04.01.2014 Views

Chapter Solutions

Chapter Solutions

Chapter Solutions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 9<br />

Topics in Analytic Geometry<br />

Section 9.1 Circles and Parabolas . . . . . . . . . . . . . . . . . . . . 772<br />

Section 9.2 Ellipses . . . . . . . . . . . . . . . . . . . . . . . . . . . 784<br />

Section 9.3 Hyperbolas . . . . . . . . . . . . . . . . . . . . . . . . . 795<br />

Section 9.4 Rotation and Systems of Quadratic Equations . . . . . . . 807<br />

Section 9.5 Parametric Equations . . . . . . . . . . . . . . . . . . . . 825<br />

Section 9.6 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . 833<br />

Section 9.7 Graphs of Polar Equations . . . . . . . . . . . . . . . . . 845<br />

Section 9.8 Polar Equations of Conics . . . . . . . . . . . . . . . . . 854<br />

Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863<br />

Practice Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886<br />

© Houghton Mifflin Company. All rights reserved.


CHAPTER 9<br />

Topics in Analytic Geometry<br />

Section 9.1<br />

Circles and Parabolas<br />

■ A parabola is the set of all points x, y that are equidistant from a fixed line (directrix) and a fixed point<br />

(focus) not on the line.<br />

■ The standard equation of a parabola with vertex h, k and<br />

(a) Vertical axis x h and directrix y k p is<br />

(x h) 2 4p( y k), p 0.<br />

(b) Horizontal axis y k and directrix x h p is<br />

(y k) 2 4p(x h), p 0.<br />

■ The tangent line to a parabola at a point P makes equal angles with<br />

(a) the line through P and the focus.<br />

(b) the axis of the parabola.<br />

Vocabulary Check<br />

1. conic section 2. locus 3. circle, center<br />

4. parabola, directrix, focus 5. vertex 6. axis<br />

7. tangent<br />

1.<br />

x 2 y 2 18 2 2.<br />

x 2 y 2 18<br />

x 2 y 2 42 2<br />

x 2 y 2 32<br />

3.<br />

5.<br />

7.<br />

Radius 3 1 2 7 0 2 4. Radius 6 2 2 3 4 2<br />

4 49 53<br />

64 49 113<br />

x h 2 y k 2 r 2<br />

x h 2 y k 2 r 2<br />

x 3 2 y 7 2 53<br />

x 6 2 y 3 2 113<br />

Diameter 27 ⇒ radius 7 6. Diameter 43 ⇒ radius 23<br />

x h 2 y k 2 r 2<br />

x h 2 y k 2 r 2<br />

x 3 2 y 1 2 7<br />

x 5 2 y 6 2 12<br />

x 2 y 2 49 8. x 2 y 2 1 9. x 2 2 y 7 2 16<br />

Center: 0, 0<br />

Center: 0, 0<br />

Center: 2, 7<br />

Radius: 7<br />

Radius: 1<br />

Radius: 4<br />

© Houghton Mifflin Company. All rights reserved.<br />

772


Section 9.1 Circles and Parabolas 773<br />

10.<br />

x 9 2 y 1 2 36 11.<br />

x 1 2 y 2 15 12.<br />

x 2 y 12 2 24<br />

Center:<br />

9, 1<br />

Center:<br />

1, 0<br />

Center:<br />

0, 12<br />

Radius: 6<br />

Radius: 15<br />

Radius: 24 26<br />

13.<br />

1<br />

4 x2 1 4 y2 1 14.<br />

1<br />

9 x2 1 9 y2 1 15.<br />

4<br />

3 x2 4 3 y2 1<br />

x 2 y 2 4<br />

Center: 0, 0<br />

Radius: 2<br />

x 2 y 2 9<br />

Center: 0, 0<br />

Radius: 3<br />

x 2 y 2 3 4<br />

Center: 0, 0<br />

Radius: 3<br />

2<br />

16.<br />

9<br />

2 x2 9 2 y2 1 17.<br />

x 2 y 2 2 9<br />

x 2 2x 1 y 2 6y 9 9 1 9<br />

Center:<br />

x 1 2 y 3 2 1<br />

1, 3<br />

Center: 0, 0<br />

Radius: 2<br />

3<br />

Radius: 1<br />

18.<br />

x 2 10x 25 y 2 6y 9 25 25 9 19.<br />

x 5 2 y 3 2 9<br />

Center: 5, 3<br />

Radius: 3<br />

4x 2 3x 9 4 4y 2 6y 9 41 9 36<br />

Center:<br />

Radius: 1<br />

4x 3 2 2 4y 3 2 4<br />

x 3 2 2 y 3 2 1<br />

3 2 , 3<br />

20.<br />

9 x 2 6x 9 9y 2 4y 4 17 81 36<br />

9x 3 2 9y 2 2 100<br />

© Houghton Mifflin Company. All rights reserved.<br />

21.<br />

Center:<br />

Radius: 10 3<br />

x 2 y 2 16<br />

Center: 0, 0<br />

Radius: 4<br />

x 3 2 y 2 2 100<br />

9<br />

3, 2<br />

y<br />

x 2 16 y 2 22.<br />

5<br />

3<br />

2<br />

1<br />

−5 −3 −2 −1 1 2 3 5<br />

−2<br />

−3<br />

−5<br />

x<br />

x 2 y 2 81<br />

Center: 0, 0<br />

Radius: 9<br />

y 2 81 x 2<br />

10<br />

8<br />

6<br />

4<br />

2<br />

−10 −6 −4 −2 2 4 6 8 10<br />

−4<br />

−6<br />

−8<br />

−10<br />

y<br />

x


774 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

23.<br />

x 2 4x 4 y 2 4y 4 1 4 4<br />

Center:<br />

Radius: 3<br />

x 2 4x y 2 4y 1 0 24.<br />

x 2 2 y 2 2 9<br />

2, 2<br />

3<br />

2<br />

−7 −6 −5 −3 −2 −1 2 3<br />

−2<br />

−3<br />

−4<br />

−6<br />

−7<br />

y<br />

x<br />

x 2 6x 9 y 2 6y 9 14 9 9<br />

Center:<br />

Radius: 2<br />

x 2 6x y 2 6y 14 0<br />

x 3 2 y 3 2 4<br />

3, 3<br />

1<br />

y<br />

−2 −1 1 2 4 5 6 7 8<br />

−2<br />

−3<br />

−4<br />

−5<br />

−6<br />

−7<br />

−8<br />

−9<br />

x<br />

25.<br />

x 2 14x y 2 8y 40 0<br />

x 2 14x 4 y 2 8y 16 40 49 16<br />

x 7 2 y 4 2 25<br />

6<br />

4<br />

2<br />

y<br />

−2 4 6 8 10<br />

14 16 18<br />

x<br />

Center: 7, 4<br />

Radius: 5<br />

−4<br />

−6<br />

−8<br />

−10<br />

−12<br />

−14<br />

26.<br />

x 2 6x y 2 12y 41 0 27.<br />

x 2 2x y 2 35 0<br />

x 2 6x 9 y 2 12y 36 41 9 36<br />

x 2 2x 1 y 2 35 1<br />

x 3 2 y 6 2 4<br />

x 1 2 y 2 36<br />

28.<br />

Center:<br />

Radius: 2<br />

3, 6<br />

x 2 y 2 10y 25 9 25<br />

Center:<br />

Radius: 4<br />

x 2 y 2 5 2 16<br />

0, 5<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−8 −7 −6 −5 −4 −3 −2 −1 1 2<br />

1<br />

−5 −4 −3 −2 −1 1 2 3 4 5<br />

−2<br />

−3<br />

−4<br />

−5<br />

−6<br />

−7<br />

−8<br />

y<br />

y<br />

x<br />

x<br />

Center:<br />

Radius: 6<br />

1, 0<br />

10<br />

8<br />

4<br />

2<br />

−10 −8 −4 −2 2 4 6 8 10<br />

−4<br />

x 2 y 2 10y 9 0 29. y-intercepts:<br />

0 2 2 y 3 2 9<br />

2, 0<br />

−8<br />

−10<br />

4 y 3 2 9<br />

0, 3 ± 5<br />

y 3 2 5<br />

x-intercepts:<br />

x 2 2 0 3 2 9<br />

x 2 2 0<br />

y<br />

y 3 ± 5<br />

x 2<br />

x<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.1 Circles and Parabolas 775<br />

30. y-intercepts:<br />

0 5 2 y 4 2 25<br />

31. y-intercepts: Let x 0.<br />

0, 4<br />

x-intercepts:<br />

x 5 2 0 4 2 25<br />

x 5 2 16 25<br />

2, 0, 8, 0<br />

y 4 2 0<br />

y 4<br />

x 5 2 9<br />

x 5 ±3<br />

x 8, 2<br />

y 2 6y 27 0<br />

0, 9, 0, 3<br />

x-intercepts: Let y 0.<br />

y 2 6y 9 27 9<br />

y 3 2 36<br />

y 3 ±6<br />

y 9, 3<br />

x 2 2x 27 0<br />

x 2 2x 1 27 1<br />

x 1 2 28<br />

x 1 ±28<br />

x 1 ± 27<br />

1 ± 27, 0<br />

© Houghton Mifflin Company. All rights reserved.<br />

32. y-intercepts: Let x 0.<br />

33. y-intercepts:<br />

0 6 2 y 3 2 16<br />

y 2 2y 9 0<br />

No solution<br />

No y-intercepts<br />

x-intercepts: Let y 0.<br />

x 2 8x 9 0<br />

x 2 8x 16 9 16<br />

x 4 2 7<br />

x 4 ±7<br />

x 4 ± 7<br />

4 ± 7, 0<br />

No solution<br />

No y-intercepts<br />

x-intercepts:<br />

x 7 2 0 8 2 4<br />

No solution<br />

No x-intercepts<br />

y 8 2 4 49<br />

45<br />

x 7 2 4 64<br />

60<br />

No solution<br />

No y-intercepts<br />

x-intercepts:<br />

x 6 2 0 3 2 16<br />

6 ± 7, 0<br />

34. y-intercepts:<br />

0 7 2 y 8 2 4<br />

35. (a) Radius: 81; Center: 0, 0<br />

y 3 2 16 36<br />

x 6 2 7<br />

20<br />

x 6 ±7<br />

x 6 ± 7<br />

(b) The distance from 60, 45 to 0, 0 is<br />

(c)<br />

x 2 y 2 81 2 6561<br />

60 2 45 2 5625 75 miles.<br />

Yes, you would feel the earthquake.<br />

40<br />

y<br />

(60, 45)<br />

−40 40<br />

−40<br />

x 2 + y 2 = 81 2<br />

x<br />

You were 81 75 6 miles from the outer<br />

boundary.


776 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

36. (a)<br />

Area r 2 1800(b)<br />

r 2 1800<br />

<br />

r <br />

1800<br />

<br />

r 23.937 feet<br />

R 2 2400<br />

R <br />

2400<br />

27.640 feet<br />

<br />

27.640 23.937 3.703 longer radius<br />

37.<br />

y 2 4x 38.<br />

x 2 2y 39.<br />

x 2 8y<br />

Vertex:<br />

0, 0<br />

Vertex:<br />

0, 0<br />

Vertex:<br />

0, 0<br />

Opens to the left since p is<br />

negative.<br />

Matches graph (e).<br />

p 1 2 > 0<br />

Opens upward<br />

Matches graph (b).<br />

Opens downward since p is<br />

negative.<br />

Matches graph (d).<br />

40.<br />

y 2 12x 41.<br />

(y 1) 2 4(x 3) 42.<br />

x 3 2 2y 1<br />

Vertex:<br />

0, 0<br />

Vertex:<br />

3, 1<br />

Vertex:<br />

3, 1<br />

p 3 < 0<br />

Opens to the left<br />

Matches graph (f).<br />

Opens to the right since p is<br />

positive.<br />

Matches graph (a).<br />

p 1 2 < 0<br />

Opens downward<br />

Matches graph (c).<br />

43. Vertex: 0, 0 ⇒ h 0, k 0 44. Point: 2, 6<br />

Graph opens upward.<br />

x ay 2<br />

x 2 4py<br />

Point on graph:<br />

3 2 4p6<br />

9 24p<br />

3<br />

8 p<br />

3, 6<br />

2 a6 2<br />

1 18 a<br />

x 1 18 y2<br />

y 2 18x<br />

45. Vertex: 0, 0 ⇒ h 0, k 0<br />

Focus: 0, 3 2 ⇒ p 3 2<br />

x h 2 4py k<br />

x 2 4 3 2y<br />

x 2 6y<br />

Thus, x 2 4 3 8y ⇒ y 2 3 x2<br />

46. Focus:<br />

y 2 4px 4 5 2x<br />

y 2 10x<br />

⇒ x 2 3 2y.<br />

5 2 , 0 ⇒ p 5 2<br />

47. Vertex: 0, 0 ⇒ h 0, k 0 48. Focus: 0, 1 ⇒ p 1<br />

Focus: 2, 0 ⇒ p 2 x 2 4py 41y<br />

y k 2 4px h<br />

x 2 4y<br />

y 2 42x<br />

y 2 8x<br />

49. Vertex: 0, 0 ⇒ h 0, k 0 50. Directrix: y 3 ⇒ p 3 51. Vertex: 0, 0 ⇒ h 0, k 0<br />

Directrix: y 1 ⇒ p 1 x 2 4py<br />

Directrix: x 2 ⇒ p 2<br />

x h 2 4py k<br />

x 2 12y<br />

y 2 4px<br />

x 0 2 41y 0<br />

y 2 8x<br />

x 2 4y or y 1 4 x2<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.1 Circles and Parabolas 777<br />

52. Directrix:<br />

y 2 4px<br />

y 2 12x<br />

x 3 ⇒ p 3<br />

53. Vertex: 0, 0 ⇒ h 0, k 0 54. Vertical axis<br />

Horizontal axis and passes through the point 4, 6<br />

y k 2 4px h<br />

Passes through 3, 3<br />

x 2 4py<br />

y 0 2 4px 0<br />

3 2 4p3<br />

y 2 4px<br />

9 12p ⇒ p 3 4<br />

6 2 4p4<br />

x 2 4 3 4y<br />

36 16p ⇒ p 9 4<br />

x 2 3y<br />

y 2 4 9 4x<br />

y 2 9x<br />

55.<br />

y 1 2 x2 56.<br />

y 4x 2 57.<br />

y 2 6x<br />

x 2 2y 4 1 2 y; p 1 2<br />

x 2 1 4 y 4 1 16y, p 1 16<br />

y 2 4 3 2x; p 3 2<br />

Vertex:<br />

Focus:<br />

0, 0<br />

0, 1 2<br />

Vertex: 0, 0<br />

Focus: 0, 16<br />

1<br />

Vertex:<br />

Focus:<br />

0, 0<br />

3<br />

2 , 0<br />

Directrix:<br />

y 1 2<br />

Directrix:<br />

y 1 16<br />

Directrix:<br />

x 3 2<br />

y<br />

y<br />

y<br />

5<br />

4<br />

−2 −1<br />

1 2<br />

x<br />

4<br />

3<br />

3<br />

2<br />

1<br />

–3 –2 2 3<br />

–1<br />

x<br />

−2<br />

−3<br />

−4<br />

–6 –5 –4 –3 –2 –1 1 2<br />

–3<br />

–4<br />

x<br />

© Houghton Mifflin Company. All rights reserved.<br />

58.<br />

y 2 3x 59.<br />

y 2 4 3 4x; p 3 4<br />

Vertex:<br />

Focus:<br />

Directrix:<br />

4<br />

y<br />

0, 0<br />

3 4 , 0<br />

x 3 4<br />

−2 2 4 6<br />

x<br />

x 2 8y 0 60.<br />

x 2 42y; p 2<br />

Vertex: 0, 0<br />

Focus: 0, 2<br />

Directrix: y 2<br />

y<br />

6<br />

4<br />

2<br />

x<br />

−8 −6 −4<br />

−2<br />

−4<br />

−6<br />

−8<br />

−10<br />

4 6 8<br />

y 2 x<br />

y 2 4 1 4x, p 1 4<br />

Vertex:<br />

Focus:<br />

Directrix:<br />

0, 0<br />

1 4 , 0<br />

x 1 4<br />

–5 –4 –3 –2 –1 1<br />

3<br />

2<br />

–2<br />

–3<br />

y<br />

x


778 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

61.<br />

x 1 2 8y 3 0 62.<br />

x 1 2 42y 3<br />

h 1, k 3, p 2<br />

Vertex: 1, 3<br />

Focus: 1, 5<br />

Directrix: y 1<br />

y<br />

4<br />

2<br />

x<br />

2<br />

−2<br />

−4<br />

−6<br />

−8<br />

−10<br />

−12<br />

x 5 y 4 2 0<br />

y 4 2 x 5 4 1 4x 5<br />

Vertex:<br />

Focus:<br />

5, 4<br />

5 1 4 , 4 19 4 , 4<br />

Directrix: x 21 4<br />

y<br />

1<br />

−2 −1<br />

−1<br />

1 2 3 4 5 6<br />

−2<br />

−3<br />

−4<br />

−5<br />

−6<br />

−7<br />

x<br />

63.<br />

y 2 6y 8x 25 0 64.<br />

y 2 4y 4x 0<br />

y 3 2 42x 2; p 2<br />

y 2 2 4x 1; p 1<br />

Vertex:<br />

2, 3<br />

y<br />

Vertex:<br />

1, 2<br />

y<br />

Focus: 4, 3<br />

Directrix: x 0<br />

–10 –8 –6 –4<br />

2<br />

–2<br />

x<br />

Focus: 0, 2<br />

Directrix: x 2<br />

6<br />

4<br />

–4<br />

–6<br />

–4 2 4<br />

x<br />

–8<br />

–2<br />

65.<br />

x 3 2 2 4y 2 66.<br />

Vertex:<br />

Focus:<br />

⇒ h 3 2 , k 2, p 1<br />

3 2 , 2<br />

3 2 , 2 1 3 2 , 3<br />

x 1 2 2 4y 1 ⇒ p 1<br />

1 2 , 1<br />

1 2 , 1 1 1 2 , 2<br />

Vertex:<br />

Focus:<br />

Directrix:<br />

y 1<br />

6<br />

5<br />

4<br />

y<br />

Directrix: y 0<br />

y<br />

4<br />

3<br />

67.<br />

4y 4 x 1 2<br />

x 1 2 41y 1<br />

h 1, k 1, p 1<br />

Vertex: 1, 1<br />

Focus: 1, 2<br />

Directrix: y 0<br />

−5 −4 −3 −2 −1<br />

6<br />

4<br />

2<br />

y<br />

3<br />

−2<br />

1 2 3<br />

y 1 4x 2 2x 5 68.<br />

–2 2 4<br />

x<br />

x<br />

4x y 2 2y 33 0<br />

y 2 2y 1 4x 33 1<br />

y 1 2 41x 8<br />

Vertex: 8, 1<br />

Focus: 9, 1<br />

Directrix: x 7<br />

−3 −2 −1 1 2<br />

−1<br />

y<br />

6<br />

4<br />

2<br />

2 4 6 10 12<br />

−2<br />

x<br />

x<br />

© Houghton Mifflin Company. All rights reserved.<br />

−4<br />

−6


Section 9.1 Circles and Parabolas 779<br />

69.<br />

x 2 4x 6y 2 0 70.<br />

x 2 4x 4 6y 2 4 6y 6<br />

x 2 2 6y 1<br />

x 2 2 4 3 2y 1<br />

Vertex: 2, 1<br />

Focus:<br />

2, 1 3 2 2, 1 2<br />

Directrix: y 5 2<br />

y<br />

5<br />

4<br />

3<br />

2<br />

1<br />

x<br />

−6 −4 −3 −1 2<br />

−2<br />

−3<br />

x 2 2x 8y 9 0<br />

Vertex:<br />

Focus:<br />

x 2 2x 1 8y 9 1<br />

1, 1<br />

1,3<br />

Directrix: y 1<br />

x 1 2 8y 1 42y 1<br />

2<br />

−4 −3 −2 −1<br />

−2<br />

−3<br />

−4<br />

−5<br />

−6<br />

−7<br />

−8<br />

y<br />

2 3 4 5 6<br />

x<br />

71.<br />

y 2 x y 0 72.<br />

y 2 y 1 4 x 1 4<br />

y 1 2 2 4 1 4x 1 4<br />

h 1 4 , k 1 2 , p 1 4<br />

Vertex:<br />

Focus:<br />

1 4 , 1 2<br />

0, 1 2<br />

Directrix: x 1 2<br />

To use a graphing<br />

calculator, enter:<br />

y 1 1 2 1 4 x<br />

y 2 1 2 1 4 x<br />

−3<br />

−2<br />

2<br />

1<br />

−1 1<br />

−2<br />

y<br />

x<br />

y 2 4x 4 0<br />

y 2 4x 4 41x 1<br />

Vertex: 1, 0<br />

Focus: 0, 0<br />

Directrix: x 2<br />

y<br />

6<br />

4<br />

2<br />

−4<br />

2 4 6 8<br />

−2<br />

−4<br />

−6<br />

x<br />

© Houghton Mifflin Company. All rights reserved.<br />

73. Vertex: 3, 1, 74. Vertex:<br />

opens downward<br />

Passes through: 4.5, 4<br />

Passes through: 2, 0, 4, 0<br />

y k 2 4px h<br />

y x 2x 4<br />

y 3 2 4px 5<br />

x 2 6x 8<br />

1 4p4.5 5<br />

x 3 2 1<br />

p 1 2<br />

x 3 2 y 1<br />

y 3 2 2x 5<br />

5, 3 ⇒ h 5, k 3 75. Vertex:<br />

Focus:<br />

y 2 2x 2<br />

2, 0,<br />

opens to the right<br />

3 2 , 0<br />

1<br />

2 p<br />

y 2 4 1 2x 2<br />

76. Vertex: 3, 3 ⇒ h 3, k 3<br />

77. Vertex: 5, 2<br />

Focus: 3, 9 4 ⇒ p 3 4<br />

Focus: 3, 2<br />

x h 2 4py k<br />

Horizontal axis: p 3 5 2<br />

x 3 2 3y 3<br />

y 2 2 42x 5<br />

y 2 2 8x 5


780 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

78. Vertex:<br />

Focus:<br />

1, 2 ⇒ h 1,<br />

k 2<br />

1, 0 ⇒ p 2<br />

x h 2 4py k<br />

x 1 2 42y 2<br />

x 1 2 8y 2<br />

79. Vertex:<br />

Directrix: y 2<br />

Vertical axis<br />

p 4 2 2<br />

0, 4 80. Vertex:<br />

x 0 2 42y 4<br />

x 2 8y 4<br />

Directrix:<br />

2, 1 ⇒ h 2,<br />

k 1<br />

x 1 ⇒ p 3<br />

y k 2 4px h<br />

y 1 2 43x 2<br />

y 1 2 12x 2<br />

81. Focus: 2, 2 82. Focus: 0, 0<br />

Directrix: x 2<br />

Directrix: y 4 ⇒ p 2<br />

Horizontal axis<br />

Vertex: 0, 2<br />

Vertex: 0, 2<br />

x 2 42y 2<br />

p 2 0 2<br />

x 2 8y 2<br />

y 2 2 42x 0<br />

y 2 2 8x<br />

83.<br />

y 2 8x 0x and 3<br />

x y 2 0 84.<br />

y 2 8x and x 2y 3 x 2<br />

y 1 8x<br />

y 2 8x<br />

The point of tangency is<br />

2, 4.<br />

5<br />

−6 6<br />

−3<br />

x 2 12y 0 and x y 3 0<br />

12y x 2<br />

y 1 1 12 x 2<br />

The point of tangency is<br />

6, 3.<br />

y 2 3 x<br />

4<br />

−4 8<br />

−4<br />

85. 4, 8, p 1 x2 2y,<br />

focus:<br />

2 ,<br />

0, 1 2<br />

Following Example 4, we find the y-intercept<br />

0, b.<br />

d 1 1 2 b<br />

d 2 4 0 2 8 1 2 2 17 2<br />

d 1 d 2<br />

⇒<br />

m 8 8<br />

4 0<br />

y 4x 8,<br />

1<br />

2 b 17 2<br />

4<br />

Tangent line<br />

⇒<br />

b 8<br />

Let y 0 ⇒ x 2 ⇒ x-intercept 2, 0.<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.1 Circles and Parabolas 781<br />

86.<br />

1<br />

4 2 y x2<br />

p 1 2<br />

Focus:<br />

d 1 1 2 b<br />

d 2 3 0 2 <br />

9<br />

2 1 2 2 5<br />

1<br />

2 b 5<br />

m <br />

2y x 2 87.<br />

0, 1 2<br />

b 9 2<br />

92 92<br />

0 3<br />

3<br />

y 2x 2 ⇒ x 2 1 2 y 4 1 8 y<br />

Focus:<br />

0, 1 8<br />

Following Example 4, we find the y-intercept<br />

0, b.<br />

d 1 1 8 b<br />

d 2 1 0 2 2 1 8 2 17 8<br />

1<br />

d ⇒ b 2<br />

8 b 17 1 d 2 ⇒<br />

8<br />

m 2 2<br />

1 0 4<br />

y 4x 2<br />

⇒ p 1 8<br />

Let y 0 ⇒ x 1 intercept 1 2 ⇒ x-<br />

2 , 0 .<br />

Tangent line:<br />

y 3x 9 2<br />

⇒ 6x 2y 9 0<br />

x-intercept: 3 2 , 0 <br />

88.<br />

y 2x 2 , 2, 8 89.<br />

x 2 1 2 y 4 1 8 y ⇒ p 1 8<br />

Focus:<br />

0, 1 8<br />

R 375x 3 2 x2<br />

R is a maximum of $23,437.50 when<br />

x 125 televisions.<br />

25,000<br />

© Houghton Mifflin Company. All rights reserved.<br />

d 1 1 8 b<br />

d 2 2 0 2 8 1 8 2 65 8<br />

d 1 d 2 ⇒ 1 8 b 65 8 ⇒ b 8<br />

m 8 8<br />

2 0 8<br />

y 8x 8<br />

Intercept: 1, 0<br />

0 250<br />

0


782 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

90. (a)<br />

x 2 4py<br />

32 2 4p <br />

1<br />

12<br />

1024 1 3 p<br />

3072 p<br />

x 2 43072y<br />

(b)<br />

1<br />

24 x2<br />

12,288<br />

12,288<br />

24<br />

x 2<br />

512 x 2<br />

x 22.6 feet<br />

91. (a)<br />

x 2 4py, p 3 2<br />

x 2 4 <br />

3<br />

2 y 6y<br />

or y 2 6x<br />

(b) When x 4,<br />

6y 16<br />

y<br />

6<br />

5<br />

4<br />

8 in.<br />

2 3<br />

(0,<br />

2<br />

1<br />

−4 −3 −2 −1<br />

−1<br />

1 2 3 4<br />

−2<br />

(<br />

x<br />

x2<br />

y <br />

12,288<br />

y 16 6 8 3 .<br />

Depth:<br />

8<br />

3<br />

inches<br />

92. x 2 4py, 6, 4 on parabola<br />

y<br />

93. (a)<br />

y<br />

(b)<br />

x 2 4py<br />

36 4p4<br />

The wire should be inserted<br />

inches from the bottom.<br />

9<br />

4<br />

p 36<br />

16 9 4<br />

10<br />

8<br />

6<br />

2<br />

(6, 4)<br />

−6 −4 −2 2 4 6<br />

−2<br />

x<br />

(−640, 152) (640, 152)<br />

x<br />

640 2 4p152<br />

p 12,800<br />

19<br />

y 19<br />

51,200 x2<br />

(c)<br />

x 0 200 400 500 600<br />

y 0 14.84 59.38 92.77 133.59<br />

94. (a) x 2 4py passes through point 16, 2 5.<br />

96. (a)<br />

256 4p 2 5 ⇒ p 160<br />

x 2 4160y<br />

x 2 640y or y 1<br />

640 x2<br />

(b) 0.1 1<br />

640 x2 ⇒ x 8 feet<br />

V 17,5002 mihr 24,750 mihr 97.<br />

(b) p 4100, h, k 0, 4100<br />

x 0 2 44100y 4100<br />

0x 2 16,400y 4100<br />

95. Vertex:<br />

y 2 4px<br />

Point:<br />

0, 0<br />

1000, 800<br />

800 2 4p1000 ⇒<br />

(a)<br />

y 2 4160x<br />

y 2 640x<br />

p 160<br />

12.5 y 7.125 x 6.25 2<br />

12.5y 89.0625 x 2 12.5x 39.0625<br />

10<br />

0 16<br />

0<br />

y 0.08x 2 x 4<br />

(b) The highest point is at 6.25, 7.125. The<br />

distance is the x-intercept of 15.69 feet.<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.1 Circles and Parabolas 783<br />

98. (a)<br />

(b)<br />

x 2 1 16 v2 y s 99. The slope of the line joining 3, 4 and the center<br />

3<br />

is 4 3. The slope of the tangent line at 3, 4 is 4.<br />

y 16x2<br />

Thus,<br />

s<br />

v 2<br />

y 4 3<br />

16x2<br />

32 75<br />

4 x 3<br />

2<br />

4y 16 3x 9<br />

1<br />

64 x2 75<br />

3x 4y 25, tangent line.<br />

y 0 1<br />

64 x2 75 ⇒ x 2 7564<br />

⇒ x 69.3 ft<br />

100. The slope of the line joining 5, 12 and the 101. The slope of the line joining 2, 22 and<br />

center is 12 5 . The slope of the tangent line<br />

the center is 222 2. The slope of<br />

5<br />

at 5, 12 is Thus,<br />

the tangent line is 12 22. Thus,<br />

12 .<br />

y 12 5 x 5<br />

12<br />

12y 144 5x 25<br />

5x 12y 169 0, tangent line.<br />

y 22 2 x 2<br />

2<br />

2y 42 2x 22<br />

2x 2y 62, tangent line.<br />

102. The slope of the line joining 25, 2 and the center is 225 15.<br />

The slope of the tangent line is 5. Thus,<br />

y 2 5x 25<br />

y 2 5x 10<br />

5x y 12 0, tangent line.<br />

103. False. The center is 0, 5. 104. True 105. False. A circle is a conic<br />

section.<br />

© Houghton Mifflin Company. All rights reserved.<br />

106. False. A parabola cannot<br />

intersect its directrix or focus.<br />

109. Answers will vary. See the reflective property of parabolas, page 599.<br />

110. The graph of x 2 y 2 0 is a single point, 0, 0.<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−5 −4 −3 −2 −1 1 2 3 4 5<br />

−2<br />

−3<br />

−4<br />

−5<br />

y<br />

x<br />

107. True 108. False. The directrix y 1 4<br />

is below the x-axis.<br />

The plane intersects the double-napped cone at the vertices of the cones.


