03.01.2014 Views

Bottom-up and top-down approaches in Computational Neuroscience

Bottom-up and top-down approaches in Computational Neuroscience

Bottom-up and top-down approaches in Computational Neuroscience

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Mitglied der Helmholtz-Geme<strong>in</strong>schaft<br />

<strong>Bottom</strong>-<strong>up</strong> <strong>and</strong> <strong>top</strong>-<strong>down</strong><br />

<strong>approaches</strong> <strong>in</strong><br />

<strong>Computational</strong> <strong>Neuroscience</strong><br />

September 13th 2011, GRS<br />

Markus Diesmann<br />

1 INM-6 <strong>Computational</strong> <strong>and</strong> Systems <strong>Neuroscience</strong>, Juelich 2 RIKEN BSI, Tokyo


Research tracks<br />

<strong>Computational</strong> <strong>Neuroscience</strong> (Neuro<strong>in</strong>formatics)<br />

hypothesis<br />

hypothesis<br />

simulation<br />

technology<br />

network<br />

model<strong>in</strong>g<br />

data<br />

analysis<br />

progress<br />

progress<br />

<strong>Neuroscience</strong> with computational methods?<br />

(th<strong>in</strong>k of <strong>Computational</strong> Physics)<br />

How does the bra<strong>in</strong> compute?<br />

September 13th 2011, GRS Markus Diesmann Folie 2


Research tracks<br />

<strong>Computational</strong> <strong>Neuroscience</strong> (Neuro<strong>in</strong>formatics)<br />

hypothesis<br />

hypothesis<br />

simulation<br />

technology<br />

network<br />

model<strong>in</strong>g<br />

data<br />

analysis<br />

progress<br />

progress<br />

network model<strong>in</strong>g is the central activity<br />

drives analysis of experimental data<br />

drives the development of simulation technology<br />

directions of arrows are non-trivial<br />

projects of <strong>in</strong>dividuals should cover all tracks<br />

September 13th 2011, GRS Markus Diesmann Folie 2


www.csn.fz-juelich.de<br />

September 13th 2011, GRS Markus Diesmann Folie 3


Top-<strong>down</strong> <strong>and</strong> bottom-<strong>up</strong><br />

the computer analogy:<br />

system computer bra<strong>in</strong><br />

<strong>top</strong> multiplication maze navigation system-level behavior<br />

⇓<br />

⇓<br />

logical algorithm TD-learn<strong>in</strong>g system-level theory<br />

⇕ ⇕ ?<br />

electrical circuit neuronal network<br />

⇑<br />

⇑<br />

transistor I&F neuron model<br />

⇑<br />

⇑<br />

bottom electrons spikes (bio)physics<br />

comparison between levels: compatibility <strong>and</strong> consistency<br />

September 13th 2011, GRS Markus Diesmann Folie 4


Structure of INM-6<br />

INM<br />

INM-6 (IAS-6), <strong>Computational</strong> <strong>and</strong> Systems <strong>Neuroscience</strong><br />

