03.01.2014 Views

Evaluation of draught in surgical operating theatres ... - Emerald

Evaluation of draught in surgical operating theatres ... - Emerald

Evaluation of draught in surgical operating theatres ... - Emerald

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The current issue and full text archive <strong>of</strong> this journal is available at<br />

www.emerald<strong>in</strong>sight.com/1472-5967.htm<br />

JFM<br />

9,1<br />

64<br />

Received April 2010<br />

Accepted May 2010<br />

PRACTICE BRIEFING<br />

<strong>Evaluation</strong> <strong>of</strong> <strong>draught</strong> <strong>in</strong> <strong>surgical</strong><br />

operat<strong>in</strong>g <strong>theatres</strong>: proposed<br />

revision to (NEN)-EN-ISO-7730<br />

Paul Roel<strong>of</strong>sen<br />

Grontmij/Technical Management, Amersfoort, The Netherlands<br />

Abstract<br />

Purpose – The purpose <strong>of</strong> this paper is to show that it is advisable to evaluate <strong>draught</strong> <strong>in</strong> an operat<strong>in</strong>g<br />

theatre <strong>in</strong> a different manner than the method accord<strong>in</strong>g to NEN-EN-ISO-7730. The NEN-EN-ISO-7730 is<br />

an <strong>in</strong>ternational standard for the analytical determ<strong>in</strong>ation and <strong>in</strong>terpretation <strong>of</strong> the thermal comfort <strong>of</strong><br />

the human body and the local thermal comfort like for <strong>in</strong>stance <strong>draught</strong>.<br />

Design/methodology/approach – Us<strong>in</strong>g a CFD computer program, it is possible to evaluate<br />

<strong>draught</strong> <strong>in</strong> an operat<strong>in</strong>g theatre <strong>in</strong> the design stage, accord<strong>in</strong>g to different mathematical <strong>draught</strong> models.<br />

F<strong>in</strong>d<strong>in</strong>gs – It would seem advisable to beg<strong>in</strong> with the <strong>draught</strong> model developed by Griefahn.<br />

The model does, however, need to be modified to <strong>in</strong>clude the effects <strong>of</strong> temperature sensation and the<br />

direction <strong>of</strong> the air stream, so that it becomes applicable to a thermally cool environment (PMV , 0) and<br />

a vertical air stream, the air pattern prescribed for an operat<strong>in</strong>g theatre.<br />

Orig<strong>in</strong>ality/value – It can be demonstrated that by implement<strong>in</strong>g the proposal <strong>in</strong> this paper <strong>in</strong> a CFD<br />

program, the possibility exists to be able to evaluate, <strong>in</strong> a responsible fashion, the results for a much<br />

broader range <strong>of</strong> parameters than is currently possible by means <strong>of</strong> the NEN-EN-ISO-7730.<br />

Keywords Operat<strong>in</strong>g <strong>theatres</strong>, Temperature, Air, International standards<br />

Paper type Research paper<br />

Journal <strong>of</strong> Facilities Management<br />

Vol. 9 No. 1, 2011<br />

pp. 64-70<br />

q <strong>Emerald</strong> Group Publish<strong>in</strong>g Limited<br />

1472-5967<br />

DOI 10.1108/14725961111105736<br />

Introduction<br />

In The Netherlands, almost all <strong>surgical</strong> operat<strong>in</strong>g <strong>theatres</strong> are provided with a supply air<br />

plenum hav<strong>in</strong>g dimensions <strong>of</strong> 1.2 £ 2.4 meter. The application <strong>of</strong> such a plenum is<br />

extremely important <strong>in</strong> order to ensure that filtered clean air flows from the whole plenum<br />

area vertically downwards over the open <strong>in</strong>cision <strong>of</strong> the patient and, to a certa<strong>in</strong> extent,<br />

also over the operat<strong>in</strong>g team and tables upon which the <strong>surgical</strong> <strong>in</strong>struments are laid out.<br />

