09.01.2014 Views

Comprehensive Two-Dimensional Gas Chromatography coupled ...

Comprehensive Two-Dimensional Gas Chromatography coupled ...

Comprehensive Two-Dimensional Gas Chromatography coupled ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

GACID<br />

<strong>Comprehensive</strong> <strong>Two</strong>-<strong>Dimensional</strong><br />

<strong>Gas</strong> <strong>Chromatography</strong> <strong>coupled</strong> with Time-of-Flight<br />

Mass Spectrometry<br />

for Broad Spectrum Organic Analysis<br />

GCxGC-TOFMS<br />

GACID -Group for Analytical Chemistry Instrument Development<br />

Harsh Environment Mass Spectrometry workshop<br />

09/22/2003<br />

Sarasota, FL<br />

Stefan Scherer<br />

Department for Atmospheric, Oceanic, and Space Sciences<br />

Space Physics Research Laboratory<br />

University of Michigan<br />

09/23/2005 S. Scherer 1


Presentation Outline<br />

GACID<br />

• Separation using <strong>Comprehensive</strong> 2-<strong>Dimensional</strong> <strong>Gas</strong> <strong>Chromatography</strong><br />

(GCxGC)<br />

– 1-D GC versus 2-D GC<br />

• Identification using Time-of-Flight Mass Spectrometry TOFMS<br />

– Capabilities of TOFMS<br />

• Applications for GCxGC-TOFMS (selected examples)<br />

– Tholins<br />

– CWA simulants detection in gasoline<br />

– Breath analysis<br />

• Field deployment at UMBS<br />

• Subsystem development activities<br />

– Thermal Modulator<br />

• Future steps<br />

• Acknowledgement<br />

09/23/2005 S. Scherer 2


1-<strong>Dimensional</strong> <strong>Gas</strong> <strong>Chromatography</strong> (GC)<br />

GACID<br />

Standard 1D-GC technique<br />

<br />

<br />

<br />

<br />

narrow sample plug injection<br />

into the chromatographic<br />

column<br />

Sample transport happens in<br />

the mobile phase by the flow<br />

of an inert carrier gas<br />

separation of the sample<br />

occurs along the coated<br />

column with various stationary<br />

phases by interaction of the<br />

sample material with the<br />

column coating<br />

Retention time of the effluent<br />

is detected<br />

09/23/2005 S. Scherer 3


<strong>Comprehensive</strong> 2-<strong>Dimensional</strong> <strong>Gas</strong> <strong>Chromatography</strong> (GC x<br />

GC)<br />

GACID<br />

09/23/2005 S. Scherer 4


1-<strong>Dimensional</strong> versus 2-<strong>Dimensional</strong> <strong>Gas</strong> <strong>Chromatography</strong> (1/2)<br />

GACID<br />

1-<strong>Dimensional</strong> GC<br />

<strong>Comprehensive</strong> 2-<strong>Dimensional</strong> GC<br />

I<br />

I<br />

C<br />

C 1<br />

C 2<br />

D<br />

TM<br />

D<br />

TIC (a.u.)<br />

Time (s)<br />

Time (s) in C2<br />

TIC (a.u.)<br />

Time (s) in C2<br />

Time (s) in C1<br />

Time (s) in C1<br />

09/23/2005 S. Scherer 5


1-<strong>Dimensional</strong> versus 2-<strong>Dimensional</strong> <strong>Gas</strong> <strong>Chromatography</strong> (2/2)<br />