784 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

111.<br />

y 3 2 6x 1 112.<br />

For the upper half of the parabola,<br />

y 3 6x 1<br />

y 6x 1 3.<br />

y 1 2 2x 2<br />

For the lower half of the parabola,<br />

y 1 2x 2<br />

y 1 2x 2.<br />

113.<br />

f x 3x 3 4x 2 114.<br />

f x 2x 2 3x<br />

Relative maximum:<br />

0.67, 3.78<br />

Relative minimum:<br />

1.13 at x 0.75<br />

Relative minimum: 0.67, 0.22<br />

115.<br />

f x x 4 2x 2 116.<br />

Relative minimum: 0.79, 0.81<br />

f x x 5 3x 1<br />

Relative minimum: 3.11 at 0.88<br />

Relative maximum: 1.11 at 0.88<br />

Section 9.2<br />

Ellipses<br />

■ An ellipse is the set of all points x, y the sum of whose distances from two distinct fixed points (foci)<br />

is constant.<br />

■ The standard equation of an ellipse with center h, k and major and minor axes of lengths 2a and 2b is<br />

■<br />

(a)<br />

(b)<br />

x h 2<br />

<br />

a 2<br />

x h 2<br />

<br />

b 2<br />

y k2<br />

b 2 1<br />

y k2<br />

a 2 1<br />

if the major axis is horizontal.<br />

if the major axis is vertical.<br />

c 2 a 2 b 2 where c is the distance from the center to a focus.<br />

■ The eccentricity of an ellipse is e c a .<br />

Vocabulary Check<br />

1. ellipse 2. major axis, center<br />

3. minor axis 4. eccentricity<br />

1.<br />

x 2<br />

4 y 2<br />

9 1 2. x 2<br />

9 y2<br />

4 1 3. x 2<br />

4 y 2<br />

25 1<br />

Center: 0, 0<br />

Center: 0, 0<br />

Center: 0, 0<br />

a 3, b 2<br />

Vertical major axis<br />

Matches graph (b).<br />

a 3, b 2<br />

Horizontal major axis<br />

Matches graph (c).<br />

a 5, b 2<br />

Vertical major axis<br />

Matches graph (d).<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.2 Ellipses 785<br />

4.<br />

x 2<br />

4 x 2 y2 1 2<br />

5. y 1 2 1 6.<br />

16<br />

Center: 0, 0<br />

Center: 2, 1<br />

a 2, b 1<br />

Horizontal major axis<br />

Matches graph (f).<br />

a 4, b 1<br />

Horizontal major axis<br />

Matches graph (a).<br />

x 2 2 y 22<br />

1<br />

9 4<br />

Center: 2, 2<br />

Horizontal major axis<br />

Matches graph (e).<br />

7.<br />

x 2<br />

y<br />

64 y2<br />

9 1 8. 16 y2<br />

81 1<br />

10<br />

Center: 0, 0<br />

Center: 0, 0<br />

a 8, b 3,<br />

c 64 9 55<br />

Vertices: ±8, 0<br />

Foci: ±55, 0<br />

8<br />

6<br />

4<br />

2<br />

−10 −4 −2 2 4 10<br />

−4<br />

−6<br />

−8<br />

−10<br />

x<br />

x 2<br />

a 9, b 4,<br />

c 81 16 65<br />

Vertices: 0, ±9<br />

Foci: 0, ±65<br />

10<br />

6<br />

4<br />

2<br />

−10−8<br />

−6 −2 2 6 8 10<br />

−4<br />

−6<br />

−10<br />

y<br />

x<br />

e c a 55<br />

8<br />

e c a 65<br />

9<br />

9.<br />

x 4 2 y 12<br />

1 10.<br />

16 25<br />

Center: 4, 1<br />

a 5, b 4, c 3<br />

Vertices:<br />

Foci:<br />

4, 1 ± 5; 4, 6, 4, 4<br />

4, 1 ± 3; 4, 4, 4, 2<br />

x 3 2 y 22<br />

1<br />

12 16<br />

Center: 3, 2<br />

a 4, b 23, c 16 12 2<br />

Foci:<br />

Vertices:<br />

3, 2 ± 2; 3, 0, 3, 4<br />

3, 2 ± 4; 3, 2, 3, 6<br />

e c a 3 5<br />

y<br />

e c a 2 4 1 2<br />

y<br />

6<br />

6<br />

© Houghton Mifflin Company. All rights reserved.<br />

11.<br />

x 5 2<br />

y 1<br />

94<br />

2 1<br />

Center: 5, 1<br />

Foci:<br />

Vertices:<br />

4<br />

2<br />

−4 −2 2 6 10<br />

−2<br />

−4<br />

−6<br />

−8<br />

a 3 2 , b 1, c 9 4 1 5<br />

2<br />

5<br />

5 <br />

2 , 1 , 5<br />

5 <br />

2 , 1 <br />

5 3 5 3 2 , 1 7 2 , 1 , 2 , 1 13 2 , 1 <br />

x<br />

−7 −6 −5 −4 −3 −2 −1<br />

−2<br />

−3<br />

−4<br />

4<br />

3<br />

2<br />

1<br />

y<br />

1<br />

x<br />

4<br />

3<br />

2<br />

1<br />

−7 −4 −3 −2 −1 1<br />

−2<br />

x<br />

e 52<br />

32<br />

5<br />

3


786 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

12.<br />

x 2 2 <br />

y 42<br />

14<br />

a 1, b 1 2 , c a2 b 2 3<br />

2<br />

Center: 2, 4<br />

3<br />

Foci:<br />

2 <br />

1<br />

2 , 4 , <br />

3<br />

2 <br />

2 , 4 <br />

y<br />

–3 –2 –1 1<br />

–1<br />

–2<br />

–3<br />

–4<br />

–5<br />

x<br />

Vertices:<br />

3, 4, 1, 4<br />

Eccentricity: 3<br />

2<br />

13. (a)<br />

x 2 9y 2 36<br />

x 2<br />

36 y2<br />

4 1<br />

(c)<br />

10<br />

8<br />

6<br />

4<br />

y<br />

(b)<br />

a 6, b 2, c 36 4 32 42<br />

Center:<br />

0, 0<br />

Vertices: ±6, 0<br />

Foci: ±42, 0<br />

−10 −8<br />

6 8 10<br />

−4<br />

−6<br />

−8<br />

−10<br />

x<br />

e c a 42<br />

6<br />

22<br />

3<br />

14. (a)<br />

(b)<br />

16x 2 y 2 16<br />

x 2 y2<br />

16 1<br />

a 4, b 1, c 16 1 15<br />

Center:<br />

0, 0<br />

(c)<br />

5<br />

4<br />

1<br />

−5 −4 −3 −2<br />

2 3 4 5<br />

y<br />

x<br />

Vertices: 0, ±4<br />

Foci: 0, ±15<br />

e c a 15<br />

4<br />

15. (a) 9x 2 4y 2 36x 24y 36 0<br />

(c)<br />

(b)<br />

9x 2 4x 4 4y 2 6y 9 36 36 36<br />

a 3, b 2, c 5<br />

Center:<br />

Foci:<br />

2, 3<br />

x 2 2<br />

<br />

4<br />

2, 3 ± 5<br />

y 32<br />

9<br />

1<br />

−4<br />

−5<br />

−6 −5 −4 −3 −2 −1<br />

−2<br />

6<br />

4<br />

3<br />

2<br />

y<br />

1 2<br />

x<br />

© Houghton Mifflin Company. All rights reserved.<br />

Vertices:<br />

2, 6, 2, 0<br />

e 5<br />

3


Section 9.2 Ellipses 787<br />

16. (a) 9x 2 6x 9 4y 2 10y 25 37 81 100 (c)<br />

(b)<br />

a 6, b 4, c 20 25<br />

Center:<br />

Foci:<br />

3, 5<br />

x 3 2<br />

16<br />

3, 5 ± 25<br />

9x 3 2 4y 5 2 144<br />

<br />

y 52<br />

36<br />

Vertices: 3, 5 ± 6; 3, 1, 3, 11<br />

e 25 5<br />

6 3<br />

1<br />

2<br />

−2 2 4 8 10 12<br />

−10<br />

−12<br />

y<br />

x<br />

17. (a) 6x 2 2y 2 18x 10y 2 0<br />

(c)<br />

6 x 2 3x <br />

4 9 2 y2 5y 25<br />

4 2 27 2 25<br />

2<br />

4<br />

y<br />

6 x 3 2 2 2 y 5 2 2 24<br />

x 3 2 2<br />

4<br />

y 5 2 2<br />

12<br />

1<br />

−6<br />

−4<br />

2<br />

−2<br />

2<br />

x<br />

(b)<br />

a 23, b 2, c 22<br />

Center:<br />

3 2 , 5 2<br />

Foci:<br />

3 2 , 5 2 ± 22 <br />

Vertices:<br />

3 2 , 5 2 ± 23 <br />

e 2<br />

3 6<br />

3<br />

© Houghton Mifflin Company. All rights reserved.<br />

18. (a) x 2 6x 9 4 y 2 5y 25<br />

(c)<br />

4 2 9 25<br />

(b)<br />

a 6, b 3, c 36 9 27 33<br />

Center:<br />

Foci:<br />

3, 5 2<br />

x 3 2 4 y 5 2 2 36<br />

x 3 2<br />

36<br />

3 ± 33, 5 2<br />

y 5 2 2<br />

9<br />

1<br />

−3<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

−1<br />

−2<br />

−3<br />

−4<br />

−6<br />

−7<br />

−8<br />

1 2 3 4 5 6 9 10<br />

x<br />

Vertices:<br />

9, 5 2 , 3, 5 2<br />

e 3<br />

2


788 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

19. (a) 16x 2 25y 2 32x 50y 16 0<br />

(c)<br />

16x 2 2x 1 25y 2 2y 1 16 16 25<br />

(x 1) 2<br />

2516 (y 1)2 1<br />

y<br />

2<br />

1<br />

–2 –1 1 3<br />

x<br />

(b)<br />

a 5 4 , b 1, c 3 4<br />

Center: 1, 1<br />

Foci:<br />

Vertices:<br />

7 4 , 1 , 1 4 , 1 <br />

9 4 , 1 , 1 4 , 1 <br />

–2<br />

–3<br />

e 3 5<br />

20. (a) 9x 2 25y 2 36x 50y 61 0<br />

(c)<br />

9x 2 4x 4 25y 2 2y 1 61 36 25<br />

9x 2 2 25y 1 2 0<br />

(b) Degenerate ellipse with center 2, 1 as the only point<br />

2<br />

1<br />

y<br />

1 2<br />

x<br />

21. (a) 12x 2 20y 2 12x 40y 37 0<br />

(c)<br />

12 x 2 1 1 4 20y2 2y 1 37 3 20<br />

12 x 1 2 2 20y 1 2 60<br />

y<br />

2<br />

1<br />

−3 −2 −1 1 2 3<br />

−2<br />

x<br />

(b)<br />

a 5, b 3, c 5 3 2<br />

Center:<br />

Vertices:<br />

Foci:<br />

Eccentricity:<br />

1 2 , 1 <br />

x 1 2 2<br />

5<br />

1 2 ± 5, 1 <br />

1 2 ± 2, 1 <br />

<br />

c<br />

a 2<br />

5 10<br />

5<br />

y 12<br />

3<br />

1<br />

−3<br />

−4<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.2 Ellipses 789<br />

22. (a)<br />

36x 2 9y 2 48x 36y 43 0<br />

(b)<br />

a 1, b 1 2 ,<br />

c 1 1 4 3<br />

2<br />

36 x 2 4 3 x 4 9 9y2 4y 4 43 16 36<br />

Center:<br />

2 3 , 2 <br />

36 x 2 3 2 9y 2 2 9<br />

Vertices:<br />

2 3 , 2 ± 1 2 3 , 1 , 2 3 , 3 <br />

(c)<br />

3<br />

y<br />

x 2 3 2<br />

1<br />

4<br />

<br />

y 22<br />

1<br />

1<br />

Foci:<br />

Eccentricity:<br />

2 3 , 2 ± 3<br />

2 <br />

c<br />

a 3<br />

2<br />

1<br />

−2 −1<br />

1 2<br />

x<br />

−1<br />

23. Center:<br />

a 4, b 2<br />

0, 0 24. Vertices:<br />

Vertical major axis<br />

x 2<br />

4 y2<br />

16 1<br />

Endpoints of minor axis:<br />

x 2<br />

a 2 y2<br />

b 2 1 0, ±3 2 ⇒ b 3 2<br />

x 2<br />

2 2 y2<br />

32 2 1<br />

±2, 0 ⇒ a 2<br />

x 2<br />

4 4y2<br />

9 1<br />

© Houghton Mifflin Company. All rights reserved.<br />

25. Center:<br />

0, 0 26. Vertices:<br />

a 3, c 2 ⇒ b 9 4 5<br />

Horizontal major axis<br />

x 2<br />

9 y2<br />

5 1<br />

27. Center:<br />

c 3<br />

a 4 ⇒ b 16 9 7<br />

Horizontal major axis<br />

x 2<br />

16 y2<br />

7 1<br />

Foci:<br />

b 2 a 2 c 2 64 16 48<br />

Center:<br />

y k 2<br />

<br />

0, 0 28. Center:<br />

a 2<br />

c 2<br />

0, ±8 ⇒ a 8<br />

0, ±4 ⇒ c 4<br />

0, 0 h, k<br />

0, 0<br />

x h2<br />

b 2 1<br />

y 2<br />

64 x2<br />

48 1<br />

a 6 ⇒ b 36 4 32 42<br />

Horizontal major axis<br />

x 2<br />

36 y2<br />

32 1


790 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

29. Vertices: 0, ±5 ⇒ a 5 30. Vertical major axis<br />

Center: 0, 0<br />

Passes through: 0, 4 and 2, 0<br />

Vertical major axis<br />

a 4, b 2<br />

x h 2<br />

<br />

b 2<br />

Point:<br />

4, 2<br />

x 2<br />

b 2 y2<br />

25 1<br />

4 2<br />

b 2 22<br />

25 1<br />

400 21b 2<br />

400<br />

21 b2<br />

x 2<br />

40021 y2<br />

25 1<br />

16<br />

b 1 4 2 25 21<br />

25<br />

21x 2<br />

400 y2<br />

25 1<br />

y k2<br />

a 2 1<br />

x 2<br />

b 2 y2<br />

a 2 1<br />

x 2<br />

4 y2<br />

16 1<br />

31. Center:<br />

a 3, b 1<br />

Vertical major axis<br />

x h 2<br />

<br />

b 2<br />

x 2 2<br />

<br />

1<br />

2, 3 32. Vertices:<br />

y k2<br />

a 2 1<br />

y 32<br />

9<br />

1<br />

Center:<br />

Endpoints of minor axis:<br />

x h 2<br />

<br />

a 2<br />

x 2 2<br />

<br />

4<br />

0, 1, 4, 1 ⇒ a 2<br />

2, 1 ⇒ h 2, k 1<br />

y k2<br />

b 2 1<br />

y 12<br />

1<br />

1<br />

2, 0, 2, 2 ⇒ b 1<br />

33. Center:<br />

a 4, b 1 ⇒ c 16 1 15<br />

Horizontal major axis<br />

x 4 2<br />

16<br />

35. Center:<br />

4, 2 34. Center:<br />

y 22<br />

1<br />

0, 4<br />

1<br />

c 4, a 18 ⇒ b 2 a 2 c 2 324 16 308<br />

Vertical major axis<br />

x 2<br />

308 y 42<br />

1<br />

324<br />

c 2, a 3 ⇒ b 2 a 2 c 2 9 4 5<br />

Horizontal major axis<br />

x 2 2<br />

9<br />

2, 0<br />

y2<br />

5 1<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.2 Ellipses 791<br />

36. Center: 2, 1 ⇒ h 2, k 1 37. Vertices: 3, 1, 3, 9 ⇒ a 4<br />

Vertex: 2, 2 1 ⇒ a 3 Center: 3, 5<br />

2<br />

Minor axis of length 6 ⇒ b 3<br />

Minor axis length: 2 ⇒ b 1<br />

Vertical major axis<br />

x h 2 y k2<br />

1<br />

x h 2 y k2<br />

b 2 a 2 1<br />

b 2 a 2<br />

x 2 2<br />

<br />

1<br />

x 2 2 <br />

38. Center:<br />

a 3c<br />

Foci:<br />

x h 2<br />

<br />

a 2<br />

x 3 2<br />

<br />

36<br />

y 12<br />

32 2 1<br />

4y 12<br />

9<br />

y 22<br />

32<br />

1<br />

1, 2, 5, 2 ⇒ c 2, a 6<br />

b 2 a 2 c 2 36 4 32<br />

y k2<br />

b 2 1<br />

1<br />

x 3 2<br />

<br />

9<br />

3, 2 h, k 39. Center:<br />

Vertices:<br />

y 52<br />

16<br />

Horizontal major axis<br />

x h 2<br />

<br />

a 2<br />

0, 4<br />

1<br />

4, 4, 4, 4 ⇒ a 4<br />

a 2c ⇒ 4 2c ⇒ c 2<br />

2 2 4 2 b 2 ⇒ b 2 12<br />

y k2<br />

b 2 1<br />

x 2 y 42<br />

1<br />

16 12<br />

© Houghton Mifflin Company. All rights reserved.<br />

40. Vertices:<br />

5, 0, 5, 12 ⇒ a 6<br />

43.<br />

Endpoints of minor axis:<br />

0, 6, 10, 6 ⇒ b 5<br />

Center:<br />

x h 2<br />

<br />

b 2<br />

x 5 2<br />

<br />

25<br />

x 2 9y 2 10x 36y 52 0<br />

x 2 10x 25 9 y 2 4y 4 52 25 36<br />

a 3, b 1, c 9 1 22<br />

e c a 22<br />

3<br />

5, 6 ⇒ h 5, k 6<br />

y k2<br />

a 2 1<br />

y 62<br />

36<br />

1<br />

x 5 2 9 y 2 2 9<br />

x 5 2<br />

9<br />

y 22<br />

1<br />

41.<br />

1<br />

x 2<br />

4 y2<br />

9 1 42. x 2<br />

25 y2<br />

36 1<br />

a 3, b 2,<br />

a 6, b 5,<br />

c 9 4 5<br />

c 36 25 11<br />

e c a 5<br />

e c 3<br />

a 11<br />

6


792 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

44.<br />

4x 2 3y 2 8x 18y 19 0<br />

4 x 2 2x 1 3 y 2 6y 9 19 4 27<br />

4 x 1 2 3 y 3 2 12<br />

x 1 2<br />

3<br />

y 32<br />

4<br />

a 2, b 3, c 4 3 1<br />

1<br />

e c a 1 2<br />

45. Vertices:<br />

Eccentricity:<br />

b 2 a 2 c 2 25 16 9<br />

Center:<br />

0, 0<br />

Horizontal major axis<br />

x 2<br />

25 y2<br />

9 1<br />

±5, 0 ⇒ a 5<br />

4<br />

5 c a ⇒ c 4 5 a 4<br />

46. Vertices:<br />

Eccentricity:<br />

b 2 a 2 c 2 64 16 48<br />

x 2<br />

b 2 y2<br />

a 2 1<br />

x 2<br />

48 y2<br />

64 1<br />

0, ±8 ⇒ a 8, h 0, k 0<br />

e 1 2 c a<br />

1<br />

2 c 8<br />

c 4<br />

47. (a)<br />

48. (a)<br />

80<br />

60<br />

20<br />

(0, 40)<br />

(−50, 0) (50, 0)<br />

−40 −20 20 40<br />

−20<br />

y<br />

−20 −12−8 −4 4 8 12 16 20<br />

−8<br />

−12<br />

−16<br />

−20<br />

x 2<br />

20<br />

16<br />

y<br />

(0, 12)<br />

8<br />

(−16, 0)<br />

4<br />

(16, 0)<br />

x<br />

x<br />

(b) Vertices:<br />

(b)<br />

Height at center:<br />

40 ⇒ b 40<br />

Horizontal major axis<br />

x 2<br />

a 2 y2<br />

b 2 1<br />

±50, 0 ⇒ a 50<br />

x 2<br />

2500 y2<br />

1600 1, y ≥ 0<br />

a 16, b 12<br />

x 2<br />

256 y2<br />

144 1, y ≥ 0<br />

49. Let be the equation of the ellipse. Then b 2 and<br />

a y2<br />

2 b 1 2<br />

a 3 ⇒ c 2 a 2 b 2 9 4 5. Thus, the tacks are placed<br />

at ±5, 0. The string has a length of 2a 6 feet.<br />

(c) For<br />

x 45, 45 2<br />

2500 y2<br />

1600 1.<br />

y 2 1600 1 <br />

2500<br />

452<br />

y 2 304<br />

y 17.44<br />

The height five feet from<br />

the edge of the tunnel is<br />

approximately 17.44 feet.<br />

(c) When x 10,<br />

y 2 144 1 102<br />

256<br />

y 9.4 > 9.<br />

Hence, the truck will be able<br />

to drive through without<br />

crossing the center line.<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.2 Ellipses 793<br />

50.<br />

40<br />

x 2<br />

972 2 y2<br />

y<br />

−20 20 40<br />

−40<br />

23 2 1 x<br />

x2<br />

or 23 y2<br />

2 972 1 2<br />

a 97 2 , b 23, c 97 2 2 23 2 4.7<br />

51.<br />

Area of ellipse 2area of circle<br />

ab 2r 2<br />

a10 210 2<br />

a10 200<br />

a 20<br />

Length of major axis: 2a 220 40 units<br />

Distance between foci:<br />

24.7 85.4 feet<br />

52. Center:<br />

2a 35.88 ⇒ a 17.94 ⇒ a 2 321.84<br />

e c a ⇒ 0.97 <br />

c 2 a 2 b 2 ⇒ b 2 a 2 c 2 19.02<br />

Ellipse:<br />

0, 0, e 0.97 53.<br />

c<br />

17.94 ⇒ c 17.4018<br />

x 2<br />

321.84 y 2<br />

19.02 1<br />

a c 4.08<br />

a c 0.34<br />

2a 4.42 ⇒ a 2.21 ⇒ c 1.87<br />

b 2 a 2 c 2 ⇒ b 2 1.3872<br />

x 2<br />

4.8841 y 2<br />

1.3872 1<br />

© Houghton Mifflin Company. All rights reserved.<br />

54.<br />

56.<br />

a c 947 6378 7325 55. For we have c 2 a 2 b 2 .<br />

a y2<br />

2 b 1, 2<br />

a c 228 6378 6606<br />

When x c,<br />

y<br />

2a 13,931<br />

a − c<br />

c 2<br />

a 6965.5<br />

b<br />

a y2<br />

2 b 1 ⇒ 2 y2 b 2 1 a2 b 2<br />

a 2<br />

c 7325 6965.5<br />

359.5<br />

e c a 0.0516<br />

2b 2<br />

a 1<br />

−a<br />

a + c<br />

Additional points: 3, ± 1 2 , 3, ±1 2<br />

−b<br />

−2<br />

c<br />

a<br />

x<br />

x 2<br />

⇒ y 2 b4<br />

a 2<br />

⇒ 2y 2b2<br />

a .<br />

x 2<br />

y<br />

4 y2<br />

1 1 57. x 2<br />

9 y2<br />

16 1<br />

2<br />

a 2, b 1, c 3<br />

1<br />

1<br />

( − 3,<br />

2<br />

)<br />

( 3,<br />

2<br />

) a 4, b 3, c 7<br />

Points on the ellipse:<br />

x Points on the ellipse:<br />

−1<br />

1<br />

±2, 0, 0, ±1<br />

±3, 0, 0, ±4<br />

1<br />

1<br />

( − 3, −<br />

( −<br />

2<br />

)<br />

3,<br />

2<br />

)<br />

Length of latus recta:<br />

Length of latus recta:<br />

2b 2<br />

a 232<br />

4<br />

9 2<br />

9<br />

− , 7<br />

4<br />

−2<br />

9 9<br />

− , ,<br />

4<br />

− 7 4<br />

− 7<br />

Additional points: ± 9 4 , 7 , ±9 4 , 7 <br />

(<br />

)<br />

2<br />

9<br />

, 7<br />

4<br />

−4 −2<br />

2 4<br />

( ) ( )<br />

y<br />

(<br />

)<br />

x


794 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

y<br />

58. 9x 2 4y 2 36<br />

y<br />

59. 5x 2 3y 2 15<br />

x 2<br />

4 y2<br />

4<br />

4<br />

( − , 5 ( , 5<br />

9 1 3<br />

)<br />

3<br />

)<br />

x 2<br />

2<br />

3 y 2<br />

4<br />

5 1 3 5<br />

3 5<br />

( − , 2 ) ( , 2<br />

5<br />

x<br />

Points on the ellipse:<br />

−3 −1 1 3<br />

a 5, b 3,<br />

−4 −2 2 4<br />

3 5<br />

3 5<br />

±2, 0, 0, ±3<br />

( − , − 2<br />

−2<br />

5<br />

) (<br />

5<br />

4<br />

4<br />

c 2<br />

( − , − 5 ( , − 5<br />

3<br />

)<br />

3<br />

)<br />

−4<br />

Length of latus recta:<br />

2b 2<br />

a 2 Points on the ellipse:<br />

22<br />

8 ±3, 0, 0, ±5<br />

3 3<br />

2b 2<br />

Length of latus recta:<br />

a 2 3<br />

5 65<br />

5<br />

Additional points: ± 4 3 , 5 , ±4 3 , 5 <br />

5<br />

)<br />

, − 2<br />

Additional points: ± 35<br />

5 , 2 , ±35 5 , 2 <br />

x<br />

)<br />

60. Answers will vary. 61. True. If e 1 then the ellipse is elongated, not<br />

circular.<br />

62. True. The ellipse is inside the circle. 63. (a) The length of the string is 2a.<br />

(b) The path is an ellipse because the sum of the<br />

distances from the two thumbtacks is always<br />

the length of the string, that is, it is constant.<br />

64. (a)<br />

(b)<br />

a b 20 ⇒ b 20 a<br />

A ab a20 a<br />

a 2 20a 264 0<br />

a 14 or a 6 by the Quadratic Formula<br />

b 64 ORb 14<br />

Since a > b, we choose<br />

x 2<br />

14 2 y 2<br />

x 2<br />

196 y 2<br />

36 1<br />

264 a20 a<br />

6 2 1 a 14 and b 6.<br />

65. Center: 6, 2 66.<br />

Foci: 2, 2, 10, 2 ⇒ c 4<br />

a c a c 2a 36 ⇒ a 18<br />

b 2 a 2 b 2 ⇒ b 18 2 16 308<br />

Horizontal major axis<br />

x 6 2<br />

324<br />

y 22<br />

308<br />

1<br />

(c)<br />

(d)<br />

a<br />

A<br />

360<br />

8 9 10 11 12 13<br />

301.6 311.0 314.2 311.0 301.6 285.9<br />

0 24<br />

0<br />

The area is maximum when a b 10 and<br />

it is a circle.<br />

x 2<br />

a 2 y2<br />

b 2 1<br />

The sum of the distances<br />

from any point on the<br />

ellipse to the two foci is<br />

constant. Using the vertex<br />

a, 0, you have<br />

a c a c 2a.<br />

From the figure,<br />

2b 2 c 2 2a ⇒ a 2 b 2 c 2 .<br />

−a<br />

−c<br />

b<br />

b<br />

−b<br />

y<br />

c<br />

b 2 + c 2<br />

c<br />

a<br />

x<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.3 Hyperbolas 795<br />

67. Arithmetic: d 11 68. Geometric: r 1 2 69. Geometric: r 2 70. Arithmetic: d 1<br />

71. 6<br />

3 n 1093 72. 6<br />

3 n 547 73. 10<br />

n0<br />

n0<br />

n1<br />

4 3 4 n1 15.099 74. 10<br />

n0<br />

5 4 3 n 340.155<br />

Section 9.3<br />

Hyperbolas<br />

■ A hyperbola is the set of all points x, y the difference of whose distances from two distinct fixed points<br />

(foci) is constant.<br />

■ The standard equation of a hyperbola with center h, k and transverse and conjugate axes of lengths<br />

2a and 2b is:<br />

■<br />

■<br />

(a)<br />

(b)<br />

x h 2<br />

<br />

a 2<br />

y k 2<br />

<br />

a 2<br />

y k2<br />

b 2 1<br />

x h2<br />

b 2 1<br />

if the transverse axis is horizontal.<br />

if the transverse axis is vertical.<br />

c 2 a 2 b 2 where c is the distance from the center to a focus.<br />

The asymptotes of a hyperbola are:<br />

(a)<br />

(b)<br />

y k ± b x h<br />

a<br />

y k ± a x h<br />

b<br />

if the transverse axis is horizontal.<br />

the transverse axis is vertical.<br />

■<br />

■<br />

The eccentricity of a hyperbola is e c a .<br />

To classify a nondegenerate conic from its general equation Ax 2 Cy 2 Dx Ey F 0:<br />

(a) If A C (A 0, C 0), then it is a circle.<br />

(b) If AC 0 (A 0 or C 0, but not both), then it is a parabola.<br />

(c) If AC > 0, then it is an ellipse.<br />

(d) If AC < 0, then it is a hyperbola.<br />

© Houghton Mifflin Company. All rights reserved.<br />

Vocabulary Check<br />

1. hyperbola 2. branches 3. transverse axis, center<br />

4. asymptotes 5. Ax 2 Cy 2 Dx Ey F 0<br />

1. Center: 0, 0 2. Center: 0, 0<br />

a 3, b 5, c 34<br />

a 5, b 3<br />

Vertical transverse axis<br />

Matches graph (b).<br />

Vertical transverse axis<br />

Matches graph (c).<br />

3. Center: 1, 0 4. Center: 1, 2<br />

a 4, b 2<br />

a 4, b 3<br />

Horizontal transverse axis<br />

Matches graph (a).<br />

Horizontal transverse axis<br />

Matches graph (d).