Statistical<br />

<strong>Neuroscience</strong><br />

Theoretical<br />

Neuroanatomy<br />

<strong>Computational</strong><br />

Neurophysics<br />

Functional<br />

Neural Circuits<br />

Grün n. n. Diesmann c<strong>and</strong>. ident.<br />

(RWTH Biology)<br />

(RWTH Medic<strong>in</strong>e)<br />

IAS<br />

most students <strong>and</strong> postdocs from physics<br />

September 13th 2011, GRS Markus Diesmann Folie 5


Build<strong>in</strong>g 15.22<br />

opposite JSC <strong>and</strong> GRS<br />

September 13th 2011, GRS Markus Diesmann Folie 6


Fundamental <strong>in</strong>teractions<br />

-50<br />

pre<br />

V (mV)<br />

-60<br />

-70<br />

-80<br />

-90<br />

0 50 100 150 200 250<br />

x<br />

post<br />

∆V<br />

0.2<br />

0.1<br />

0<br />

0 50 100 150 200 250<br />

t<br />

(ms)<br />

membrane time constant 10 ms<br />

synaptic delay 1 ms<br />

small PSPs<br />

80% excitatory, 20% <strong>in</strong>hibitory<br />

September 13th 2011, GRS Markus Diesmann Folie 7


Fundamental <strong>in</strong>teractions<br />

x<br />

pre<br />

post<br />

V (mV)<br />

∆V<br />

<strong>in</strong> vitro<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

0 50 100 150 200 250<br />

0.2<br />

0.1<br />

0<br />

0 50 100 150 200 250<br />

t<br />

(ms)<br />

V (mV)<br />

-50<br />

-55<br />

-60<br />

-65<br />

-70<br />

<strong>in</strong> vivo<br />

0 100 200 300 400 500<br />

t<br />

(ms)<br />

membrane time constant 10 ms<br />

synaptic delay 1 ms<br />

small PSPs<br />

80% excitatory, 20% <strong>in</strong>hibitory<br />

spontaneous spik<strong>in</strong>g<br />

1-10 Hz<br />

10 5 neurons/mm 3<br />

10 4 synapses/neuron<br />

10 9 synapses<br />

September 13th 2011, GRS Markus Diesmann Folie 7


Outl<strong>in</strong>e<br />

Multi-layered network model<br />

Simulation techniques<br />

Temporal-difference learn<strong>in</strong>g<br />

September 13th 2011, GRS Markus Diesmann Folie 8


Structure-dynamics relationship<br />

?<br />

(Szentagothai 1978)<br />

(Luczak et al. 2007)<br />

September 13th 2011, GRS Markus Diesmann Folie 9


Structure-dynamics relationship<br />

1 mm 2<br />

1<br />

background <strong>in</strong>put<br />

E I<br />

2/3<br />

4<br />

E<br />

I<br />

5<br />

?<br />

(Szentagothai 1978)<br />

E<br />

E<br />

I<br />

I<br />

6<br />

(Luczak et al. 2007)<br />

September 13th 2011, GRS Markus Diesmann Folie 10


Structure-dynamics relationship<br />

1 mm 2<br />

1<br />

background <strong>in</strong>put<br />

E I<br />

2/3<br />

4<br />

E<br />

I<br />

5<br />

?<br />

(Szentagothai 1978)<br />

E<br />

E<br />

I<br />

I<br />

6<br />

(Luczak et al. 2007)<br />

September 13th 2011, GRS Markus Diesmann Folie 11


M<strong>in</strong>imal layered cortical network model<br />

1 mm 2 = 80,000 I&F-neurons<br />

majority of local synapses<br />

2 populations (E,I) per layer<br />

no lateral profile<br />

layer- <strong>and</strong> type-specific C xy<br />

ij<br />

C xy =<br />

⎛<br />

2/3 → 2/3 4 → 2/3 · · · 6 → 2/3<br />

2/3 → 4 4 → 4 · · · 6 → 4<br />

⎜<br />

⎝<br />

.<br />

.<br />

.<br />

..<br />

. ..<br />

2/3 → 6 4 → 6 · · · 6 → 6<br />

⎞<br />

⎟<br />

⎠<br />

September 13th 2011, GRS Markus Diesmann Folie 12


Methods for estimat<strong>in</strong>g connectivity<br />

<strong>in</strong> vivo anatomy<br />

(B<strong>in</strong>zegger et al. 2004)<br />

September 13th 2011, GRS Markus Diesmann Folie 13


Methods for estimat<strong>in</strong>g connectivity<br />

<strong>in</strong> vivo anatomy<br />

<strong>in</strong> vitro physiology<br />

(B<strong>in</strong>zegger et al. 2004)<br />