GACID<br />

(a)<br />

(b)<br />

TIC TIC<br />

0<br />

2-<strong>Dimensional</strong> separation (modulated)<br />

1-<strong>Dimensional</strong> separation (non-modulated)<br />

1000 2000 3000 4000 5000<br />

Time (s)<br />

(c)<br />

Time (s)<br />

10<br />

5<br />

0<br />

1000 2000 3000 4000 5000<br />

Time (s)<br />

2-<strong>Dimensional</strong> view of GCxGC<br />

0<br />

0<br />

1000 2000 3000 4000 5000<br />

Time (s)<br />

09/23/2005 S. Scherer 6


Measurement capabilities of GCxGC<br />

GACID<br />

Analysis of organic carbon compounds C 5 to C 25<br />

High peak capacity (several thousand peaks per chromatogram)<br />

Typical analysis cycle duration 30 min<br />

Various sampling methods are available<br />

Solid samples using pyrolysis<br />

(10-100 µg/cycle sample material using Flash or Stepped Pyrolysis)<br />

Volatile samples using direct sampling/pre-concentration<br />

Liquid sampling using split/splitless injection<br />

Sensitivity in the low parts per trillion (ppt) range<br />

Increased detectability<br />

Linearity over more than 3 orders of magnitude (ppb - ppt)<br />

Thermal Modulator (TM) is key component of GCxGC<br />

- commercial TM require consumables<br />

- consumable-free TM under development<br />

09/23/2005 S. Scherer 7


GCxGC-TOFMS<br />

GACID<br />

Inlet<br />

Separation<br />

Identification<br />

Identification by TOFMS<br />

Full mass spectrum with every extraction pulse firing<br />

without necessity of scanning the entire mass range<br />

Repetition rates up to 100kHz achievable, which allows<br />

monitoring fast sample composition changes on time<br />

scales much smaller than milliseconds<br />

High initial energy spread of ions up to several hundred<br />

eV is admissible<br />

Neither static nor dynamic magnetic fields are required<br />

Performance depends mainly on electrical circuits rather than<br />

mechanical alignment<br />

Mass scale calibration for TOFMS is simple and reliable<br />

09/23/2005 S. Scherer 8


Chromatogram of tholins using GCxGC-TOFMS technique (1/2)<br />

GACID<br />

sample (tholin) analyzed by commercial laboratory equipment (LECO<br />

Corp.) using pyrolysis injection (CDS).<br />

09/23/2005 S. Scherer 9


Chromatogram of tholins using GCxGC-TOFMS technique (2/2)<br />

GACID<br />

09/23/2005 S. Scherer 10


Chemical Warefare Agent Simulants in Complex Organic Mixtures<br />

GACID<br />

09/23/2005 S. Scherer 11


Human Breath Analysis<br />

GACID<br />

Human breath analysis<br />

before smoking<br />

Human breath analysis<br />

shortly after smoking<br />

09/23/2005 S. Scherer 12


Commercial GCxGC-TOFMS<br />

GACID<br />

LECO Pegasus 4D<br />

GCxGC – TOFMS<br />

• Resource intensive liquid LN 2 cooled four jet Thermal Modulator<br />

(dewer of LN2 /week)<br />

http://www.leco.com<br />

09/23/2005 S. Scherer 13


GCxGC–TOFMS breadboard using closed-loop air-cooled TM<br />

GACID<br />

GCxGC – TOFMS breadboard<br />

• Custom made pre-concentrator<br />

• Integrated packaged columns (RVM Scientific)<br />

• Custom made closed-loop air-cooled consumable-free TM<br />

• TOFMS (Ionwerks)<br />

09/23/2005 S. Scherer 14


Breadboard results of GCxGC - TOFMS<br />

GACID<br />

09/23/2005 S. Scherer 15


Field deployment of the GCxGC-TOFMS breadboard<br />

GACID<br />

GCxGC–TOFMS breadboard field deployed during summer 2005 campaign<br />

at the PROPHET tower laboratory at the University of Michigan<br />

Biological Station (Northern Michigan); refer to poster from Judy Yu<br />

Measurement Goal: VOCs and isoprene measurements<br />

09/23/2005 S. Scherer 16


2-Stage Thermal Modulator<br />

• <strong>Two</strong>-Stage Thermal Modulator designed<br />

and prototyped at the<br />

University of Michigan<br />

• Set Industry Standard for Modulators<br />

• <strong>Two</strong>-Stage will eliminate sweep through<br />

GACID<br />

1 st Stage<br />

2 nd Stage<br />

Drawing Courtesy of Bruce Block – AOSS University of Michigan<br />

09/23/2005 S. Scherer 17


Single Stage versus 2-Stage Thermal Modulator<br />

GACID<br />

Single-Stage Air-Cooled<br />

A<br />

• limited quantitative analysis<br />

• Breakthrough observed<br />

• Peak Tailing as<br />

concentration inside<br />

modulator increases<br />

<strong>Two</strong>-Stage Air-Cooled<br />

B<br />

• Improved quantitative<br />

analysis<br />

• Minimal Breakthrough<br />

• No Peak Tailing<br />

