <strong>of</strong><br />

seasonal changes to <strong>in</strong>-stream veget<strong>at</strong>ion cover on p<strong>at</strong>terns <strong>of</strong> flow and accumul<strong>at</strong>ion <strong>of</strong><br />

sediment. Geomorphology 77:320–334.<br />

Cragg, B. A., J. C. Fry, Z. Bacchus, and S. S. Thurley. 1980. The aqu<strong>at</strong>ic veget<strong>at</strong>ion <strong>of</strong><br />

Llangorse Lake, Wales. <strong>Aqu<strong>at</strong>ic</strong> Botany 8:187–196.<br />

Crow, G. E. and C. B. Hellquist. 2000a. <strong>Aqu<strong>at</strong>ic</strong> and wetland plants <strong>of</strong> nor<strong>the</strong>astern North<br />

America, Volume 1: gymnosperms and angiosperms: dicotyledons. The University <strong>of</strong><br />

Wiscons<strong>in</strong> Press, Madison, Wiscons<strong>in</strong>, USA. lv+480pp.<br />

Crow, G. E. and C. B. Hellquist. 2000b. <strong>Aqu<strong>at</strong>ic</strong> and wetland plants <strong>of</strong> nor<strong>the</strong>astern North<br />

America, Volume 2: angiosperms: monocotyledons. The University <strong>of</strong> Wiscons<strong>in</strong> Press,<br />

Madison, Wiscons<strong>in</strong>, USA. lv+400pp.<br />

Crow, J. H. 1979. Distribution and ecological characteristics <strong>of</strong> Zannichellia palustris L. along<br />

<strong>the</strong> Alaska Pacific Coast. Bullet<strong>in</strong> <strong>of</strong> <strong>the</strong> Torrey Botanical Club 106:346–349.<br />

Dale, H. M., and G. E. Miller. 1978. Changes <strong>in</strong> <strong>the</strong> aqu<strong>at</strong>ic macrophyte flora <strong>of</strong> Whitew<strong>at</strong>er<br />

Lake near Sudbury, Ontario from 1947 to 1977. The Canadian Field-N<strong>at</strong>uralist 92:264–<br />

270.<br />

Denny, P. 1980. Solute movement <strong>in</strong> submerged angiosperms. Biological Reviews 55:65–92.<br />

Dodds, W. K., and B. F. Biggs. 2002. W<strong>at</strong>er velocity <strong>at</strong>tenu<strong>at</strong>ion by stream periphyton and<br />

macrophytes <strong>in</strong> rel<strong>at</strong>ion to growth form and architecture. Journal <strong>of</strong> <strong>the</strong> North American<br />

Benthological Society 21:2–15.<br />

Edwards, D. 1968. Some effects <strong>of</strong> silt<strong>at</strong>ion upon aqu<strong>at</strong>ic macrophyte veget<strong>at</strong>ion <strong>in</strong> rivers.<br />

Hydrobiologia 34:29–38.<br />

50


Elz<strong>in</strong>ga, C. L., D. W. Salzer, and J. W. Willoughby. 1998. Measur<strong>in</strong>g and monitor<strong>in</strong>g plant<br />

popul<strong>at</strong>ions. Bureau <strong>of</strong> Land Management Technical Reference 1730-1. BLM N<strong>at</strong>ional<br />

Bus<strong>in</strong>ess Center, Denver, Colorado, USA.<br />

Elz<strong>in</strong>ga, C. L., D. W. Salzer, J. W. Willoughby, and J. P. Gibbs. 2001. Monitor<strong>in</strong>g plant and<br />

animal popul<strong>at</strong>ions. Blackwell Science, Malden, Massachusetts, USA. viii+360pp.<br />

French, T. D. and P. A. Chambers. 1996. Habit<strong>at</strong> partition<strong>in</strong>g <strong>in</strong> river<strong>in</strong>e macrophyte<br />

communities. Freshw<strong>at</strong>er Biology 36:509–520.<br />

Forsgren, C. F. 1975. North Fremont County sewer facilities plann<strong>in</strong>g study. Report prepared<br />

by Forsgren, Perk<strong>in</strong>s, and Associ<strong>at</strong>es, P.A. Consult<strong>in</strong>g Eng<strong>in</strong>eers, for Fremont County,<br />