(Thomson et al. 2002)<br />

September 13th 2011, GRS Markus Diesmann Folie 14


Comparison of connection probabilities<br />

E<br />

E<br />

I<br />

I<br />

connection probability<br />

0.6<br />

0.4<br />

0.2<br />

anatomy<br />

physiology<br />

<strong>in</strong>tra-layer / <strong>in</strong>ter-layer<br />

4<br />

2<br />

0.0<br />

connection <strong>in</strong>dex<br />

0<br />

anat.<br />

phys.<br />

consistent architectural relations<br />

<strong>in</strong>consistent averages<br />

⇒ <strong>in</strong>consistency due to methodological differences?<br />

September 13th 2011, GRS Markus Diesmann Folie 15


Lateral connectivity<br />

Anatomy:<br />

complete local axons<br />

sampl<strong>in</strong>g radius:<br />

r a > 1 mm<br />

Physiology:<br />

Lateral conf<strong>in</strong>ement<br />

sampl<strong>in</strong>g radius:<br />

r p ∼ 100 µm<br />

September 13th 2011, GRS Markus Diesmann Folie 16


Model of distance dependent connectivity<br />

c(r) = c 0 exp<br />

(− r 2 )<br />

2σ 2<br />

∫<br />

1<br />

rp<br />

∫ 2π<br />

〈c p 〉 =<br />

c(r ′ )r ′ dr ′ dϕ<br />

πr<br />

2 p<br />

〈c a 〉 =<br />

1<br />

πr a<br />

2<br />

0 0<br />

∫ ra<br />

∫ 2π<br />

⇒ estimation of c 0 <strong>and</strong> σ<br />

c 0 = 0.14<br />

0<br />

σ = 300µm<br />

0<br />

c(r ′ )r ′ dr ′ dϕ<br />

consistent with: Hellwig 2000, Stepanyants et al. 2008<br />

⇒ model connectivity determ<strong>in</strong>ed by c 0 , σ <strong>and</strong> model size<br />

September 13th 2011, GRS Markus Diesmann Folie 17


Model connectivity<br />

0.2<br />

overall connection probability<br />

0.1<br />

number of synapses per neuron (norm.)<br />

1.0<br />

0.5<br />

0.0<br />

10 3 10 4 10 5<br />

network size (number of neurons)<br />

0.0<br />

10 3 10 4 10 5<br />

network size (number of neurons)<br />

appropriate model size to:<br />

prevent underestimation of local connectivity<br />

represent most local synapses with<strong>in</strong> the network<br />

September 13th 2011, GRS Markus Diesmann Folie 18


Model connectivity<br />

0.2<br />

overall connection probability<br />

0.1<br />

number of synapses per neuron (norm.)<br />

1.0<br />

0.5<br />

0.0<br />

10 3 10 4 10 5<br />

network size (number of neurons)<br />

0.0<br />

10 3 10 4 10 5<br />

network size (number of neurons)<br />

appropriate model size to:<br />

prevent underestimation of local connectivity<br />

represent most local synapses with<strong>in</strong> the network<br />

September 13th 2011, GRS Markus Diesmann Folie 19


Model connectivity<br />

overall connection probability<br />

0.2<br />

0.1<br />

number of synapses per neuron (norm.)<br />

1.0<br />

0.5<br />

↑<br />

0.0<br />

10 3 10 4 10 5<br />

network size (number of neurons)<br />

0.0<br />

10 3 10 4 10 5<br />

network size (number of neurons)<br />

appropriate model size to:<br />

prevent underestimation of local connectivity<br />

represent most local synapses with<strong>in</strong> the network<br />

September 13th 2011, GRS Markus Diesmann Folie 20


Comparison of scaled connection probabilities<br />

E<br />

E<br />

I<br />

I<br />

connection probability<br />

0.3<br />

0.2<br />

0.1<br />

anatomy<br />

physiology<br />

scal<strong>in</strong>g factor S<br />

10<br />

5<br />

S = max(cp,ca)<br />

m<strong>in</strong>(c p,c a)<br />

0.0<br />

1<br />

connection <strong>in</strong>dex<br />

connection <strong>in</strong>dex<br />

majority of connectivity estimates consistent<br />

<strong>in</strong>consistencies especially <strong>in</strong> <strong>in</strong>terlayer connections<br />