796 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

5.<br />

y<br />

x 2 y 2 1 6.<br />

a 1, b 1, c 2<br />

Center: 0, 0<br />

Vertices: ±1, 0<br />

Foci: ±2, 0<br />

Asymptotes: y ±x<br />

2<br />

1<br />

–2 2<br />

–1<br />

–2<br />

x<br />

x 2<br />

9 y2<br />

25 1<br />

Center: 0, 0<br />

a 3, b 5,<br />

c 3 2 5 2 34<br />

Vertices: ±3, 0<br />

Foci: ±34, 0<br />

10<br />

8<br />

6<br />

4<br />

−8 −6 −4 2 4 6 8 10<br />

−6<br />

−8<br />

−10<br />

y<br />

x<br />

Asymptotes: y ± b a x ±5 3 x<br />

7.<br />

y 2<br />

1 x2<br />

a 1, b 2, c 5<br />

3<br />

2<br />

y<br />

y 2<br />

9 x2<br />

1 1<br />

a 3, b 1,<br />

y<br />

6<br />

4 1 8. Center:<br />

Center:<br />

Vertices:<br />

Foci:<br />

0, 0<br />

0, ±1<br />

0, ±5<br />

Asymptotes: y ± 1 2 x<br />

–3 –2 2 3<br />

–2<br />

–3<br />

x<br />

c 3 2 1 2 10<br />

0, 0<br />

Vertices: 0, ±3<br />

Foci: 0, ±10<br />

Asymptotes: y ±3x<br />

–6 –4 –2 2 4 6<br />

–6<br />

x<br />

9.<br />

y 2<br />

25 x2<br />

81 1 10. x 2<br />

36 y2<br />

4 1<br />

a 5, b 9, c a 2 b 2 106<br />

a 6, b 2,<br />

y<br />

Center: 0, 0<br />

c 36 4 210<br />

15<br />

Vertices: 0, ±5<br />

12<br />

Center: 0, 0<br />

9<br />

Foci: 0, ±106<br />

Vertices: ±6, 0<br />

3<br />

x<br />

Asymptotes:<br />

−9 −6<br />

−3<br />

6 9 12 15<br />

Foci: ±210, 0<br />

y<br />

12<br />

8<br />

4<br />

–12 12<br />

–4<br />

–8<br />

–12<br />

x<br />

11.<br />

y ± a b x ±5 9 x<br />

x 1 2<br />

<br />

4<br />

a 2, b 1, c 5<br />

Center:<br />

Vertices:<br />

1, 2, 3, 2<br />

Foci:<br />

y 22<br />

1<br />

1, 2<br />

1 ± 5, 2<br />

Asymptotes: y 2 ± 1 x 1<br />

2<br />

3<br />

2<br />

1<br />

–4<br />

–5<br />

−9<br />

−12<br />

−15<br />

y<br />

1 12.<br />

1 2 3<br />

x<br />

Asymptotes: y ± 1 3 x<br />

x 3 2 y 22<br />

1<br />

144 25<br />

Center: 3, 2<br />

a 12, b 5, c 13<br />

Vertices: 15, 2, 9, 2<br />

Foci: 16, 2, 10, 2<br />

Asymptotes:<br />

y 2 ± 5 x 3<br />

12<br />

15<br />

10<br />

5<br />

y<br />

−5 5<br />

−5<br />

−10<br />

−15<br />

−20<br />

x<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.3 Hyperbolas 797<br />

13.<br />

y 5 2<br />

19<br />

a 1 3 , b 1 2 , c 1 9 1 4 13<br />

6<br />

Center:<br />

Vertices:<br />

Foci:<br />

<br />

1, 5<br />

Asymptotes:<br />

x 12<br />

14<br />

1, 5 ± 1 3 : 1, 16<br />

3 , 1, 14 3 <br />

13<br />

1, 5 ±<br />

6 <br />

1 14.<br />

y k ± a x h<br />

b<br />

y 5 ± 2 x 1<br />

3<br />

y 1 2 x 32<br />

1<br />

14 116<br />

Center: 3, 1<br />

a 1 2 , b 1 4 , c 1 4 1 16 5<br />

4<br />

Vertices:<br />

Foci:<br />

Asymptotes:<br />

3, 1 2 , 3, 3 2<br />

5<br />

3, 1 ±<br />

4 <br />

y 1 ± 12 x 3 1 ± 2x 3<br />

14<br />

3<br />

y<br />

y<br />

2<br />

−2 −1 1 2 3 4<br />

−1<br />

−2<br />

x<br />

–3 –1<br />

1<br />

x<br />

−3<br />

–1<br />

−5<br />

15. (a)<br />

4x 2 9y 2 36<br />

(b) Center:<br />

x 2<br />

9 y2<br />

4 1<br />

0, 0<br />

a 3, b 2, c 9 4 13<br />

Vertices: ±3, 0<br />

Foci: ±13, 0<br />

16. (a)<br />

25x 2 4y 2 100<br />

(b) Center:<br />

x 2<br />

4 y2<br />

25 1<br />

0, 0<br />

a 2, b 5, c 4 25 29<br />

Vertices: ±2, 0<br />

Foci: ±29, 0<br />

© Houghton Mifflin Company. All rights reserved.<br />

(c)<br />

Asymptotes:<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−5 −4 −2<br />

2 4 5<br />

−2<br />

−3<br />

−4<br />

−5<br />

y<br />

y ± b a x ±2 3 x<br />

x<br />

(c)<br />

Asymptotes: y ± b a x ±5 2 x<br />

y<br />

8<br />

6<br />

4<br />

x<br />

−8 −6 −4<br />

4 6 8<br />

−6<br />

−8


798 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

17. (a)<br />

2x 2 3y 2 6<br />

(c) To use a graphing calculator, solve first for y.<br />

x 2<br />

3 y2<br />

2 1<br />

y 2 2x2 6<br />

3<br />

(b)<br />

a 3, b 2, c 5<br />

Center:<br />

0, 0<br />

Vertices: ±3, 0<br />

Foci: ±5, 0<br />

Asymptotes: y ± <br />

2<br />

3 x<br />

± 6<br />

3 x<br />

y 1 <br />

2x 2 6<br />

3<br />

y 2 <br />

2x 2 6<br />

3<br />

y 3 <br />

2<br />

3 x<br />

y 4 <br />

2<br />

3 x<br />

<br />

Hyperbola<br />

<br />

Asymptotes<br />

4<br />

3<br />

2<br />

1<br />

−4 −3<br />

3 4<br />

−2<br />

−3<br />

−4<br />

y<br />

x<br />

18. (a)<br />

6y 2 3x 2 18<br />

(c)<br />

y<br />

(b)<br />

y 2<br />

3 x 2<br />

6 1<br />

a 3, b 6, c 3<br />

Center:<br />

Vertices:<br />

0, 0<br />

0, ±3<br />

4<br />

3<br />

1<br />

−4 −3 −2<br />

−1<br />

−3<br />

−4<br />

2 3 4<br />

x<br />

Foci:<br />

0, ±3<br />

Asymptotes: y ± 3<br />

6 x ±2 2 x<br />

19. (a)<br />

9x 2 y 2 36x 6y 18 0<br />

(c)<br />

y<br />

9x 2 4x 4 y 2 6y 9 18 36 9<br />

2<br />

x 2 2<br />

<br />

1<br />

y 32<br />

9<br />

1<br />

–6 –4 –2 2 4 6 8<br />

–4<br />

x<br />

(b)<br />

20. (a)<br />

a 1, b 3, c 10<br />

Center: 2, 3<br />

Vertices: 1, 3, 3, 3<br />

Foci: 2 ± 10, 3<br />

Asymptotes: y 3 ± 3x 2<br />

x 2 9y 2 36y 72 0<br />

x 2 9 y 2 4y 4 72 36<br />

x 2 9y 2 2 36<br />

x 2 y 22<br />

1<br />

36 4<br />

(b)<br />

a 6, b 2,<br />

Center:<br />

0, 2<br />

Vertices: ±6, 2<br />

Foci: ±210, 2<br />

–6<br />

–8<br />

c 36 4 210<br />

(c)<br />

y<br />

12<br />

8<br />

4<br />

–8 –4 4 8<br />

–4<br />

–8<br />

–12<br />

x<br />

© Houghton Mifflin Company. All rights reserved.<br />

Asymptotes: y 2 ± 1 3 x


Section 9.3 Hyperbolas 799<br />

21. (a)<br />

x 2 9y 2 2x 54y 80 0<br />

(c)<br />

y<br />

x 2 2x 1 9y 2 6y 9 80 1 81<br />

x 1 2 9y 3 2 0<br />

y 3 ± 1 3x 1<br />

4<br />

2<br />

–4 –2 2<br />

–2<br />

x<br />

(b) Degenerate hyperbola is two lines intersecting at<br />

1, 3.<br />

–4<br />

–6<br />

22. (a)<br />

16y 2 x 2 2x 64y 63 0<br />

(c)<br />

y<br />

16y 2 4y 4 x 2 2x 1 63 64 1<br />

–1 1 2 3<br />

x<br />

16y 2 2 x 1 0<br />

–1<br />

y 2 ± 1 4x 1<br />

(b) Degenerate hyperbola is two intersecting lines at<br />

1, 2.<br />

–2<br />

–3<br />

–4<br />

23. (a)<br />

(b)<br />

Center:<br />

Vertices:<br />

Foci:<br />

9y 2 x 2 2x 54y 62 0<br />

9y 2 6y 9 x 2 2x 1 62 1 81<br />

1, 3<br />

y 3 2<br />

<br />

2<br />

1, 3 ± 2<br />

1, 3 ± 25<br />

x 12<br />

18<br />

a 2, b 32, c 25<br />

1<br />

Asymptotes:<br />

y 3 ± 1 x 1<br />

3<br />

(c) To use a graphing calculator, solve for y first.<br />

y<br />

9y 3 2 18 x 1 2<br />

4<br />

2<br />

© Houghton Mifflin Company. All rights reserved.<br />

y 3 ± <br />

18 x 1 2<br />

y 1 3 1 18 x 12<br />

3<br />

y 2 3 1 18 x 12<br />

3<br />

y 3 3 1 x 1<br />

3<br />

y 4 3 1 x 1<br />

3<br />

9<br />

<br />

Hyperbola<br />

<br />

Asymptotes<br />

−6<br />

−8<br />

−10<br />

2<br />

x


800 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

24. (a)<br />

9x 2 y 2 54x 10y 55 0<br />

(c)<br />

y<br />

9x 2 6x 9 y 2 10y 25 55 81 25<br />

14<br />

(b)<br />

x 3 2<br />

<br />

19<br />

a 1 10<br />

, b 1, c <br />

3 3<br />

y 52<br />

1<br />

1<br />

10<br />

8<br />

6<br />

4<br />

2<br />

−7 −6 −4 −3 −2 1<br />

x<br />

Center:<br />

3, 5<br />

Vertices:<br />

3 ± 1 3 , 5 <br />

Foci:<br />

10<br />

3 ±<br />

3 , 5 <br />

Asymptotes: y 5 ± 3x 3<br />

25. Vertices:<br />

Foci:<br />

Center:<br />

y k 2<br />

<br />

a 2<br />

0, ±2 ⇒ a 2 26. Vertices:<br />

0, ±4 ⇒ c 4<br />

b 2 c 2 a 2 16 4 12<br />

0, 0 h, k<br />

x h2<br />

b 2 1<br />

y 2<br />

4 x2<br />

12 1<br />

Foci:<br />

x 2<br />

a 2 y2<br />

b 2 1<br />

x 2<br />

9 y2<br />

27 1<br />

±3, 0 ⇒ a 3<br />

±6, 0 ⇒ c 6<br />

b 2 c 2 a 2 36 9 27<br />

27. Vertices: ±1, 0 ⇒ a 1<br />

Asymptotes:<br />

y ±5x ⇒ b a 5<br />

Center:<br />

x 2<br />

1 y2<br />

25 1<br />

⇒ b 5<br />

0, 0<br />

28. Vertices:<br />

0, ±3 ⇒ a 3 29. Foci:<br />

0, ±8 ⇒ c 8<br />

Asymptotes:<br />

y ±3x ⇒ a b 3, b 1<br />

Asymptotes:<br />

y ±4x ⇒ a b 4 ⇒ a 4b<br />

Center:<br />

y k 2<br />

<br />

a 2<br />

0, 0 h, k<br />

x h2<br />

b 2 1<br />

y 2<br />

9 x2 1<br />

Center:<br />

c 2 a 2 b 2 ⇒ 64 16b 2 b 2<br />

64<br />

17 b2 ⇒ a 2 1024<br />

17<br />

y k 2<br />

<br />

a 2<br />

0, 0 h, k<br />

x h2<br />

b 2 1<br />

y 2<br />

102417 <br />

x2<br />

6417 1<br />

17y 2<br />

1024 17x2<br />

64 1<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.3 Hyperbolas 801<br />

30. Foci:<br />

Asymptotes:<br />

±10, 0 ⇒ c 10<br />

c 2 a 2 b 2 ⇒ 100 3m 2 4m 2<br />

a 42 8, b 32 6<br />

x 2<br />

a y2<br />

2 b 1 2<br />

x 2<br />

64 y2<br />

36 1<br />

y ± 3 4 x ⇒ b a 3m<br />

4m<br />

100 25m 2<br />

2 m<br />

31. Vertices:<br />

Foci:<br />

b 2 c 2 a 2 16 4 12<br />

Center:<br />

x h 2<br />

<br />

a 2<br />

2, 0, 6, 0 ⇒ a 2<br />

0, 0, 8, 0 ⇒ c 4<br />

4, 0 h, k<br />

x 4 2<br />

4<br />

y k2<br />

b 2 1<br />

y 2<br />

12 1<br />

32. Vertices: 2, 3, 2, 3 ⇒ a 3<br />

33. Vertices: 4, 1, 4, 9 ⇒ a 4<br />

Center: 2, 0<br />

Foci: 4, 0, 4, 10 ⇒ c 5<br />

Foci:<br />

b 2 c 2 a 2 25 9 16<br />

y k 2<br />

<br />

a 2<br />

2, 5, 2, 5 ⇒ c 5<br />

y 2<br />

9<br />

x h2<br />

b 2 1<br />

<br />

x 22<br />

16<br />

1<br />

b 2 c 2 a 2 25 16 9<br />

Center:<br />

y k 2<br />

<br />

a 2<br />

y 5 2<br />

<br />

16<br />

4, 5 h, k<br />

x h2<br />

b 2 1<br />

x 42<br />

9<br />

1<br />

© Houghton Mifflin Company. All rights reserved.<br />

34. Vertices:<br />

Center:<br />

Foci:<br />

b 2 c 2 a 2 9 4 5<br />

x h 2<br />

<br />

a 2<br />

3, 1, 3, 1 ⇒ c 3<br />

x 2<br />

4<br />

2, 1, 2, 1 ⇒ a 2<br />

0, 1<br />

y k2<br />

b 2 1<br />

<br />

y 12<br />

5<br />

1<br />

35. Vertices:<br />

Solution point:<br />

Center:<br />

y k 2<br />

<br />

a 2<br />

y 2<br />

9<br />

y 2<br />

9<br />

2, 3, 2, 3 ⇒ a 3<br />

0, 5<br />

2, 0 h, k<br />

x h2<br />

b 2 1<br />

<br />

x 22<br />

b 2<br />

<br />

x 22<br />

94<br />

b 2 <br />

1 ⇒<br />

922<br />

25 9 36<br />

16 9 4<br />

1<br />

9x 22<br />

y 2 9


802 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

36. Center:<br />

x 2<br />

4<br />

Solution point:<br />

x 2<br />

4<br />

0, 1, a 2 37. Vertices:<br />

<br />

y 12<br />

b 2 1<br />

25<br />

4 9 b 2 1<br />

<br />

y 12<br />

127<br />

5, 4<br />

9<br />

b 21<br />

2 4<br />

b 2 36<br />

21 12 7<br />

1<br />

Center:<br />

y 2 2<br />

4<br />

Passes through 5, 1<br />

1 2 2<br />

5 4 b 1 2<br />

y 2 2<br />

4<br />

0, 4, 0, 0<br />

0, 2, a 2<br />

x 2<br />

b 2 1<br />

9<br />

4 1 5 b 2<br />

b 2 4 ⇒ b 2<br />

x2<br />

4 1<br />

38. Center:<br />

y 2<br />

4<br />

Solution point:<br />

y 2<br />

4<br />

1, 0, a 2 39. Vertices:<br />

<br />

x 12<br />

b 2 1<br />

5<br />

4 1 b 2 1<br />

<br />

x 12<br />

4<br />

0, 5<br />

1<br />

b 2 1 4 ⇒ b 2<br />

1<br />

1, 2, 3, 2 ⇒ a 1<br />

Center:<br />

Asymptotes:<br />

x 2 2<br />

1<br />

2, 2<br />

y x, y 4 x<br />

b<br />

a 1 ⇒ b 1<br />

<br />

y 22<br />

1<br />

1<br />

40. Center:<br />

Asymptotes:<br />

y 3 2<br />

9<br />

3, 3, a 3<br />

y x 6, y x<br />

1 a b 3 b ⇒ b 3<br />

<br />

x 32<br />

9<br />

1<br />

41. Vertices:<br />

0, 2, 6, 2 ⇒ a 3 42. Vertices:<br />

(3, 0, 3, 4 ⇒ a 2<br />

Asymptotes:<br />

y 2 3 x, y 4 2 3 x<br />

Asymptotes:<br />

y 2 3 x, y 4 2 3 x<br />

b<br />

a 2 3 ⇒ b 2<br />

Center:<br />

x h 2<br />

<br />

a 2<br />

x 3 2<br />

<br />

9<br />

3, 2 h, k<br />

y k2<br />

b 2 1<br />

y 22<br />

4<br />

1<br />

a<br />

b 2 3 ⇒ b 3<br />

Center:<br />

y k 2<br />

<br />

a 2<br />

y 2 2<br />

<br />

4<br />

3, 2 h, k<br />

x h2<br />

b 2 1<br />

x 32<br />

9<br />

1<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.3 Hyperbolas 803<br />

43. F 1 : Friend’s location 10,560, 0<br />

F 2 : Your location 10,560, 0<br />

Px, y:<br />

x 2<br />

a 2 y2<br />

b 2 1<br />

Location of lightning strike<br />

110018 19,800<br />

c 10,560, a 19,800<br />

2<br />

b 2 c 2 a 2 13,503,600<br />

x 2<br />

98,010,000 y 2<br />

13,503,600<br />

9900 ⇒ a 2 98,010,000<br />

y<br />

10,000<br />

P<br />

Friend<br />

F1 F2<br />

You<br />

−20,000 20,000<br />

(−10,560, 0) (10,560, 0)<br />

−10,000<br />

x<br />

y<br />

44. The explosion occurred on the vertical line through<br />

(3300, 1100)<br />

3300, 1100 and 3300, 0.<br />

4000<br />

d 2 d 1 41100 4400<br />

Hence,<br />

2a 4400<br />

a 2200<br />

c 3300<br />

b 2 c 2 a 2 .<br />

The explosion occurred on the hyperbola<br />

Letting x 3300,<br />

y 2 b 2 x2<br />

a 2 1 33002 2200 2 <br />

3300 2<br />

2200 2 1 ⇒ y 2750.<br />

3300, 2750<br />

x 2<br />

a 2 y2<br />

b 2 1.<br />

( −3300, 0)<br />

−4000<br />

3000<br />

2000<br />

1000<br />

d 2<br />

−4000<br />

a<br />

(3300, 0)<br />

d 1<br />

x<br />

© Houghton Mifflin Company. All rights reserved.<br />

x<br />

45. (a)<br />

2<br />

a y2<br />

2 b 1 2<br />

a 1; 2, 9 is on the curve, so<br />

4<br />

1 81<br />

b 1 ⇒ 81<br />

2 b 3 2<br />

⇒ b 2 81<br />

3 ⇒ b 33.<br />

x 2<br />

1 y2<br />

1, 9 ≤ y ≤ 9<br />

27<br />

1<br />

2<br />

(b) Because each unit is 2 foot, 4 inches is 3 of a unit.<br />

The base is 9 units from the origin, so<br />

y 9 2 3 81 3 .<br />

When y 25 3 ,<br />

x 2 1 2532<br />

27<br />

⇒ x 1.88998.<br />

So the width is 2x 3.779956 units, or<br />

22.68 inches, or 1.88998 feet.


804 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

46. Foci: ±150, 0 ⇒ c 150<br />

Center: 0, 0<br />

y<br />

150<br />

75<br />

(x, 75)<br />

(−150, 0)<br />

−150<br />

−75<br />

d 2 d 1<br />

(150, 0)<br />

x<br />

75 150<br />

(a)<br />

d 2 d 1 186,0000.001<br />

186 ⇒ 2a 186 ⇒ a 93<br />

b 2 c 2 a 2 150 2 93 2 13,851<br />

x 2<br />

93 2 y2<br />

13,851 1<br />

x 110.3 miles<br />

(b) 150 93 57 miles<br />

x 2 93 2 1 13,851 752 12,161.43<br />

(c) Bay to Station 1: 30 miles<br />

Bay to Station 2: 270 miles<br />

270 30<br />

186,000<br />

(d) In this case,<br />

d 2 d 1 186,0000.00129 239.94 ⇒ a 120<br />

and b 2 c 2 a 2 8100. The hyperbola is<br />

x 2<br />

120 2 y2<br />

90 2 1.<br />

0.00129 second<br />

For y 60, x 2 20,800 and x 144.2.<br />

Position: 144.2, 60<br />

47. Center:<br />

Focus:<br />

0, 0<br />

24, 0<br />

b 2 c 2 a 2 24 2 a 2 576 a 2<br />

x 2<br />

a 2 y 2<br />

576 a 2 1<br />

24 2<br />

a 2 242<br />

576 a 2 1<br />

576<br />

a 2 576<br />

576 a 2 1<br />

576576 a 2 576a 2 a 2 576 a 2 <br />

a 4 1728a 2 331,776 0<br />

a ±38.83 or a ±14.83<br />

Since a < c and c 24, we choose a 14.83. The vertex is approximate at 14.83, 0.<br />

[Note: By the Quadratic Formula, the exact value of a is a 125 1. ]<br />

48.<br />

x 2<br />

25 y2<br />

16 1<br />

a 5, b 4, c 25 16 41<br />

9x 2 4y 2 18x 16y 119 0<br />

A 9, C 4<br />

The camera is 5 41 units from the mirror.<br />

AC 36 > 0, Ellipse<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.3 Hyperbolas 805<br />

50.<br />

x 2 y 2 4x 6y 23 0 51.<br />

A C 1,<br />

Circle<br />

16x 2 9y 2 32x 54y 209 0<br />

A 16, C 9<br />

AC 169 < 0, Hyperbola<br />

52.<br />

x 2 4x 8y 20 0 53.<br />

A 1, C 0<br />

AC 0, Parabola<br />

y 2 12x 4y 28 0<br />

C 1, A 0<br />

AC 0, Parabola<br />

54.<br />

4x 2 25y 2 16x 250y 541 0 55.<br />

A 4, C 25<br />

AC 100 > 0, Ellipse<br />

x 2 y 2 2x 6y 0<br />

A C 1,<br />

Circle<br />

56.<br />

y 2 x 2 2x 6y 8 0 57.<br />

A 1, C 1<br />

AC < 0, Hyperbola<br />

x 2 6x 2y 7 0<br />

A 1, C 0, D 6,<br />

AC 0 ⇒ Parabola<br />

E 2, F 7<br />

58.<br />

9x 2 4y 2 90x 8y 228 0 59. True. e c a a2 b 2<br />

A 9, C 4<br />

AC 94 36 > 0 ⇒ Ellipse<br />

a<br />

60. False. b 0 because it is in the denominator.<br />

© Houghton Mifflin Company. All rights reserved.<br />

61. False. For example,<br />

x 2 y 2 2x 2y 0<br />

x 1 2 y 1 2 0<br />

is the graph of two intersecting lines.<br />

62. True. The asymptotes are<br />

y ± b a x.<br />

63. Let x, y be such that the difference of the distances from c, 0 and c, 0<br />

is 2a (again only deriving one of the forms).<br />

2a x c 2 y 2 x c 2 y 2<br />

4a 2 4ax c 2 y 2 x c 2 y 2 x c 2 y 2<br />

4ax c 2 y 2 4cx 4a 2<br />

ax c 2 y 2 cx a 2<br />

a 2 x 2 2cx c 2 y 2 c 2 x 2 2a 2 cx a 4<br />

a 2 c 2 a 2 c 2 a 2 x 2 a 2 y 2<br />

If they intersect at right angles, then<br />

b<br />

a 1<br />

ba a b ⇒ a b.<br />

2a <br />

x c 2 y 2 x c y 2 <br />

Let b2 c 2 a 2 .<br />

Then a 2 b 2 b 2 x 2 a 2 y 2 ⇒ 1 x2<br />

a 2 y2<br />

b 2.


806 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

64. Answers will vary. See Example 3. 65.<br />

66. Center:<br />

Horizontal transverse axis<br />

Foci at 2, 2 and 10, 2 ⇒ c 4.<br />

c a c a 6 ⇒ a 3<br />

b 2 c 2 a 2 16 9 7<br />

x 6 2<br />

9<br />

6, 2<br />

y 22<br />

7<br />

1<br />

d 2 d 1<br />

At the point a, 0,<br />

d 2 d 1 a c c a 2a.<br />

constant by definition of hyperbola<br />

67. At the point a, 0, the difference of the distances to the foci ±c, 0 is c a c a 2a.<br />

Let x, y be a point on the hyperbola.<br />

2a x c 2 y 2 x c 2 y 2<br />

2a x c 2 y 2 x c 2 y 2<br />

4a 2 4ax c 2 y 2 x c 2 y 2 x c 2 y 2<br />

4ax c 2 y 2 4cx 4a 2<br />

ax c 2 y 2 cx a 2<br />

a 2 x 2 2cx c 2 y 2 c 2 x 2 2a 2 cx a 4<br />

a 2 c 2 a 2 c 2 a 2 x 2 a 2 y 2<br />

Thus, c 2 a 2 b 2 , as desired.<br />

1 x2<br />

a <br />

y2<br />

2 c 2 a 2<br />

68. If A C 0, then by completing the square you obtain a circle.<br />

If A 0 and C 0, then Cy 2 Dx Ey F 0 is a parabola (complete the square).<br />

Same for A 0 and C 0.<br />

If AC > 0, then both A and C are positive (or both negative). By completing the square<br />

you obtain an ellipse.<br />

If AC < 0, then A and C have opposite signs. You obtain a hyperbola.<br />

69. x 3 3x 2 6 2x 4x 2 x 3 x 2 2x 6 70.<br />

71.<br />

2 1<br />

1<br />

x 3 3x 4<br />

x 2<br />

0<br />

2<br />

2<br />

3<br />

4<br />

1<br />

4<br />

2<br />

2<br />

x 2 2x 1 2<br />

x 2<br />

72.<br />

3x 1 2x 4 3x 2 12x 1 2 x 2<br />

3x 2 23 2 x 2<br />

x y 3 2 x y 2 6x y 9<br />

x 2 2xy y 2 6x 6y 9<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.4 Rotation and Systems of Quadratic Equations 807<br />

73. x 3 16x xx 2 16 xx 4x 4 74. x 2 14x 49 x 7 2<br />

75.<br />

2x 3 24x 2 72x 2xx 2 12x 36 76.<br />

2xx 6 2<br />

6x 3 11x 2 10x x6x 2 11x 10<br />

x3x 22x 5<br />

77.<br />

16x 3 54 28x 3 27 78.<br />

22x 34x 2 6x 9<br />

4 x 4x 2 x 3 4 x x 2 4 x<br />

4 xx 2 1<br />

4 xx ix i<br />

Section 9.4<br />

Rotation and Systems of Quadratic Equations<br />

■ The general second-degree equation Ax 2 Bxy Cy 2 Dx Ey F 0 can be rewritten<br />

Ax 2 Cy 2 Dx Ey F 0 by rotating the coordinate axes through the angle<br />

where cot 2 A CB.<br />

■ x x cos ysin <br />

y x sin y cos <br />

■ The graph of the nondegenerate equation Ax 2 Bxy Cy 2 Dx Ey F 0 is:<br />

(a) An ellipse or circle if B 2 4AC < 0.<br />

(b) A parabola if B 2 4AC 0.<br />

(c) A hyperbola if B 2 4AC > 0.<br />

<br />

Vocabulary Check<br />

1. rotation, axes 2. invariant under rotation 3. discriminant<br />

© Houghton Mifflin Company. All rights reserved.<br />

90;<br />

1. Point:<br />

x x cos y sin <br />

0 x cos 90 y sin 90<br />

0 y<br />

0, 3<br />

Thus, x, y 3, 0.<br />

45;<br />

2. Point:<br />

3, 3<br />

x x cos y sin <br />

3 x cos 45 y sin 45<br />

3 2<br />

2 x 2<br />

2 y<br />

y x sin y cos <br />

3 x sin 90 y cos 90<br />

3 x<br />

Adding, 6 2x ⇒ x 6 2 32.<br />

y x sin y cos <br />

3 x sin 45 y cos 45<br />

3 2<br />

2 x 2<br />

2 y<br />

2y 0 ⇒ y 0.<br />

Subtracting,<br />

Thus, x, y 32, 0.


808 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

3.<br />

xy 1 0<br />

A 0, B 1, C 0<br />

y<br />

4<br />

y′ x′<br />

cot 2 A C<br />

B<br />

<br />

x x cos<br />

4 y sin<br />

4<br />

<br />

<br />

<br />

y x sin<br />

4 y cos<br />

4<br />

<br />

0 ⇒ 2 <br />

2 ⇒<br />

<br />

<br />

x 2 2<br />

2 y 2 <br />

x 2 2<br />

2 y 2 <br />

4<br />

x y<br />

2<br />

x y<br />

2<br />

−4 −3 −2 4<br />

−2<br />

−3<br />

−4<br />

x<br />

xy 1 0<br />

x y<br />

2 x y<br />

2 1 0<br />

y 2<br />

2<br />

x 2<br />

2<br />

1,<br />

Hyperbola<br />

4.<br />

xy 2 0, A 0, B 1, C 0<br />

cot 2 A C<br />

B<br />

<br />

x x cos<br />

4 y 2<br />

sin <br />

4<br />

x 2 <br />

y x sin<br />

4 y 2<br />

cos <br />

4<br />

x 2 <br />

<br />

0 ⇒ 2 <br />

2 ⇒<br />

<br />

<br />

<br />

<br />

<br />

10<br />

y′<br />

8<br />

6<br />

4 4<br />

y<br />

2<br />

2 x y<br />

2<br />

y<br />

2<br />

2 x y<br />

2<br />

−8<br />

−10<br />

y<br />

x′<br />

4 6 8 10<br />

x<br />

xy 2 0<br />

x y<br />

2 x y<br />

2 2 0<br />

x 2 y<br />

2<br />

2<br />

2<br />

5.<br />

x 2<br />

4 y 2<br />

4<br />

x 2 4xy y 2 1 0<br />

x 2 2<br />

2 y 2 <br />

1, Hyperbola<br />

4<br />

−8 −6 −4<br />

4 6 8<br />

A 1, B 4, C 1<br />

y x sin cot 2 A C 0 ⇒ 2 <br />

B<br />

2 ⇒<br />

−6<br />

4 y cos<br />

4<br />

−8<br />

y<br />

y′<br />

8<br />

x′<br />

6<br />

<br />

x<br />

<br />

<br />

<br />

x x cos<br />

4 y sin<br />

4<br />

<br />

<br />

<br />

4<br />

© Houghton Mifflin Company. All rights reserved.<br />

2<br />

2 x y


Section 9.4 Rotation and Systems of Quadratic Equations 809<br />

5. —CONTINUED—<br />

x 2 4xy y 2 1 0<br />

2<br />

2 x y <br />

2<br />

4 2<br />

2 x y 2<br />

2 x y <br />

<br />

2<br />

2 x y <br />

2<br />

1 0<br />

1<br />

2 x 2 xy 1 2 y 2 2x 2 y 2 1 2 x 2 xy 1 2 y 2 1 0<br />

x 2 3y 2 1<br />

x 2 y2<br />

, Hyperbola<br />

13 1<br />

6.<br />

xy x 2y 3 0<br />

y<br />

A 0, B 1, C 0<br />

y′<br />

8<br />

6<br />

x′<br />

cot 2 A C<br />

B<br />

<br />

<br />

x x cos<br />

4 y sin<br />

4<br />

x 2 2<br />

2 y 2 <br />

<br />

0 ⇒ 2 <br />

2 ⇒<br />

<br />

<br />

<br />

4<br />

<br />

y x sin<br />

4 y cos<br />

4<br />

2 2<br />

x 2 y 2 <br />

−8 −6 −4 4 6<br />

4<br />

−4<br />

−6<br />

−8<br />

x<br />

x y<br />

2<br />

x y<br />

2<br />

xy x 2y 3 0<br />

x y<br />

2 x y<br />

2 x y<br />

2 2 x y<br />

2 3 0<br />

x 2<br />

2<br />

y 2<br />

2<br />

x<br />

2 y<br />

2 2x<br />

2 2y<br />

2 3 0<br />

x 2 2x <br />

2<br />

2 2 y 2 32y <br />

32<br />

2 2 6 2<br />

2 2 <br />

32<br />

2 2<br />

© Houghton Mifflin Company. All rights reserved.<br />

x 2<br />

2 2 y 32<br />

2 2 10<br />

y 32<br />

2 2<br />

10<br />

x 2<br />

2 2<br />

10<br />

1 , Hyperbola


810 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

7.<br />

xy 2y 4x 0<br />

y<br />

A 0, B 1, C 0<br />

cot 2 A C<br />

B<br />

<br />

0 ⇒ 2 <br />

2 ⇒<br />

<br />

<br />

4<br />

y′<br />

8<br />

6<br />

4<br />

x′<br />

<br />

<br />

x x cos<br />

4 y sin<br />

4<br />

x 2 2<br />

2 y 2 <br />

<br />

<br />

y x sin<br />

4 y cos<br />

4<br />

x 2 2<br />

2 y 2 <br />

−4 2 4 6 8<br />

−4<br />

x<br />

x y<br />

2<br />

x y<br />

2<br />

x y<br />

2 x y<br />

2 2 x y<br />

2 4 x y<br />

2 0<br />

x 2<br />

2<br />

y 2<br />

2<br />

2x 2y 22x 22y 0<br />

x 2 62x 32 2 y 2 22y 2 2 0 32 2 2 2<br />

x 32 2 y 2 2 16<br />

x 32 2<br />

16<br />

xy 2y 4x 0<br />

y 2 2<br />

16<br />

1, Hyperbola<br />

8.<br />

2x 2 3xy 2y 2 10 0<br />

y<br />

x′<br />

A 2, B 3, C 2<br />

4<br />

cot 2 <br />

C<br />

B<br />

4 3 ⇒<br />

71.57<br />

2<br />

y′<br />

−4 −2 4<br />

x<br />

cos 2 4 5<br />

sin <br />

1 cos 2<br />

<br />

2 <br />

1 45<br />

3<br />

2 10<br />

cos <br />

1 cos 2<br />

<br />

2 <br />

1 45<br />

1<br />

2 10<br />

x x cos y sin y x sin y cos <br />

x10 1 y 10 3<br />

x 10 3 y 10<br />

1<br />

x 3y<br />

10<br />

—CONTINUED—<br />

3x y<br />

10<br />

−4<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.4 Rotation and Systems of Quadratic Equations 811<br />

8. —CONTINUED—<br />

x 2<br />

5<br />

6xy 9y 2<br />

9x 2<br />

5 5 10<br />

2 <br />

x 3y<br />

10<br />

2 3 <br />

x 3y<br />

10 3x y<br />

10 2 3x y<br />

10 2 10 0<br />

24xy 9y 2<br />

9x 2<br />

10 10 5<br />

2x 2 3xy 2y 2 10 0<br />

6xy y 2<br />

10 0<br />

5 5<br />

5 2 x 2 5 2 y 2 10<br />

x 2<br />

4<br />

y 2<br />

4<br />

1, Hyperbola<br />

9.<br />

5x 2 6xy 5y 2 12 0<br />

A 5, B 6, C 5<br />

cot 2 A C<br />

B<br />

<br />

x x cos<br />

4 y sin<br />

4 2<br />

2 x y<br />

<br />

0<br />

⇒<br />

y x sin<br />

4 y cos<br />

4 2<br />

2 x y<br />

<br />

<br />

<br />

2 <br />

2<br />

⇒<br />

<br />

<br />

5x 2 6xy 5y 2 12 0<br />

5 2<br />

2<br />

2 x y <br />

6 2<br />

2 x y 2<br />

2 x y <br />

5 2<br />

2<br />

2 x y <br />

12<br />

5<br />

2 x 2 5xy 5 2 y 2 3x 2 3y 2 5 2 x 2 5xy 5 2 y 2 12<br />

4<br />

2 x 2 8y 2 12<br />

x 2<br />

6<br />

y′<br />

−4 −3<br />

y 2<br />

32<br />

4<br />

3<br />

2<br />

−3<br />

−4<br />

y<br />

1, Ellipse<br />

2<br />

x′<br />

3 4<br />

x<br />

© Houghton Mifflin Company. All rights reserved.<br />

10.<br />

13x 2 63xy 7y 2 16 0<br />

A 13, B 63, C 7<br />

cot 2 A C<br />

B<br />

<br />

x x cos<br />

6 y sin<br />

6<br />

x 3<br />

2 y 1 2 x 1 3<br />

<br />

2 y 2 <br />

3x y<br />

2<br />

—CONTINUED—<br />

1 3 ⇒ 2 <br />

3 ⇒<br />

<br />

<br />

<br />

<br />

<br />

y x sin<br />

6 y cos<br />

6<br />

x 3y<br />

2<br />

6<br />

<br />

y<br />

y′<br />

3<br />

−3 −2 2 3<br />

−2<br />

−3<br />

x′<br />

x


812 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

10. —CONTINUED—<br />

39x<br />

4<br />

2<br />

133xy<br />

2<br />

13y 2<br />

18x2<br />

4 4<br />

18y 2<br />

4<br />

7x 2<br />

4<br />

13x 2 63xy 7y 2 16 0<br />

13 <br />

3x y<br />

2 2 63 <br />

3x y<br />

2 x 3y<br />

2 7 x 3y<br />

2 2 16 0<br />

183xy 63xy<br />

4 4<br />

73xy<br />

2<br />

21y 2<br />

16 0<br />

4<br />

16x 2 4y 2 16<br />

x 2<br />

1<br />

y 2<br />

4<br />

1 ,Ellipse<br />

11.<br />

3x 2 23xy y 2 2x 23y 0<br />

A 3, B 23, C 1<br />

y′<br />

2<br />

y<br />

x′<br />

cot 2 A C<br />

B<br />

1 3 ⇒<br />

60<br />

−6<br />

−4<br />

−2<br />

2<br />

x<br />

x x cos 60 y sin 60<br />

−4<br />

x 1 2<br />

3<br />

y 2 x 3y<br />

2<br />

y x sin y cos 3x y<br />

2<br />

3x 2 23xy y 2 2x 23y 0<br />

3 <br />

x 3y<br />

2 2 23 <br />

x 3y<br />

2 3x y<br />

2 3x y<br />

2 2 2 <br />

x 3y<br />

2 <br />

23 <br />

3x y<br />

2 0<br />

3(x) 2<br />

4<br />

63xy<br />

4<br />

9(y) 2<br />

4<br />

6(x) 2<br />

4<br />

43xy<br />

4<br />

6(y) 2<br />

4<br />

3(x) 2<br />

4<br />

23xy (y) 2<br />

4 4<br />

x 3y 3x 3y 0<br />

4(y) 2 4x 0<br />

x y<br />

2 ,<br />

Parabola<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.4 Rotation and Systems of Quadratic Equations 813<br />