Nowadays, due to new <strong>in</strong>sights <strong>in</strong>to <strong>in</strong>fection prevention, the air distribution with<strong>in</strong><br />

an operat<strong>in</strong>g theatre proposes to use a much larger supply air plenum <strong>of</strong> 3.5 £ 3.5 meter<br />

together with a proportionally larger supply air quantity. In this manner, the operat<strong>in</strong>g<br />

table, the operat<strong>in</strong>g team and the <strong>surgical</strong> <strong>in</strong>strument tables are fully enveloped by the<br />

clean, filtered air from the ceil<strong>in</strong>g. As a consequence, the surround<strong>in</strong>gs and adjacent<br />

rooms become less critical objects s<strong>in</strong>ce the chances <strong>of</strong> bacterial contam<strong>in</strong>ation are<br />

significantly reduced.<br />

Such developments, therefore, not only have an impact on the technical <strong>in</strong>stallations but<br />

also on the layouts <strong>of</strong> the <strong>surgical</strong> departments (College bouw ziekenhuisvoorzien<strong>in</strong>gen,<br />

2003).<br />

Ow<strong>in</strong>g to the larger plenum and supply air volume, the members <strong>of</strong> the <strong>surgical</strong> team<br />

would now be “washed over” with cooled air, and as a consequence <strong>of</strong> the differ<strong>in</strong>g


activity levels and cloth<strong>in</strong>g, it is appropriate to consider any effects <strong>of</strong> unwelcome<br />

<strong>draught</strong>s which may occur.<br />

Draught<br />

Draught is def<strong>in</strong>ed as an unwelcome cool<strong>in</strong>g <strong>of</strong> a part <strong>of</strong> the human body as a result <strong>of</strong><br />

air movement.<br />

Draught, conform<strong>in</strong>g to NEN-EN-ISO 7730<br />

Currently, it is conventional to determ<strong>in</strong>e the effects <strong>of</strong> comfort, caused by <strong>draught</strong>,<br />

through the use <strong>of</strong> a mathematical sk<strong>in</strong> model, whereby the percentage <strong>of</strong> compla<strong>in</strong>ants<br />

can be calculated and predicted us<strong>in</strong>g the parameters <strong>of</strong> air temperature, the average air<br />

speed and air turbulence <strong>in</strong>tensity, <strong>in</strong> accordance with NEN-EN-ISO 7730 (2005)<br />

(Figure 1). The NEN-EN-ISO-7730 is an <strong>in</strong>ternational standard for the analytical<br />

determ<strong>in</strong>ation and <strong>in</strong>terpretation <strong>of</strong> the thermal comfort <strong>of</strong> the human body and the local<br />

thermal comfort like for <strong>in</strong>stance <strong>draught</strong>.<br />

This <strong>draught</strong> model was based upon a study <strong>of</strong> 150 test persons, <strong>in</strong> an air temperature<br />

between 208Cand268C, an average (horizontal) air speed <strong>of</strong> between 0.1 and 0.4 m/s and<br />

a turbulence <strong>in</strong>tensity between 10 and 70 per cent. The model is specifically applicable to<br />

occupants with a low activity level, i.e. <strong>in</strong> the ma<strong>in</strong> seated (metabolism


JFM<br />

9,1<br />

66<br />

The application <strong>of</strong> the aforementioned comfort <strong>draught</strong> model would not appear to be<br />

appropriate for evaluat<strong>in</strong>g discomfort due to <strong>draught</strong>s <strong>in</strong> an operat<strong>in</strong>g theatre.<br />

The follow<strong>in</strong>g parameters used <strong>in</strong> the comfort model, therefore, cannot be applied<br />

and need to be re-assessed:<br />

.<br />

the metabolic rate and the activity;<br />

.<br />

the temperature sensation (m.n. PMV , 0); and<br />

.<br />

the direction <strong>of</strong> airflow.<br />

Influences <strong>of</strong> metabolism and activity upon the sensation <strong>of</strong> <strong>draught</strong><br />

Studies carried out by T<strong>of</strong>tum (1994) (Figure 2) and Griefahn (1999) (Figure 3) give an<br />

<strong>in</strong>dication as to how far the metabolism and externally transmitted activity heat<br />