Idaho, USA. 175pp.<br />

Gerrish, N., and J. M. Bristow. 1979. Macro<strong>in</strong>vertebr<strong>at</strong>e associ<strong>at</strong>ions with aqu<strong>at</strong>ic macrophytes<br />

and artificial substr<strong>at</strong>es. Journal <strong>of</strong> Gre<strong>at</strong> Lakes Research 5:69–72.<br />

Goodman, K. 1994. 1994 Assessment <strong>of</strong> w<strong>at</strong>er quality on <strong>the</strong> Henry’s <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>.<br />

Report prepared for <strong>the</strong> Henry’s <strong>Fork</strong> Found<strong>at</strong>ion, Ashton, ID, USA and Ecosystems<br />

Research Institute, Logan, UT, USA. 23pp + appendices.<br />

Goodman, K. 1995. 1995 Assessment <strong>of</strong> w<strong>at</strong>er quality on <strong>the</strong> Henry’s <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>.<br />

Report prepared for <strong>the</strong> Henry’s <strong>Fork</strong> Found<strong>at</strong>ion, Ashton, ID, USA and Ecosystems<br />

Research Institute, Logan, UT, USA. 17pp + appendices.<br />

Goulart, M., and M. Callisto. 2005. Mayfly distribution along a longitud<strong>in</strong>al gradient <strong>in</strong> Serra<br />

do Cipó, sou<strong>the</strong>astern Brazil. Acta Limnologica Brasiliensia 17:1–13.<br />

Gregg, W. W. and F. L. Rose. 1982. The effects <strong>of</strong> aqu<strong>at</strong>ic macrophytes on <strong>the</strong> stream<br />

microenvironment. <strong>Aqu<strong>at</strong>ic</strong> Botany 14:309–324.<br />

Gregg, W. W. and F. L. Rose. 1985. Influences <strong>of</strong> aqu<strong>at</strong>ic macrophytes on <strong>in</strong>vertebr<strong>at</strong>e<br />

community structure, guild structure, and microdistribution <strong>in</strong> streams. Hydrobiologia<br />

128:45–56.<br />

Gregory, J. 2008. Response to frequently asked questions about <strong>the</strong> Henrys <strong>Fork</strong> caldera<br />

fishery. Prepared for <strong>the</strong> Henry’s <strong>Fork</strong> Found<strong>at</strong>ion, Ashton, Idaho USA. 88pp.<br />

Griffith, J. S. and R. W. Smith. 1995. Failure <strong>of</strong> Submersed <strong>Macrophytes</strong> to Provide Cover for<br />

Ra<strong>in</strong>bow Trout throughout Their First W<strong>in</strong>ter <strong>in</strong> <strong>the</strong> Henrys <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>,<br />

Idaho. North American Journal <strong>of</strong> Fisheries Management 15:42-48.<br />

Ham, S. F., J. F. Wright, and D. A. Berrie. 2006. Growth and recession <strong>of</strong> aqu<strong>at</strong>ic macrophytes<br />

on an unshaded section <strong>of</strong> <strong>the</strong> <strong>River</strong> Lambourn, England, from 1971 to 1976. Freshw<strong>at</strong>er<br />

Biology 11:381–390.<br />

Hampton, P. D. 1981. The w<strong>in</strong>ter<strong>in</strong>g and nest<strong>in</strong>g behavior <strong>of</strong> <strong>the</strong> trumpeter swan. Thesis,<br />

University <strong>of</strong> Montana, Missoula, Montana, USA. 185pp.<br />

51


Hansen, C. G. 1959. Report on <strong>the</strong> aqu<strong>at</strong>ic plants found <strong>in</strong> <strong>the</strong> Island Park area <strong>of</strong> Idaho dur<strong>in</strong>g<br />

<strong>the</strong> fall and w<strong>in</strong>ter <strong>of</strong> 1958. U.S. Fish and Wildlife Service. 3pp.<br />

Haramis, G. M. and V. Carter. 1983. Distribution <strong>of</strong> submersed aqu<strong>at</strong>ic macrophytes <strong>in</strong> <strong>the</strong> tidal<br />

Potomac <strong>River</strong>. <strong>Aqu<strong>at</strong>ic</strong> Botany 15:65–79.<br />

Harrop, R. 2004. Trout hunter: <strong>the</strong> way <strong>of</strong> an angler. Pruett Publish<strong>in</strong>g Company, Boulder<br />