0 5 10 15 20 25 30 35<br />

Time (s)<br />

1 ppm Octane<br />

09/23/2005 S. Scherer 18


Future of GCxGC using Micro-Fabricated Columns<br />

GACID<br />

• Further miniaturize the separation section<br />

by using MEMS technology for the GCxGC<br />

subsystem<br />

• Decrease physical size as well as reduce<br />

resource requirements with on-chip heating<br />

• Collaboration with the WIMS center at<br />

UofM<br />

09/23/2005 S. Scherer 19


Future of GCxGC using Micro-Fabricated Columns<br />

GACID<br />

3.2 cm<br />

• Capillary length 3m<br />

• Chip size (3.2cmx3.2cm)<br />

• cross section<br />

150 µm wide x 240 µm<br />

deep<br />

• Side ports etched in Si for<br />

more mechanical stability<br />

• Etched back structure for<br />

reduced thermal mass<br />

150 µm<br />

240 µm<br />

Digital Picture of 3-<br />

meter micro fabricated<br />

column<br />

09/23/2005 S. Scherer 20


Future of GCxGC using Micro-Fabricated Columns<br />

GACID<br />

• Separation of series of<br />

n-alkanes (C 5 to C 15 ) at<br />

3 temperature<br />

programs<br />

a) 10 K/min<br />

b) 20 K/min<br />

c) 30 K/min<br />

• Design of a mesoscale<br />

TM using<br />

thermo-electric cooling<br />

and resistive heating<br />

attached to columns in<br />

MEMS technology<br />

09/23/2005 S. Scherer 21


The GACID Team<br />

GACID<br />

… By the enthusiastic effort of the following team members at the<br />

University of Michigan the results have been made possible …<br />

College of<br />

Engineering<br />

Charlie Hasselbrink<br />

Atmospheric,<br />

Oceanic, and Space<br />

Sciences<br />

Hunter Waite<br />

Megan McGuigan<br />

Bruce Block<br />

Stefan Scherer<br />

Chemistry<br />

Richard Sacks<br />

Amy Payeur<br />

PT Stevens<br />

Mark Libardoni<br />

09/23/2005 S. Scherer 22


Pre-Concentrator<br />

GACID<br />

Column one<br />

Stainless Steel Mesh<br />

Beds<br />

Y B X C<br />

Nut<br />

Glass Wool<br />

<strong>Gas</strong> Flow During Sample Collection<br />

<strong>Gas</strong> Flow During Sample Desorption<br />

Carbon Molecular Sieve<br />

Graphitized Carbon<br />

Symbo<br />

l<br />

Adsorbent<br />

Carboxen<br />

1000<br />

Carbopack X<br />

Adsorbent<br />

Strength<br />

Application<br />

C Strongest C 2 to C 5<br />

X<br />

B<br />

Y<br />

Carbopack B<br />

Carbopack Y<br />

Stronger<br />

Weaker<br />

Weakest<br />

C 3 to C 5<br />

C 5 to C 12<br />

C 12 to C 20<br />

09/23/2005 S. Scherer 23


Custom designed Thermal Modulator<br />

GACID<br />

Dual stage Thermal Modulator<br />

- resistively heated -air-cooled<br />

09/23/2005 S. Scherer 24


<strong>Gas</strong> Chromatographic columns<br />

GACID<br />

RVM Scientific integrated columns<br />

Add photo of<br />

the RVM<br />

columns<br />

09/23/2005 S. Scherer 25


Murchinson Meteorite analysis using Pyrolysis-GCxGC-TOFMS<br />

GACID<br />

09/23/2005 S. Scherer 26


Time-of-Flight principle<br />

GACID<br />

U<br />

L in d s<br />

U extr<br />

Time focus<br />

U drift<br />

ion source<br />

1<br />

fieldfree driftpath<br />

reflectron<br />

detector<br />

2<br />

U<br />

L out<br />

d<br />

s<br />

Time focus<br />

L in + L out = L<br />

Mamyrin et al., 1972<br />

09/23/2005 S. Scherer 27


Electron Impact Storage Ion Source<br />

GACID<br />

repeller A<br />

filament<br />

repeller B<br />

extraction grid<br />

A 1<br />

A 2<br />

lens<br />

drift<br />

simulated peak<br />

backplane<br />

Dt tat<br />

3 ns<br />

Dt eds<br />

< 1 ns<br />

∆t<br />

turn-around time<br />

tat<br />

( m)<br />

= 2⋅<br />

2mU<br />

q E<br />

extr<br />

0<br />

trap<br />

1. Time focus<br />

501 504<br />

TOF [ns]<br />

U<br />

U extr<br />

z<br />

U drift<br />

09/23/2005 S. Scherer 28


Orthogonal Extraction Ion Source<br />

GACID<br />

anode<br />

filament<br />

extractor<br />

entrance lens<br />

skimmer<br />

trap<br />

extraction grid<br />

A1 A2 lens drift<br />

simulated peak<br />

backplane<br />

Dt pbd<br />

2 ns<br />

Dt eds<br />


09/23/2005 S. Scherer 30<br />

GACID


Thermal Modulators: Overview of techniques<br />

GACID<br />

P.S.<br />

N 2<br />

gas<br />

J.B. Phillips - 1991<br />

E.B. Ledford and J. Beens - 2000<br />

J.B. Phillips - 1993<br />

P.J. Marriott - 1997<br />

E.B. Ledford - 2002<br />

09/23/2005 S. Scherer 31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!