09.01.2014 Views

Underwater Mass Spectrometry: Developments and Calibration

Underwater Mass Spectrometry: Developments and Calibration

Underwater Mass Spectrometry: Developments and Calibration

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Underwater</strong> Membrane <strong>Mass</strong><br />

<strong>Spectrometry</strong>: <strong>Developments</strong> <strong>and</strong><br />

<strong>Calibration</strong><br />

Ryan J. Bell, R. Timothy Short, Strawn K. Toler,<br />

Friso H.W. van Amerom, Peter G. Wenner, <strong>and</strong><br />

Robert H. Byrne<br />

SRI International<br />

&<br />

University of South Florida<br />

College of Marine Science


Acknowledgements<br />

• Faculty, staff <strong>and</strong> students at SRI International, the<br />

Center for Ocean Technology <strong>and</strong> College of<br />

Marine Science.<br />

• Funding from U.S. Office of Naval Research<br />

(ONR) Grant No. N00014-03-1-0479 <strong>and</strong><br />

Contract No. N00014-07-C-0720.<br />

• Skidaway Institute of Oceanography<br />

• Google Maps


In Situ <strong>Underwater</strong> Membrane<br />

Introduction <strong>Mass</strong> <strong>Spectrometry</strong> at USF<br />

& SRI International<br />

1. Description of <strong>Underwater</strong> Membrane Introduction MS<br />

2. <strong>Calibration</strong> Methodology<br />

3. Surface Contour Deployments<br />

4. Depth Profile Deployments<br />

5. Benthic Moored Deployments


MS: Versatile Chemical Sensor<br />

• Trace Elements<br />

• Isotope Ratios<br />

• Pollutants/VOCs<br />

• Dissolved Gases<br />

• Proteins/Amino Acids<br />

• Bacterial Signatures<br />

No configuration valid for all analytes


Membrane Introduction <strong>Mass</strong> <strong>Spectrometry</strong><br />

(MIMS)<br />

Ion source<br />

Electron impact<br />

<strong>Mass</strong>-filter<br />

Quadrupole<br />

Detector<br />

Electron multplier<br />

Membrane<br />

e -<br />

+<br />

+<br />

Ion <strong>and</strong><br />

fragments<br />

<strong>Mass</strong>-scan


Simultaneous Detection of Multiple Analytes<br />

• Dissolved Gases<br />

– e.g. Nitrogen, Oxygen, Argon, Carbon Dioxide,<br />

Methane, Hydrogen Sulfide<br />

• Volatile Organic Compounds<br />

– e.g. Toluene, Benzene, Dimethyl Sulfide,<br />

Chloroform<br />

• Larger MW Compounds with Modification<br />

– e.g. PCBs, Pesticides, Drugs, Toxins


Principle Features of UMS<br />

Type<br />

Linear quadrupole mass filter<br />

<strong>Mass</strong> range<br />

200 amu<br />

Inlet System<br />

Membrane introduction system<br />

Power consumption 100 Watts<br />

Voltage of operation 24 VDC or 110 VAC<br />

Deployment time Configuration dependent<br />

Dimensions ∅ 19 cm (7.5”)<br />

L 105 cm (41’’)<br />

Weight<br />

33 kg (72.7 Lb)<br />

Depth<br />

>1000 m<br />

DSL tether range ~1600 m (1 mile)


New 200 amu In Situ <strong>Mass</strong> Spectrometer<br />

Microcontroller<br />

Embedded PC<br />

MS electronics box<br />

200 amu linear quadrupole in<br />

vacuum housing w/ heating jacket<br />

Turbo pump<br />

MIMS probe<br />

Roughing pump


Membrane Assembly


<strong>Calibration</strong> - Instrument Parameters<br />

• Physical parameters that affect instrument response:<br />

– Detector settings<br />

– Filament settings<br />

– Membrane geometry<br />

– Residual gas<br />

– Membrane temperature<br />

– Sample velocity<br />

Constant during deployment<br />

– Hydrostatic pressure<br />

Variable during deployment


Laboratory <strong>Calibration</strong> - Pressure <strong>and</strong><br />

Concentration<br />

• An HPLC pump <strong>and</strong> back pressure regulator allow control of<br />

hydrostatic pressure for pressure calibrations<br />

• Two solutions with known gas<br />

concentrations are mixed at<br />

various ratios to allow for<br />

intermediate concentrations <strong>and</strong> in<br />

situ automated calibration


<strong>Calibration</strong> Results<br />

Nitrogen (m/z 28)<br />

Oxygen (m/z 32)<br />

Methane (m/z 15)<br />

<strong>Calibration</strong> Normalized at 200atm 1atm Response (78% N2, vs Pressure 21% O2, 1% (atm) CH4) 2/18/05<br />