Colorado, USA. 205pp.<br />

H<strong>at</strong>ton, T. J., N. E. West, and P. S. Johnson. 1986. Rel<strong>at</strong>ionship <strong>of</strong> <strong>the</strong> error associ<strong>at</strong>ed with<br />

ocular estim<strong>at</strong>ion and actual total cover. Journal <strong>of</strong> Range Management 39:91–92.<br />

Henry, A. R. 2004. Habit<strong>at</strong> characteristics and community ecology <strong>of</strong> w<strong>at</strong>erbirds on three<br />

wetland types <strong>at</strong> <strong>the</strong> Caribou-Targhee N<strong>at</strong>ional Forest, Idaho and Wyom<strong>in</strong>g. Thesis,<br />

University <strong>of</strong> Missouri, Columbia, Missouri, USA. xvii+264pp.<br />

Henry’s <strong>Fork</strong> Found<strong>at</strong>ion. 2008. Henry’s <strong>Fork</strong> Found<strong>at</strong>ion caldera project. 21pp.<br />

Hope-Simpson, J. F. 1940. On <strong>the</strong> errors <strong>in</strong> <strong>the</strong> ord<strong>in</strong>ary use <strong>of</strong> subjective frequency estim<strong>at</strong>ions<br />

<strong>in</strong> grasslands. Journal <strong>of</strong> Ecology 28:193–209.<br />

Horv<strong>at</strong>h, T. G. 2004. Retention <strong>of</strong> particul<strong>at</strong>e m<strong>at</strong>ter by macrophytes <strong>in</strong> a first-order stream.<br />

<strong>Aqu<strong>at</strong>ic</strong> Botany 78:27–36.<br />

Humphries, P. 1996. <strong>Aqu<strong>at</strong>ic</strong> macrophytes, macro<strong>in</strong>vertebr<strong>at</strong>e associ<strong>at</strong>ions and w<strong>at</strong>er levels <strong>in</strong> a<br />

lowland Tasmanian river. Hydrobiologia 321:219–233.<br />

Idaho Department <strong>of</strong> Fish and Game. 2007. Fisheries management plan 2007–2012. St<strong>at</strong>e <strong>of</strong><br />

Idaho, Department <strong>of</strong> Fish and Game, Boise, Idaho, USA.<br />

Idestam-Almquist, J. 1998. W<strong>at</strong>erfowl herbivory on Potamogeton pect<strong>in</strong><strong>at</strong>us <strong>in</strong> <strong>the</strong> Baltic Sea.<br />

Oikos 81:323–328.<br />

Jager, A. C., and C. W. N. Looman. 1995. D<strong>at</strong>a collection. pp.10–28 <strong>in</strong> R.H.G. Jongman, C.J.F.<br />

ter Braak, and O.F.R. van Tongeren, eds. D<strong>at</strong>a analysis <strong>in</strong> community and landscape<br />

ecology. Cambridge University Press, Cambridge, United K<strong>in</strong>gdom.<br />

Kennedy, K. A. and P. A. Addison. 1987. Some consider<strong>at</strong>ions <strong>in</strong> <strong>the</strong> use <strong>of</strong> visual estim<strong>at</strong>es <strong>of</strong><br />

plant cover <strong>in</strong> biomonitor<strong>in</strong>g. Journal <strong>of</strong> Ecology 75:151–157.<br />

Koetsier, P. and J. V. McArthur. 2000. Organic m<strong>at</strong>ter retention by macrophyte beds <strong>in</strong> 2<br />

sou<strong>the</strong>astern USA, low-gradient, headw<strong>at</strong>er streams. Journal <strong>of</strong> <strong>the</strong> North American<br />

Benthological Society 19:633–647.<br />

Krull, J. N. 1970. <strong>Aqu<strong>at</strong>ic</strong> plant-macro<strong>in</strong>vertebr<strong>at</strong>e associ<strong>at</strong>ions and w<strong>at</strong>erfowl. Journal <strong>of</strong><br />

Wildlife Management 34:70 –718.<br />

52


Lehmann, A., and J. Lachavanne 1999. Changes <strong>in</strong> <strong>the</strong> w<strong>at</strong>er quality <strong>of</strong> Lake Geneva <strong>in</strong>dic<strong>at</strong>ed<br />

by submerged macrophytes. Freshw<strong>at</strong>er Biology 42:457–466.<br />

L<strong>in</strong>d, C. T., and G. Cottam. 1969. The submerged aqu<strong>at</strong>ic <strong>of</strong> University Bay: a study <strong>in</strong><br />

eutrophic<strong>at</strong>ion. American Midland N<strong>at</strong>uralist 81:353–369.<br />