12.<br />

16x 2 24xy 9y 2 60x 80y 100 0<br />

y<br />

A 16, B 24, C 9<br />

x′<br />

cot 2 <br />

C<br />

B<br />

7 24 ⇒ 53.13<br />

cos 2 7 25<br />

sin <br />

1 cos 2<br />

<br />

2 <br />

1 725<br />

4 2 5<br />

cos <br />

1 cos 2<br />

<br />

2 <br />

1 725<br />

3 2 5<br />

x x cos y sin x 3 5 y 4 5 3x 4y<br />

5<br />

y x sin y cos x 4 5 y 3 5 4x 3y<br />

5<br />

16 <br />

3x 4y<br />

5 2 24 <br />

3x 4y<br />

5 4x 3y<br />

5 9 4x 3y<br />

5 2 60 <br />

3x 4y<br />

5 80 4x 3y<br />

5 100 0<br />

144x 2<br />

25<br />

384xy 256y 2<br />

288x 2<br />

25 25 25<br />

168xy 288y 2<br />

144x 2<br />

216xy<br />

25 25 25 25<br />

81y 2<br />

25<br />

1<br />

y′<br />

1 2 3 4 5 6<br />

16x 2 24xy 9y 2 60x 80y 100 0<br />

36x 48y 64x 48y 100 0<br />

x<br />

25y 2 100x 100 0<br />

y 2 4x 1<br />

Parabola<br />

© Houghton Mifflin Company. All rights reserved.<br />

13.<br />

9x 2 24xy 16y 2 90x 130y 0<br />

A 9, B 24, C 16<br />

cot 2 A C<br />

B<br />

cos 2 7<br />

25<br />

sin <br />

1 cos 2<br />

<br />

2 <br />

1 725<br />

4 2 5<br />

cos <br />

1 cos 2<br />

<br />

2 <br />

1 725<br />

3 2 5<br />

x x cos y sin <br />

x 3 5 y 4 5<br />

7 24 ⇒<br />

53.13<br />

y x sin y cos <br />

x 4 5 y 3 5<br />

y′<br />

6<br />

4<br />

2<br />

x′<br />

−4 2 4<br />

−2<br />

y<br />

x<br />

3x 4y<br />

5<br />

4x 3y<br />

5<br />

—CONTINUED—


814 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

13. —CONTINUED—<br />

81x 2<br />

25<br />

216xy 144y2<br />

288x2<br />

25 25 25<br />

9x 2 24xy 16y 2 90x 130y 0<br />

9 <br />

3x 4y<br />

5 2 24 <br />

3x 4y<br />

5 4x 3y<br />

5 16 4x 3y<br />

5 2 90 <br />

3x 4y<br />

5 <br />

130 <br />

4x 3y<br />

5 0<br />

168xy 288y2<br />

256x2<br />

384xy<br />

25 25 25 25<br />

144y2<br />

54x 72y 104x 78y 0<br />

25<br />

25x 2 50x 150y 0<br />

x 2 2x 1 6y 1<br />

x 1 2 6 y 1 6 ,<br />

Parabola<br />

14.<br />

9x 2 24xy 16y 2 80x 60y 0<br />

y<br />

A 9, B 24, C 16<br />

cot 2 <br />

C<br />

B<br />

7 24 ⇒ 53.13<br />

y′<br />

3<br />

2<br />

1<br />

x′<br />

cos 2 7 25<br />

sin <br />

1 cos 2<br />

<br />

2 <br />

1 725<br />

4 2 5<br />

cos <br />

1 cos 2<br />

<br />

2 <br />

1 725<br />

3 2 5<br />

x x cos y sin y x sin y cos <br />

x x cos y sin x 3 5 y 4 5 3x 4y<br />

5<br />

y x sin y cos x 4 5 y 3 5 4x 3y<br />

5<br />

9 <br />

3x 4y<br />

5 2 24 <br />

3x 4y<br />

5 4x 3y<br />

5 16 4x 3y<br />

5 2 80 <br />

3x 4y<br />

5 60 4x 3y<br />

5 0<br />

81x 2<br />

25<br />

216xy 144y 2<br />

288x 2<br />

25 25 25<br />

168xy 288y 2<br />

256x 2<br />

384xy<br />

25 25 25 25<br />

144y 2<br />

25<br />

−3 −2 −1 1<br />

−1<br />

9x 2 24xy 16y 2 80x 60y 0<br />

x<br />

48x 64y 48x 36y 0<br />

25x 2 100y 0<br />

x 2 4y,<br />

Parabola<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.4 Rotation and Systems of Quadratic Equations 815<br />

15.<br />

x 2 3xy y 2 20<br />

cot 2 A C<br />

B<br />

1 1<br />

3<br />

Solve for y in terms of x:<br />

y 2 3xy 20 x 2<br />

0 ⇒<br />

<br />

<br />

4 45<br />

Graph<br />

y 1 3x<br />

2<br />

<br />

80 5x2<br />

2<br />

and<br />

y 2 3x<br />

2<br />

80 5x2<br />

.<br />

2<br />

y 2 3xy 9x2<br />

4 20 x2 9x2<br />

4<br />

y 3 2 x 2 20 5x2<br />

4<br />

<br />

80 5x2<br />

4<br />

8<br />

−12 12<br />

−8<br />

y 3 80 5x2<br />

x ±<br />

2 2<br />

© Houghton Mifflin Company. All rights reserved.<br />

16.<br />

x 2 4xy 2y 2 8 17.<br />

A 1, B 4, C 2<br />

cot 2 A C<br />

B<br />

1<br />

tan 2<br />

1 4<br />

tan 2 4<br />

To graph conic with a graphing calculator, we need<br />

to solve for y in terms of x.<br />

x 2 4xy 2y 2 8<br />

y 2 2xy x 2 4 x2<br />

2 x2<br />

Graph<br />

2 75.96<br />

37.98<br />

y x 2 4 x2<br />

2<br />

y x ± 4 x2<br />

2<br />

y 1 x 4 x2<br />

2<br />

y 2 x 4 x2<br />

2 .<br />

6<br />

−9 9<br />

1 2<br />

4 1 4<br />

y x ± 4 x2<br />

2<br />

and<br />

17x 2 32xy 7y 2 75<br />

cot 2 A C<br />

B<br />

Solve for y in terms of x by completing the square.<br />

y 2 32 7<br />

Graph<br />

7y 2 32xy 17x 2 75<br />

y 2 32<br />

7 xy 17 7 x2 75<br />

7<br />

xy <br />

256<br />

49 x2 119<br />

49 x2 525<br />

49 256<br />

49 x2<br />

y 16<br />

7 x 2 375x2 525<br />

49<br />

y 1 16x 515x2 21<br />

7<br />

y 2 16x 515x2 21<br />

.<br />

7<br />

6<br />

−9 9<br />

−6<br />

17 7<br />

32<br />

24<br />

32 3 4 ⇒<br />

y 16 7 x ± 375x2 525<br />

49<br />

y 16x ± 515x2 21<br />

7<br />

and<br />

26.57<br />

−6


816 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

18.<br />

40x 2 36xy 25y 2 52 19.<br />

A 40, B 36, C 25<br />

cot 2 A C<br />

B<br />

1<br />

tan 2<br />

5 12<br />

tan 2 12 5<br />

2 67.38<br />

33.69<br />

<br />

40 25<br />

36<br />

5 12<br />

Solve for y in terms of x by completing the square:<br />

25y 2 36xy 52 40x 2<br />

y 2 36 52<br />

xy <br />

25 25 40<br />

25 x2<br />

y 2 36 324<br />

xy <br />

25 625 x2 52<br />

25 40<br />

25 x2 324<br />

625 x2<br />

y 18<br />

25 x 2 1300 676x2<br />

<br />

625<br />

−3 3<br />

y 18<br />

25 x ± 1300 676x2<br />

625<br />

2<br />

−2<br />

32x 2 48xy 8y 2 50<br />

cot 2 A C<br />

B<br />

Solve for y in terms of x:<br />

Graph<br />

6<br />

−9 9<br />

−6<br />

32 8<br />

48<br />

8y 2 48xy 32x 2 50<br />

y 2 6xy 4x 2 25 4<br />

y 2 3x 20x2 25<br />

.<br />

2<br />

1 2 ⇒<br />

y 2 6xy 9x 2 4x 2 25 4 9x2<br />

y 3x 2 5x 2 25 4 20x2 25<br />

4<br />

y 3x ± 20x2 25<br />

2<br />

y 1 3x 20x2 25<br />

2<br />

and<br />

31.72<br />

Graph y 1 <br />

y 2 <br />

y <br />

18x 1300 676x2<br />

25<br />

18x 1300 676x2<br />

.<br />

25<br />

18x ± 1300 676x2<br />

25<br />

and<br />

20.<br />

4x 2 12xy 9y 2 413 12x 613 8y 91<br />

A 4, B 12, C 9<br />

cot 2 A C<br />

B<br />

1<br />

tan 2<br />

5 12<br />

tan 2 12 5<br />

2 67.38<br />

33.69<br />

—CONTINUED—<br />

4 9<br />

12 5 12<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.4 Rotation and Systems of Quadratic Equations 817<br />

20. —CONTINUED—<br />

Solve for y in terms of x with the Quadratic Formula:<br />

<br />

Graph y 1 <br />

y 2 <br />

4x 2 12xy 9y 2 413 12x 613 8y 91<br />

9y 2 12x 613 8y 4x 2 413x 12x 91 0<br />

a 9, b 12x 613 8, c 4x 2 413x 12x 91<br />

y b ± b2 4ac<br />

2a<br />

y 12x 613 8 ± 12x 613 82 494x 2 413x 12x 91<br />

18<br />

12x 613 8 ± 624x 3808 9613<br />

18<br />

12x 613 8 624x 3808 9613<br />

18<br />

12x 613 8 624x 3808 9613<br />

.<br />

18<br />

and<br />

18<br />

−9 27<br />

−6<br />

21.<br />

xy 4 0 22.<br />

x 2 2xy y 2 0<br />

B 2 4AC 1 ⇒<br />

The graph is a hyperbola.<br />

x y 2 0<br />

cot 2 A C<br />

B<br />

Matches graph (e).<br />

0 ⇒<br />

45<br />

x y 0<br />

y x<br />

The graph is a line. Matches graph (b).<br />

23.<br />

2x 2 3xy 2y 2 3 0 24.<br />

x 2 xy 3y 2 5 0<br />

B 2 4AC 3 2 422<br />

A 1, B 1, C 3<br />

25 ⇒ The graph is a hyperbola.<br />

B 2 4AC 1 2 413 11<br />

© Houghton Mifflin Company. All rights reserved.<br />

25.<br />

cot 2 A C<br />

B<br />

Matches graph (f).<br />

4 3 ⇒<br />

18.43<br />

3x 2 2xy y 2 10 0 26.<br />

B 2 4AC 2 2 431<br />

cot 2 A C<br />

B<br />

Matches graph (d).<br />

8 ⇒ The graph is an ellipse or circle.<br />

1 ⇒<br />

22.5<br />

The graph is an ellipse or circle.<br />

cot 2 A C<br />

B<br />

Matches graph (a).<br />

1 3<br />

1<br />

The graph is a parabola.<br />

cot 2 A C<br />

B<br />

Matches graph (c).<br />

1 4<br />

4<br />

2 ⇒<br />

x 2 4xy 4y 2 10x 30 0<br />

A 1, B 4, C 4<br />

B 2 4AC 4 2 414 0<br />

3<br />

4 ⇒<br />

13.28<br />

26.57


818 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

27.<br />

16x 2 24xy 9y 2 30x 40y 0<br />

(a)<br />

B 2 4AC 24 2 4169 0 ⇒<br />

Parabola<br />

(c)<br />

6<br />

(b)<br />

9y 2 24x 40y 16x 2 30x 0<br />

y 24x 40 ± 24x 402 4916x 2 30x<br />

29<br />

−4 8<br />

−2<br />

<br />

24x 40 ± 3000x 1600<br />

18<br />

28. (a)<br />

(b)<br />

(c)<br />

B 2 4AC 4 2 412 29.<br />

2y 2 4xy x 2 6 0<br />

y 4x ± 16x2 42x 2 6<br />

4<br />

4x ± 24x2 48<br />

4<br />

8<br />

16 8 24<br />

> 0 ⇒ Hyperbola<br />

15x 2 8xy 7y 2 45 0<br />

(a)<br />

(b)<br />

(c)<br />

B 2 4AC 8 2 4157<br />

7y 2 8xy 15x 2 45 0<br />

y 8x ± 8x2 4715x 2 45<br />

14<br />

<br />

8x ±1260 356x2<br />

14<br />

4<br />

356 ⇒ Ellipse or circle<br />

−12 12<br />

−6 6<br />

−8<br />

−4<br />

30. (a)<br />

(b)<br />

(c)<br />

32. (a)<br />

(c)<br />

B 2 4AC 4 2 425 31.<br />

5y 2 4x 4y 2x 2 3x 20 0<br />

y 4 4x ±4x 42 452x 2 3x 20<br />

10<br />

4 4x ±24x2 92x 416<br />

10<br />

−10 8<br />

24 < 0 ⇒ Ellipse or circle<br />

6<br />

−6<br />

B 2 4AC 60 2 43625<br />

0 ⇒ Parabola<br />

−10 2<br />

1<br />

(b)<br />

x 2 6xy 5y 2 4x 22 0<br />

(a)<br />

(b)<br />

(c)<br />

B 2 4AC 6 2 415<br />

5y 2 6xy x 2 4x 22 0<br />

y 6x ± 6x2 45x 2 4x 22<br />

10<br />

6x ±56x2 80x 440<br />

10<br />

−10 8<br />

25y 2 9 60xy 36x 2 0<br />

56 ⇒ Hyperbola<br />

y 60x 9 ± 9 60x2 10036x 2 <br />

50<br />

<br />

60x 9 ±1080x 81<br />

50<br />

6<br />

−6<br />

© Houghton Mifflin Company. All rights reserved.<br />

−7


Section 9.4 Rotation and Systems of Quadratic Equations 819<br />

33.<br />

x 2 4xy 4y 2 5x y 3 0<br />

(a)<br />

(b)<br />

(c)<br />

B 2 4AC 4 2 414 0<br />

4y 2 4x 1y x 2 5x 3 0<br />

<br />

1 4x ±72x 49<br />

8<br />

3<br />

⇒<br />

Parabola<br />

y 1 4x ± 4x 12 44x 2 5x 3<br />

8<br />

34. (a)<br />

(b)<br />

4y 2 x 1y x 2 x 4 0<br />

y x 1 ± x 12 44x 2 x 4<br />

8<br />

(c)<br />

B 2 4AC 1 414<br />

x 1 ±15x2 14x 65<br />

8<br />

2<br />

15 < 0 ⇒ Ellipse or circle<br />

−4 8<br />

−3 3<br />

−5<br />

−2<br />

35.<br />

y 2 16x 2 0<br />

y<br />

36.<br />

y ±4x<br />

Two intersecting lines −3 −2<br />

y 2 16x 2<br />

3<br />

x<br />

x 2 y 2 2x 6y 10 0<br />

x 2 2x 1 y 2 6y 9 10 1 9<br />

Point at 1, 3<br />

x 1 2 y 3 2 0<br />

4<br />

3<br />

2<br />

1<br />

−4 −3 −2 −1 1 2 3 4<br />

y<br />

x<br />

−2<br />

−3<br />

−4<br />

(1, −3)<br />

37.<br />

x 2 2xy y 2 1 0 38.<br />

x 2 10xy y 2 0<br />

x y 2 1 0<br />

y 2 10xy 25x 2 25x 2 x 2<br />

x y 2 1<br />

y 5x 2 24x 2<br />

x y ±1<br />

y 5x ±24x 2<br />

© Houghton Mifflin Company. All rights reserved.<br />

y x ± 1<br />

Two parallel lines<br />

y<br />

3<br />

2<br />

1<br />

−3 −2 −1 1 2 3<br />

−2<br />

−3<br />

x<br />

Two lines<br />

y 5x ± 26x<br />

y 5 ± 26x<br />

y<br />

4<br />

3<br />

2<br />

1<br />

−2 −1 1 2 3 4<br />

−2<br />

x


820 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

39.<br />

x 2 y 2 4 40.<br />

3x y 2 0<br />

Adding:<br />

x 2 3x 4 0<br />

x 4x 1 0 ⇒ x 1, 4<br />

For x 1, y ±3.<br />

x 4 is impossible.<br />

<strong>Solutions</strong>: 1, 3, 1, 3<br />

4 27 y 2 9y 2 36y 0<br />

y 36 ± 362 45108<br />

10<br />

<br />

36 ± 864<br />

10<br />

No solution<br />

4x 2 9y 2 36y 0<br />

x 2 y 2 27 0 ⇒ x 2 27 y 2<br />

5y 2 36y 108 0<br />

41.<br />

4x 2 y 2 16x 24y 16 0<br />

4x 2 y 2 40x 24y 208 0<br />

24 x 192 0<br />

24 x 192<br />

x 8<br />

For x 8:<br />

464 y 2 168 24y 16 0<br />

y 2 24y 144 0<br />

y 2 24y 144 0<br />

y 12 2 0<br />

⇒ y 12<br />

Solution: 8, 12<br />

42.<br />

x 2 4y 2 20x 64y 172 0 ⇒ x 10 2 4y 8 2 16<br />

16x 2 4y 2 320x 64y 1600 0 ⇒ 16x 10 2 4y 8 2 256<br />

17x 2 340x 1428 0<br />

17x 238x 6 0<br />

x 6 or x 14<br />

When x 6:<br />

When x 14:<br />

6 2 4y 2 206 64y 172 0<br />

14 2 4y 2 2014 64y 172 0<br />

4y 2 64y 256 0<br />

4y 2 64y 256 0<br />

43.<br />

y 2 16y 64 0<br />

y 8 2 0<br />

y 8<br />

Points of intersection: 6, 8, 14, 8<br />

x 2 y 2 12x 16y 64 0<br />

x 2 y 2 12x 16y 64 0<br />

2x 2 24x 0<br />

x 2 12x 0<br />

xx 12 0 ⇒ x 0, 12<br />

y 2 16y 64 0<br />

y 8 2 0<br />

y 8<br />

For x 0:<br />

y 2 16y 64 0<br />

y 2 16y 64 0<br />

y 8 2 0 ⇒ y 8<br />

For x 12:<br />

© Houghton Mifflin Company. All rights reserved.<br />

144 y 2 1212 16y 64 0<br />

y 2 16y 64 0<br />

⇒<br />

y 8<br />

<strong>Solutions</strong>: 0, 8, 12, 8


Section 9.4 Rotation and Systems of Quadratic Equations 821<br />

44.<br />

x 2 4y 2 2x 8y 1 0 ⇒ x 1 2 4y 1 2 4<br />

x 2 2x 4y 1 0 ⇒ y 1 4x 1 2<br />

4y 2 12y 0<br />

4yy 3 0<br />

y 0 or y 3<br />

When y 0:<br />

x 2 40 2 2x 80 1 0<br />

x 2 2x 1 0<br />

x 1 2 0<br />

x 1<br />

Point of intersection: 1, 0<br />

When y 3:<br />

x 2 2x 43 1 0<br />

x 2 2x 13 0<br />

No real solution<br />

45.<br />

16x 2 y 2 24y 80 0<br />

© Houghton Mifflin Company. All rights reserved.<br />

46.<br />

When y 5:<br />

16x 2 255 2 400 0<br />

No real solution<br />

x 0<br />

The point of intersection is 0, 4. In standard form the equations are:<br />

x 2<br />

4<br />

16x 2 25y 2 400 0<br />

<br />

y 122<br />

64<br />

24y 2 24y 480 0<br />

24y 5y 4 0<br />

1<br />

x 2<br />

25 y2<br />

16 1<br />

When x 5:<br />

y 5 or y 4<br />

16x 2 225<br />

16x 2 48x 160 0<br />

16x 2 3x 10 0<br />

x 5x 2 0<br />

y 2 485 16y 32 0<br />

y 2 16y 272 0<br />

x 5 or x 2<br />

y 8 ± 421<br />

When y 4:<br />

16x 2 254 2 400 0<br />

16x 2 y 2 16y 128 0 ⇒ 16x 2 y 8 2 64<br />

y 2 48x 16y 32 0 ⇒ y 8 2 48x 96<br />

When x 2:<br />

Points of intersection: 5, 8 421, 5, 8 421, 2, 8<br />

16x 2 0<br />

y 2 482 16y 32 0<br />

y 2 16y 64 0<br />

y 8 2 0<br />

y 8


822 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

47.<br />

2x 2 y 2 6 0 48.<br />

2x y 0 ⇒ y 2x<br />

2x 2 2x 2 6 0<br />

2x 2 6 0<br />

x 2 3 ⇒ x ±3<br />

Two solutions: 3, 23, 3, 23<br />

6x 2 3y 2 12 0<br />

x y 2 0 ⇒ y 2 x<br />

6x 2 32 x 2 12 0<br />

6x 2 34 4x x 2 12 0<br />

9x 2 12x 0<br />

3x3x 4 0<br />

x 0 ⇒ y 2<br />

<strong>Solutions</strong>: 0, 2, 4 3 , 2 3<br />

x 4 3 ⇒ y 2 4 3 2 3<br />

49.<br />

10x 2 25y 2 100x 160 0 50.<br />

4x 2 y 2 8x 6y 9 0<br />

y 2 2x 16 0 ⇒ y 2 2x 16<br />

2x 2 3y 2 4x 18y 43 0<br />

10x 2 252x 16 100x 160 0<br />

From Equation 1:<br />

10x 2 150x 560 0<br />

y 2 6y 4x 2 8x 9<br />

x 2 15x 56 0<br />

3y 2 18y 12x 2 24x 27<br />

x 8x 7 0<br />

In Equation 2:<br />

x 8 ⇒ y 2 0 ⇒ 8, 0<br />

2x 2 4x 43 3y 2 18y 0<br />

x 7 ⇒ y 2 2<br />

impossible<br />

2x 2 4x 43 12x 2 24x 27 0<br />

One solution: 8, 0<br />

10x 2 28x 16 0<br />

5x 2 14x 8 0<br />

x 25x 4 0<br />

x 2 ⇒ y 2 6y 9<br />

⇒ y 3 2 0 ⇒ y 3<br />

x 4 5 ⇒ y2 6y 321<br />

25<br />

No solution<br />

Solution: 2, 3<br />

51.<br />

xy x 2y 3 0 ⇒ y x 3<br />

x 2<br />

x 2 4y 2 9 0<br />

x 2 4 <br />

x 3<br />

x 2 2 9<br />

x 2 x 2 2 4x 3 2 9x 2 2<br />

x 2 x 2 4x 4 4x 2 6x 9 9x 2 4x 4<br />

x 4 4x 3 4x 2 4x 2 24x 36 9x 2 36x 36<br />

x 4 4x 3 x 2 60x 0<br />

x(x 3)x 2 7x 20 0<br />

Note:<br />

x 2 7x 20 0 has no real solution.<br />

When x 0:<br />

When x 3:<br />

y 0 3<br />

0 2 3 2<br />

y 3 3<br />

3 2<br />

0<br />

The points of intersection are 0, 3 2, 3, 0.<br />

© Houghton Mifflin Company. All rights reserved.<br />

x 0 or x 3


Section 9.4 Rotation and Systems of Quadratic Equations 823<br />

52.<br />

5x 2 2xy 5y 2 12 0<br />

5x 2 2x1 x 51 x 2 12 0<br />

5x 2 2x 2x 2 51 2x x 2 12 0<br />

5x 2 2x 2x 2 5 10x 5x 2 12 0<br />

When x 3 30 :<br />

6<br />

When x 3 30 :<br />

6<br />

Points of intersection:<br />

x y 1 0 ⇒ y 1 x<br />

12x 2 12x 7 0<br />

y 1 3 30<br />

6<br />

y 1 3 30<br />

6<br />

x 3 ±30<br />

6<br />

3 30<br />

6<br />

3 30<br />

6<br />

1 1 6 3 30, 1 6 3 30 6 3 30, 1 6 3 30 ,<br />

<br />

53. True. B 2 4AC 1 4k 54. False. See Example 2. However, A C A C.<br />

If k < 1 4 , then B 2 4AC > 0.<br />

55.<br />

gx 2<br />

2 x<br />

Asymptotes:<br />

x 2, y 0<br />

Intercepts: 0, 1<br />

y<br />

4<br />

3<br />

2<br />

(0, 1)<br />

−2 −1 1 3<br />

−2<br />

−3<br />

−4<br />

x<br />

56.<br />

f x <br />

2x<br />

2 x 2 4<br />

2 x<br />

Intercept: 0, 0<br />

Asymptotes:<br />

x 2, y 2<br />

6<br />

4<br />

y<br />

2<br />

(0, 0)<br />

4 6 8<br />

x<br />

−4<br />

−6<br />

© Houghton Mifflin Company. All rights reserved.<br />

57.<br />

ht t 2<br />

2 t t 2 4<br />

2 t<br />

Slant asymptote: y t 2<br />

Vertical asymptote: t 2<br />

Intercept: 0, 0<br />

10<br />

5<br />

−10 −5 5 10 15<br />

−5<br />

−10<br />

−15<br />

y<br />

(0, 0)<br />

t<br />

58.<br />

gs 2<br />

4 s 2<br />

Intercept:<br />

0, 1 2<br />

Asymptotes:<br />

s ±2, y 0<br />

4<br />

3<br />

2<br />

1<br />

−4 −1 1 4<br />

−2<br />

−3<br />

−4<br />

y<br />

( 0, 1 2)<br />

s


824 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

59. (a)<br />

(b)<br />

61. (a)<br />

AB <br />

1<br />

2<br />

BA <br />

0<br />

5<br />

(c) A 2 <br />

1<br />

2<br />

(b)<br />

(c)<br />

3<br />

BA 4<br />

<br />

A 2<br />

3<br />

5 0 5<br />

6<br />

1 1 2<br />

3<br />

5 1 2<br />

does not exist.<br />

6<br />

1 15<br />

25<br />

3<br />

5 12 3<br />

3<br />

5 5<br />

12<br />

3<br />

4<br />

5<br />

5 4 2 <br />

5 <br />

AB 4 2 5<br />

30<br />

20<br />

12<br />

16<br />

20<br />

18<br />

19<br />

9<br />

7<br />

12 8 25 45<br />

6<br />

8<br />

10<br />

15<br />

20<br />

25<br />

60. (a)<br />

(b)<br />

AB <br />

1<br />

0<br />

BA <br />

3<br />

3<br />

(c) A 2 <br />

1<br />

0<br />

5<br />

2 3<br />

3<br />

2<br />

8 1 0<br />

5<br />

2 1 0<br />

2<br />

8 12 6<br />

5<br />

2 3<br />

3<br />

5<br />

2 1 0<br />

5<br />

4<br />

42<br />

16<br />

11<br />

31<br />

62. (a)<br />

(b)<br />

8<br />

AB 27<br />

13<br />

BA <br />

9 2<br />

9<br />

(c) A 2 <br />

2<br />

16<br />

4<br />

10<br />

20<br />

20<br />

14<br />

9<br />

1<br />

2<br />

19<br />

2<br />

2<br />

6<br />

13<br />

63.<br />

0<br />

25<br />

15<br />

10<br />

5<br />

20<br />

f x x 3 64.<br />

10<br />

8<br />

6<br />

4<br />

−8 −6 −4 −2<br />

−2<br />

y<br />

2<br />

4<br />

x<br />

f x x 4 1<br />

10<br />

8<br />

4<br />

2<br />

−2<br />

−2<br />

y<br />

2<br />

4 6 8 10<br />

x<br />

65.<br />

gx 4 x 2 66.<br />

gx 3x 2 67.<br />

ht t 2 3 3<br />

y<br />

y<br />

y<br />

68.<br />

3<br />

1<br />

x<br />

−3 −2 −1 1 2 3<br />

−1<br />

−2<br />

−3<br />

ht 1 2t 4 3 69.<br />

y<br />

4<br />

3<br />

2<br />

1<br />

x<br />

−6 −4 −3 −2 −1<br />

−1<br />

1 2<br />

−2<br />

−3<br />

−4<br />

10<br />

8<br />

6<br />

4<br />

2<br />

−2<br />

−2<br />

2<br />

4 6 8 10<br />

f t t 5 1 70.<br />

3<br />

2<br />

1<br />

−3 −2 −1 1 2 5 6 7<br />

−2<br />

−3<br />

−4<br />

−7<br />

y<br />

x<br />

x<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

−10 −8 −6 −4 −2 2 6 8 10<br />

−4<br />

f t 2t 3<br />

−4 −3 −2 −1 1<br />

4<br />

3<br />

2<br />

1<br />

−2<br />

−3<br />

y<br />

2 3 4<br />

x<br />

x<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.5 Parametric Equations 825<br />

71.<br />

73.<br />

Area 1 2 ab sin C 72. Area 1 2ac sin B<br />

1 2812 sin 110<br />

1 22516 sin 70<br />

187.94<br />

45.11<br />

s 1 211 18 10 39<br />

2 74.<br />

Area ss as bs c<br />

39 2 17 2 3 2 19 2 <br />

48.60<br />

s 1 223 35 27 85<br />

2<br />

Area ss as bs c<br />

85 2 39 2 15 2 31 2 <br />

310.39<br />

Section 9.5<br />

Parametric Equations<br />

■ If f and g are continuous functions of t on an interval I, then the set of ordered pairs ft, gt is a plane<br />

curve C. The equations x ft and y gt are parametric equations for C and t is the parameter.<br />

■ You should be able to graph plane curves with your graphing utility.<br />

■ To eliminate the parameter:<br />

Solve for t in one equation and substitute into the second equation.<br />

■ You should be able to find the parametric equations for a graph.<br />

Vocabulary Check<br />

1. plane curve, parametric equations, parameter 2. orientation<br />

3. eliminating, parameter<br />

1.<br />

x t 2.<br />

x t 2 3.<br />

x t<br />

y t 2<br />

y t 2 ⇒ t y 2<br />

y t<br />

© Houghton Mifflin Company. All rights reserved.<br />

4.<br />

y x 2, line<br />

Matches (c).<br />

x 1 t<br />

⇒ t 1 x<br />

y t 2 ⇒ y 1 x 2<br />

Matches (a).<br />

5.<br />

x y 2 2<br />

Parabola opening to the right<br />

Matches (d).<br />

x ln t ⇔ t e x 6.<br />

y 1 2 t 2<br />

y 1 2 ex 2<br />

Matches (f).<br />

y x 2 , parabola, x ≥ 0<br />

Matches (b).<br />

x<br />

x 2t ⇒ t 2 2 x2<br />

4<br />

y e t<br />

y e x2 4<br />

Exponential curve on x ≤ 0<br />

Matches (e).