September 13th 2011, GRS Markus Diesmann Folie 21


Target type selection<br />

T x<br />

ji<br />

= Cex ji −Cji<br />

ix<br />

Cji<br />

ex +Cji<br />

ix<br />

anatomy physiology<br />

1.0 0.5 0.0 0.5 1.0<br />

target specificity<br />

I E I E I E<br />

September 13th 2011, GRS Markus Diesmann Folie 22


Target type selection<br />

T x<br />

ji<br />

= Cex ji −Cji<br />

ix<br />

Cji<br />

ex +Cji<br />

ix<br />

anatomy physiology<br />

1.0 0.5 0.0 0.5 1.0<br />

target specificity<br />

I E I E I E<br />

September 13th 2011, GRS Markus Diesmann Folie 23


More data on target specificity<br />

L2/3→L6<br />

September 13th 2011, GRS Markus Diesmann Folie 24


Target type selection<br />

T x<br />

ji<br />

= Cex ji −Cji<br />

ix<br />

Cji<br />

ex +Cji<br />

ix<br />

anatomy physiology functional<br />

1.0 0.5 0.0 0.5 1.0<br />

target specificity<br />

I E I E I E<br />

September 13th 2011, GRS Markus Diesmann Folie 25


Network simulations<br />

Simulation set<strong>up</strong><br />

<strong>in</strong>tegrated connectivity data set<br />

80,000 I&F neurons<br />

≈ 0.5 billion synapses<br />

short-term synaptic plasticity<br />

all simulations performed <strong>in</strong> NEST<br />

existence of asynchronous irregular activity?<br />

layer specific spike rates?<br />

impact of target specificity on activity dynamics?<br />

September 13th 2011, GRS Markus Diesmann Folie 26


Realistic local cortical networks<br />

connectivity c = 0.1<br />

synapses per neuron = 10 4<br />

⇒ m<strong>in</strong>imal network size = 10 5<br />

network N = 10 5<br />

considered elementary unit<br />

correspond<strong>in</strong>g to 1 mm 3<br />

total number of synapses = (cN) · N<br />

⇒ possible<br />

Morrison, Mehr<strong>in</strong>g, Geisel, Aertsen, Diesmann (2005) Neural Computation 17:1776–1801<br />

Morrison, Straube, Plesser, Diesmann (2007) Neural Computation 19:47–79<br />

September 13th 2011, GRS Markus Diesmann Folie 27


Build<strong>in</strong>g 15.22, server room<br />

864 core cluster <strong>up</strong><br />

<strong>and</strong> runn<strong>in</strong>g<br />

cool<strong>in</strong>g by cold water<br />

s<strong>up</strong>ply<br />

development <strong>and</strong><br />

quasi-<strong>in</strong>teractive use<br />

September 13th 2011, GRS Markus Diesmann Folie 28


Simulation times<br />

time [s]<br />

2400<br />

1600<br />

800<br />

400<br />

200<br />

100<br />

50<br />

25<br />

10<br />

1s, 10 5 network<br />

l<strong>in</strong>ear prediction<br />

wotan: Intel Xeon 2.8 GHz<br />

freya: AMD Opteron 2.4 GHz<br />

montpellier: Power5 1.9 GHz<br />

v40z: AMD Opteron 2.2 GHz DualCore<br />

jump: Power4+ 1.7GHz<br />

hathor: AMD Opteron 2.6 GHz Dual Core<br />

1 2 4 8 16 32 64 96<br />

mach<strong>in</strong>es<br />

s<strong>up</strong>ra-l<strong>in</strong>ear<br />

speed-<strong>up</strong><br />

reduction by 2 orders<br />

of magnitude<br />

plastic network:<br />

15 m<strong>in</strong>utes biological time: 60(24) hours computation<br />

2 types of research:<br />

large-scale plastic networks<br />

qualitatively different: quasi-<strong>in</strong>teractive<br />

September 13th 2011, GRS Markus Diesmann Folie 29


S<strong>up</strong>ercomputer<br />

1 peta flop<br />

294,912 processors<br />

72 Blue Gene/P racks<br />

L<strong>in</strong>ux OS<br />

Pilot study: j<strong>in</strong>b33 (2009) JUGENE, Research Center Juelich<br />