2/18/05<br />

Instrument<br />

Normalized<br />

Response<br />

Response<br />

(A)<br />

Instrument Response (A)<br />

1.00E-07 1.20 1.0000E-07<br />

9.00E-08 9.0000E-08<br />

1.00<br />

8.00E-08 8.0000E-08<br />

7.00E-08 7.0000E-08<br />

0.80<br />

6.00E-08 6.0000E-08<br />

5.00E-08 0.60 5.0000E-08<br />

4.00E-08<br />

4.0000E-08<br />

0.40<br />

3.0000E-08<br />

3.00E-08<br />

Oxygen<br />

y = 1.742E-10x + 2.143E-08<br />

R 2 = 9.999E-01<br />

Oxygen<br />

y = 7.056E-11x + 1.690E-08<br />

R 2 = 9.994E-01<br />

Nitrogen<br />

y = 1.821E-10x + 5.175E-09<br />

R 2 = 9.999E-01<br />

2.0000E-08<br />

R 2 = 9.939E-01<br />

2.00E-08 0.20<br />

1.0000E-08<br />

1.00E-08<br />

y = 1.593E-10x + 1.573E-10<br />

Methane<br />

y R= 2 6.512E-11x = 9.995E-01+ 7.765E-11<br />

0.00 0.0000E+00<br />

Methane<br />

R 2 = 9.962E-01<br />

0.00E+00<br />

0 100 200 300 400 500 600<br />

0 0 100 50 200 100 300 150 400 200 500 250 600<br />

Concentration (umole/kg)<br />

Hydrostatic Concentration Pressure (umole/kg) (atm)<br />

Methane<br />

Nitrogen<br />

Nitrogen<br />

Oxygen y = 7.176E-11x + 3.614E-09


<strong>Calibration</strong> Results - Pressure


Field <strong>Calibration</strong><br />

• Three or more field samples are sparged at constant<br />

temperature with gas st<strong>and</strong>ards of various concentrations.<br />

• Each st<strong>and</strong>ard is sampled prior to deployment<br />

Field Baseline Determinations<br />

• Oxygen baseline is determined by the addition of sodium<br />

sulfite to solution.<br />

• Carbon dioxide baseline is determined by the addition of<br />

sodium carbonate to solution.


Field Baseline Determination<br />

• Baselines for nitrogen, argon, <strong>and</strong> methane, are determined<br />

by stopping the sample pump, whereupon sample in<br />

contact with the membrane is completely degassed<br />

• Pump stop method is compared to sampling of boiling water<br />

for baseline determination.


Stopping Sample Pump<br />

• Comsol Multiphysics (finite element) model of sample degassing<br />

during stopped sample flow at the membrane surface<br />

40 mm<br />

2.5 mm<br />

Vacuum<br />

Membrane<br />

Membrane<br />

16x Scale


Pre-Deployment <strong>Calibration</strong>


1.00E-07<br />

1.00E-08<br />

1.00E-09<br />

1.00E-10<br />

1.00E-11<br />

1.00E-12<br />

0 100 200 300 400 500 600 700<br />

Scan #<br />

2 . 2 e - 1 0<br />

2 . 0 e - 1 0<br />

1 . 8 e - 1 0<br />

1 . 6 e - 1 0<br />

1 . 4 e - 1 0<br />

1 . 2 e - 1 0<br />

1 . 0 e - 1 0<br />

8 . 0 e - 1 1<br />

6 . 0 e - 1 1<br />

4 . 0 e - 1 1<br />

2 . 0 e - 1 1<br />

0 . 0<br />

1 7 : 0 0 F r id a y<br />

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0 1 2 0 0 0 1 4 0 0 0 1 6 0 0 0 1 8 0 0 0<br />