826 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

7.<br />

x t, y 2 t<br />

(a)<br />

t<br />

0 1 2 3 4<br />

(c)<br />

3<br />

x<br />

0 1 2 3 2<br />

−4<br />

5<br />

y<br />

2 1 0 1 2<br />

−3<br />

(b) Graph by hand.<br />

Note: x ≥ 0<br />

2<br />

1<br />

−2 −1<br />

1 2<br />

−1<br />

−2<br />

y<br />

x<br />

(d)<br />

y 2 t 2 x 2 ,<br />

Parabola<br />

In part (c), x ≥ 0.<br />

y<br />

1<br />

−2 −1<br />

1 2<br />

−1<br />

−2<br />

x<br />

8.<br />

x 4 cos 2 , y 4 sin <br />

(a)<br />

<br />

x<br />

<br />

<br />

<br />

<br />

<br />

2<br />

<br />

4<br />

0<br />

4 2<br />

0 2 4 2 0<br />

(c)<br />

−8<br />

6<br />

10<br />

(b)<br />

y<br />

4<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−5 −4 −3 −2 −1 1 2 3 5<br />

−2<br />

−3<br />

−4<br />

−5<br />

y<br />

22<br />

0 22 4<br />

x<br />

−6<br />

(d)<br />

x<br />

parabola<br />

4 y2<br />

16 1,<br />

The graph is an entire<br />

parabola rather than<br />

just the right portion.<br />

4x y 2 16 cos 2 16 sin 2 16<br />

5<br />

3<br />

2<br />

1<br />

−5 −4 −3 −2 −1 1 2 3 5<br />

−2<br />

−3<br />

y<br />

x<br />

−5<br />

9. The graph opens upward, contains 1, 0, and is 10. The orientation of the graph is clockwise and the<br />

oriented left to right. Matches (b).<br />

center is 2, 3. Matches (c).<br />

11.<br />

x t, y 4t 12.<br />

y 4x<br />

2<br />

−2 −1<br />

1 2<br />

−1<br />

−2<br />

y<br />

x<br />

x t, y 1 2 t<br />

y 1 2 x<br />

−6<br />

−4<br />

6<br />

4<br />

2<br />

−2<br />

−4<br />

or<br />

y<br />

2<br />

x 2y 0<br />

4<br />

6<br />

x<br />

© Houghton Mifflin Company. All rights reserved.<br />

−6


Section 9.5 Parametric Equations 827<br />

13.<br />

x 3t 3, y 2t 1 14.<br />

x 3 2t, y 2 3t 15.<br />

x 1 4 t, y t 2<br />

t x 3<br />

3<br />

y 2 <br />

x 3<br />

3 1<br />

3x 2y 13 0<br />

y<br />

y 2 3 <br />

3 x<br />

2 <br />

y 4x 2<br />

y 16x 2<br />

y<br />

5<br />

y 2 3 x 3<br />

6<br />

y<br />

5<br />

4<br />

2<br />

1<br />

−6 −4 −3 −2 −1<br />

−1<br />

1 2<br />

x<br />

−4<br />

4<br />

2<br />

−2<br />

−2<br />

−4<br />

2<br />

4<br />

6 8<br />

x<br />

−3 −2 −1<br />

−1<br />

1 2<br />

3<br />

x<br />

−2<br />

−3<br />

16.<br />

x t, y t 3 17.<br />

y x 3<br />

y<br />

6<br />

4<br />

2<br />

x<br />

−6 −4 −2 2 4 6<br />

−6<br />

x t 2, y t 2 18.<br />

t x 2<br />

y x 2 2<br />

4<br />

3<br />

2<br />

1<br />

y<br />

−2 −1 1 2 3 4 5 6<br />

−1<br />

x<br />

2<br />

y<br />

−2<br />

−2<br />

−4<br />

−6<br />

−8<br />

−10<br />

x t<br />

y 1 t<br />

y 1 x 2 , x ≥ 0<br />

2 4<br />

6 8 10<br />

x<br />

19.<br />

x 2t, y t 2 <br />

20.<br />

x t 1 <br />

© Houghton Mifflin Company. All rights reserved.<br />

t x 2 ⇒ y t 2 <br />

<br />

x 2 2 <br />

10<br />

8<br />

6<br />

4<br />

−2<br />

−2<br />

y<br />

2 4<br />

1 2 x 4 <br />

6 8 10<br />

x<br />

y t 2<br />

Eliminating the parameter t, t y 2 and<br />

x t 1 <br />

y 2 1<br />

y 3 .<br />

10<br />

8<br />

6<br />

4<br />

2<br />

−2<br />

−2<br />

y<br />

2<br />

6 8 10<br />

x


828 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

21.<br />

x 2 cos , y 3 sin <br />

22.<br />

x cos , y 4 sin <br />

y<br />

y<br />

4<br />

5<br />

4<br />

2<br />

1<br />

−4 −3 −1 1<br />

−1<br />

3 4<br />

x<br />

−5 −4 −3 −2<br />

2 3 4 5<br />

x<br />

−2<br />

−4<br />

−4<br />

−5<br />

x 2 2 cos 2 , y 3 2 sin 2 <br />

x 2<br />

4 y2<br />

9 cos2 sin 2 1<br />

x 2<br />

4 y2<br />

9 1,<br />

ellipse<br />

x 2 <br />

y<br />

4 2 cos 2 sin 2 1<br />

x 2 y2<br />

1, ellipse<br />

16<br />

23.<br />

x e t ⇒ 1 x et 24.<br />

y e 3t ⇒ y e t 3<br />

y <br />

1<br />

x 3<br />

y 1 x 3 , x > 0, y > 0<br />

x e 2t<br />

y e t ⇒ y 2 e 2t<br />

y 2 x, y > 0; y x, x > 0<br />

y<br />

5<br />

4<br />

25.<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

−2 −1 1 2 3 4 5 6 7 8<br />

y 3 ln t ⇒ y ln t 3<br />

y lnx 13 3<br />

y ln x<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−2 −1 2 3 4 5 6 7 8<br />

−2<br />

−3<br />

−4<br />

−5<br />

y<br />

x<br />

x t 3 ⇒ x 13 t 26.<br />

x<br />

3<br />

2<br />

1<br />

x<br />

1 2 3 4 5<br />

x ln 2t ⇒ e x 2t ⇒ t 1 2 e x<br />

y 2t 2 2 1 2 e x 2 1 2 e2x<br />

y<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

x<br />

−3 −2 −1 1 2 3<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.5 Parametric Equations 829<br />

27.<br />

x 4 3 cos , y 2 sin <br />

28.<br />

x 4 3 cos , y 2 2 sin <br />

1<br />

2<br />

−1<br />

8<br />

−2<br />

10<br />

−5<br />

−6<br />

29.<br />

x 4 sec , y 2 tan <br />

30.<br />

x sec <br />

4<br />

8<br />

y tan <br />

−6<br />

6<br />

−12<br />

12<br />

−4<br />

−8<br />

31.<br />

x t 2<br />

8<br />

32.<br />

x 10 0.01e t<br />

35<br />

y lnt 2 1<br />

−12<br />

12<br />

y 0.4t 2<br />

−8<br />

−40<br />

−5<br />

20<br />

33. By eliminating the parameters in (a)–(d), we get y 2x 1. They differ from each other<br />

in restricted domain and in orientation.<br />

(a) Domain: < x < <br />

Orientation: Left to right<br />

(c) Domain: 0 < x < <br />

Orientation: Right to left<br />

(b) Domain: 1 ≤ x ≤ 1<br />

Orientation: Depends on<br />

(d) Domain: 0 < x < <br />

Orientation: Left to right<br />

<br />

34. Each curve represents a portion of the line 2y x 8 0.<br />

(a) x 2t, x ≥ 0<br />

(b)<br />

x 2 3 t, < x < <br />

© Houghton Mifflin Company. All rights reserved.<br />

(c)<br />

y 4 t 4 x 2 , y ≤ 4<br />

Orientation: Left to right<br />

x 2t 1, < x < <br />

y 3 t 3 <br />

x 2<br />

2 4 x 2<br />

Orientation: Left to right<br />

(d)<br />

y 4 t 3 4 x 2<br />

Orientation: Left to right<br />

x 2t 2 , x ≤ 0<br />

y 4 t 2 4 x 2<br />

Orientation: Left to right for t ≤ 0<br />

Right to left for t > 0


830 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

35.<br />

t x x 1<br />

x 2 x 1 <br />

y y 1 <br />

x x 1<br />

x 2 x 1<br />

y 2 y 1<br />

⇒ y y 1 <br />

y 2 y 1<br />

x 2 x 1<br />

x x 1<br />

36.<br />

x h r cos <br />

y k r sin <br />

x h<br />

r<br />

cos ,<br />

y k<br />

r<br />

cos 2 sin 2 <br />

sin <br />

x h 2<br />

r 2 y k 2<br />

r 2 1<br />

x h 2 y k 2 r 2<br />

37.<br />

x h a cos <br />

38.<br />

x h a sec <br />

y k b sin <br />

y k b tan <br />

x h<br />

a<br />

cos , y k<br />

b<br />

sin <br />

x h<br />

a<br />

sec ,<br />

y k<br />

b<br />

tan <br />

x h 2<br />

<br />

a 2<br />

y k2<br />

b 2 1<br />

sec 2 tan 2 <br />

x h<br />

2<br />

y k<br />

2<br />

1<br />

a 2 b 2<br />

39.<br />

x x 1 tx 2 x 1 1 t6 1 1 5t 40.<br />

y y 1 ty 2 y 1 4 t3 4 4 7t<br />

x h r cos 2 4 cos <br />

y k r sin 5 4 sin <br />

2, 3 ,<br />

41. a 5, c 4, and b a 2 c 2 3.<br />

42. a 1, c 2, and b c 2 a 2 3.<br />

The center is 0, 0, so h and k 0.<br />

03<br />

The center is 0, 0, so h 0 and k 0.<br />

cos 2 sin 2 1 x2<br />

so x 5 cos and<br />

5 y2<br />

2<br />

y 3 sin . This solution is not unique.<br />

sec 2 tan 2 1 y2<br />

1 x2<br />

x 3 tan .<br />

so y sec and<br />

43.<br />

46.<br />

49.<br />

y 5x 3 44. y 4 7x 45. y 1 x<br />

Answers will vary.<br />

Answers will vary.<br />

Sample answers:<br />

x t, y 5t 3<br />

x t, y 4 7t<br />

x 1 5 t, y t 3<br />

x 2t, y 4 14t<br />

x t, y 1 t<br />

y 1<br />

2x<br />

Sample answers:<br />

x t, y 1 2t<br />

x 2t, y 1 4t<br />

x 2 cot ,<br />

y 2 sin 2 <br />

47.<br />

4<br />

y 6x 2 5<br />

Sample answers:<br />

x t, y 6t 2 5<br />

x 2t, y 24t 2 5<br />

50.<br />

x <br />

3t<br />

1 t 3,<br />

y <br />

48.<br />

3t2<br />

1 t 3<br />

x t 3 , y 1 t 3<br />

y x 3 2x<br />

Sample answers:<br />

x t, y t 3 2t<br />

x 1 2 t, y t 3<br />

8 t<br />

4<br />

© Houghton Mifflin Company. All rights reserved.<br />

−6<br />

6<br />

−6<br />

6<br />

−4<br />

−4


Section 9.5 Parametric Equations 831<br />

51. Matches (b). 52. Matches (c). 53. Matches (d). 54. Matches (a).<br />

55.<br />

x v 0 cos t, y h v 0 sin t 16t 2<br />

(c)<br />

23<br />

(a)<br />

100 mileshour <br />

x 146.67 cos t<br />

100 mihr 5280 ftmi<br />

3600 sechr<br />

146.67 ftsec<br />

x 146.67 cos 23t 135.0t<br />

y 3 146.67 sin 23t 16t 2<br />

3 57.3t 16t 2<br />

60<br />

y 3 146.67 sin t 16t 2<br />

(b)<br />

15<br />

x 146.67 cos 15t 141.7t<br />

0<br />

0<br />

500<br />

y 3 146.67 sin 15t 16t 2<br />

30<br />

3 38.0t 16t 2<br />

(d)<br />

Yes, it is a home run because y > 10 when<br />

x 400.<br />

19.4<br />

is the minimum angle.<br />

0<br />

0<br />

450<br />

It is not a home run because y < 10 when x 400.<br />

56. (a)<br />

x v 0 cos t 105 cos 40t<br />

y h v 0 sin t 16t 2<br />

2.5 105 sin 40t 16t 2<br />

(c) The horizontal distance is approximately<br />

342.25 feet.<br />

(d) You could use the Quadratic Formula to find<br />

the zeros of y 16t 2 105 sin 40t 2.5.<br />

The larger zero, 4.255, gives x 342.25 feet.<br />

(b)<br />

80<br />

0<br />

0<br />

400<br />

The maximum height is approximately<br />

73.68 feet, when t 2.109 seconds.<br />

© Houghton Mifflin Company. All rights reserved.<br />

57. (a)<br />

(c)<br />

x cos 35v 0 t (b) If the ball is caught at time t 1 , then:<br />

y 7 sin 35v 0 t 16t 2<br />

90 cos 35v 0 t 1<br />

24<br />

0<br />

0<br />

Maximum height 22 feet<br />

(d) From part (b), t 1 2.03 seconds.<br />

90<br />

4 7 sin 35v 0 t 1 16t 12 .<br />

v 0 t 1 90<br />

cos 35 ⇒ 3 sin 35 90<br />

cos 35 16t 1 2<br />

⇒ 16t 12 90 tan 35 3<br />

⇒ t 1 2.03 seconds<br />

⇒ v 0 <br />

90<br />

54.09 ftsec<br />

t 1 cos 35


832 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

58. (a)<br />

(b)<br />

x v 0 cos t 85 cos 50t<br />

y h v 0 sin t 16t 2 85 sin 50t 16t 2<br />

80<br />

0<br />

0<br />

240<br />

The maximum height is approximately 66.25 feet when t 2.035 seconds.<br />

(c) The horizontal distance is approximately 222.35 feet.<br />

(d) You could solve the equation y 85 sin 50t 16t 2 0 for t 4.0696.<br />

Then, x 222.35 feet.<br />

59. True<br />

x t first set<br />

y t 2 1 x 2 1<br />

x 3t second set<br />

y 9t 2 1 3t 2 1 x 2 1<br />

60. False. The graph of x t 2 , y t 2 represents the<br />

portion of the line y x in the first quadrant.<br />

61. False. For example, x t 2 and y t does not<br />

represent y as a function of x.<br />

62. False. The equations represent a line.<br />

63. Sample answer:<br />

x cos <br />

y 2 sin <br />

64. The graph is the same, but the orientation is<br />

reversed.<br />

65.<br />

fx <br />

4x2<br />

x 2 1 4x2<br />

Symmetric about the y-axis<br />

Even function<br />

66.<br />

fx x, x ≥ 0<br />

No symmetry<br />

Neither even nor odd<br />

67.<br />

y e x e x ; e x e x<br />

No symmetry<br />

Neither even nor odd<br />

x 2 1 fx 68.<br />

x 2 2 y 4<br />

y x 2 4x<br />

No symmetry<br />

Neither even nor odd<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.6 Polar Coordinates 833<br />

Section 9.6<br />

Polar Coordinates<br />

■ In polar coordinates you do not have unique representation of points. The point r, can be represented<br />

by r, ± 2n or by r, ± 2n 1 where n is any integer. The pole is represented by 0, where<br />

is any angle.<br />

<br />

■ To convert from polar coordinates to rectangular coordinates, use the following relationships.<br />

x r cos <br />

y r sin <br />

■ To convert from rectangular coordinates to polar coordinates, use the following relationships.<br />

r ±x 2 y 2<br />

tan yx<br />

<br />

If is in the same quadrant as the point x, y, then r is positive. If is in the opposite quadrant as the point<br />

x, y, then r is negative.<br />

■ You should be able to convert rectangular equations to polar form and vice versa.<br />

<br />

Vocabulary Check<br />

1. pole 2. directed distance, directed angle 3. polar<br />

1. Polar coordinates:<br />

x 4 cos <br />

4, 2<br />

2 0<br />

<br />

<br />

y 4 sin 2 4<br />

<br />

Rectangular coordinates: 0, 4<br />

2. Polar coordinates:<br />

3<br />

4, 2 <br />

x 4 cos <br />

3<br />

2 0, y 4 sin 3<br />

2 4<br />

Rectangular coordinates: 0, 4<br />

© Houghton Mifflin Company. All rights reserved.<br />

3. Polar coordinates:<br />

5<br />

x 1 cos 4 2<br />

2<br />

5<br />

y 1 sin 4 2<br />

2<br />

5<br />

1, 4 4. Polar coordinates:<br />

Rectangular coordinates: <br />

2<br />

2 , 2<br />

2 <br />

x 2 cos <br />

y 2 sin <br />

<br />

4 2 2<br />

<br />

2, <br />

4 2 2<br />

2 2<br />

2 2<br />

Rectangular coordinates: 2, 2<br />

<br />

4


834 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

5.<br />

(<br />

3, 5π<br />

6<br />

(<br />

π<br />

2<br />

6.<br />

(<br />

2,<br />

3π<br />

4<br />

(<br />

π<br />

2<br />

1 2 3<br />

0<br />

1 2 3<br />

0<br />

7.<br />

Three additional representations:<br />

5<br />

3, 6 2 3, 7<br />

6 <br />

5<br />

3, 6 11<br />

3, 6 <br />

5<br />

3, <br />

6 3, <br />

6<br />

π<br />

2<br />

8.<br />

Three additional points:<br />

5<br />

2, 4 , 7<br />

2, 4 , <br />

2, 4 <br />

π<br />

2<br />

9.<br />

( −1, − 3<br />

π<br />

Three additional representations:<br />

1, <br />

1, <br />

1, <br />

3, 5π<br />

6 )<br />

(<br />

<br />

3 <br />

<br />

<br />

1 2 3<br />

3 2 <br />

3 <br />

0<br />

5<br />

1,<br />

3 <br />

2<br />

1,<br />

3 <br />

1, 4<br />

3 <br />

0<br />

1 2 3<br />

Three additional representations:<br />

3, 7<br />

6 , 3, <br />

<br />

6 ,<br />

11<br />

3, 6 <br />

0<br />

1 2 3 4<br />

−3, −<br />

7π<br />

6 )<br />

Three additional points:<br />

5<br />

3, 6 , 11<br />

3, 6 , 3, <br />

)<br />

)<br />

π<br />

10.<br />

2<br />

0<br />

1 3 5 7 9<br />

6 , <br />

Three additional points:<br />

52,<br />

<br />

π<br />

2<br />

( 5 2, −<br />

11π<br />

6 )<br />

52, 5<br />

6 ,<br />

<br />

6<br />

7<br />

52, 6 <br />

© Houghton Mifflin Company. All rights reserved.


Section 9.6 Polar Coordinates 835<br />

11.<br />

π 12.<br />

2<br />

)<br />

)<br />

3<br />

, −<br />

3π<br />

2 2<br />

(<br />

0, −<br />

π<br />

4<br />

(<br />

π<br />

2<br />

1 2 3<br />

0<br />

1 2 3<br />

0<br />

Three additional representations:<br />

3 2 ,<br />

<br />

<br />

2 , 3 2 , 3<br />

2 , 3 2 , 2<br />

13. Polar coordinates:<br />

x 4 cos <br />

Rectangular coordinates:<br />

π<br />

2<br />

<br />

<br />

<br />

4, 3<br />

3 2<br />

y 4 sin <br />

3 23<br />

2, 23<br />

<br />

0, 4 <br />

is the origin.<br />

Three additional points:<br />

Any angle will do since r 0.<br />

14. Polar coordinates:<br />

Rectangular coordinates:<br />

π<br />

2<br />

7<br />

2, 6 <br />

x 2 cos 7<br />

6 2 3 2 3<br />

y 2 sin 7<br />

6 2 1 2 1<br />

3<br />

0, 4 , 5<br />

0, 4 , 7<br />

0, 4 <br />

3, 1<br />

2 4 6<br />

0<br />

1 2 3<br />

0<br />

© Houghton Mifflin Company. All rights reserved.<br />

15. Polar coordinates:<br />

3<br />

x 1 cos <br />

4<br />

2<br />

2<br />

3<br />

y 1 sin <br />

4<br />

2<br />

2<br />

Rectangular coordinates:<br />

π<br />

2<br />

1 2 3<br />

3<br />

1, 4 16. Polar coordinates:<br />

0<br />

2<br />

2 , 2<br />

2 <br />

x 3 cos 2<br />

3 3 1 2 3 2<br />

y 3 sin 2<br />

3 3 3 2 33<br />

2<br />

Rectangular coordinates: 3 2 , 33<br />

2 <br />

π<br />

2<br />

1 2 3<br />

3, 2<br />

3 3,<br />

0<br />

<br />

3


836 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

<br />

5<br />

17. Polar coordinates: 0, 7<br />

(origin!)<br />

6 18. Polar coordinates: 0, (origin!)<br />

4 <br />

x 0 cos 5<br />

4 0<br />

x 0 cos 7<br />

6 0<br />

y 0 sin 7<br />

6 0<br />

y 0 sin 5<br />

4 0<br />

Rectangular coordinates:<br />

0, 0<br />

Rectangular coordinates:<br />

0, 0<br />

π<br />

2<br />

π<br />

2<br />

1 2 3<br />

0<br />

1 2 3<br />

0<br />

19. Polar coordinates:<br />

2, 2.36<br />

20. Polar coordinates:<br />

3, 1.57<br />

x 2 cos2.36 1.004<br />

y 2 sin2.36 0.996<br />

x 3 cos1.57 0.0024<br />

y 3 sin1.57 3.000<br />

Rectangular coordinates:<br />

1.004, 0.996<br />

Rectangular coordinates:<br />

0.0024, 3<br />

π<br />

2<br />

π<br />

2<br />

1 2 3<br />

0<br />

1 2 3<br />

0<br />

21. r, 2, 2<br />

9 ⇒ x, y 1.53, 1.29 22. r, 4, 11<br />

9 <br />

⇒ x, y 3.06, 2.57<br />

23. r, 4.5, 1.3 ⇒ x, y 1.204, 4.336 24. r, 8.25, 3.5 ⇒ x, y 7.726, 2.894<br />

25. r, 2.5, 1.58 ⇒ x, y 0.02, 2.50 26. r, 5.4, 2.85 ⇒ x, y 5.17, 1.55<br />

27. r, 4.1, 0.5 ⇒ x, y 3.60, 1.97 28. r, 8.2, 3.2 ⇒ x, y 8.19, 0.48<br />

29. Rectangular coordinates:<br />

r 7, tan 0, 0<br />

7, 0<br />

Polar coordinates: 7, , 7, 0<br />

5<br />

4<br />

−9 −8 −7 −6 −5 −4 −3 −2 −1<br />

−2<br />

−3<br />

−4<br />

−5<br />

3<br />

2<br />

1<br />

y<br />

1<br />

x<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.6 Polar Coordinates 837<br />

30. Rectangular coordinates:<br />

r 5, tan undefined, <br />

2<br />

Polar coordinates:<br />

y<br />

0, 5 31. Rectangular coordinates:<br />

<br />

3<br />

5, 2 , 5,<br />

<br />

2<br />

Polar coordinates:<br />

y<br />

2,<br />

<br />

r 2, tan 1, <br />

4<br />

1, 1<br />

<br />

4 , <br />

5<br />

2,<br />

4 <br />

−3<br />

−2<br />

−1<br />

−1<br />

1 2 3<br />

x<br />

3<br />

2<br />

−2<br />

1<br />

−3<br />

− 4<br />

−3<br />

−2<br />

−1<br />

−1<br />

1<br />

2<br />

3<br />

x<br />

−5<br />

−2<br />

−6<br />

−3<br />

32. Rectangular coordinates:<br />

r 32, tan 1, <br />

4<br />

Polar coordinates:<br />

y<br />

3, 3<br />

<br />

5<br />

32, 4 , 32,<br />

<br />

4<br />

33. Rectangular coordinates:<br />

Polar coordinates:<br />

y<br />

3, 3<br />

r 3 3 6, tan 1, <br />

4<br />

<br />

5<br />

6, 4 , 6,<br />

<br />

4<br />

2<br />

3<br />

1<br />

2<br />

−4<br />

−3<br />

−2<br />

−1<br />

−1<br />

−2<br />

1 2<br />

x<br />

−3<br />

−2<br />

1<br />

−1<br />

−1<br />

1<br />

2<br />

3<br />

x<br />

−3<br />

−2<br />

−4<br />

−3<br />

34. Rectangular coordinates:<br />

3, 1<br />

35.<br />

x, y 6, 9<br />

r 3 1 2<br />

r 6 2 9 2 117 10.8<br />

© Houghton Mifflin Company. All rights reserved.<br />

tan 1<br />

3 ,<br />

Polar coordinates:<br />

2<br />

1<br />

y<br />

11<br />

6<br />

−2 −1<br />

−1<br />

1 2 3 4 5 6<br />

−2<br />

−3<br />

−4<br />

−5<br />

−6<br />

11<br />

2, 6 , 5<br />

2, 6 <br />

x<br />

tan 9 6 3 2 ⇒<br />

Polar coordinates: 10.8, 0.983, 10.8, 4.124<br />

y<br />

12<br />

9<br />

6<br />

3<br />

x<br />

−3 3 6 9 12<br />

−3<br />

0.983


838 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

36. Rectangular coordinates: 5, 12 37.<br />

r 25 144 13, tan 12 5 ,<br />

1.176<br />

Polar coordinates: 13, 1.176, 13, 4.318<br />

x, y 3, 2 ⇒ r 3 2 2 2 13<br />

r, 13, 0.588<br />

arctan 2 3 0.588<br />

y<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

−6<br />

−4<br />

−2<br />

−2<br />

2<br />

4 6 8<br />

x<br />

38. x, y 5, 2 ⇒ r, 5.39, 2.76<br />

40. x, y 32, 32 ⇒ r, 6,<br />

4 6.0, 0.785<br />

39.<br />

x, y 3, 2 ⇒ r 3 2 2 7<br />

r, 7, 0.857<br />

arctan <br />

2<br />

3 0.857<br />

41.<br />

x, y <br />

5<br />

2 , 4 3 ⇒ r 5 2 2 <br />

4<br />

3 2 17 6<br />

r, <br />

17<br />

6 , 0.490 <br />

arctan <br />

43<br />

52 0.490<br />

42. x, y <br />

7<br />

4 , 3 2 ⇒ r, 2.30, 0.71<br />

43.<br />

46.<br />

49.<br />

x 2 y 2 9 44.<br />

r 2 9<br />

r 3<br />

x 2 y 2 16 45.<br />

r 2 16<br />

r 4<br />

y x 47. x 8<br />

48.<br />

r sin r cos <br />

sin cos <br />

tan 1<br />

<br />

<br />

4<br />

r cos 8<br />

r 8 sec <br />

3x 6y 2 0 50.<br />

3r cos 6r sin 2<br />

r3 cos 6 sin 2<br />

r <br />

2<br />

6 sin 3 cos <br />

y 4<br />

r sin 4<br />

r 4 csc <br />

x a<br />

r cos a<br />

4x 7y 2 0<br />

4r cos 7r sin 2 0<br />

r4 cos 7 sin 2<br />

r <br />

r a sec <br />

2<br />

4 cos 7 sin <br />

© Houghton Mifflin Company. All rights reserved.


Section 9.6 Polar Coordinates 839<br />

51.<br />

xy 4 52.<br />

r cos r sin 4<br />

r 2 cos sin 4<br />

r 2 2 cos sin 8<br />

r 2 sin 2 8<br />

r 2 8 csc 2<br />

2xy 1<br />

2r cos r sin 1<br />

2r 2 sec csc <br />

r 2 1 2 sec csc csc2<br />

53.<br />

x 2 y 2 2 9x 2 y 2 54.<br />

r 2 2 9r 2 cos 2 r 2 sin 2 <br />

r 2 9cos 2 sin 2 <br />

r 2 9 cos2<br />

r <br />

r 2 sin 2 8r cos 16 0<br />

r 2 1 cos 2 8r cos 16 0<br />

r 2 cos 2 8r cos 16 r 2<br />

4<br />

1 cos <br />

y 2 8x 16 0<br />

r cos 4 2 r 2<br />

or r 4<br />

1 cos <br />

r ±r cos 4<br />

55.<br />

x 2 y 2 6x 0 56.<br />

x 2 y 2 8y 0 57.<br />

x 2 y 2 2ax 0<br />

r 2 6r cos 0<br />

r 2 8r sin 0<br />

r 2 2ar cos 0<br />

r 2 6r cos <br />

rr 8 sin 0<br />

rr 2a cos 0<br />

r 6 cos <br />

r 8 sin <br />

r 2a cos <br />

58.<br />

x 2 y 2 2ay 0 59.<br />

y 2 x 3 60.<br />

x 2 y 3<br />

r 2 2a r sin 0<br />

r sin 2 r cos 3<br />

r 2 cos 2 r 3 sin 3 <br />

rr 2a sin 0<br />

r 2a sin <br />

sin 2 r cos 3 <br />

r sin2 <br />

cos 3 <br />

r cos2 <br />

cot<br />

sin 3 <br />

2 csc <br />

© Houghton Mifflin Company. All rights reserved.<br />

61.<br />

r 6 sin <br />

r 2 6r sin <br />

x 2 y 2 6y<br />

x 2 y 2 6y 0<br />

62.<br />

x 2 y 2 2x<br />

tan 2 sec <br />

r 2 cos <br />

r 2 2r cos <br />

63.<br />

4<br />

tan tan 4<br />

3 y x<br />

3 y x<br />

3<br />

y 3x


840 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

64.<br />

5<br />

3<br />

65.<br />

5<br />

6<br />

66.<br />

11<br />

6<br />

tan tan 5<br />

3 3<br />

tan tan 5<br />

6 y x<br />

tan tan 11<br />

6 y x<br />

y<br />

x 3<br />

3<br />

3<br />

y x<br />

3<br />

3<br />

y x<br />

y 3x 0<br />

y 3 x<br />

3<br />

y 3 x<br />

3<br />

<br />

<br />

67. , vertical line<br />

68. horizontal line<br />

2<br />

y 0<br />

x 0<br />

,69.<br />

r 4<br />

r 2 16<br />

x 2 y 2 16<br />

70.<br />

r 10 71.<br />

r 3 csc <br />

72.<br />

r 2 sec <br />

r 2 100<br />

r sin 3<br />

r cos 2<br />

x 2 y 2 100<br />

y 3<br />

x 2<br />

73.<br />

r 2 cos <br />

74.<br />

r 2 sin 2 2 sin cos <br />

r 3 r cos <br />

x 2 y 2 32 x<br />

x 2 y 2 x 23<br />

x 2 y 2 3 x 2<br />

y<br />

r 2 2 r x r 2xy<br />

r 2<br />

r 4 2xy<br />

x 2 y 2 ) 2 2xy<br />

75.<br />

r 2 sin 3<br />

76.<br />

r 3 cos 2<br />

r 23 sin 4 sin 3 <br />

r 3cos 2 sin 2 <br />

r 4 6r 3 sin 8r 3 sin 3 <br />

r 3 3r 2 cos 2 r 2 sin 2 <br />

x 2 y 2 2 6x 2 y 2 y 8y 3<br />

x 2 y 2 32 3x 2 y 2 or x 2 y 2 3 9x 2 y 2 2<br />

77.<br />

x 2 y 2 2 6x 2 y 2y 3<br />

r <br />

r r cos 1<br />

x 2 y 2 x 1<br />

1<br />

1 cos <br />

x 2 y 2 1 2x x 2<br />

y 2 2x 1<br />

78.<br />

r <br />

r r sin 2<br />

x 2 y 2 y 2<br />

x 2 y 2 2 y 2<br />

x 2 y 2 4 4y y 2<br />

x 2 4y 4 0<br />

2<br />

1 sin <br />

© Houghton Mifflin Company. All rights reserved.