Madsen, J. D., and M. S. Adams. 1989. The distribution <strong>of</strong> submerged aqu<strong>at</strong>ic macrophyte<br />

biomass <strong>in</strong> a eutrophic stream, Badfish Creek: <strong>the</strong> effect <strong>of</strong> environment. Hydrobiologia<br />

171:111–119.<br />

Madsen, T. V. and M. S. Adams. 1988. The germ<strong>in</strong><strong>at</strong>ion <strong>of</strong> Potamogeton pect<strong>in</strong><strong>at</strong>us tubers:<br />

environmental control by temper<strong>at</strong>ure and light. Canadian Journal <strong>of</strong> Botany 66:2523–<br />

2526.<br />

Madsen, T. V. and K. Sand-Jensen. 1987. Photosyn<strong>the</strong>tic capacity, bicarbon<strong>at</strong>e aff<strong>in</strong>ity and<br />

growth <strong>of</strong> Elodea canadensis exposed to different concentr<strong>at</strong>ions <strong>of</strong> <strong>in</strong>organic carbon.<br />

Oikos 50:176-182.<br />

McMurray, J. W. <strong>2009</strong>. July <strong>2009</strong> surface w<strong>at</strong>er quality assessment: caldera section <strong>of</strong> <strong>the</strong><br />

Henry’s <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>. Technical report prepared by Mar<strong>in</strong>e Ventures<br />

Found<strong>at</strong>ion, Jackson, Wyom<strong>in</strong>g, USA. 12pp.<br />

Mitro, M. G., A. V. Zale, and B. A. Rich. 2003. The rel<strong>at</strong>ion between age-0 ra<strong>in</strong>bow trout<br />

(Oncorhynchus mykiss) abundance and w<strong>in</strong>ter discharge <strong>in</strong> a regul<strong>at</strong>ed river. Canadian<br />

Journal <strong>of</strong> Fisheries and <strong>Aqu<strong>at</strong>ic</strong> Sciences 60:135–139.<br />

Moen, R. A., and Y. Cohen. 1989. Growth and competition between Potamogeton pect<strong>in</strong><strong>at</strong>us L.<br />

and Myriophyllum exalbescens Fern. <strong>in</strong> experimental ecosystems. <strong>Aqu<strong>at</strong>ic</strong> Botany<br />

33:257–270.<br />

Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. 1996. Applied l<strong>in</strong>ear st<strong>at</strong>istical<br />

models. WCB McGraw-Hill, Boston, Massachusetts, USA.<br />

Nichols, S. H., and B. H. Shaw. 1986. Ecological life histories <strong>of</strong> <strong>the</strong> three aqu<strong>at</strong>ic nuisance<br />

plants, Myriophyllum spic<strong>at</strong>um, Potamogeton crispus and Elodea canadensis.<br />

Hydrobiologia 131:3–21.<br />

NRCS. 2004. The PLANTS d<strong>at</strong>abase, version 3.5. N<strong>at</strong>ional Plant D<strong>at</strong>a Center. [Onl<strong>in</strong>e]<br />

http://plants.usda.gov.<br />

Ozimek, T., E. van Donk, and R. D. Gul<strong>at</strong>i. 1993. Growth and nutrient uptake by two species <strong>of</strong><br />

Elodea <strong>in</strong> experimental conditions and <strong>the</strong>ir role <strong>in</strong> nutrient accumul<strong>at</strong>ion <strong>in</strong> a<br />

macrophyte-dom<strong>in</strong><strong>at</strong>ed lake. Hydrobiologia 251:13–18.<br />

Pa<strong>in</strong>i, R. A., Jr. and J. F. Stiehl. 1993. An oral history <strong>of</strong> angl<strong>in</strong>g experience and environmental<br />

conditions <strong>of</strong> <strong>the</strong> caldera stretch <strong>of</strong> <strong>the</strong> Henry’s <strong>Fork</strong> <strong>of</strong> <strong>the</strong> <strong>Snake</strong> <strong>River</strong>. Unpublished<br />

report. Henry’s <strong>Fork</strong> Found<strong>at</strong>ion, Ashton, ID, USA. 17pp.<br />