<strong>in</strong>fluences <strong>draught</strong>.<br />

The <strong>draught</strong> models <strong>of</strong> T<strong>of</strong>tum and Griefahn are based upon the <strong>draught</strong> model<br />

conform<strong>in</strong>g to NEN-EN-ISO-7730.<br />

In Table I, a comparison is shown between the applicable parameter ranges for the<br />

various <strong>draught</strong> models.<br />

From Table I, it would appear that the <strong>draught</strong> model formulated by Griefahn has<br />

the largest applicable parameter range. The Griefahn experiments show that the model<br />

which had been developed by them had the largest correlation with the experimental<br />

results. Discomfort, due to <strong>draught</strong>, formulated by Griefahn, may be calculated us<strong>in</strong>g<br />

the follow<strong>in</strong>g formula:<br />

Draught rat<strong>in</strong>g (%)<br />

25.00000<br />

23.43750<br />

21.87500<br />

20.31250<br />

18.75000<br />

17.18750<br />

15.62500<br />

14.06250<br />

12.50000<br />

10.93750<br />

9.375000<br />

7.812500<br />

6.250000<br />

4.687500<br />

3.125000<br />

1.562500<br />

0.000000<br />

Probe value<br />

2.017788<br />

Average value<br />

5.177231<br />

Figure 2.<br />

Conforms to T<strong>of</strong>tum<br />

(1994)<br />

FLAIR<br />

OPERATING THEATRE


Draught rat<strong>in</strong>g (%)<br />

25.00000<br />

23.43750<br />

21.87500<br />

20.31250<br />

18.75000<br />

17.18750<br />

15.62500<br />

14.06250<br />

12.50000<br />

10.93750<br />

9.375000<br />

7.812500<br />

6.250000<br />

4.687500<br />

3.125000<br />

1.562500<br />

0.000000<br />

Probe value<br />

3.714398<br />

Average value<br />

9.530385<br />

Surgical<br />

operat<strong>in</strong>g<br />

<strong>theatres</strong><br />

67<br />

FLAIR<br />

OPERATING THEATRE<br />

Figure 3.<br />

Conforms to Griefahn<br />

(1999)<br />

Draught model<br />

Metabolism<br />

(W/m 2 )<br />

Air temperature<br />

(8C)<br />

Average air speed<br />

(m/s)<br />

Turbulance <strong>in</strong>tensity<br />

(%)<br />

NEN-EN-ISO-7730 (2005) < 70 20-26 0.1-0.4 10-70<br />

T<strong>of</strong>tum (1994) 104-129 11-20 0.1-0.4 10-40<br />

Griefahn (1999) < 60-156 11-23 0.1-0.4 20-90<br />

Table I.<br />

Applicable ranges for<br />

the <strong>draught</strong> models<br />

PD ¼ðtsk 2 taÞ ·ðva 2 0:05Þ 0:623 ·ð3:143 þ 0:37 ·va·TuÞ·ð1 2 0:0061 ·ðM 2 W 2 70ÞÞ<br />

where<br />

PD ¼ the percentage dissatisfaction as a result <strong>of</strong> <strong>draught</strong> (per cent);<br />

t sk<br />

t a<br />

v a<br />

Tu<br />

M<br />

¼ 32.3 þ 0.079 * t a 2 0.019 * (M 2 W) (8C);<br />

¼ the air temperature (8C);<br />

¼ the average air speed (m/s);<br />

¼ the turbulence <strong>in</strong>tensity (per cent);<br />

¼ metabolic rate (W/m 2 ); and<br />

W ¼ externally transmitted, activity related, heat rate (W/m 2 ).


JFM<br />

9,1<br />

68<br />

Influence <strong>of</strong> temperature upon sensitivity to <strong>draught</strong><br />

Another study carried out by T<strong>of</strong>tum and Nielsen (1996) showed that the sensation <strong>of</strong><br />

cooler/colder temperatures (PMV , 0) significantly <strong>in</strong>creases discomfort.<br />

Consequently, the percentage dissatisfaction, as a result <strong>of</strong> the sensation <strong>of</strong> <strong>draught</strong>,<br />

was greater as a result <strong>of</strong> cooler/colder temperatures than by neutral (PMV < 0)<br />

temperature. This also seems to expla<strong>in</strong> why persons, active <strong>in</strong> a cooler environment,<br />

compla<strong>in</strong> <strong>of</strong> <strong>draught</strong> even when the average air speed is lower.<br />