Section 9.6 Polar Coordinates 841<br />

79.<br />

r <br />

6<br />

2 3 sin <br />

80.<br />

r <br />

6<br />

2 cos 3 sin <br />

r2 3 sin 6<br />

2±x 2 y 2 6 3y<br />

4x 2 y 2 6 3y 2<br />

4x 2 4y 2 36 36y 9y 2<br />

4x 2 5y 2 36y 36 0<br />

2r 6 3r sin <br />

r <br />

r <br />

1 <br />

2 x 3y 6<br />

6<br />

2xr 3yr<br />

6r<br />

2x 3y<br />

6<br />

2x 3y<br />

81.<br />

y<br />

r 7 82.<br />

r 2 49<br />

x 2 y 2 49<br />

The graph is a circle<br />

centered at the origin<br />

with radius 7.<br />

8<br />

6<br />

4<br />

2<br />

−8 −4 −2<br />

−2<br />

2 4 6 8<br />

−4<br />

−6<br />

−8<br />

x<br />

r 8<br />

r 2 64<br />

x 2 y 2 64<br />

Circle of radius 8<br />

centered at origin<br />

−10<br />

10<br />

6<br />

4<br />

2<br />

−6 −4 −2<br />

−4<br />

−6<br />

−10<br />

y<br />

2<br />

4<br />

6 10<br />

x<br />

83.<br />

<br />

<br />

4<br />

tan tan<br />

4 1 y x<br />

y x<br />

<br />

The graph is the line<br />

y x, which makes an<br />

angle of with<br />

the positive x-axis.<br />

4<br />

−3<br />

−2<br />

3<br />

2<br />

1<br />

−1<br />

−1<br />

−2<br />

−3<br />

y<br />

1<br />

2<br />

3<br />

x<br />

84.<br />

7<br />

y<br />

x tan tan 7<br />

6 3<br />

3<br />

3y 3x 0<br />

Line through origin making<br />

angle of 6 with positive<br />

x-axis<br />

6<br />

3<br />

2<br />

1<br />

−3 −2<br />

1 2 3<br />

−1<br />

−2<br />

−3<br />

y<br />

x<br />

© Houghton Mifflin Company. All rights reserved.<br />

85.<br />

r 3 sec <br />

r cos 3<br />

x 3<br />

x 3 0<br />

Vertical line<br />

−2<br />

3<br />

2<br />

1<br />

−1<br />

−1<br />

−2<br />

−3<br />

y<br />

1<br />

2 4<br />

x<br />

86.<br />

r 2 csc <br />

r sin 2<br />

y 2<br />

y 2 0<br />

Horizontal line through<br />

0, 2<br />

87. True, the distances from the origin are the same. 88. False. For instance when r 0, any value of<br />

gives the same point.<br />

−3<br />

−2<br />

4<br />

3<br />

1<br />

−1<br />

−1<br />

−2<br />

y<br />

1<br />

2<br />

3<br />

<br />

x


842 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

89. (a) r where x 1 r 1 cos and y 1 r 1 sin 1 .<br />

1 , 1 x 1 , y 1 <br />

1<br />

r where x 2 r 2 cos and y 2 r 2 sin 2 .<br />

2 , 2 x 2 , y 2 <br />

2<br />

Then x 12 y 12 r<br />

2<br />

1 cos 2 1 r 1 2 sin 2 1 r 1 2 and x 22 y 22 r 22 . Thus,<br />

d x 1 x 2 2 y 1 y 2 2<br />

x 12 2x 1 x 2 x 22 y 12 2y 1 y 2 y<br />

2<br />

2<br />

x 12 y 12 x 22 y 22 2x 1 x 2 y 1 y 2 <br />

r 12 r 22 2r 1 r 2 cos 1 cos 2 r 1 r 2 sin 1 sin 2<br />

r 12 r 22 2r 1 r 2 cos1 2.<br />

(b) If<br />

(c) If<br />

1 <br />

1 <br />

2, the points are on the same line through the origin. In this case,<br />

d r 12 r 22 2r 1 r 2 cos0 r 1 r 2 2 r 1 r 2 .<br />

2 90, d r 1 2 r 22 , the Pythagorean Theorem.<br />

7<br />

(d) For instance, gives 3, gives d 2.053. (Same!)<br />

6 , 4<br />

3,<br />

d 2.053 and 4, 3 <br />

90. Answers will vary.<br />

<br />

<br />

6 , 4, 3<br />

91.<br />

cos A b2 c 2 a 2<br />

2bc<br />

A 30.7<br />

cos B a2 c 2 b 2<br />

2ac<br />

B 48.2<br />

192 25 2 13 2<br />

21925<br />

132 25 2 19 2<br />

21325<br />

C 180 30.7 48.2 101.1<br />

0.86 92.<br />

0.66615<br />

A 24, a 10, b 6<br />

sin B b sin A<br />

a<br />

C 180 A B 141.9<br />

c a sin C<br />

sin A 15.17<br />

0.2440 ⇒ B 14.1<br />

93.<br />

95.<br />

B 180 56 38 86 94.<br />

a<br />

sin A <br />

b<br />

sin B <br />

c<br />

sin C ⇒ a c sin A<br />

sin C<br />

c<br />

sin C ⇒ b c sin B<br />

sin C<br />

12 sin56<br />

16.16<br />

sin38<br />

12 sin86<br />

19.44<br />

sin38<br />

c 2 a 2 b 2 2ab cos C 96.<br />

8 2 4 2 284 cos35<br />

27.57<br />

c 5.25<br />

b<br />

sin B c<br />

sin C<br />

⇒ sin B <br />

b sin C<br />

c<br />

⇒ B 25.9<br />

A 180 B C 119.1<br />

4 sin35<br />

5.25<br />

B 71, a 21, c 29<br />

b 2 a 2 c 2 2ac cos B 885.458 ⇒ b 29.76<br />

sin C c sin B<br />

b<br />

A 180 B C 41.9<br />

B 64, b 52, c 44<br />

sin C c sin B<br />

b<br />

A 180 B C 66.5<br />

a b sin A<br />

sin B 53.06<br />

0.9214 ⇒ C 67.1<br />

0.7605 ⇒ C 49.5<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.6 Polar Coordinates 843<br />

97. By Cramer’s Rule,<br />

98.<br />

<br />

5 7<br />

1<br />

D 5 21 16<br />

3<br />

<br />

D x 11 7<br />

1<br />

11 21 32<br />

3<br />

<br />

5 11<br />

D y 15 33 48<br />

3 3 x D x<br />

, y Dy<br />

D 48<br />

D 32<br />

16 2<br />

16 3<br />

Solution: 2, 3<br />

By Cramer’s Rule,<br />

<br />

D 3 5<br />

6 20 26<br />

4 2<br />

<br />

D x 10 5<br />

20 25 5<br />

5 2<br />

<br />

D y 3 10<br />

15 40 55<br />

4 5<br />

x D x<br />

,<br />

D 5 26 ,<br />

Solution: 5 26 , 55<br />

26<br />

y Dy<br />

D 55<br />

26 55<br />

26<br />

© Houghton Mifflin Company. All rights reserved.<br />

99. By Cramer’s Rule,<br />

9<br />

3 2 1<br />

D 2 1 3 35<br />

1 3<br />

9<br />

0 2 1<br />

D a 0 1 3 0<br />

0 3<br />

9<br />

3 0 1<br />

D b 2 0 3 0<br />

1 0<br />

0<br />

3 2 0<br />

D c 2 1 0 0<br />

1 3<br />

a D a<br />

, b D b<br />

, c D c<br />

D 0 D 0 D 0<br />

Solution: 0, 0, 0<br />

100. By Cramer’s Rule,<br />

1<br />

5 7 9<br />

D 1 2 3 89<br />

8 2<br />

1<br />

15 7 9<br />

D u 7 2 3 295<br />

0 2<br />

1<br />

5 15 9<br />

D v 1 7 3 844<br />

8 0<br />

0<br />

5 7 15<br />

D w 1 2 7 672<br />

8 2<br />

u D u<br />

v D v<br />

D 844<br />

89 844<br />

D 295<br />

89 295<br />

89 ,<br />

89 ,<br />

w D w<br />

D 672<br />

89 672<br />

89<br />

Solution: <br />

295<br />

89 , 844<br />

89 , 672 89


844 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

101. By Cramer’s Rule,<br />

1<br />

D 2<br />

5<br />

<br />

1<br />

D x 2<br />

4<br />

1<br />

D y 2<br />

5<br />

D z <br />

1<br />

2<br />

5<br />

1<br />

3<br />

4<br />

1<br />

3<br />

4<br />

1<br />

2<br />

4<br />

1<br />

3<br />

4<br />

x D x<br />

y D y<br />

D 45<br />

D 30<br />

15 2, 15 3,<br />

z D z<br />

D 45<br />

15 3<br />

Solution: 2, 3, 3 <br />

2<br />

2<br />

1 15<br />

2<br />

2<br />

1 30<br />

2<br />

2<br />

1 45<br />

4<br />

1<br />

2 45<br />

102. Cramer’s Rule does not apply because<br />

6<br />

2 1 2<br />

D 2 2 0 0.<br />

2 1<br />

Use elimination to solve the system.<br />

2 1 2 4<br />

2 2 0 5<br />

2 1 6 2 →<br />

R 1 R 2<br />

R 1 R 3<br />

2 0<br />

0<br />

R<br />

2 2 R 1<br />

0<br />

2R 2 R 3 0<br />

x 3 a,<br />

1<br />

1<br />

2<br />

0<br />

1<br />

0<br />

2<br />

2<br />

4<br />

4<br />

2<br />

0<br />

<br />

<br />

<br />

<br />

<br />

<br />

4<br />

1<br />

2 →<br />

3<br />

1<br />

0<br />

Let then x and x 1 2a 3 2 2a 1<br />

2 .<br />

Solution: 2a 3 2 , 2a 1, a<br />

103. Points:<br />

<br />

1<br />

4 3 1<br />

6 7 1 20 0<br />

2 1<br />

The points are not collinear.<br />

4, 3, 6, 7, 2, 1 104. Points:<br />

2<br />

0<br />

4<br />

2, 4, 0, 1, 4, 5<br />

4<br />

1<br />

5<br />

1<br />

1<br />

1 <br />

0 ⇒ collinear<br />

105. Points: 6, 4, 1, 3, 1.5, 2.5<br />

1<br />

6 4 1<br />

1 3 1 0<br />

1.5 2.5<br />

The points are collinear.<br />

106. Points:<br />

2.3<br />

0.5<br />

1.5<br />

2.3, 5, 0.5, 0, 1.5, 3<br />

5<br />

0<br />

3<br />

1<br />

1<br />

1 <br />

4.6 ⇒ not collinear<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.7 Graphs of Polar Equations 845<br />

Section 9.7<br />

Graphs of Polar Equations<br />

■ When graphing polar equations:<br />

1. Test for symmetry<br />

2:<br />

(a) Replace r, by r, or r, .<br />

(b) Polar axis: Replace r, by r, or r, .<br />

(c) Pole: Replace r, by r, or r, .<br />

(d) r f sin is symmetric with respect to the line<br />

(e) r f cos is symmetric with respect to the polar axis.<br />

r <br />

2. Find the values for which is maximum.<br />

3. Find the values for which r 0.<br />

2.<br />

4. Know the different types of polar graphs.<br />

(a) Limaçons (b) Rose curves, n ≥ 2 (c) Circles (d) Lemniscates<br />

r a ± b cos r a cos n<br />

r a cos r 2 a 2 cos 2<br />

r a ± b sin r a sin n<br />

r a sin r 2 a 2 sin 2<br />

r a<br />

■ You should be able to graph polar equations of the form r f with your graphing utility. If your utility<br />

does not have a polar mode, use<br />

x f t cos t<br />

y f t sin t<br />

in parametric mode.<br />

Vocabulary Check<br />

<br />

<br />

1. 2. polar axis 3. convex limaçon<br />

2<br />

4. circle 5. lemniscate 6. cardioid<br />

© Houghton Mifflin Company. All rights reserved.<br />

1. r 3 cos 2 is a rose curve.<br />

4. r 3 cos is a circle.<br />

2. Cardioid<br />

7. The graph is symmetric about the line and<br />

passes through r, 3, 32. Matches (a).<br />

5. r 6 sin 2 is a rose curve.<br />

3. Lemniscate<br />

6. Limaçon<br />

2, 8. The graph is symmetric about the polar axis and<br />

passes through r, 3, 0. Matches (c).<br />

9. The graph has four leaves. Matches (c). 10. The graph has three leaves. Matches (d).


846 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

11.<br />

r 14 4 cos <br />

<br />

<br />

2 :<br />

r 14 4 cos<br />

12.<br />

r 12 cos 3<br />

<br />

<br />

2 :<br />

r 12 cos3<br />

r 14 4 cos <br />

r 12 cos 3<br />

Not an equivalent equation<br />

Not an equivalent equation<br />

r 14 4 cos <br />

r 14 4cos cos sin sin <br />

r 12 cos3 <br />

r 12 cos 3<br />

r 14 4 cos <br />

Not an equivalent equation<br />

Polar axis:<br />

Not an equivalent equation<br />

r 14 4 cos<br />

Polar axis:<br />

r 12 cos3<br />

r 12 cos 3<br />

r 14 4 cos <br />

Equivalent equation<br />

Equivalent equation<br />

Pole:<br />

r 12 cos 3<br />

Pole:<br />

r 14 4 cos <br />

Not an equivalent equation<br />

Not an equivalent equation<br />

r 14 4 cos <br />

r 12 cos3 <br />

r 12 cos 3<br />

r 14 4 cos <br />

Not an equivalent equation<br />

Not an equivalent equation<br />

Answer: Symmetric with respect to polar axis<br />

Answer: Symmetric with respect to polar axis<br />

13.<br />

r <br />

4<br />

1 sin <br />

<br />

<br />

2 :<br />

r <br />

4<br />

1 sin <br />

Pole:<br />

r <br />

4<br />

1 sin <br />

Polar axis:<br />

r <br />

r <br />

Equivalent equation<br />

r <br />

r <br />

Not an equivalent equation<br />

r <br />

r <br />

4<br />

1 sin cos cos sin <br />

4<br />

1 sin <br />

4<br />

1 sin<br />

4<br />

1 sin <br />

4<br />

1 sin <br />

4<br />

1 sin <br />

Not an equivalent equation<br />

Not an equivalent equation<br />

r <br />

r <br />

4<br />

1 sin <br />

4<br />

1 sin <br />

Not an equivalent equation<br />

Answer: Symmetric with respect to <br />

2<br />

<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.7 Graphs of Polar Equations 847<br />

14.<br />

r <br />

<br />

<br />

2<br />

1 cos <br />

2 :<br />

Polar axis:<br />

r <br />

r <br />

Not an equivalent equation<br />

r <br />

r <br />

r <br />

Not an equivalent equation<br />

r <br />

r <br />

2<br />

1 cos<br />

2<br />

1 cos <br />

2<br />

1 cos <br />

2<br />

1 cos cos sin sin <br />

2<br />

1 cos <br />

2<br />

1 cos<br />

2<br />

1 cos <br />

Equivalent equation<br />

Pole:<br />

2<br />

r <br />

1 cos <br />

Not an equivalent equation<br />

r <br />

r <br />

r <br />

2<br />

1 cos <br />

2<br />

1 cos cos sin sin <br />

2<br />

1 cos <br />

Not an equivalent equation<br />

Answer: Symmetric with respect to the polar axis<br />

15.<br />

r 6 sin <br />

16.<br />

r 4 csc cos 4 cot <br />

<br />

<br />

2 :<br />

r 6 sin<br />

<br />

<br />

2 :<br />

r 4 cot<br />

r 6 sin <br />

r 4 cot <br />

Equivalent equation<br />

Equivalent equation<br />

Polar axis:<br />

r 6 sin<br />

Polar axis:<br />

r 4 cot <br />

r 6 sin <br />

r 4 cot<br />

Not an equivalent equation<br />

r 4 cot <br />

© Houghton Mifflin Company. All rights reserved.<br />

r 6 sin <br />

r 6sin cos cos sin <br />

r 6 sin <br />

Not an equivalent equation<br />

Pole: r 6 sin <br />

Not an equivalent equation<br />

r 6 sin <br />

r 6 sin <br />

Not an equivalent equation<br />

Answer: Symmetric with respect to <br />

2<br />

<br />

Equivalent equation<br />

Pole: r 4 cot <br />

r 4 cot <br />

Equivalent equation<br />

Answer: Symmetric with respect to<br />

polar axis and pole<br />

<br />

<br />

2 ,


848 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

17.<br />

r 2 16 sin 2<br />

18.<br />

r 2 25 cos 4<br />

<br />

<br />

2 :<br />

r 2 16 sin2<br />

<br />

<br />

2 :<br />

r 2 25 cos4<br />

r 2 16 sin 2<br />

r 2 25 cos 4<br />

Not an equivalent equation<br />

Equivalent equation<br />

r 2 16 sin2 <br />

Polar axis:<br />

r 2 25 cos4<br />

r 2 16 sin2 2<br />

r 2 25 cos 4<br />

r 2 16 sin 2<br />

Equivalent equation<br />

Not an equivalent equation<br />

Pole:<br />

r 2 25 cos 4<br />

Polar axis:<br />

r 2 16 sin2<br />

r 2 25 cos 4<br />

r 2 16 sin 2<br />

Equivalent equation<br />

Not an equivalent equation<br />

r 2 16 sin2 <br />

r 2 16 sin 2<br />

Answer: Symmetric with respect to<br />

polar axis and pole<br />

<br />

<br />

2 ,<br />

Not an equivalent equation<br />

Pole:<br />

r 2 16 sin2<br />

r 2 16 sin 2<br />

Equivalent equation<br />

Answer: Symmetric with respect to pole<br />

19.<br />

r 101 sin 20.<br />

10 1 sin ≤ 102 20<br />

r 6 12 cos ≤ 6 12 cos <br />

6 12 cos ≤ 18<br />

1 sin 2<br />

1 sin 2 or 1 sin 2<br />

cos 1<br />

0<br />

sin 1 sin 3<br />

Maximum:<br />

3<br />

r 20<br />

when<br />

r 0 when 1 sin 0<br />

sin 1<br />

2<br />

or Not possible<br />

<br />

<br />

2<br />

3<br />

2<br />

Maximum:<br />

r 18 when 0<br />

Zero: r 0 when 2<br />

3 , 4<br />

3<br />

© Houghton Mifflin Company. All rights reserved.


Section 9.7 Graphs of Polar Equations 849<br />

21.<br />

r 4 cos 3 4 cos 3 ≤ 422. r sin 2<br />

cos 3 1<br />

r sin 2<br />

cos 3 ±1<br />

Maximum: r 1 when<br />

Maximum:<br />

<br />

0,<br />

3 , 2<br />

3 , <br />

r 4<br />

when<br />

r 0 when cos 3 0<br />

<br />

<br />

5<br />

6 , <br />

2 , 6<br />

<br />

0,<br />

3 , 2<br />

3 , <br />

<br />

<br />

<br />

4 , 3<br />

4 , 5<br />

4 , 7<br />

4<br />

3<br />

Zero: r 0 when 0,<br />

2 , ,<br />

2 , 2<br />

23.<br />

r 5 24.<br />

Circle<br />

π<br />

2<br />

5<br />

Line<br />

3<br />

π<br />

2<br />

25.<br />

r 3 sin <br />

Symmetric with respect to<br />

2<br />

Circle with radius of 32<br />

π<br />

2<br />

2 4 6 8<br />

0<br />

1 2<br />

0<br />

1 2 3<br />

0<br />

26.<br />

r 2 cos <br />

27.<br />

r 31 cos 28.<br />

r 41 sin <br />

Circle<br />

Radius: 1, center:<br />

1, 0<br />

Cardioid<br />

π<br />

2<br />

Cardioid<br />

π<br />

2<br />

π<br />

2<br />

© Houghton Mifflin Company. All rights reserved.<br />

29.<br />

1 3<br />

r 3 4 cos <br />

Limaçon<br />

π<br />

2<br />

0<br />

30.<br />

2 4<br />

r 1 2 sin <br />

Limaçon with inner loop<br />

π<br />

2<br />

1 2<br />

0<br />

0<br />

31.<br />

r 4 5 sin <br />

Limaçon<br />

π<br />

2<br />

4 6 8<br />

0<br />

1 2<br />

0<br />

4 6 8<br />

0


850 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

32.<br />

r 3 6 cos <br />

33.<br />

r 5 cos 3<br />

34.<br />

r sin 5<br />

Limaçon<br />

Rose curve<br />

Rose curve<br />

π<br />

2<br />

π<br />

2<br />

π<br />

2<br />

4 6 8 10 12<br />

0<br />

1 5 6<br />

0<br />

1<br />

0<br />

35.<br />

r 7 sin 2<br />

36.<br />

r 3 cos 5<br />

37.<br />

r 8 cos 2<br />

Rose curve, four petals<br />

Rose curve, five petals<br />

12<br />

π<br />

2<br />

π<br />

2<br />

−18<br />

18<br />

−12<br />

4 5 6<br />

0<br />

1 2 3 4<br />

0<br />

0 ≤<br />

<br />

< 2<br />

38.<br />

2<br />

39.<br />

r 25 sin <br />

40.<br />

4<br />

−3<br />

3<br />

10<br />

−12<br />

12<br />

−18<br />

18<br />

−2<br />

−12<br />

0 ≤<br />

<br />

≤ 2<br />

0 ≤<br />

<br />

−14<br />

< 2<br />

0 ≤<br />

<br />

≤ 2<br />

41.<br />

44.<br />

r 3 6 cos ,42.<br />

0 ≤ ≤ 2<br />

6<br />

−14<br />

4<br />

−6<br />

4<br />

−6<br />

6<br />

−4<br />

0 ≤<br />

<br />

≤ 2<br />

<br />

45.<br />

2<br />

−6<br />

6<br />

−6<br />

0 ≤<br />

<br />

≤ 2<br />

43.<br />

r 2 4 cos 2,46.<br />

≤ ≤ 2<br />

2<br />

2<br />

−3<br />

3<br />

−2<br />

<br />

r <br />

−6<br />

3<br />

,<br />

sin 2 cos <br />

4<br />

−4<br />

r 2 9 sin <br />

r ±3sin <br />

6<br />

0 ≤<br />

<br />

Graph both functions using<br />

0 ≤ ≤ 2.<br />

<br />

4<br />

≤<br />

<br />

2<br />

© Houghton Mifflin Company. All rights reserved.<br />

−6<br />

6<br />

−4


Section 9.7 Graphs of Polar Equations 851<br />

47.<br />

r 4 sin cos 2 , 0 ≤<br />

<br />

≤<br />

<br />

48.<br />

2<br />

49.<br />

r 2 csc 6<br />

2<br />

−3<br />

3<br />

14<br />

−3<br />

3<br />

−2<br />

−18<br />

18<br />

−2<br />

0 ≤<br />

<br />

≤<br />

<br />

0 ≤<br />

<br />

−10<br />

< 2<br />

50.<br />

12<br />

51.<br />

r e 2<br />

52.<br />

r e2<br />

−18<br />

18<br />

−2000<br />

200<br />

400<br />

15<br />

−15 30<br />

−12<br />

0 ≤<br />

<br />

≤ 2<br />

−1400<br />

−15<br />

Answers will vary.<br />

Answers will vary.<br />

53.<br />

r 3 2 cos ,54.<br />

0 ≤ < 2<br />

4<br />

<br />

−6<br />

1<br />

6<br />

55.<br />

r 2 cos <br />

3<br />

2 , 0 ≤<br />

2<br />

<br />

< 4<br />

−6<br />

6<br />

−7<br />

−3<br />

3<br />

−4<br />

0 ≤<br />

<br />

< 2<br />

−2<br />

56.<br />

−6<br />

4<br />

6<br />

57.<br />

r 2 sin 2,0≤<br />

<br />

<br />

<<br />

Use r 1 sin 2 and r 2 sin 2.<br />

<br />

2<br />

1<br />

−4<br />

0 ≤<br />

<br />

< 4<br />

−1<br />

1<br />

© Houghton Mifflin Company. All rights reserved.<br />

58.<br />

−1.5<br />

1<br />

−1<br />

1.5<br />

0 <<br />

<br />

r ±1<br />

<br />

< <br />

59.<br />

−1<br />

r 2 sec <br />

x 1 is an asymptote.<br />

4<br />

−6<br />

6<br />

−4


852 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

60.<br />

r sin 2 sin 1<br />

rr sin 2r sin r<br />

±x 2 y 2 y 2y ±x 2 y 2 <br />

±x 2 y 2 y 1 2y<br />

±x 2 y 2 <br />

r 2 csc 2 1<br />

sin <br />

2y<br />

y 1<br />

x 2 y 2 4y 2<br />

y 1 2<br />

x 2 y 2 3 2y y 2 <br />

y 1 2<br />

x ± y 2 3 2y y 2 <br />

y 1 2<br />

The graph has an asymptote at y 1.<br />

±<br />

5<br />

−6<br />

6<br />

−3<br />

y<br />

2y y<br />

y 13 2<br />

61.<br />

r 2<br />

<br />

3<br />

62.<br />

4<br />

y 2 is an asymptote.<br />

−3<br />

3<br />

−6<br />

6<br />

−1<br />

−4<br />

63. True. It has five petals. 64. False. For example, let r cos 3.<br />

65. r cos5 n cos , 0 ≤ < ; Answers will vary.<br />

<br />

4<br />

4<br />

4<br />

2<br />

−6<br />

6<br />

−6<br />

6<br />

−6<br />

6<br />

−3<br />

3<br />

n 5<br />

−3<br />

n 1<br />

−6<br />

−4<br />

2<br />

−2<br />

4<br />

3<br />

6<br />

n 4<br />

−3<br />

n 0<br />

−6<br />

−4<br />

2<br />

−2<br />

4<br />

3<br />

6<br />

n 3<br />

−3<br />

n 1<br />

−6<br />

−4<br />

2<br />

−2<br />

4<br />

3<br />

6<br />

n 2<br />

−3<br />

n 2<br />

−2<br />

2<br />

−2<br />

3<br />

© Houghton Mifflin Company. All rights reserved.<br />

−4<br />

−4<br />

−4<br />

n 3<br />

n 4<br />

n 5


Section 9.7 Graphs of Polar Equations 853<br />

66. The graph of r f is rotated about the pole through an angle . Let r, be any point<br />

on the graph of r f . Then r, is rotated through the angle , and since<br />

r f f , it follows that r, is on the graph of r f .<br />

67. Use the result of Exercise 66.<br />

(a) Rotation:<br />

2<br />

Original graph: r f sin <br />

Rotated graph:<br />

(b) Rotation:<br />

Original graph:<br />

Rotated graph:<br />

(c) Rotation:<br />

<br />

<br />

<br />

3<br />

Original graph:<br />

r f sin <br />

r f sin <br />

2<br />

r f sin <br />

Rotated graph: r f sin 3<br />

2 f cos <br />

<br />

2 f cos <br />

r f sin f sin <br />

68. (a)<br />

(b)<br />

(c)<br />

(d)<br />

r 2 sin <br />

r 2 sin <br />

r 2 cos <br />

r 2 sin <br />

r 2 cos <br />

<br />

4<br />

2 2<br />

2 sin cos <br />

<br />

2<br />

r 2 sin <br />

r 2 sin 3<br />

2 <br />

© Houghton Mifflin Company. All rights reserved.<br />

69. (a)<br />

(b)<br />

(c)<br />

(d)<br />

r 2 sin 2 <br />

2 sin 2 <br />

sin 2 3 cos 2<br />

r 2 sin 2 <br />

2 sin2 <br />

2 sin 2<br />

4 sin cos <br />

r 2 sin 2 2<br />

3 <br />

2 sin 2 4<br />

3 <br />

3 cos 2 sin 2<br />

r 2 sin2 <br />

2 sin2 2<br />

2 sin 2<br />

4 sin cos <br />

<br />

<br />

6<br />

3<br />

<br />

2<br />

70. (a)<br />

(b)<br />

r 1 sin <br />

y<br />

1<br />

–2 1 2<br />

–1<br />

–3<br />

r 1 sin <br />

<br />

y<br />

1<br />

–2 –1 1 2<br />

–2<br />

–3<br />

4<br />

x<br />

x


854 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

71.<br />

r 2 k cos <br />

k 0<br />

Circle<br />

k 1<br />

Convex limaçon<br />

k 2<br />

Cardioid<br />

k 3<br />

Limaçon with inner loop<br />

4<br />

4<br />

4<br />

4<br />

−6<br />

6<br />

−6<br />

6<br />

−4<br />

8<br />

−4<br />

8<br />

−4<br />

−4<br />

−4<br />

−4<br />

72.<br />

r 3 sin k <br />

(a)<br />

4<br />

(b)<br />

4<br />

(c) Yes. Answers will vary.<br />

−6<br />

6<br />

−6<br />

6<br />

−4<br />

−4<br />

k 1.5: 0 ≤<br />

<br />

< 4<br />

k 2.5: 0 ≤<br />

<br />

< 4<br />

Section 9.8<br />

Polar Equations of Conics<br />

■<br />

■<br />

The graph of a polar equation of the form<br />

r <br />

ep<br />

1 ± e cos <br />

Vocabulary Check<br />

or<br />

r <br />

ep<br />

1 ± e sin <br />

is a conic, where e > 0 is the eccentricity and is the distance between the focus (pole) and the directrix.<br />

(a) If e < 1, the graph is an ellipse.<br />

(b) If e 1, the graph is a parabola.<br />

(c) If e > 1, the graph is a hyperbola.<br />

Guidelines for finding polar equations of conics:<br />

(a) Horizontal directrix above the pole:<br />

(b) Horizontal directrix below the pole:<br />

r <br />

r <br />

(c) Vertical directrix to the right of the pole:<br />

r <br />

(d) Vertical directrix to the left of the pole: r <br />

ep<br />

1 e sin <br />

ep<br />

1 e sin <br />

ep<br />

1 e cos <br />

ep<br />

1 e cos <br />

1. conic 2. eccentricity, e<br />

3. (a) i (b) iii (c) ii<br />

p <br />

© Houghton Mifflin Company. All rights reserved.


Section 9.8 Polar Equations of Conics 855<br />

1.<br />

2e<br />

r <br />

1 e cos <br />

(a) Parabola<br />

(b) Ellipse<br />

(c) Hyperbola<br />

−4<br />

a<br />

b<br />

4<br />

−4<br />

c<br />

8<br />

2. (a) Parabola<br />

(b) Ellipse<br />

(c) Hyperbola<br />

−8<br />

c<br />

4<br />

−4<br />

a<br />

b<br />

4<br />

3.<br />

2e<br />

r <br />

1 e sin <br />

(a) Parabola<br />

(b) Ellipse<br />

(c) Hyperbola<br />

−9<br />

4<br />

b a<br />

c<br />

−8<br />

9<br />

4. (a) Parabola<br />

(b) Ellipse<br />

(c) Hyperbola<br />

−9<br />

8<br />

c<br />

b<br />

a<br />

−4<br />

9<br />

5.<br />

r <br />

4<br />

1 cos <br />

6.<br />

r <br />

3<br />

32<br />

<br />

2 cos 1 12 cos <br />

e 1 ⇒ parabola<br />

Vertical directrix to left of pole<br />

Matches (b).<br />

e 1 2 ⇒<br />

ellipse<br />

Vertical directrix to left of pole<br />

Matches (c).<br />

7.<br />

r <br />

3<br />

32<br />

<br />

2 cos 1 12 cos <br />

8.<br />

r <br />

4<br />

1 3 sin <br />

9.<br />

r <br />

3<br />

1 2 sin <br />

e 1 2 ⇒<br />

ellipse<br />

Vertical directrix to right of pole<br />

e 3 ⇒ hyperbola<br />

Horizontal directrix below<br />

the pole.<br />

e 2 ⇒ hyperbola<br />

Horizontal directrix above<br />

the pole.<br />

Matches (f).<br />

Matches (e).<br />

Matches (d).<br />

10.<br />

r <br />

4<br />

1 sin <br />

11.<br />

r <br />

2<br />

1 cos <br />

12.<br />

r <br />

2<br />

1 sin <br />

© Houghton Mifflin Company. All rights reserved.<br />

13.<br />

e 1 ⇒ parabola<br />

Vertex: 2, 2<br />

Matches (a).<br />

r <br />

4<br />

1<br />

<br />

4 cos 1 14 cos <br />

e 1 ellipse<br />

4 , p 4, 0<br />

Vertices:<br />

<br />

r, <br />

4<br />

3 , 0 , 4 5 , <br />

e 1 ⇒ parabola<br />

Vertex: r, 1, <br />

π<br />

2<br />

1 2<br />

e 1 ⇒ parabola<br />

Vertex: 1, 2


856 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

14.<br />

r <br />

7<br />

1<br />

<br />

7 sin 1 17 sin <br />

15.<br />

r <br />

8<br />

2<br />

<br />

4 3 sin 1 34 sin <br />

e 1 7 ⇒ ellipse<br />

e 3 4 ⇒ ellipse<br />

π<br />

2<br />

Vertices: r, <br />

7<br />

8 ,<br />

<br />

2 , 7 6 , 3<br />

2 <br />

Vertices:<br />

r, <br />

8<br />

7 ,<br />

<br />

2 , <br />

3<br />

8,<br />

2 <br />

1 3 4 5 6<br />

0<br />

16.<br />

r <br />

6<br />

2<br />

<br />

3 2 cos 1 23 cos <br />

17.<br />

r <br />

6 126<br />

<br />

2 sin 1 12 sin <br />

e 2 ellipse<br />

3 ⇒<br />

e 1 ellipse<br />

2 ⇒<br />

π<br />

2<br />

Vertices: 6, 0, <br />

6<br />

5 , <br />

Vertices:<br />

2,<br />

<br />

2 , <br />

3<br />

6,<br />

2 <br />

1 2 4 5<br />

0<br />

18.<br />

5<br />

5<br />

r <br />

<br />

1 2 cos 1 2 cos <br />

e 2 ⇒ hyperbola<br />

Vertices: 5, 0, 5 3 , <br />

19.<br />

3<br />

34<br />

r <br />

<br />

4 8 cos 1 2 cos <br />

e 2 ⇒ hyperbola<br />

Hyperbola<br />

Vertices:<br />

r, 3 1 4 , 0 , 4 , 0<br />

1 2 3 4 5<br />

<br />

π<br />

2<br />

20.<br />

23.<br />

10<br />

r <br />

<br />

103<br />

3 9 sin 1 3 sin <br />

e 3 ⇒ hyperbola<br />

Vertices:<br />

r, <br />

5<br />

6 ,<br />

r <br />

<br />

<br />

14<br />

14 17 sin <br />

2 , 5 3 , 3<br />

1<br />

1 1714 sin <br />

2 <br />

−9<br />

21.<br />

9<br />

r <br />

5<br />

1 sin <br />

Parabola<br />

−6<br />

9<br />

4<br />

−4<br />

24.<br />

6<br />

12<br />

r <br />

2 cos <br />

Ellipse<br />

22.<br />

1<br />

r <br />

2 4 sin <br />

Hyperbola<br />

−3<br />

−15<br />

2<br />

−2<br />

10<br />

3<br />

15<br />

© Houghton Mifflin Company. All rights reserved.<br />

Hyperbola<br />

−3<br />

−10


Section 9.8 Polar Equations of Conics 857<br />

25.<br />

2<br />

26.<br />

2 27.<br />

3<br />

−4<br />

2<br />

−5<br />

1<br />

−2<br />

4<br />

−2<br />

−2<br />

−<br />

Ellipse<br />

Hyperbola<br />

28.<br />

2<br />

29.<br />

2 30.<br />

3<br />

−3<br />

3<br />

−3<br />

3<br />

−9<br />

9<br />

−2<br />

−2<br />

−9<br />

31.<br />

4<br />

32.<br />

−8<br />

1<br />

4<br />

−9<br />

9<br />

−8<br />

−7<br />

33.<br />

e 1, x 1, p 1 34.<br />

Vertical directrix to the left of the pole<br />

r <br />

11 1<br />

<br />

1 1 cos 1 cos <br />

e 1, y 4, p 4<br />

Horizontal directrix below the pole<br />

r <br />

14 4<br />

<br />

1 1 sin 1 sin <br />

35.<br />

e 1 2 , y 1, p 1<br />

36. e 3 4 , y 4, p 4<br />

Horizontal directrix below pole<br />

Horizontal directrix above the pole<br />

r <br />

121 1<br />

<br />

1 12 sin 2 sin <br />

(344<br />

12<br />

r <br />

<br />

1 34 sin 4 3 sin <br />

© Houghton Mifflin Company. All rights reserved.<br />

37. e 2, x 1, p 1 38. e 3 2 , x 1, p 1<br />

Vertical directrix to the right of the pole<br />

Vertical directrix to the left of the pole<br />

21<br />

2<br />

r <br />

<br />

321<br />

3<br />

1 2 cos 1 2 cos <br />

r <br />

<br />

1 32 cos 2 3 cos <br />

39. Vertex: 1, ⇒ e 1, p 2 40. Parabola, e 1, vertex: 8, 0<br />

2<br />

Vertical directrix to right of pole<br />

Horizontal directrix below the pole<br />

ep 16<br />

12 2<br />

r <br />

<br />

r <br />

<br />

1 e cos 1 cos <br />

1 1 sin 1 sin


858 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

41. Vertex: 5, ⇒ e 1, p 10<br />

Vertical directrix to left of pole<br />

r <br />

43. Center: 4, , c 4, a 6, e 2 3<br />

Vertical directrix to the right of the pole<br />

r <br />

2 <br />

r <br />

45. Center:<br />

23p<br />

2p<br />

<br />

1 23 cos 3 2 cos <br />

2p<br />

3 2 cos 0 2p 5 ⇒ p 5<br />

10<br />

3 2 cos <br />

Vertical directrix to left of pole<br />

r <br />

20 2p<br />

3 2<br />

r <br />

110 10<br />

<br />

1 1 cos 1 cos <br />

8, 0, c 8, a 12, e c a 2 3<br />

23p<br />

2p<br />

<br />

1 23 cos 3 2 cos <br />

20<br />

3 2 cos <br />

2p ⇒ p 10<br />

42. Vertex:<br />

Horizontal directrix above pole<br />

r <br />

44. Center:<br />

Horizontal directrix above the pole<br />

r <br />

2 <br />

p 8<br />

r <br />

46. Center:<br />

3<br />

1, 2 , c 1, a 3, e 1 3<br />

13 p p<br />

<br />

1 13 sin 3 sin <br />

p<br />

3 sin2<br />

8<br />

3 sin <br />

Horizontal directrix below the pole<br />

r <br />

1 <br />

p 9 5<br />

10,<br />

<br />

2<br />

3<br />

5, 2 , c 5, a 4, e 5 4<br />

54p<br />

5p<br />

<br />

1 54 sin 4 5 sin <br />

5p<br />

4 5 sin32<br />

⇒ e 1, p 20<br />

120 20<br />

<br />

1 1 sin 1 sin <br />

47. Center: 5 2 , 2 , c 5 2 , a 3 2 , e 5 3<br />

Horizontal directrix above the pole<br />

r <br />

Substitute the point<br />

rather than<br />

in order to get a directrix between the vertices.<br />

1 <br />

p 8 5<br />

r <br />

<br />

53p<br />

5p<br />

<br />

1 53 sin 3 5 sin <br />

5p<br />

3 5 sin32<br />

3<br />

1, 2 <br />

585 8<br />

<br />

3 5 sin 3 5 sin <br />

3<br />

1, 2 <br />

r <br />

595 9<br />

<br />

4 5 sin 4 5 sin <br />

48. Center: 5 2 , 2 , c 5 2 , a 3 2 , e c a 5 3<br />

Horizontal directrix above the pole<br />

r <br />

1 <br />

r <br />

<br />

53p<br />

5p<br />

<br />

1 53 sin 3 5 sin <br />

5p<br />

3 5 sin2 ⇒ p 8 5<br />

8<br />

3 5 sin <br />

© Houghton Mifflin Company. All rights reserved.