53


Paull<strong>in</strong>, D. G. 1973. Ecology <strong>of</strong> submerged aqu<strong>at</strong>ic macrophytes <strong>of</strong> Red Rock Lakes N<strong>at</strong>ional<br />

Wildlife Refuge, Montana. Thesis. University <strong>of</strong> Montana, Missoula, Montana, USA.<br />

168pp.<br />

Pl<strong>at</strong>ts, W. S., W. F. Megahan, G. W. M<strong>in</strong>shall. 1983. Methods for evalu<strong>at</strong><strong>in</strong>g stream, riparian,<br />

and biotic conditions. General Technical Report INT-138. U.S. Department <strong>of</strong><br />

Agriculture, Forest Service, Intermounta<strong>in</strong> Forest and Range Experiment St<strong>at</strong>ion, Ogden,<br />

Utah, USA.<br />

Reihle, M. D. and J. S. Griffith. 1993. Changes <strong>in</strong> habit<strong>at</strong> use and feed<strong>in</strong>g chronology <strong>of</strong> juvenile<br />

ra<strong>in</strong>bow trout (Oncorhynchus mykiss) <strong>in</strong> fall and <strong>the</strong> onset <strong>of</strong> w<strong>in</strong>ter <strong>in</strong> Silver Creek,<br />

Idaho. Canadian Journal <strong>of</strong> Fisheries and <strong>Aqu<strong>at</strong>ic</strong> Sciences 50:2119–2128.<br />

Sand-Jensen, K. 2008. Influence <strong>of</strong> submerged macrophytes on sediment composition and nearbed<br />

flow <strong>in</strong> lowland streams. Freshw<strong>at</strong>er Biology 39:663–679.<br />

Sand-Jensen, K., and J. R. Mebus. 1996. F<strong>in</strong>e-scale p<strong>at</strong>terns <strong>of</strong> w<strong>at</strong>er velocity with<strong>in</strong><br />

macrophyte p<strong>at</strong>ches <strong>in</strong> streams. Oikos 76:169–180.<br />

Sand-Jensen, K. and O. Pedersen. 1999. Velocity gradients and turbulence around macrophyte<br />

stands <strong>in</strong> streams. Freshw<strong>at</strong>er Biology 42:315–328.<br />

Scheffer, M., M. R. de Redelijkheid, and F. Noppert. 1992. Distribution and dynamics <strong>of</strong><br />

submerged veget<strong>at</strong>ion <strong>in</strong> a cha<strong>in</strong> <strong>of</strong> shallow eutrophic lakes. <strong>Aqu<strong>at</strong>ic</strong> Botany 42:199–<br />

216.<br />

Schmieder, K. 1997. Littoral zone – GIS <strong>of</strong> Lake Constance: a useful tool <strong>in</strong> lake monitor<strong>in</strong>g<br />

and autecological studies with submersed macrophytes. <strong>Aqu<strong>at</strong>ic</strong> Botany 58:333–346.<br />

Schulz, M., H. Kozerski, T. Pluntke, and K. R<strong>in</strong>ke. 2003. The <strong>in</strong>fluence <strong>of</strong> macrophytes on<br />

sediment<strong>at</strong>ion and nutrient retention <strong>in</strong> <strong>the</strong> lower <strong>River</strong> Spree (Germany). W<strong>at</strong>er<br />

Research 37:569–578.<br />

Sculthorpe, C. D. 1967. The biology <strong>of</strong> aqu<strong>at</strong>ic vascular plants. St Mart<strong>in</strong>’s Press, New York,<br />

New York, USA. 610pp.<br />

Shea, R. E. 1997. Assessment <strong>of</strong> aqu<strong>at</strong>ic macrophytes <strong>at</strong> Harriman St<strong>at</strong>e Park, Idaho. Idaho<br />

St<strong>at</strong>e University, Poc<strong>at</strong>ello, Idaho, USA. 14pp.<br />

Shea, R. E. 1999. Assessment <strong>of</strong> aqu<strong>at</strong>ic macrophytes <strong>at</strong> Harriman St<strong>at</strong>e Park, Idaho. Idaho<br />

St<strong>at</strong>e University, Poc<strong>at</strong>ello, Idaho. Prepared for <strong>the</strong> Henry’s <strong>Fork</strong> Found<strong>at</strong>ion, Ashton<br />