The <strong>in</strong>fluence <strong>of</strong> the temperature sensation upon discomfort, as a result <strong>of</strong> <strong>draught</strong>,<br />

is calculated by the follow<strong>in</strong>g formula presented by T<strong>of</strong>tum:<br />

PD cool<br />

100<br />

¼<br />

PD neutral ð1 þ expð2b:TMV cool 2 lnðPD neutral =ð100 2 PD neutral ÞÞÞ :PD neutralÞ<br />

where<br />

PD neutral ¼ percentage dissatisfaction as a result <strong>of</strong> <strong>draught</strong> with a neutral<br />

temperature sensation (PMV < 0) (per cent);<br />

PD cool<br />

ß<br />

¼ percentage dissatisfaction as a result <strong>of</strong> <strong>draught</strong> <strong>in</strong> a cooler environment<br />

(per cent);<br />

¼ regression coefficient: 20.829 (2); and<br />

TMV ¼ temperature sensation <strong>in</strong> a cool environment (PMV , 0) (2).<br />

Influence <strong>of</strong> air flow direction upon <strong>draught</strong><br />

All the previously mentioned <strong>draught</strong> models are based upon a horizontal air stream.<br />

Other studies (Zhou, 2004; Mayer and Schwab, 1990) <strong>in</strong>dicate that the air stream<br />

direction has a dramatic effect upon the feel<strong>in</strong>g <strong>of</strong> <strong>draught</strong> discomfort. Occupants<br />

subject to an airflow <strong>in</strong> a downward direction appear to be less conscious <strong>of</strong> <strong>draught</strong>s<br />

than when <strong>in</strong> a horizontal air stream.<br />

The <strong>in</strong>fluence <strong>of</strong> the flow direction upon discomfort as a result <strong>of</strong> <strong>draught</strong> is<br />

expressed <strong>in</strong> the follow<strong>in</strong>g formula, developed by Genhon Zhou, below:<br />

PD flow direction<br />

PD neutral<br />

¼ expðd:ðta 2 24ÞÞ ½2Š<br />

where<br />

PD flowdirection<br />

d<br />

t a<br />

¼ percentage dissatisfaction as a result <strong>of</strong> flow direction (per cent);<br />

¼ coefficient, conform<strong>in</strong>g to Table II (2); and<br />

¼ air temperature (8C).<br />

Table II.<br />

Coefficient (d) dependent<br />

upon the flow direction<br />

Flow direction<br />

d<br />

Vertically downwards 0.12<br />

Horizontal 0<br />

Vertically upwards 20.05


Calculation results<br />

To give an idea <strong>of</strong> how the calculated results differ from each other and with the aid <strong>of</strong><br />

a CFD computer program, the percentage dissatisfaction has been calculated for each<br />

model <strong>in</strong> an operat<strong>in</strong>g theatre with a supply air plenum <strong>of</strong> 3.5 £ 3.5 m.<br />

The follow<strong>in</strong>g parameters, for a surgeon (Melhado et al., 2005), have been used:<br />

.<br />

Metabolism: 128 W/m 2 .<br />

.<br />

Mechanical efficiency: 0.086 (2).<br />

.<br />

Intr<strong>in</strong>sic cloth<strong>in</strong>g resistance: 0.95 clo.<br />

Surgical<br />

operat<strong>in</strong>g<br />

<strong>theatres</strong><br />

69<br />

Conclusion and advice<br />

It is evident that the <strong>draught</strong> model conform<strong>in</strong>g to NEN-EN-ISO-7730 is not applicable<br />

for evaluat<strong>in</strong>g <strong>draught</strong>s <strong>in</strong> an operat<strong>in</strong>g theatre or <strong>in</strong> any other situations where<br />

occupants are not perform<strong>in</strong>g a calmly sitt<strong>in</strong>g activity (M