Section 9.8 Polar Equations of Conics 859<br />

49. When<br />

Therefore,<br />

Thus, r <br />

<br />

0, r c a ea a a1 e. 50. Minimum distance occurs when .<br />

a1 e <br />

a1 e1 e ep<br />

a1 e 2 ep.<br />

ep<br />

1 e cos 0<br />

ep<br />

1 e2 a<br />

.<br />

1 e cos 1 e cos <br />

r <br />

1 e2 a 1 e1 ea<br />

a1 e<br />

1 e cos 1 e<br />

Maximum distance occurs when<br />

0.<br />

r 1 e2 a 1 e1 ea<br />

a1 e<br />

1 e cos 0 1 e<br />

51.<br />

r 1 0.01672 92.956 10 6 <br />

1 0.0167 cos <br />

<br />

9.2930 107<br />

1 0.0167 cos <br />

Perihelion distance:<br />

r 92.956 10 6 1 0.0167 9.1404 10 7<br />

Aphelion distance:<br />

r 92.956 10 6 1 0.0167 9.4508 10 7<br />

52.<br />

a 35.983 10 6 , e 0.2056<br />

r 1 0.20562 35.983 10 6 <br />

1 0.2056 cos <br />

<br />

3.4462 107<br />

1 0.2056 cos <br />

Perihelion distance: a1 e 2.8585 10 7 miles<br />

Aphelion distance: a1 e 4.3381 10 7 miles<br />

53.<br />

r 1 0.04842 77.841 10 7<br />

1 0.0484 cos <br />

<br />

7.7659 108<br />

1 0.0484 cos <br />

Perihelion:<br />

r 77.841 10 7 1 0.0484 7.4073 10 8 km<br />

Aphelion:<br />

r 77.841 10 7 1 0.0484 8.1609 10 8 km<br />

54.<br />

a 142.673 10 7 , e 0.0542<br />

r 1 0.05422 142.673 10 7 <br />

1 0.0542 cos <br />

<br />

1.4225 109<br />

1 0.0542 cos <br />

Perihelion distance: a1 e 1.3494 10 9 km<br />

Aphelion distance: a1 e 1.5041 10 9 km<br />

© Houghton Mifflin Company. All rights reserved.<br />

55. a 4.498 10 9 , e 0.0086, Neptune<br />

a 5.906 10 9 , e 0.2488, Pluto<br />

(a) Neptune:<br />

Pluto: r 1 0.24882 5.906 10 9 5.5404 109<br />

<br />

1 0.2488 cos 1 0.2488 cos <br />

(b) Neptune: Perihelion: 4.498 109 1 0.0086 4.4593 10 9 km<br />

Aphelion:<br />

Pluto: Perihelion:<br />

r 1 0.0086 2 4.498 10 9<br />

1 0.0086 cos <br />

4.498 10 9 1 0.0086 4.5367 10 9 km<br />

5.906 10 9 1 0.2488 4.4366 10 9 km<br />

Aphelion: 5.906 10 9 1 0.2488 7.3754 10 9 km<br />

(d) Yes. Pluto is closer to the sun for just a very short time. Pluto was considered the<br />

ninth planet because its mean distance from the sun is larger than that of Neptune.<br />

(e) Although the graphs intersect, the orbits do not, and the planets won’t collide.<br />

<br />

4.4977 109<br />

1 0.0086 cos <br />

(c)<br />

7 × 10 9<br />

−5 × 10 9 8 × 10 9<br />

−7 × 10 9


860 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

ep<br />

56. (a) Radius of earth 4000 miles. Choose r <br />

.<br />

1 e cos <br />

Vertices: 126,800, 0 and 4119, <br />

a <br />

c 65,459.5 4119 61,340.5<br />

e c a 61,340.5<br />

65,459.5 0.937<br />

2a <br />

126,800 4119<br />

2<br />

ep<br />

1 e cos 0 ep<br />

1 e cos ep<br />

1 e ep<br />

1 e 2ep<br />

1 e 2<br />

ep<br />

7988.1<br />

Thus, p a1 e2 <br />

8525.2. Thus, r <br />

<br />

.<br />

e<br />

1 e cos 1 0.937 cos <br />

(b) When<br />

and the distance from the surface of the earth to the satellite is<br />

15,029 4000 11,029 miles.<br />

(c) When and distance 38,370 miles.<br />

60, r 15,029<br />

30, r 42,370<br />

65,459.5<br />

57.<br />

4<br />

r <br />

<br />

43<br />

3 3 sin 1 sin <br />

False. The directrix is below the pole.<br />

58.<br />

16<br />

r 2 <br />

9 4 cos <br />

<br />

4<br />

False. The graph is not an ellipse.<br />

(It is two ellipses.)<br />

59.<br />

x 2<br />

a 2 y 2<br />

x 2<br />

a 2 y2<br />

b 2 1<br />

b 1 60. 2<br />

r 2 cos 2 <br />

r 2 sin 2 <br />

r 2 cos 2 <br />

1<br />

r2 sin 2 <br />

1<br />

a 2 b 2 a 2 b 2<br />

r 2 cos 2 <br />

r 2 1 cos 2 <br />

r 2 cos 2 <br />

1<br />

r2 1 cos 2 <br />

1<br />

a 2 b 2 a 2 b 2<br />

r 2 b 2 cos 2 r 2 a 2 r 2 a 2 cos 2 a 2 b 2<br />

r 2 b 2 cos 2 r 2 a 2 r 2 a 2 cos 2 a 2 b 2<br />

r 2 b 2 a 2 cos 2 r 2 a 2 a 2 b 2<br />

r 2 b 2 a 2 cos 2 r 2 a 2 a 2 b 2<br />

For an ellipse, b 2 a 2 c 2 . Hence,<br />

a 2 b 2 c 2<br />

r 2 c 2 cos 2 r 2 a 2 a 2 b 2<br />

r 2 c 2 cos 2 r 2 a 2 a 2 b 2<br />

r a c 2<br />

2 cos 2 r 2 b 2 , e c a<br />

r 2 e 2 cos 2 r 2 b 2<br />

r 2 e 2 cos 2 r 2 b 2<br />

r 2 1 e 2 cos 2 b 2<br />

r 2 e 2 cos 2 1 b 2<br />

b 2<br />

r<br />

r 2 <br />

.<br />

2 <br />

1 e 2 cos 2 <br />

<br />

r 2 c a 2 cos 2 r 2 b 2 , e c a<br />

b 2<br />

e 2 cos 2 1<br />

b 2<br />

1 e 2 cos 2 <br />

© Houghton Mifflin Company. All rights reserved.


Section 9.8 Polar Equations of Conics 861<br />

x 2<br />

61.<br />

169 y2<br />

144 1<br />

62.<br />

a 13, b 12, c 5, e 5 13<br />

144<br />

24,336<br />

r 2 <br />

<br />

1 25169 cos 2 169 25 cos 2 <br />

x 2<br />

63.<br />

25 y2<br />

16 1<br />

a 5, b 4, c 3, e 3 5<br />

b 2<br />

16<br />

400<br />

r 2 <br />

<br />

<br />

1 e 2 cos 2 1 925 cos 2 25 9 cos 2 <br />

x 2<br />

64.<br />

36 y2<br />

4 1<br />

a 6, b 2, c 40 2 10, e 210<br />

6<br />

r 2 <br />

b 2<br />

<br />

1 e 2 cos 2 <br />

4<br />

<br />

1 109 cos 2 <br />

10<br />

3<br />

36<br />

10 cos 2 9<br />

x 2<br />

9 y2<br />

16 1<br />

a 3, b 4, c 5, e 5 3<br />

r 2 <br />

16<br />

144<br />

<br />

1 259 cos 2 25 cos 2 9<br />

65. Center: x, y 0, 0,<br />

c 5, a 4, e 5 4<br />

b 2 c 2 a 2 25 16 9<br />

r 2 <br />

b 2<br />

<br />

1 e 2 cos 2 <br />

⇒ b 3<br />

9<br />

<br />

1 2516 cos 2 <br />

144<br />

25 cos 2 16<br />

66. Center: x, y 0, 0,<br />

c 4, a 5, e 4 5<br />

© Houghton Mifflin Company. All rights reserved.<br />

67.<br />

b 2 a 2 c 2 25 16 9<br />

r 2 <br />

b 2<br />

<br />

1 e 2 cos 2 <br />

4<br />

r <br />

1 0.4 cos <br />

Vertical directrix to left of pole<br />

(a) e 0.4 ⇒ ellipse<br />

−9<br />

6<br />

−6<br />

⇒ b 3<br />

9<br />

<br />

1 1625 cos 2 <br />

9<br />

−9<br />

7<br />

−5<br />

225<br />

25 16 cos 2 <br />

9<br />

(b)<br />

4<br />

r <br />

1 0.4 cos <br />

Vertical directrix to right of pole<br />

Graph is reflected in line<br />

r <br />

4<br />

1 0.4 sin <br />

2.<br />

Horizontal directrix below pole<br />

90 rotation counterclockwise


862 <strong>Chapter</strong> 9 Topics in Analytic Geometry<br />

68. The lengths of the major and<br />

minor axes increase as p<br />

increases.<br />

Example:<br />

r <br />

r <br />

0.52<br />

1 0.5 sin <br />

0.54<br />

1 0.5 sin <br />

69. Answers will vary. 70.<br />

r a sin b cos <br />

r 2 a r sin b r cos <br />

x 2 y 2 ay bx<br />

Circle<br />

71.<br />

43 tan 3 172.<br />

6 cos x 2 1 73.<br />

12 sin 2 9<br />

tan 1 3 3<br />

3<br />

cos x 1 2<br />

sin 2 3 4<br />

<br />

<br />

6 n<br />

<br />

x <br />

3<br />

2n,<br />

5<br />

3 2n<br />

sin ± 3<br />

2<br />

<br />

<br />

3<br />

n,<br />

2<br />

3 n<br />

74.<br />

9 csc 2 x 10 2 75.<br />

<br />

2 cot x 5 cos<br />

2<br />

76.<br />

2 sec 2 csc<br />

<br />

4<br />

csc 2 x 4 3<br />

2 cot x 0<br />

2 sec 22<br />

cot x 0<br />

sec 2<br />

<br />

x <br />

3<br />

sin 2 x 3 4<br />

sin x ±3<br />

2<br />

n,<br />

2<br />

3 n<br />

<br />

x <br />

2 n<br />

<br />

<br />

cos 1 2<br />

3<br />

2n,<br />

5<br />

3 2n<br />

For Exercises 77–80:<br />

sin u 3 cos u 4 cos v 1 sin v 1 5 , 5 , 2 , 2<br />

77.<br />

79.<br />

cosu v cos u cos v sin u sin v 78.<br />

4 5 1 2 3 5 1 2<br />

1<br />

52<br />

2<br />

10<br />

sinu v sin u cos v sin v cos u 80.<br />

3 5 1 2 1 2 4 5<br />

1<br />

52<br />

2<br />

10<br />

sinu v sin u cos v sin v cos u<br />

<br />

3<br />

5 2 1 2 1 4 5<br />

7<br />

52 72<br />

10<br />

cosu v cos u cos v sin u sin v<br />

<br />

4<br />

52 1 3<br />

5 2<br />

1<br />

7<br />

52 72<br />

10<br />

© Houghton Mifflin Company. All rights reserved.<br />

81. 12 C 9 220 82. 18 C 16 153 83. 10 P 3 720<br />

84. 29 P 2 812


Review Exercises for <strong>Chapter</strong> 9 863<br />

Review Exercises for <strong>Chapter</strong> 9<br />

1.<br />

Radius 3 0 2 4 0 2 2.<br />

x 2 y 2 25<br />

9 16 25 5<br />

Radius 8 0 2 15 0 2<br />

x 2 y 2 289<br />

64 225 289 17<br />

3.<br />

Radius 1 2 5 12 6 2 2 4.<br />

Radius 1 2 6 22 5 3 2<br />

1 2 36 16 1 52 13<br />

2<br />

Center <br />

5 1<br />

, 6 2<br />

2 2 2, 4<br />

x 2 2 y 4 2 13<br />

1 64 64 42<br />

2<br />

Center <br />

2 6<br />

, 3 5<br />

2 2 2, 1<br />

x 2 2 y 1 2 32<br />

5.<br />

1<br />

2 x2 1 2 y2 18 6.<br />

x 2 y 2 36<br />

Center: 0, 0<br />

Radius: 6<br />

3<br />

4 x2 3 4 y2 1<br />

x 2 y 2 4 3<br />

Center:<br />

Radius:<br />

0, 0<br />

2<br />

3 23<br />

3<br />

© Houghton Mifflin Company. All rights reserved.<br />

7.<br />

8.<br />

16x 2 x 1 4 16 y 2 3 2 y 9 16 3 4 9<br />

Center:<br />

16x 2 16y 2 16x 24y 3 0<br />

16x 1 2 2 16 y 3 4 2 16<br />

x 1 2 2 y 3 4 2 1<br />

1 2 , 3 4<br />

Radius: 1<br />

4x 2 4y 2 32x 24y 51 0<br />

4 x 2 8x 16 4 y 2 6y 9 51 64 36<br />

4x 4 2 4 y 3 2 49<br />

x 4 2 y 3 2 49 4<br />

Center: 4, 3<br />

Radius: 7 2


864 <strong>Chapter</strong> 9 Topics In Analytic Geometry<br />

9.<br />

x 2 4x 4 y 2 6y 9 3 4 9 10.<br />

Center:<br />

Radius: 4<br />

x 2 2 y 3 2 16<br />

2, 3<br />

−7 −6 −4 −3 −2 −1 2 3<br />

−2<br />

−3<br />

−4<br />

−5<br />

−6<br />

2<br />

−8<br />

y<br />

x<br />

x 2 8x 16 y 2 10y 25 8 16 25<br />

Center:<br />

Radius: 7<br />

4, 5<br />

x 4 2 y 5 2 49<br />

14<br />

10<br />

8<br />

6<br />

4<br />

2<br />

−14 −10<br />

2 4 6<br />

−4<br />

−6<br />

y<br />

x<br />

11. x-intercepts:<br />

x 3 2 0 1 2 7<br />

12. x-intercepts:<br />

3 ± 6, 0<br />

y-intercepts:<br />

0 3 2 y 1 2 7<br />

No<br />

y-intercepts<br />

x 3 2 6<br />

x 3 ±6<br />

x 3 ± 6<br />

y 1 2 2, impossible<br />

y-intercepts:<br />

x 5 2 0 6 2 27<br />

x 5 2 9, impossible<br />

No x-intercepts<br />

0 5 2 y 6 2 27<br />

y 6 2 2<br />

y 6 ±2<br />

y 6 ± 2<br />

0, 6 ± 2<br />

13.<br />

4x y 2 0 y<br />

14.<br />

Vertex:<br />

Focus:<br />

y 2 41x, p 1<br />

0, 0<br />

1, 0<br />

Directrix: x 1<br />

6<br />

4<br />

2<br />

–2 2 4 6 8 10<br />

–2<br />

–4<br />

–6<br />

x<br />

y 1 8 x2<br />

x 2 42y, p 2<br />

Vertex:<br />

Focus:<br />

0, 0<br />

0, 2<br />

Directrix: y 2<br />

y<br />

3<br />

–12 –9 –6 6 9 12<br />

–6<br />

–9<br />

–12<br />

–15<br />

–18<br />

–21<br />

x<br />

15.<br />

1<br />

2 y2 18x 0 16.<br />

Vertex:<br />

Focus:<br />

1<br />

2 y2 18x<br />

y 2 36x 49x, p 9<br />

0, 0<br />

9, 0<br />

Directrix: x 9<br />

12<br />

−20 −16 −12 −8 −4 4<br />

−4<br />

4<br />

y<br />

x<br />

1<br />

4 y 8x2 0<br />

Vertex:<br />

Focus:<br />

8x 2 1 4 y<br />

x 2 1 32 y 4 1<br />

128y, p 1<br />

128<br />

0, 0<br />

0, 128<br />

1<br />

Directrix: y 1<br />

128<br />

1<br />

8<br />

y<br />

5<br />

16<br />

1<br />

4<br />

3<br />

16<br />

− 3 1 1<br />

16<br />

− 8<br />

− (0, 0)<br />

16<br />

)<br />

1<br />

0,<br />

128)<br />

1<br />

8<br />

3<br />

16<br />

x<br />

© Houghton Mifflin Company. All rights reserved.


Review Exercises for <strong>Chapter</strong> 9 865<br />

17. Vertex: 0, 0 18. Vertex: 4, 2<br />

Focus: 6, 0<br />

Focus: 4, 0<br />

Parabola opens to left.<br />

y 2 4px<br />

Vertical axis, p 2<br />

x 4 2 42y 2<br />

y 2 46x<br />

x 4 2 8y 2<br />

y 2 24x<br />

19. Vertex: 6, 4<br />

Passes through 0, 0<br />

Vertical axis<br />

x 6 2 4py 4<br />

0 6 2 4p0 4<br />

36 16p<br />

9 4 p<br />

x 6 2 4 9 4y 4<br />

x 6 2 9y 4<br />

20. Vertex: 0, 5<br />

y 5 2 4px 0 4px<br />

6, 0 on graph:<br />

0 5 2 4p6 ⇒ p 25<br />

24<br />

y 5 2 4 25<br />

24x 25 6 x<br />

21.<br />

x 2 2y 4 1 2 y, p 1 2<br />

22.<br />

2x y 2<br />

Focus:<br />

0, 1 2<br />

4 1 2 x y2<br />

© Houghton Mifflin Company. All rights reserved.<br />

d 1 1 2 b<br />

d 2 2 0 2 2 1 2 2 5 2<br />

d 1 d 2<br />

⇒<br />

Slope of tangent line:<br />

Equation: y 2 2x 2<br />

x-intercept:<br />

1, 0<br />

y<br />

(0, b)<br />

1<br />

2 b 5 2<br />

y 2x 2<br />

F<br />

x<br />

−2 2<br />

−1<br />

d 1<br />

d 2 (2, −2)<br />

−2<br />

⇒<br />

b 2<br />

b 2<br />

0 2 4<br />

2 2<br />

Focus:<br />

p 1 2<br />

1 2 , 0 <br />

Let b, 0 be the x-intercept of the tangent line.<br />

d 1 1 2 b<br />

d 2 8 1 2 2 4 0 2 17 2<br />

1<br />

2 b 17<br />

2 ⇒ b 8<br />

m 4 0<br />

8 8 1 4<br />

y 0 1 x 8<br />

4<br />

y 1 4 x 2<br />

x-intercept: 8, 0


866 <strong>Chapter</strong> 9 Topics In Analytic Geometry<br />

23.<br />

x 2 4py 12<br />

4, 10 on curve:<br />

16 4p10 12 8p ⇒ p 2<br />

x 2 42y 12 8y 96<br />

y x2 96<br />

8<br />

y 0<br />

if x 2 96 ⇒ x 46 ⇒ width is 86 meters.<br />

24. (a) Parabola:<br />

Vertex: 0, 4<br />

Passes through ±4, 0<br />

25.<br />

x 2 4py 4<br />

16 4p0 4<br />

16 16p<br />

1 p<br />

x 2 4y 4<br />

Circle:<br />

Passes through ±4, 0<br />

Radius:<br />

Center:<br />

r 8<br />

0, k<br />

x 2 y k 2 8 2<br />

±4 2 0 k 2 8 2<br />

16 k 2 64<br />

k 2 48<br />

x 2 y 43 2 64<br />

0, ±23<br />

Eccentricity c a<br />

23<br />

4<br />

3<br />

2<br />

k 48 43<br />

3<br />

2<br />

1<br />

−4 −3 −1 1 3 4<br />

–2<br />

–3<br />

(b) Parabola:<br />

x<br />

x 2 4y 4 ⇒ y 1 4 x2 4<br />

Circle:<br />

x 2 y 43 2 64 ⇒ y 64 x 2 43<br />

d 1 4 x2 4 64 x 2 43<br />

d 1 4 x2 64 x 2 4 43<br />

x 0 1 2 3 4<br />

d 2.928 2.741 2.182 1.262 0<br />

x 2<br />

4 y2<br />

16 1 26. x 2<br />

9 y2<br />

8 1<br />

a 4, b 2, c 16 4 12 23<br />

a 3, b 22, c 9 8 1<br />

Center: 0, 0<br />

Center: 0, 0<br />

Vertices: 0, ±4<br />

y<br />

Vertices: ±3, 0<br />

4<br />

Foci:<br />

Foci: ±1, 0<br />

Eccentricity c a 1 3<br />

2<br />

1<br />

−4 −2 −1<br />

−1<br />

1 2 4<br />

−2<br />

−4<br />

y<br />

x<br />

© Houghton Mifflin Company. All rights reserved.


Review Exercises for <strong>Chapter</strong> 9 867<br />

27.<br />

x 4 2<br />

6<br />

y 42<br />

9<br />

1 28.<br />

x 1 2<br />

16<br />

y 32<br />

6<br />

1<br />

a 3, b 6, c 9 6 3<br />

a 4, b 6, c 16 6 10<br />

Center:<br />

Vertices:<br />

Foci:<br />

4, 4<br />

4, 1, 4, 7<br />

4, 4 ± 3<br />

Eccentricity c a 3<br />

3<br />

1<br />

y<br />

−2 −1 1 2 3 5 6 7 8<br />

−2<br />

−3<br />

−4<br />

−5<br />

−6<br />

−7<br />

−8<br />

−9<br />

x<br />

Center: 1, 3<br />

Vertices: 3, 3, 5, 3<br />

Foci: 1 ± 10, 3<br />

Eccentricity c a 10<br />

4<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

2<br />

1<br />

−6 −5 −4 −3 −2 −1 1 2 3 4<br />

y<br />

x<br />

29. (a) 16x 2 2x 1 9y 2 8y 16 16 16 144 (c)<br />

16x 1 2 9y 4 2 144<br />

y<br />

−3 −2 −1 1 2 3 4 5<br />

x<br />

(b) Center: 1, 4<br />

x 1 2<br />

9<br />

<br />

y 42<br />

16<br />

1<br />

−2<br />

−3<br />

−4<br />

−5<br />

−6<br />

a 4, b 3, c 16 9 7<br />

−8<br />

Vertices: 1, 0, 1, 8<br />

Foci:<br />

1, 4 ± 7<br />

e c a 7<br />

4<br />

30. (a) 4x 2 4x 4 25y 2 6y 9 141 16 225<br />

(c)<br />

y<br />

© Houghton Mifflin Company. All rights reserved.<br />

31. (a)<br />

4x 2 2 25y 3 2 100<br />

x 2 2<br />

25<br />

<br />

(b) a 5, b 2, c 21<br />

Center: 2, 3<br />

Vertices: 3, 3, 7, 3<br />

Foci: 2 ± 21, 3<br />

e 21<br />

5<br />

y 32<br />

4<br />

1<br />

3x 2 4x 4 8y 2 14y 49 403 12 392<br />

—CONTINUED—<br />

3x 2 2 8y 7 2 1<br />

x 2 2<br />

13<br />

<br />

y 72<br />

18<br />

1<br />

6<br />

4<br />

2<br />

−8 −6 −4 −2 2 4<br />

−2<br />

−4<br />

−6<br />

x


868 <strong>Chapter</strong> 9 Topics In Analytic Geometry<br />

31. —CONTINUED—<br />

(b) Center: 2, 7<br />

(c)<br />

y<br />

a 3<br />

3 , b 2<br />

4<br />

8<br />

6<br />

c 2 a 2 b 2 1 3 1 8 5 24 ⇒ c 30<br />

12<br />

3<br />

Vertices:<br />

2 ±<br />

3 , 7 <br />

30<br />

Foci:<br />

2 ±<br />

12 , 7 <br />

−4<br />

−3<br />

−2<br />

−1<br />

4<br />

2<br />

x<br />

Eccentricity:<br />

c<br />

a 3012<br />

33<br />

10<br />

4<br />

32. (a)<br />

x 2 20y 2 5x 120y 185 0<br />

(b)<br />

a 5<br />

2 , b 1 4 , c 5 4 1 16 19<br />

4<br />

(c)<br />

x2 5x 25 4 20y2 6y 9 185 25 4 180<br />

1<br />

y<br />

x 52 2<br />

54<br />

−1 1 2 3 4<br />

−1<br />

x 5 2 2 20y 3 2 5 4<br />

x<br />

<br />

y 32<br />

116<br />

1<br />

Center:<br />

5 2 , 3 <br />

Vertices: 5 2 ± 5<br />

2 , 3 <br />

Foci: 5 2 ± 19<br />

4 , 3 <br />

e c a 194<br />

52 95<br />

10<br />

−2<br />

−3<br />

−4<br />

33. Vertices:<br />

Foci:<br />

±4, 0<br />

±5, 0<br />

a 5, c 4 ⇒ b 3<br />

x 2<br />

25 y2<br />

9 1<br />

34. Vertices: 0, ±6<br />

Passes through 2, 2<br />

Vertical major axis<br />

Center: 0, 0, a 6<br />

x 2<br />

b 2 y2<br />

36 1<br />

2 2<br />

b 2 22<br />

36 1<br />

4<br />

b 2 1 1 9 8 9<br />

b 2 36 8 9 2<br />

x 2<br />

92 y2<br />

36 1<br />

© Houghton Mifflin Company. All rights reserved.


Review Exercises for <strong>Chapter</strong> 9 869<br />

35. Vertices: 3, 0, 7, 0<br />

Foci: 0, 0, 4, 0<br />

Horizontal major axis<br />

Center: 2, 0<br />

a 5, c 2,<br />

b 25 4 21<br />

x h 2<br />

<br />

a 2<br />

x 2 2<br />

25<br />

y k2<br />

b 2 1<br />

y2<br />

21 1<br />

36. Vertices: 2, 0, 2, 4<br />

Foci: 2, 1, 2, 3<br />

Vertical major axis<br />

Center: 2, 2<br />

a 2, c 1,<br />

b 4 1 3<br />

x h 2<br />

<br />

b 2<br />

y k2<br />

a 2 1<br />

x 2 2 y 2<br />

2<br />

1<br />

3 4<br />

37. a 5, b 4, c a 2 b 2 25 16 3 38.<br />

x 2<br />

324 y 2<br />

1, a 324 18, b 196 14<br />

196<br />

The foci should be placed 3 feet on either side of<br />

the center and have the same height as the pillars.<br />

Longest distance: 2a 218 36 feet<br />

Shortest distance: 2b 214 28 feet<br />

c 2 a 2 b 2 128<br />

Foci: ±82, 0<br />

Distance between foci:<br />

162 22.63 feet<br />

39.<br />

a c 1.3495 10 9 40.<br />

a c 1.5045 10 9<br />

Adding,<br />

Then<br />

c 1.5045 10 9 1.427 10 9 0.0775 10 9<br />

e c a 0.0543.<br />

2a 2.854 10 9 ⇒ a 1.427 10 9 .<br />

a 72 2 36<br />

e c 0.2056 ⇒ c ae 7.4016<br />

a<br />

b 2 a 2 c 2 36 2 7.4016 2 1241.2<br />

x 2<br />

1296 y2<br />

1241.2 1<br />

© Houghton Mifflin Company. All rights reserved.<br />

41. (a)<br />

(b)<br />

5y 2 4x 2 20<br />

y 2<br />

4 x2<br />

5 1<br />

a 2, b 5,<br />

c 4 5 3<br />

Center:<br />

Vertices:<br />

Foci:<br />

0, 0<br />

0, ±3<br />

0, ±2<br />

Eccentricity c a 3 2<br />

(c)<br />

5<br />

4<br />

3<br />

1<br />

−5 −4 −3 −2 −1 1 2 3 4 5<br />

−3<br />

−4<br />

−5<br />

y<br />

x


870 <strong>Chapter</strong> 9 Topics In Analytic Geometry<br />

42. (a)<br />

x 2 y 2 9 4<br />

x 2<br />

94 <br />

y2<br />

94 1<br />

(b)<br />

a 3 2 , b 3 2 , (c)<br />

c <br />

9<br />

4 9 4<br />

−4 −3 −1<br />

<br />

9<br />

2 3 2 32<br />

2<br />

Center:<br />

Vertices:<br />

Foci:<br />

0, 0<br />

±3 2 , 0 <br />

±32 2 , 0 <br />

5<br />

4<br />

3<br />

2<br />

1<br />

−5 1 3 4 5<br />

−2<br />

−3<br />

−4<br />

−5<br />

y<br />

x<br />

Eccentricity c a 322<br />

32<br />

2<br />

43. (a) 9x 2 2x 1 16y 2 2y 1 151 9 16 (c)<br />

y<br />

9x 1 2 16y 1 2 144<br />

6<br />

4<br />

x 1 2<br />

16<br />

(b) Center: 1, 1, a 4, b 3, c 5<br />

Vertices: 5, 1, 3, 1<br />

<br />

y 12<br />

9<br />

1<br />

2<br />

−6 −4 2 4 6<br />

−2<br />

−4<br />

−6<br />

−8<br />

8<br />

x<br />

Foci: 6, 1, 4, 1<br />

Eccentricity: 5 4<br />

44. (a) 25y 2 6y 9 4x 2 2x 1 121 225 4 (c)<br />

y<br />

25y 3 2 4x 1 2 100<br />

y 3 2<br />

4<br />

(b) Center: 1, 3, a 2, b 5, c 29<br />

Vertices: 1, 1, 1, 5<br />

Foci: 1, 3 ± 29<br />

Eccentricity: 29<br />

2<br />

<br />

x 12<br />

25<br />

1<br />

6<br />

4<br />

2<br />

−8 −6<br />

−2<br />

4<br />

−4<br />

−6<br />

−8<br />

−10<br />

−12<br />

−14<br />

6 8 10<br />

x<br />

© Houghton Mifflin Company. All rights reserved.