Idaho, USA. 21pp.<br />

Shea, R. E. 2001. Assessment <strong>of</strong> aqu<strong>at</strong>ic macrophytes <strong>at</strong> Harriman St<strong>at</strong>e Park, Idaho. The<br />

Trumpeter Swan Society, Maple Pla<strong>in</strong>, M<strong>in</strong>nesota, USA. 7pp.<br />

Shea, R. E., J. A. Kadlec, R. C. Drewien, and J. W. Snyder. 1996. Assessment <strong>of</strong> aqu<strong>at</strong>ic<br />

macrophytes <strong>at</strong> Harriman St<strong>at</strong>e Park and <strong>at</strong> o<strong>the</strong>r key swan w<strong>in</strong>ter<strong>in</strong>g sites with<strong>in</strong> <strong>the</strong><br />

54


Henry’s <strong>Fork</strong> W<strong>at</strong>ershed, Idaho. Henry’s <strong>Fork</strong> Res. Inst. 95-6, Henry’s <strong>Fork</strong> Found<strong>at</strong>ion,<br />

Island Park, Idaho, USA. 104pp.<br />

Simpk<strong>in</strong>s, D. G., W. A. Hubert, and T. A. Wesche. 2000. Effects <strong>of</strong> fall-to-w<strong>in</strong>ter changes <strong>in</strong><br />

habit<strong>at</strong> and frazil ice on <strong>the</strong> movements and habit<strong>at</strong> use <strong>of</strong> juvenile ra<strong>in</strong>bow trout <strong>in</strong> a<br />

Wyom<strong>in</strong>g tailw<strong>at</strong>er. Transactions <strong>of</strong> <strong>the</strong> American Fisheries Society 129:101–118.<br />

Simpson, P. S., and J. W. E<strong>at</strong>on. 1986. Compar<strong>at</strong>ive studies <strong>of</strong> <strong>the</strong> photosyn<strong>the</strong>sis <strong>of</strong> <strong>the</strong><br />

submerged macrophyte Elodea canadensis and <strong>the</strong> filamentous algae Cladophora<br />

glomer<strong>at</strong>a and Spirogyra sp. <strong>Aqu<strong>at</strong>ic</strong> Botany 24:1-12.<br />

Simpson, P. S., J. W. E<strong>at</strong>on, and K. Hardwick. 2006. The <strong>in</strong>fluence <strong>of</strong> environmental factors on<br />

apparent photosyn<strong>the</strong>sis and respir<strong>at</strong>ion <strong>of</strong> <strong>the</strong> submersed macrophyte Elodea canadensis.<br />

Plant, Cell & Environment 3:415–423.<br />

Spencer, D. F. 1986. Early growth <strong>of</strong> Potamogeton pect<strong>in</strong><strong>at</strong>us L. <strong>in</strong> response to temper<strong>at</strong>ure and<br />

irradiance: morphology and pigment composition. <strong>Aqu<strong>at</strong>ic</strong> Botany 26:1–8.<br />

Spencer, D. F. 1987. Tuber size and plant<strong>in</strong>g depth <strong>in</strong>fluence growth <strong>of</strong> Potamogeton pect<strong>in</strong><strong>at</strong>us<br />

L. American Midland N<strong>at</strong>uralist 118:77–84.<br />

Spencer, D. F. and G. G. Ksander. 2002. Sediment<strong>at</strong>ion disrupts n<strong>at</strong>ural regener<strong>at</strong>ion <strong>of</strong><br />

Zannichellia palustris <strong>in</strong> Fall <strong>River</strong>, California. <strong>Aqu<strong>at</strong>ic</strong> Botany 73:137–147.<br />

Squires, J. R. 1995. Trumpeter swan (Cygnus bucc<strong>in</strong><strong>at</strong>or) food habits <strong>in</strong> <strong>the</strong> Gre<strong>at</strong>er<br />

Yellowstone Ecosystem. American Midland N<strong>at</strong>uralist 133:274–282.<br />

Snyder, J. W. 1991. The w<strong>in</strong>ter<strong>in</strong>g and forag<strong>in</strong>g ecology <strong>of</strong> <strong>the</strong> trumpeter swan, Harriman St<strong>at</strong>e<br />

Park <strong>of</strong> Idaho. Thesis, Idaho St<strong>at</strong>e University, Poc<strong>at</strong>ello, Idaho, USA. 145pp.<br />