JFM<br />

9,1<br />

70<br />

Advice<br />

.<br />

To further <strong>in</strong>vestigate <strong>in</strong> how far the <strong>in</strong>fluence <strong>of</strong> the air direction, <strong>of</strong> which the<br />

sensation <strong>of</strong> <strong>draught</strong> could be a function <strong>of</strong> the metabolism, may not be be<strong>in</strong>g<br />

fully taken <strong>in</strong>to account <strong>in</strong> the Griefahn formula.<br />

.<br />

The (NEN-EN-)ISO 7730, perta<strong>in</strong><strong>in</strong>g to <strong>draught</strong>, should be reviewed and<br />

improved upon, for example, <strong>in</strong> the manner mentioned here<strong>in</strong>.<br />

References<br />

College bouw ziekenhuisvoorzien<strong>in</strong>gen (2003), In Perspectief nr.5, available at: www.<br />

bouwcollege.nl/Pdf/CBZ%20Website/Publicaties/In%20perspectief/<strong>in</strong>perspectief5.pdf<br />

Griefahn, B. (1999), Wirkung und Bewertung von Zugluft am Arbeitsplatz, Institut für<br />

Arbeitsphysiologie an der Universität, Dortmund.<br />

Melhado, M.A., Beyer, P.O., Hensen, J.M. and Siqueira, L.F.G. (2005), “Study <strong>of</strong> the thermal<br />

comfort, <strong>of</strong> the energy consumption and <strong>of</strong> the <strong>in</strong>door environment control <strong>in</strong> surgery<br />

rooms”, Proceed<strong>in</strong>g Indoor Air, Ts<strong>in</strong>ghua University, Beij<strong>in</strong>g.<br />

Mayer, E. and Schwab, R. (1990), “Untersuchung der physikalischen Ursachen von Zugluft”,<br />

Gesundheits Ingenieur – Haustechnik – Bauphysik – Umwelttechnik, Vol. 111 No. 1,<br />

pp. 17-30.<br />

NEN-ISO-7730 (2005), “Ergonomics <strong>of</strong> the thermal environment – Analytical determ<strong>in</strong>ation and<br />

<strong>in</strong>terpretation <strong>of</strong> thermal comfort us<strong>in</strong>g calculation <strong>of</strong> the PMV and PPD <strong>in</strong>dices and local<br />

thermal comfort criteria”, available at: www.bouwcollege.nl/Pdf/CBZ%20Website/<br />

Publicaties/In%20perspectief/NEN_EN_ISO_7730 (2005 dec).pdf<br />

T<strong>of</strong>tum, J. (1994), Traekgener i det <strong>in</strong>dustrielle arbejdsmiljø, laboratoriet for varme-og<br />

klimateknik, Danmarks Tekniske Universitet, Copenhagen.<br />

T<strong>of</strong>tum, J. and Nielsen, R. (1996), “Draught sensitivity is <strong>in</strong>fluenced by general thermal<br />

sensation”, International Journal <strong>of</strong> Industrial Ergonomics, Vol. 18, pp. 295-305.<br />

Zhou, G. (2004), “Impact <strong>of</strong> airflow direction on perceived <strong>draught</strong> discomfort”, available at:<br />

www.ie.dtu.dk/resresults.asp?ID¼25<br />

Further read<strong>in</strong>g<br />

CR-1752 (1999), “Ventilatie van gebouwen – Ontwerpcriteria voor de b<strong>in</strong>nenomstandigheden”,<br />

available at: www.bouwcollege.nl/Pdf/CBZ%20Website/Publicaties/In%20perspectief/<br />

NPR1752.pdf<br />

Fanger, P.O. and Christensen, N.K. (1984), Perception <strong>of</strong> Draught <strong>in</strong> Ventilated Spaces,<br />

Laboratory <strong>of</strong> Heat<strong>in</strong>g & Air Condition<strong>in</strong>g, Technical University <strong>of</strong> Denmark.<br />

Correspond<strong>in</strong>g author<br />

Paul Roel<strong>of</strong>sen can be contacted at: paul.roel<strong>of</strong>sen@grontmij.nl<br />

To purchase repr<strong>in</strong>ts <strong>of</strong> this article please e-mail: repr<strong>in</strong>ts@emerald<strong>in</strong>sight.com<br />

Or visit our web site for further details: www.emerald<strong>in</strong>sight.com/repr<strong>in</strong>ts

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!