Review Exercises for <strong>Chapter</strong> 9 871<br />

45. (a)<br />

y 2 2y 1 4x 2 12x 36 59 1 144<br />

(b) Center:<br />

Foci:<br />

6, 1<br />

y 1 2 4x 6 2 202<br />

x 6 2 y 12<br />

1<br />

1012 202<br />

a 2 101<br />

2 , b2 202, c 2 101 505<br />

202 <br />

2 2<br />

Vertices:<br />

2 , 1 <br />

6 ± 101<br />

6 ± 505<br />

2 , 1 <br />

Eccentricity: e c a 505<br />

101 5<br />

(c)<br />

30<br />

20<br />

10<br />

−30 −20<br />

10 20 30<br />

−10<br />

−20<br />

−30<br />

y<br />

x<br />

46. (a)<br />

9 x 2 8x 16 y 2 8y 16 119 144 16 9<br />

9x 4 2 y 4 2 9<br />

x 4 2 <br />

y 42<br />

9<br />

1<br />

(b) Center:<br />

4, 4<br />

(c)<br />

y<br />

a 1, b 3, c 10<br />

Vertices: 4 ± 1, 4: 3, 4, 5, 4<br />

Foci: 4 ± 10, 4<br />

12<br />

10<br />

8<br />

6<br />

4<br />

Eccentricity: e 10<br />

2<br />

−2 4 8 10 12<br />

−2<br />

x<br />

© Houghton Mifflin Company. All rights reserved.<br />

47.<br />

x 2<br />

a 2 y2<br />

b 2 1<br />

a 4<br />

c 2 a 2 b 2 ⇒ 36 16 b 2<br />

x 2<br />

16 y2<br />

20 1 ⇒ b 20 25<br />

48. Vertices: 0, ±1<br />

Foci: 0, ±3<br />

Vertical transverse axis<br />

Center: 0, 0<br />

a 1, c 3, b 9 1 8<br />

y 2<br />

1 x2<br />

8 1


872 <strong>Chapter</strong> 9 Topics In Analytic Geometry<br />

49. Foci: 0, 0, 8, 0 ⇒ c 4 50. Vertical transverse axis<br />

Center: 4, 0<br />

Center: 3, 0 ⇒ c 2<br />

Asymptotes:<br />

a<br />

y ±2x 4 ⇒ b b 2 ⇒ a 2b<br />

a 2 ⇒ b 2a<br />

a 2 b 2 c 2<br />

c 2 a 2 b 2<br />

2b 2 b 2 4<br />

16 a 2 2a 2 5a 2 ⇒ a 4 5 ,<br />

x 4 2<br />

165<br />

<br />

b 8 5<br />

y2<br />

645 1<br />

y k 2<br />

<br />

a 2<br />

5y 2<br />

16<br />

b 2 4 5<br />

a 2 16<br />

5<br />

x h2<br />

b 2 1<br />

<br />

5x 32<br />

4<br />

1<br />

51.<br />

d 2 d 1 186,0000.0005<br />

2a 93<br />

a 46.5<br />

c 100<br />

b c 2 a 2<br />

x 2<br />

a 2 y2<br />

b 2 1<br />

(−100, 0)<br />

B<br />

100<br />

80<br />

60<br />

40<br />

20<br />

y<br />

−60 −20<br />

−40<br />

−60<br />

−80<br />

−100<br />

(100, 0)<br />

x<br />

20 A<br />

(60, 0)<br />

x 60 ⇒ y 2 b 2 x2<br />

a 1 2 1002 46.5 2 <br />

60 2<br />

46.5 1 5211.57 ⇒ y 72.2<br />

2<br />

72.2 miles north<br />

52. Let the friends be at B and C, you at the origin A. The sound at C is heard 2 seconds after B:<br />

2a CD BD 21100 5280 5 Thus, a 5 12 . 24 , c 2 and 576 . Thus, using miles,<br />

the hyperbola is<br />

x 2<br />

25576 y 2<br />

Now place the center at 1, 0 and determine the second hyperbola.<br />

c 1 and<br />

b 2 1 25<br />

64 39<br />

64<br />

x 1 2<br />

2564 <br />

y2<br />

3964 1<br />

2279576 1. b 2 c 2 a 2 2279<br />

2a DB AD 6 <br />

1100<br />

5280 ⇒ a 5 8<br />

1.<br />

y<br />

2.<br />

C<br />

−2<br />

−1<br />

1<br />

−1<br />

A<br />

D<br />

1<br />

2<br />

B<br />

x<br />

C<br />

−2<br />

−1<br />

1<br />

−1<br />

A<br />

y<br />

D<br />

1<br />

2<br />

B<br />

x<br />

© Houghton Mifflin Company. All rights reserved.


Review Exercises for <strong>Chapter</strong> 9 873<br />

53.<br />

54.<br />

3x 2 2y 2 12x 12y 29 0<br />

3 x 2 4x 4 2y 2 6y 9 29 12 18<br />

3 x 2 2 2y 3 2 1<br />

Ellipse<br />

4x 2 4y 2 4x 8y 11 0<br />

A C 4 ⇒ Circle<br />

55.<br />

5x 2 2x 1 2y 2 2y 1 17 5 2<br />

Hyperbola<br />

5x 2 2y 2 10x 4y 17 0 56.<br />

5x 1 2 2y 1 2 14<br />

y 1 2<br />

7<br />

<br />

x 12<br />

145<br />

1<br />

4y 2 5x 3y 7 0<br />

A 0, C 4, AC 0<br />

Parabola<br />

57.<br />

xy 4 0<br />

A 0, B 1, C 0<br />

cot 2 A C<br />

B<br />

0<br />

⇒<br />

<br />

<br />

x 2<br />

2 x y, y 2<br />

2 x y<br />

4<br />

y′ 5<br />

x′<br />

4<br />

3<br />

2<br />

−3 −2<br />

−2<br />

y<br />

2 3 4 5<br />

x<br />

xy 4<br />

2<br />

2 x y 2<br />

2 x y 4<br />

1<br />

2 x 2 1 2 y 2 4<br />

x 2<br />

8<br />

y 2<br />

8<br />

1<br />

© Houghton Mifflin Company. All rights reserved.<br />

58.<br />

Hyperbola<br />

x 2 10xy y 2 1 0<br />

A C 1 ⇒ cot 2 0 ⇒<br />

x 2<br />

2 x y , y 2<br />

2 x y <br />

2<br />

2 x y <br />

2<br />

10<br />

2<br />

2 x y <br />

2<br />

2 x y <br />

2<br />

2 x y <br />

2<br />

1 0<br />

Hyperbola<br />

<br />

<br />

4<br />

1<br />

2 x 2 1 2 y 2 xy 5x 2 y 2 1 2 x 2 xy 1 2 y 2 1<br />

4x 2 6y 2 1<br />

x 2<br />

14 y 2<br />

16 1<br />

y′<br />

2<br />

1<br />

y<br />

1 2<br />

x′<br />

x


874 <strong>Chapter</strong> 9 Topics In Analytic Geometry<br />

59.<br />

5x 2 2xy 5y 2 12 0<br />

y<br />

A 5, B 2, C 5<br />

cot 2 0<br />

⇒<br />

<br />

<br />

x 2<br />

2 x y, y 2<br />

2 x y<br />

4<br />

5x 2 2xy 5y 2 12<br />

y′ 3<br />

2<br />

x′<br />

1<br />

−3 −2 −1 1 2 3<br />

−1<br />

−2<br />

−3<br />

x<br />

5 <br />

2<br />

2 x y <br />

2<br />

2<br />

2<br />

2 x y <br />

2<br />

2 x y 5 <br />

2<br />

2 x y <br />

2<br />

12<br />

5 <br />

1<br />

2 x 2 xy 1 2 y 2 x 2 y 2 5 <br />

1<br />

2 x 2 xy 1 2 y 2 12<br />

4 x 2 6y 2 12<br />

x 2<br />

3<br />

y 2<br />

2<br />

1<br />

Ellipse<br />

60.<br />

cot 2 4 4<br />

8<br />

x 2<br />

2 x y, y 2<br />

2 x y<br />

4 2<br />

2 x y <br />

2<br />

8 2<br />

2 x y 2<br />

2 x y <br />

4 2<br />

2 x y <br />

2<br />

2 x 2 y 2 2xy 4x 2 y 2 2x 2 y 2 2xy 7x y 9x y 0<br />

Parabola<br />

(c)<br />

0 ⇒<br />

−5 2<br />

2<br />

−10<br />

<br />

<br />

4<br />

72 2<br />

2 x y <br />

92 2<br />

2 x y <br />

0<br />

y′<br />

−4 −3<br />

2 3 4<br />

−4<br />

8x 2 16x 2y 0<br />

−6 6<br />

−4<br />

4<br />

3<br />

2<br />

y<br />

y 4x 2 8x<br />

61. (a) B 2 4AC 8 2 4161 0 62. (a) B 2 4AC 300 ⇒ Ellipse<br />

Parabola<br />

(b) 7y 2 8xy 13x 2 45 0<br />

(b) y 2 5 8xy 16x 2 10x 0<br />

y 8x ± 64x2 4713x 2 45<br />

y 8x 5 ± 5 8x2 416x 2 14<br />

10x<br />

2<br />

(c)<br />

4<br />

x′<br />

x<br />

© Houghton Mifflin Company. All rights reserved.


Review Exercises for <strong>Chapter</strong> 9 875<br />

63. (a) B 2 4AC 2 2 411 0<br />

(c)<br />

Parabola<br />

(b) y 2 2x 22y x 2 22x 2 0<br />

y 22 2x ± 2x 222 4x 2 22x 2<br />

2<br />

10<br />

−15 0<br />

0<br />

64. (a)<br />

(b)<br />

(c)<br />

B 2 4AC 100 4<br />

y 2 10xy x 2 1 0<br />

y 10x ± 100x2 4x 2 1<br />

2<br />

y 10x ± 96x2 4<br />

2<br />

y 5x ± 24x 2 1<br />

4<br />

96 > 0 ⇒ Hyperbola<br />

65. Adding the equations,<br />

24x 240 0 ⇒ x 10. Then:<br />

4 100 y 2 560 24y 304 0<br />

y 2 24y 144 0<br />

y 12 2 0 ⇒ y 12<br />

Solution: 10, 12<br />

−6 6<br />

−4<br />

66.<br />

4x 2 4y 2 100<br />

9x 4y 2 0<br />

Adding:<br />

4x 2 9x 100<br />

4x 2 9x 100 0<br />

67.<br />

t 2 1 0 1 2 3<br />

x 8 5 2 1 4 7<br />

y 15 11 7 3 1 5<br />

16<br />

y<br />

x 44x 25 0 ⇒ x 4, 25 4<br />

12<br />

If x 4:<br />

8<br />

© Houghton Mifflin Company. All rights reserved.<br />

68.<br />

4y 2 94 36<br />

y 2 9 ⇒ y ±3<br />

If x 25 4 , 925 4 4y 2 , impossible.<br />

Answer: 4, 3, 4, 3<br />

x t, y 8 t<br />

t 0 1 2 3 4<br />

x 0 1 2 3 2<br />

y 8 7 6 5 4<br />

y<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−3 −2 −1 1 2 4 5 6<br />

−1<br />

x<br />

4<br />

−12 −8 −4<br />

8<br />

−4<br />

x


876 <strong>Chapter</strong> 9 Topics In Analytic Geometry<br />

69.<br />

x 5t 1, y 2t 5 70.<br />

t 1 5x 1 ⇒<br />

y 2 5x 1 5 2 5 x 27 5 , line<br />

y<br />

40<br />

30<br />

x 4t 1, y 8 3t<br />

t 1 4x 1 ⇒<br />

y 8 3 1 4x 1 3 4 x 35 4<br />

y<br />

20<br />

15<br />

20<br />

10<br />

−10<br />

−10<br />

−20<br />

10 20<br />

30<br />

x<br />

5<br />

−20 −15 −10 −5<br />

−10<br />

−15<br />

−20<br />

5<br />

10 20<br />

x<br />

71.<br />

x t 2 2, y 4t 2 3 72.<br />

x ln 4t, y t 2<br />

t 2 x 2 ⇒<br />

e x 4t, t 1 4 ex<br />

⇒<br />

y 1 4 ex 2 1 16 e2x<br />

y 4x 2 3 4x 11, x ≥ 2<br />

y<br />

y<br />

4<br />

3<br />

12<br />

2<br />

10<br />

8<br />

6<br />

1<br />

−4 −3 −2 −1 1 2 3 4<br />

x<br />

4<br />

−2<br />

2<br />

−3<br />

−4 −2 4 6 8 10 12<br />

x<br />

−4<br />

−4<br />

73.<br />

75.<br />

y<br />

x t 3 , y 1 2 t2 74.<br />

t x 13 ⇒ y 1 2 x23<br />

−4 −3 −2 −1 1<br />

−1<br />

−2<br />

−3<br />

x 3 t 76.<br />

y t<br />

t x 3 ⇒ y t x 3<br />

y x 3<br />

4<br />

−6 6<br />

−4<br />

5<br />

4<br />

3<br />

2<br />

1<br />

2 3 4<br />

x<br />

x 4 t , y t 2 1<br />

t 4<br />

x<br />

⇒<br />

y 16<br />

x 2 1<br />

x t 77.<br />

y 3 t 3 x x 13<br />

2<br />

−3 3<br />

−2<br />

x 1 t<br />

y t<br />

y t 1 x<br />

20<br />

y<br />

−12 −8 −4 4 8 12<br />

−4<br />

4<br />

−6 6<br />

−4<br />

x<br />

© Houghton Mifflin Company. All rights reserved.


Review Exercises for <strong>Chapter</strong> 9 877<br />

78.<br />

x t 79.<br />

x 2t 80.<br />

x t 2 , y t<br />

y 1 t 1 x<br />

y 4t<br />

y 22t 2x<br />

t y 2<br />

x y 2 2 y 4 , y ≥ 0<br />

4<br />

Line<br />

y 4 x, x ≥ 0<br />

−6 6<br />

4<br />

3<br />

−4<br />

−6 6<br />

−1 5<br />

−4<br />

−1<br />

81.<br />

x 1 4t<br />

y 2 3t<br />

t x 1<br />

4<br />

⇒ y 2 3 <br />

x 1<br />

4 2 3 4 x 3 4<br />

3x 4y 11 0<br />

y 11<br />

4 3 4 x −4 8<br />

−2<br />

6<br />

82.<br />

x t 4, y t 2 7<br />

83.<br />

t x 4<br />

y x 4 2<br />

−2 10<br />

−1<br />

x 3<br />

y t<br />

Vertical line: x 3<br />

4<br />

−3 9<br />

−4<br />

84.<br />

x t<br />

7<br />

85.<br />

x 6 cos , y 6 sin <br />

8<br />

y 2<br />

cos x 6 , sin y 6<br />

−12<br />

12<br />

© Houghton Mifflin Company. All rights reserved.<br />

86.<br />

x 3 3 cos , y 2 5 sin <br />

cos x 3<br />

3 , sin y 2<br />

5<br />

x 3 2<br />

<br />

9<br />

y 22<br />

25<br />

1<br />

−6 6<br />

−4<br />

8<br />

−4<br />

−1<br />

14<br />

87.<br />

x 2<br />

36 y2<br />

36 1<br />

x 2 y 2 36<br />

y 6x 2<br />

x t, y 6t 2<br />

x t, y 6t 2<br />

Other answers possible<br />

−8


878 <strong>Chapter</strong> 9 Topics In Analytic Geometry<br />

88.<br />

x t, y 10 t 89.<br />

x t, y 10 t<br />

Many answers possible<br />

y x 2 2<br />

x t, y t 2 2<br />

x t 1, y t 1 2 2 t 2 2t 3<br />

Other answers possible<br />

90.<br />

x t, y 2t 3 5t 91.<br />

x t, y 2t 3 5t<br />

Many answers possible<br />

x x 1 tx 2 x 1 3 t8 3 5t 3<br />

y y 1 ty 2 y 1 5 t0 0 5<br />

or x t, y 5<br />

92.<br />

x x 1 tx 2 x 1 2 t2 2 2 93.<br />

y y 1 ty 2 y 1 <br />

1 t4 1 1 5t<br />

or x 2, y t<br />

x x 1 tx 2 x 1 <br />

1 t10 1 11t 1<br />

y y 1 ty 2 y 1 6 t0 6 6t 6<br />

94.<br />

x x 1 tx 2 x 1 0 t 5 2 0 5 2<br />

y y 1 ty 2 y 1 0 t6 0 6t<br />

or x 5t, y 12t<br />

t 95. 90, 4 is on the curve:<br />

90 0.82v 0 t ⇒ v 0 90<br />

0.82t<br />

4 7 0.57 <br />

90<br />

0.82t t 16t 2 ⇒<br />

16t 2 3 0.5790<br />

0.82<br />

Hence, v 0 <br />

⇒ t 2.024<br />

90<br />

54.23 ftsec.<br />

0.822.024<br />

96. From Exercise 95, v 0 54.23. 97. From Exercise 96:<br />

99.<br />

x 0.8254.23t 44.47t<br />

y 7 0.5754.23t 16t 2<br />

7 30.91t 16t 2<br />

π<br />

2<br />

( 1, 4<br />

π<br />

1 2 3<br />

1, 7<br />

4 , 5<br />

1, 4 , 1, 3<br />

4 <br />

(<br />

0<br />

25<br />

0 100<br />

0<br />

The maximum height is approximately<br />

21.9 feet for t 0.97.<br />

1,<br />

100.<br />

4<br />

<br />

(<br />

−5, −<br />

π<br />

3<br />

5,<br />

(<br />

5<br />

π<br />

2<br />

3 , 5,<br />

98. From Exercise 95,<br />

t 2.024 seconds.<br />

1 2 3 4 5<br />

2<br />

3 , 0<br />

5, 4<br />

3 <br />

© Houghton Mifflin Company. All rights reserved.


)<br />

Review Exercises for <strong>Chapter</strong> 9 879<br />

101.<br />

r, 2, 11<br />

6 102.<br />

r, 1, 5<br />

6 <br />

π<br />

2<br />

5<br />

( π<br />

1,<br />

6 )<br />

π<br />

2<br />

11 π<br />

−2, −<br />

6 )<br />

1 2 3<br />

0<br />

1 2 3<br />

0<br />

2,<br />

<br />

6 , <br />

2,<br />

7<br />

6 , <br />

2, 5<br />

6 <br />

1, <br />

<br />

6 , <br />

1,<br />

11<br />

6 , <br />

1, 7<br />

6 <br />

103.<br />

5, 4<br />

3 104.<br />

( 10,<br />

3π<br />

4 )<br />

π<br />

2<br />

π<br />

2<br />

(<br />

5, −<br />

4<br />

3<br />

π<br />

(<br />

1 2 3 4<br />

0<br />

1 2 3<br />

0<br />

2<br />

5, <br />

3 , 5, 3 , <br />

5<br />

5,<br />

3 <br />

r, 10, 5<br />

<br />

4 , 10, 4 , <br />

7<br />

10,<br />

4 <br />

105.<br />

r, 5, 7<br />

6 106.<br />

x, y 53<br />

2 , 2<br />

5<br />

π<br />

2<br />

© Houghton Mifflin Company. All rights reserved.<br />

107.<br />

(<br />

5, −<br />

7π<br />

6<br />

2, 5<br />

3 <br />

(<br />

π<br />

2<br />

1 2 3<br />

x r cos 2 <br />

1<br />

y r sin 2 <br />

3<br />

2 3<br />

x, y 1, 3<br />

0<br />

2 1 3<br />

0<br />

π<br />

2<br />

)<br />

5 π<br />

2, − )<br />

1 2 3 4<br />

1 2 3 4 5<br />

−4,<br />

2π<br />

3<br />

r, 4, 2<br />

3 <br />

(<br />

(<br />

0<br />

x, y 4 cos 2 2<br />

, 4 sin<br />

3 3 2, 23


880 <strong>Chapter</strong> 9 Topics In Analytic Geometry<br />

108.<br />

11<br />

1, 6 109.<br />

x r cos 1 <br />

3<br />

2 <br />

y r sin 1 1 2<br />

x, y 3<br />

2 , 1 2<br />

)<br />

11 π<br />

−1,<br />

6 )<br />

π<br />

2<br />

1 2 3<br />

0<br />

r, 3, 3<br />

4 <br />

x, y 3 cos 3 3<br />

, 3 sin<br />

4<br />

(<br />

3,<br />

3π<br />

4<br />

(<br />

π<br />

2<br />

1 2 3<br />

0<br />

4 32<br />

2<br />

, 32<br />

2 <br />

110. r, 0, the origin<br />

x, y 0, 0<br />

π<br />

2<br />

<br />

x, y 0, 9<br />

r, 9, 3<br />

2 , 9,<br />

y<br />

<br />

2<br />

2 , 111. −3 3 6 9 12<br />

3<br />

( 0, 2<br />

π<br />

(<br />

1 2 3 4 5<br />

0<br />

−3<br />

−6<br />

x<br />

−9<br />

(0, −9)<br />

−12<br />

112.<br />

114.<br />

y<br />

x, y 3, 4 113.<br />

r 5, tan 4<br />

3<br />

5, 126.87, 5, 306.87<br />

or<br />

5, 2.214, 5, 5.356<br />

(radians)<br />

x, y 3, 3<br />

Third quadrant,<br />

7<br />

r 2 3 2 3 12<br />

r, 23, 7<br />

6 , 23,<br />

6<br />

⇒<br />

(−3, 4)<br />

4<br />

3<br />

2<br />

1<br />

−4 −3 −2 −1 1 2 3 4<br />

−1<br />

<br />

6<br />

−2<br />

−3<br />

−4<br />

r 23<br />

x<br />

−4 −3 −2 −1 1 2 3 4<br />

−1<br />

(−3, − 3<br />

(<br />

4<br />

3<br />

2<br />

1<br />

−2<br />

−3<br />

−4<br />

y<br />

x, y 5, 5<br />

r, 52, 7<br />

4 ,<br />

2<br />

1<br />

y<br />

−2 −1<br />

−1<br />

1 2 3 4 5 6<br />

−2<br />

−3<br />

−4<br />

−5 (5, −5)<br />

−6<br />

x<br />

3<br />

52, 4 <br />

x<br />

© Houghton Mifflin Company. All rights reserved.


Review Exercises for <strong>Chapter</strong> 9 881<br />

115.<br />

x 2 y 2 9 116.<br />

x 2 y 2 20 117.<br />

x 2 y 2 4x 0 118.<br />

x 2 y 2 6y<br />

r 2 9<br />

r 2 20<br />

r 2 4r cos 0<br />

r 2 6r sin <br />

r 3<br />

r 25<br />

r 4 cos <br />

r 6 sin <br />

119.<br />

r cos r sin 5<br />

xy 5 120.<br />

r 2 5 csc sec <br />

xy 2<br />

r cos r sin 2<br />

r 2 2 sec csc <br />

121.<br />

4 r cos 2 r sin 2 1<br />

4r 2 cos 2 r 2 1 cos 2 1<br />

4x 2 y 1 122.<br />

r 2 3 cos 2 1 1<br />

r 2 <br />

1<br />

3 cos 2 1<br />

2x 2 3y 2 1<br />

2 r cos 2 3r sin 2 1<br />

r 2 2 cos 2 3 sin 2 1<br />

r 2 21 sin 2 3 sin 2 1<br />

r 2 2 sin 2 1<br />

r 2 <br />

1<br />

2 sin 2 <br />

123.<br />

r 5 124.<br />

x 2 y 2 5 2 25<br />

r 12 125.<br />

x 2 y 2 144<br />

r 3 cos <br />

r 2 3r cos <br />

Circle<br />

Circle<br />

x 2 y 2 3x<br />

126.<br />

r 8 sin <br />

r 2 8r sin <br />

x 2 y 2 8y<br />

127.<br />

r 2 cos 2<br />

r 2 1 2 sin 2 <br />

r 4 r 2 2r 2 sin 2 <br />

x 2 y 2 2 x 2 y 2 2y 2<br />

x 2 y 2 2 x 2 y 2 0<br />

© Houghton Mifflin Company. All rights reserved.<br />

128.<br />

r 2 sin <br />

r 3 r sin <br />

x 2 y 2 32 y or<br />

x 2 y 2 3 y 2<br />

129.<br />

5<br />

6<br />

tan y x 1 3<br />

y 3<br />

3 x,<br />

line<br />

130.<br />

4<br />

3<br />

tan y x 3<br />

y 3x<br />

131. r 5, circle<br />

132. r 3, circle<br />

133. y-axis<br />

2 ,<br />

π<br />

2<br />

2<br />

4 6<br />

0<br />

π<br />

2<br />

1 2 4<br />

0<br />

<br />

<br />

π<br />

2<br />

1<br />

2 3<br />

0


882 <strong>Chapter</strong> 9 Topics In Analytic Geometry<br />

5<br />

134. line<br />

r 5 cos ,136. r 2 sin , circle<br />

6 , 135. circle 0<br />

π<br />

2<br />

π<br />

2<br />

π<br />

2<br />

1 2 3 4<br />

0<br />

1<br />

2<br />

3<br />

4<br />

6<br />

1 2 3<br />

0<br />

137.<br />

r 5 4 cos <br />

Dimpled limaçon<br />

π<br />

2<br />

Symmetric with respect to polar axis<br />

is maximum at<br />

r 0<br />

(No zeros)<br />

0:<br />

r 0<br />

2 4 6 8 10 12<br />

r, 9, 0<br />

138.<br />

r 1 4 sin <br />

Limaçon with inner loop<br />

π<br />

2<br />

Symmetric with respect to<br />

<br />

<br />

2<br />

r <br />

is a maximum at<br />

<br />

<br />

2 : 5,<br />

<br />

2<br />

1 2 3 4<br />

0<br />

r 0 when 4 sin 1<br />

⇒<br />

sin 1 4<br />

⇒<br />

3.394, 6.031<br />

139.<br />

140.<br />

r 3 5 sin <br />

Limaçon with loop<br />

Symmetry: line<br />

r -<br />

<br />

<br />

r 8<br />

Maximum value: when<br />

2<br />

0.6435, 2.4981<br />

3<br />

Zeros: r 0 when sin 3 5<br />

r 2 6 cos <br />

Limaçon with inner loop<br />

Symmetry: polar axis<br />

Maximum: when<br />

<br />

Zero: r 0 when cos 1 3 ⇒<br />

2<br />

1.231, 5.052<br />

π<br />

2<br />

1 2 3 5<br />

0<br />

r 8 2<br />

π<br />

2<br />

0<br />

© Houghton Mifflin Company. All rights reserved.


Review Exercises for <strong>Chapter</strong> 9 883<br />

141.<br />

r 3 cos 2, 0 ≤<br />

Four-leaved rose<br />

Symmetric with respect to polar axis, and pole<br />

2 , 0<br />

The value of is a maximum (3) at<br />

2 , , 3<br />

4<br />

r <br />

2 .<br />

r 0 for <br />

4 , 3<br />

4 , 5<br />

4 , 7<br />

4<br />

<br />

<br />

≤ 2<br />

<br />

<br />

<br />

0,<br />

π<br />

2<br />

142.<br />

r cos 5<br />

Five-leaved rose<br />

Symmetric with respect to polar axis<br />

r <br />

is maximum value of 1 at<br />

<br />

n<br />

r 0 for <br />

10 2n , n 0, 1, 2, . . .<br />

10<br />

, n 0, 1, 2, . . .<br />

5<br />

π<br />

2<br />

1<br />

0<br />

143.<br />

r 2 5 sin 2<br />

Lemniscate<br />

Symmetry with respect to pole<br />

Maximum value: 5 when<br />

Zeros: r 0 when 0,<br />

2 , , 3<br />

2<br />

<br />

<br />

<br />

0<br />

r - 1 2 3<br />

4 , 5<br />

4<br />

π<br />

2<br />

© Houghton Mifflin Company. All rights reserved.<br />

144.<br />

145.<br />

r 2 cos 2<br />

Lemniscate<br />

Symmetry: Pole, polar axis, and line<br />

r 1<br />

Maximum: when<br />

Zeros: r 0 when <br />

4 , 3<br />

4 , 5<br />

4 , 7<br />

4<br />

r <br />

e 1<br />

Parabola<br />

−6<br />

2<br />

1 sin <br />

6<br />

6<br />

<br />

0, , 2<br />

<br />

<br />

2 0<br />

1<br />

146.<br />

π<br />

2<br />

1<br />

r <br />

, e 2<br />

1 2 sin <br />

Hyperbola symmetric with and having<br />

vertices at 13, 2 and 1, 32<br />

−3<br />

3<br />

3<br />

2<br />

−2<br />

−1


884 <strong>Chapter</strong> 9 Topics In Analytic Geometry<br />

147.<br />

r <br />

4<br />

5 3 cos <br />

2<br />

148.<br />

r <br />

6<br />

6<br />

<br />

1 4 cos 1 4 cos <br />

<br />

45<br />

1 35 cos <br />

−3<br />

3<br />

Hyperbola e 4<br />

4<br />

e 3 5<br />

−6<br />

6<br />

−2<br />

Ellipse<br />

−4<br />

149.<br />

r <br />

5<br />

6 2 sin <br />

2<br />

150.<br />

r <br />

3<br />

<br />

34<br />

4 4 cos 1 cos <br />

<br />

56<br />

1 13 sin <br />

−3<br />

3<br />

Parabola e 1<br />

4<br />

e 1 3<br />

−4<br />

8<br />

−2<br />

151.<br />

Ellipse<br />

e 1<br />

r <br />

4<br />

1 cos <br />

Vertical directrix: x 4<br />

−4<br />

ep<br />

152. Parabola: r , e 1<br />

1 e sin <br />

Vertex: 2,<br />

Focus: 0, 0 ⇒ p 4<br />

r <br />

<br />

2<br />

4<br />

1 sin <br />

153. Ellipse:<br />

Vertices:<br />

One focus: 0, 0 ⇒ c 2<br />

23 p<br />

e c 5 <br />

1 23 cos 0 ⇒ p 5 a 2 3 , 2<br />

r <br />

r <br />

ep<br />

1 e cos <br />

5, 0, 1, ⇒ a 3<br />

2352 <br />

1 23 cos <br />

53<br />

<br />

1 23 cos <br />

ep<br />

154. Hyperbola: r <br />

1 e cos <br />

Vertices: 1, 0, 7, 0 ⇒ a 3<br />

One focus: 0, 0 ⇒ c 4<br />

43 p<br />

e c 1 <br />

1 43 cos 0 ⇒ p 7 a 4 3 , 4<br />

5<br />

3 2 cos <br />

73<br />

7<br />

r <br />

4374 <br />

<br />

1 43 cos 1 43 cos 3 4 cos <br />

© Houghton Mifflin Company. All rights reserved.


Review Exercises for <strong>Chapter</strong> 9 885<br />

155.<br />

e 0.093<br />

ep<br />

Use r <br />

.<br />

1 e cos <br />

2a <br />

r <br />

1.512<br />

1 0.093 cos <br />

Perihelion:<br />

Aphelion:<br />

0.093p<br />

1 0.093 cos 0 0.093p<br />

0.1876p 3.05 ⇒ p 16.258, ep 1.512<br />

1 0.093 cos <br />

1.512<br />

1 0.093 1.383<br />

1.512<br />

1 0.093 1.667<br />

astronomical units<br />

astronomical units<br />

ep<br />

156. Use r <br />

(horizontal directrix below pole).<br />

1 e sin <br />

e 1 (parabola)<br />

When<br />

r <br />

r 12,000,000<br />

1 sin <br />

When<br />

<br />

p<br />

1 sin <br />

<br />

2 p 2<br />

<br />

<br />

2 , r 6,000,000.<br />

6,000,000 ⇒ p 12,000,000<br />

distance is approximately 6,430,781 miles.<br />

3 ,<br />

© Houghton Mifflin Company. All rights reserved.<br />

157. False. The y 4 -term is not<br />

second degree.<br />

160. (a) Major axis horizontal<br />

(b) Circle<br />

(c) Ellipse is flatter.<br />

(d) Horizontal translation<br />

158. False. There are many sets<br />

possible. For example,<br />

x t, y 3 2t<br />

x 3t, y 3 6t.<br />

159. (a) Vertical translation<br />

(b) Horizontal translation<br />

(c) Reflection in the y-axis<br />

(d) Parabola opens more slowly.<br />

161. The number b must be less than 5. The ellipse<br />

becomes more circular and approaches a circle<br />

of radius 5.<br />

162. The orientation of the graph would be reversed. 163. (a) The speed would double.<br />

(b) The elliptical orbit would be flatter. The length<br />

of the major axis is greater.


886 <strong>Chapter</strong> 9 Topics In Analytic Geometry<br />

<strong>Chapter</strong> 9<br />

Practice Test<br />

1. Find the vertex, focus and directrix of the parabola x 2 6x 4y 1 0.<br />

2. Find an equation of the parabola with its vertex at 2, 5 and focus at 2, 6.<br />

3. Find the center, foci, vertices, and eccentricity of the ellipse x 2 4y 2 2x 32y 61 0.<br />

4. Find an equation of the ellipse with vertices 0, ±6 and eccentricity e 1 2 .<br />

5. Find the center, vertices, foci, and asymptotes of the hyperbola 16y 2 x 2 6x 128y 231 0.<br />

6. Find an equation of the hyperbola with vertices at ±3, 2 and foci at ±5, 2.<br />

7. Rotate the axes to eliminate the xy-term. Sketch the graph of the resulting equation, showing both sets of axes.<br />

5x 2 2xy 5y 2 10 0<br />

8. Use the discriminant to determine whether the graph of the equation is a parabola, ellipse, or hyperbola.<br />

(a) 6x 2 2xy y 2 0<br />

(b) x 2 4xy 4y 2 x y 17 0<br />

For Exercises 9 and 10, eliminate the parameter and write the corresponding rectangular equation.<br />

9. x 3 2 sin , y 1 5 cos <br />

10. x e 2t , y e 4t<br />

11. Convert the polar point 2, 34 to rectangular coordinates.<br />

12. Convert the rectangular point 3, 1 to polar coordinates.<br />

13. Convert the rectangular equation 4x 3y 12 to polar form.<br />

14. Convert the polar equation r 5 cos to rectangular form.<br />

15. Sketch the graph of r 1 cos .<br />

16. Sketch the graph of r 5 sin 2.<br />

17. Sketch the graph of r <br />

3<br />

.<br />

6 cos <br />

18. Find a polar equation of the parabola with its vertex at 6, 2 and focus at 0, 0.<br />

© Houghton Mifflin Company. All rights reserved.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!