Syst<strong>at</strong> S<strong>of</strong>tware, Inc. 2008. SigmaPlot 11 users guide, Part 2–St<strong>at</strong>istics. San Jose, California,<br />

USA. xvi+564pp.<br />

Ter Braak, C. F. J., and C. W. N. Looman. 1995. Regression. pp. 29–77 <strong>in</strong> R.H.G. Jongman,<br />

C.J.F. ter Braak, and O.F.R. van Tongeren, eds. D<strong>at</strong>a analysis <strong>in</strong> community and<br />

landscape ecology. Cambridge University Press, Cambridge, United K<strong>in</strong>gdom.<br />

Thiébaut, G. 2006. <strong>Aqu<strong>at</strong>ic</strong> macrophyte approach to assess <strong>the</strong> impact <strong>of</strong> disturbances on <strong>the</strong><br />

diversity <strong>of</strong> <strong>the</strong> ecosystem and river quality. Intern<strong>at</strong>ional Review <strong>of</strong> Hydrobiology<br />

91:483–497.<br />

USGS. <strong>2009</strong>. N<strong>at</strong>ional w<strong>at</strong>er <strong>in</strong>form<strong>at</strong>ion system: web <strong>in</strong>terface. Real-time w<strong>at</strong>er d<strong>at</strong>a for<br />

Idaho, St<strong>at</strong>ion 130425000 Henrys <strong>Fork</strong> near Island Park, ID. Available on-l<strong>in</strong>e <strong>at</strong><br />

http://w<strong>at</strong>erd<strong>at</strong>a.usgs.gov/id/nwis/rt.<br />

Van Kirk, R. W. and L. Benjam<strong>in</strong>. 2000. Physical and human geography <strong>of</strong> <strong>the</strong> Henry’s <strong>Fork</strong><br />

w<strong>at</strong>ershed. Intermounta<strong>in</strong> Journal <strong>of</strong> Science 6:106-118.<br />

55


Van Kirk, R. W., and R. Mart<strong>in</strong>. 2000. Interactions among aqu<strong>at</strong>ic veget<strong>at</strong>ion, w<strong>at</strong>erfowl, flows,<br />

and <strong>the</strong> fishery below Island Park Dam. Intermounta<strong>in</strong> Journal <strong>of</strong> Sciences 6:249–262.<br />

Van Wijck, C., C. J. de Groot, P. Grillas. 1992. The effect <strong>of</strong> anaerobic sediment on <strong>the</strong> growth<br />

<strong>of</strong> Potamogeton pect<strong>in</strong><strong>at</strong>us L.: <strong>the</strong> role <strong>of</strong> organic m<strong>at</strong>ter, sulphide and ferrous iron.<br />

<strong>Aqu<strong>at</strong>ic</strong> Botany 44:31–49.<br />

Van Wijk, R. L. 1988. Ecological studies on Potamogeton pect<strong>in</strong><strong>at</strong>us L. I. General<br />

characteristics biomass production and life cycles under field conditions. <strong>Aqu<strong>at</strong>ic</strong> Botany<br />

31:211–258.<br />

V<strong>in</strong>son, M. R., D. K. V<strong>in</strong>son, and T. R. Angradi. 1992. <strong>Aqu<strong>at</strong>ic</strong> macrophytes and <strong>in</strong>stream flow<br />

characteristics <strong>of</strong> a Rocky Mounta<strong>in</strong> river. <strong>River</strong>s 3:260–265.<br />

Westlake, D. F. 1967. Some effects <strong>of</strong> low-velocity currents on <strong>the</strong> metabolism <strong>of</strong> aqu<strong>at</strong>ic<br />

macrophytes. Journal <strong>of</strong> Experimental Biology 18:187–205.<br />

Wilcox, D. A. and J. E. Meeker. 1991. Disturbance effects on aqu<strong>at</strong>ic veget<strong>at</strong>ion <strong>in</strong> regul<strong>at</strong>ed and<br />

unregul<strong>at</strong>ed lakes <strong>in</strong> nor<strong>the</strong>rn M<strong>in</strong>nesota. Canadian Journal <strong>of</strong> Botany 69:1542–1551.<br />

Wright, J. F. 1992. Sp<strong>at</strong>ial and temporal occurrence <strong>of</strong> <strong>in</strong>vertebr<strong>at</strong>es <strong>in</strong> a chalk stream,<br />

Berkshire, England. Hydrobiologia 248:11–30.<br />

56

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!