S c a n N u m b e r ( 7 s e c / s c a n )<br />

1 7 :0 0 S a tu rd a y<br />

Deployment Methods<br />

W a s t e W a t e r I n f lu e n t<br />

m / z 9 1<br />

Intensity (Amps)<br />

AUV<br />

USV<br />

Moored<br />

Intensity<br />

ROV<br />

Depth Profiling<br />

Diver


Lake Maggiore Chemical Surveys<br />

O 2<br />

Ar<br />

CO 2<br />

• <strong>Mass</strong> spectrometer deployed<br />

aboard an unmanned surface<br />

vehicle<br />

• Mapping variation of<br />

dissolved gas ion intensities<br />

• Develop surface contour maps<br />

based on gas ion intensity data<br />

• Carbon dioxide & oxygen<br />

data displayed


Lake Maggiore, St Petersburg, FL<br />

O 2 <strong>and</strong> CO 2 are inversely correlated in areas of<br />

active photosynthesis <strong>and</strong> respiration<br />

m/z 32 - Oxygen<br />

m/z 44 - Carbon Dioxide


Hillsborough River, February 2007


Hillsborough Deployment Method


Hillsborough Deployment Method


300<br />

Oxygen Time Series<br />

Conc. (mmole/kg)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

YSI Dissolved Oxygen Sensor<br />

MS m/z 32<br />

MS m/z 32 - Argon Corrected<br />

2:24 PM 3:21 PM 4:19 PM 5:16 PM 6:14 PM<br />

Time


Oxygen<br />

3 : 2 1 P M 4 : 1 9 P M 5 : 1 6 P M<br />

296 mmole/kg<br />

157 mmole/kg


Oxygen at Sulfur Springs


Carbon Dioxide<br />

204 mmole/kg<br />

3:21 PM 4:19 PM 5:16 PM<br />

151 mmole/kg


Methane<br />

3 : 2 1 P M 4 : 1 9 P M 5 : 1 6 P M<br />

2.33 mmole/kg<br />

1.39 mmole/kg


Depth Profiles in The Gulf of Mexico<br />

• Vertical profiles of dissolved<br />

gases with underwater mass<br />

spectrometer in Gulf of Mexico<br />

• Mount instrument on custom<br />

frame along with CTD, DO <strong>and</strong><br />

pH Sensors<br />

• Communicate with instrument<br />

through st<strong>and</strong>ard UNOLS CTD<br />

tether using Seabird Modem<br />

• Determine dissolved gas<br />

concentrations from mass spec<br />

data with the aid of a portable<br />

calibration unit


Depth Profiles in The Gulf of Mexico<br />

Depth Profile Deployment Method


Depth Profile Data (Florida Shelf)<br />

Profile obtained while sampling the water column<br />

Profile obtained while sampling a st<strong>and</strong>ard solution


Correction Method: • Normalized m/z 17<br />

• Normalized st<strong>and</strong>ard solution cast<br />

• Corrected using to laboratory data<br />

Alternative Techniques:


Depth Profile Data (Miss. Coast)<br />

Argon Corrected


Benthic Boundary Layer (Georgia Coast)<br />

• R/V Savannah<br />

• Benthic Chamber (30m)<br />

• R2 Navy Tower


Benthic Boundary Layer (Georgia Coast)


Benthic Boundary Layer (Georgia Coast)


Benthic Boundary Layer (Georgia Coast)<br />

O2 Conc. (mmole/kg)<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Oxygen<br />

Carbon Dioxide<br />

Argon<br />

0 20 40 60 80 100 120 140<br />

Time (min)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

CO2 <strong>and</strong> Ar Conc. (mmole/kg)


Benthic Boundary Layer (Georgia Coast)<br />

O2 Conc. (mmole/kg)<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Oxygen<br />

Carbon Dioxide<br />

Argon<br />

Noon 6 pm Midnight 6 am<br />

0 5 10 15 20<br />

Time (hrs)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

CO2 <strong>and</strong> Ar Conc. (mmole/kg)


Future Plans for <strong>Underwater</strong> MS<br />

• Continued Deployments<br />

• Alternative Sampling Interfaces<br />

– Wider range of analytes<br />

• Unattended Operation/ Full Ocean Depths<br />

– Ocean Observatories<br />

• Extreme MS Miniaturization<br />

– MEMS Microfabrication


Questions, mateys?


Ahoy there l<strong>and</strong>lubbers -- it's time to talk pirate<br />

Tue Sep 18, 2007 10:11am BSTEmail This Article |Print This Article |<br />

RSS [-] Text [+] Begin: Story Text<br />

By Paul Majendie<br />

LONDON (Reuters) - Put a parrot on your shoulder, strap on a peg leg, hit<br />

the rum <strong>and</strong> start bellowing "Shiver me Timbers" -- Wednesday is<br />

International Talk Like A Pirate Day.<br />

"Pirates of the Caribbean" star Johnny Depp is not the only over-the-top<br />

buccaneer allowed to have fun.<br />

September 19 is your once-a-year chance to don an eye patch, sport a<br />

ridiculously large hat <strong>and</strong> keep on saying "Arrrrr.


The basics<br />

Ahoy!<br />

Avast!<br />

Aye!<br />

Aye aye!<br />

Arrr!<br />

Beauty<br />

Bilge rat<br />

Bung hole<br />

Grog<br />

Hornpipe<br />

Lubber<br />

Smartly


Argon Time Series<br />

16<br />

14<br />

Conc. (mmole/kg)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Calculated Saturated Argon<br />

MS m/z 40<br />

0<br />

2:24 PM 3:21 PM 4:19 PM 5:16 PM 6:14 PM<br />

Time

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!