<strong>in</strong> the BNT our gro<strong>up</strong> provides:<br />

competence<br />

software<br />

September 13th 2011, GRS Markus Diesmann Folie 30


Enabl<strong>in</strong>g bra<strong>in</strong>-scale simulations with NEST<br />

Comput<strong>in</strong>g time<br />

400<br />

strong scal<strong>in</strong>g<br />

l<strong>in</strong>ear expectation<br />

visual cortex, reduced<br />

full cortex, reduced<br />

200<br />

weak scal<strong>in</strong>g<br />

comput<strong>in</strong>g time [s]<br />

200<br />

100<br />

comput<strong>in</strong>g time [s]<br />

100<br />

50<br />

50<br />

1024 2048 4096 8192 1638432768<br />

number of cores<br />

252048 4096 8192 16384<br />

number of cores<br />

optimal job size for primate visual cortex model:<br />

4 Blue Gene/P racks = 16,384 cores<br />

September 13th 2011, GRS Markus Diesmann Folie 31


MEXT Next-generation s<strong>up</strong>ercomputer project<br />

10 peta flops<br />

SPARC64TM VIIIfx<br />

Fujitsu LTD<br />

L<strong>in</strong>ux OS<br />

Next-generation S<strong>up</strong>ercomputer Center (Kobe Port Isl<strong>and</strong>, 2012)<br />

NEST software:<br />

selected priority target<br />

already port<strong>in</strong>g with High-performance Comput<strong>in</strong>g Team<br />

September 13th 2011, GRS Markus Diesmann Folie 32


Diesmann <strong>Computational</strong> Neurophysics<br />

major goal:<br />

systematically publish<br />

simulation technology<br />

collaboration of several labs (s<strong>in</strong>ce 2001)<br />

<strong>in</strong>cl. Honda Research Institute (HRI)<br />

teach<strong>in</strong>g <strong>in</strong> <strong>in</strong>ternational courses<br />

www.nest-<strong>in</strong>itiative.org Gewaltig, Diesmann (2007) NEST Scholarpedia 2(4):1430<br />

September 13th 2011, GRS Markus Diesmann Folie 33


Asynchronous irregular activity<br />

layer 2/3<br />

layer 4<br />

layer 6<br />

layer 5<br />

1000 1250 1500 1750<br />

time [ms]<br />

0 2 4 6<br />

rate [Hz]<br />

0 1 2<br />

Fano Factor<br />

September 13th 2011, GRS Markus Diesmann Folie 34


Fir<strong>in</strong>g rates <strong>and</strong> experimental Data<br />

September 13th 2011, GRS Markus Diesmann Folie 35


Stability <strong>and</strong> target specificity<br />

September 13th 2011, GRS Markus Diesmann Folie 36


Stability <strong>and</strong> target specificity<br />

September 13th 2011, GRS Markus Diesmann Folie 37


Stability <strong>and</strong> target specificity<br />

September 13th 2011, GRS Markus Diesmann Folie 38


Stability <strong>and</strong> target specificity<br />

September 13th 2011, GRS Markus Diesmann Folie 39


Stability <strong>and</strong> target specificity<br />

September 13th 2011, GRS Markus Diesmann Folie 40


Stability <strong>and</strong> target specificity<br />

September 13th 2011, GRS Markus Diesmann Folie 41


Transient thalamic <strong>in</strong>puts<br />

September 13th 2011, GRS Markus Diesmann Folie 42


Cortial flow of activity<br />

September 13th 2011, GRS Markus Diesmann Folie 43


Motivation:<br />

How is system-level learn<strong>in</strong>g realized on a cellular<br />

level?<br />

the computer analogy:<br />

system computer bra<strong>in</strong><br />

<strong>top</strong> multiplication maze navigation system-level behavior<br />

⇓<br />

⇓<br />

logical algorithm TD-learn<strong>in</strong>g system-level theory<br />

⇕ ⇕ ?<br />

electrical circuit neuronal network<br />

⇑<br />

⇑<br />

transistor I&F neuron model<br />

⇑<br />

⇑<br />

bottom electrons spikes (bio)physics<br />

September 13th 2011, GRS Markus Diesmann Folie 44


Actor-critic temporal-difference learn<strong>in</strong>g<br />

figure adapted from Sutton & Barto (1998)<br />

able to solve problems with sparse<br />

rewards<br />

policy (actor): selects actions<br />

value function V (s) (critic):<br />

prediction of future reward,<br />

evaluates actions<br />

TD error:<br />

δ t = r t+1 + γV (s t+1 ) − V (s t )<br />

r t+1 : reward at time t + 1;<br />

γ: discount factor ∈ [0, 1]<br />

September 13th 2011, GRS Markus Diesmann Folie 45


TD learn<strong>in</strong>g <strong>and</strong> the bra<strong>in</strong><br />

Dopam<strong>in</strong>ergic activity<br />

encodes TD error<br />

Dopam<strong>in</strong>e-dependent<br />

plasticity<br />

from Schultz, W, Dayan, P, & Montague, PR (1997)<br />

Science 275, 1593-1599<br />

from Reynolds, JNJ, Hyl<strong>and</strong>, BI, Wickens JR (2001)<br />

Nature 413, 67-70<br />

September 13th 2011, GRS Markus Diesmann Folie 46


Neuronal actor-critic architecture<br />

September 13th 2011, GRS Markus Diesmann Folie 47


Critic: Generation of TD signal<br />

Ḋ(t) = − 1<br />

τ D<br />

D + A τ D<br />

∑<br />

δ ( t − t n )<br />

DA<br />

t<br />

DA n


Synaptic plasticity: Exploitation of TD signal<br />

dopam<strong>in</strong>e modulates<br />

synaptic plasticity at<br />

corticostriatal synapses<br />

(Reynolds et al. (2001) Nature<br />

413, 67-70)<br />

we developed synaptic<br />

plasticity rules us<strong>in</strong>g a<br />

<strong>top</strong>-<strong>down</strong> approach to<br />

implement value function<br />

<strong>and</strong> policy <strong>up</strong>date rules<br />

September 13th 2011, GRS Markus Diesmann Folie 49


Synaptic plasticity: Tim<strong>in</strong>g<br />

Discrete time implementation: V (s t ) ← V (s t ) + αδ t<br />

Presynaptic activity trace:<br />

˙Λ j (t) = − 1 (Λ j − ∑ ( ))<br />

δ t − tj<br />

n<br />

τ Λ<br />

Presynaptic efficacy trace:<br />

˙ε j (t) = − ε j − 1<br />

− ∑ ( )<br />

ε j δ t − tj<br />

n<br />

τ ε<br />

ẇ ij = Λ j (t)ε j (t)f (t)<br />

results <strong>in</strong> strong plasticity when the agent leaves the state<br />

associated with presynaptic neuron j<br />

negligible plastic otherwise<br />

September 13th 2011, GRS Markus Diesmann Folie 50


Synaptic plasticity: Prediction <strong>and</strong> experiment<br />

Plasticity between state neuron j <strong>and</strong> critic neuron i:<br />

{<br />

}<br />

ẇ ij = Λ j (t)ε j (t) (D(t) − b) + (γ − 1) Λ i (t)C α<br />

Λ j : presynaptic activity trace, ε j : presynaptic efficacy trace, b: dopam<strong>in</strong>e basel<strong>in</strong>e, γ: discount factor,<br />

Λ i : postsynaptic activity trace, C: constant factor, α: learn<strong>in</strong>g rate<br />

Predictions<br />

pre post DA weight change<br />

x 0 0 0<br />

0 x 0 0<br />

0 0 x 0<br />

x x 0 LTD<br />

x 0 x LTD/LTP<br />

0 x x 0<br />

x x x LTD/LTP<br />

September 13th 2011, GRS Markus Diesmann Folie 51


Synaptic plasticity: Prediction <strong>and</strong> experiment<br />

Plasticity between state neuron j <strong>and</strong> critic neuron i:<br />

{<br />

}<br />

ẇ ij = Λ j (t)ε j (t) (D(t) − b) + (γ − 1) Λ i (t)C α<br />

Λ j : presynaptic activity trace, ε j : presynaptic efficacy trace, b: dopam<strong>in</strong>e basel<strong>in</strong>e, γ: discount factor,<br />

Λ i : postsynaptic activity trace, C: constant factor, α: learn<strong>in</strong>g rate<br />

Predictions<br />

pre post DA weight change<br />

x 0 0 0<br />

0 x 0 0<br />

0 0 x 0<br />

x x 0 LTD<br />

x 0 x LTD/LTP<br />

0 x x 0<br />

x x x LTD/LTP<br />

Experimental results<br />

pre post DA weight change<br />

x 0 0 0<br />

0 x 0 0<br />

0 0 x 0<br />

x x 0 LTD (LTP)<br />

x 0 x 0<br />

0 x x 0<br />

x x x LTD/LTP<br />

data from Reynolds JNJ <strong>and</strong> Wickens JR, Neural<br />

Networks 15 (2002) 507-521<br />

September 13th 2011, GRS Markus Diesmann Folie 52


Model solves grid-world task<br />

Potjans, Morrison & Diesmann (2009) Neural Computation 21:301–339<br />

Potjans, Diesmann & Morrison (2011) PLoS <strong>Computational</strong> Biology, <strong>in</strong> press<br />

September 13th 2011, GRS Markus Diesmann Folie 53


Value function <strong>and</strong> policy<br />

72<br />

64<br />

56<br />

48<br />

40<br />

32<br />

24<br />

September 13th 2011, GRS Markus Diesmann Folie 54


Bra<strong>in</strong>-scale connectivity<br />

Bra<strong>in</strong> <strong>and</strong> Neural Systems Team, RIKEN <strong>Computational</strong> Science Research Program<br />

Pilot study: j<strong>in</strong>b33 (2008) Jugene Bra<strong>in</strong>-scale simulations FZ Juelich<br />

September 13th 2011, GRS Markus Diesmann Folie 55


Summary<br />

cubic millimeter of bra<strong>in</strong> with realistic connectivity<br />

theory demonstrates consistency of experimental data<br />

spik<strong>in</strong>g network implementation of TD-learn<strong>in</strong>g<br />

mapp<strong>in</strong>g of system-level theory to neuronal level<br />

comb<strong>in</strong>ation of bottom-<strong>up</strong> <strong>and</strong> <strong>top</strong>-<strong>down</strong> <strong>approaches</strong><br />

correspond<strong>in</strong>g simulation technology<br />

need for bra<strong>in</strong>-scale models<br />

September 13th 2011, GRS Markus Diesmann Folie 56


References<br />

Dayan, P. <strong>and</strong> Abbott, L. F. (2001) Theoretical <strong>Neuroscience</strong>.<br />

MIT Press, Cambridge<br />

Gerstner, W. <strong>and</strong> Kistler, W. (2002) Spik<strong>in</strong>g Neuron Models:<br />

S<strong>in</strong>gle Neurons, Populations, Plasticity. Cambridge University<br />

Press<br />

Gewaltig, M.-O. <strong>and</strong> Diesmann, M. (2007) NEST. Scholarpedia<br />

www.scholarpedia.org/article/NEST<br />

September 13th 2011, GRS Markus Diesmann Folie 57

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!