02.01.2014 Views

Dr Phil Studds Ramboll Asbestos in Soils

Dr Phil Studds Ramboll Asbestos in Soils

Dr Phil Studds Ramboll Asbestos in Soils

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Asbestos</strong> <strong>in</strong> <strong>Soils</strong><br />

<strong>Dr</strong> <strong>Phil</strong> <strong>Studds</strong><br />

<strong>Ramboll</strong><br />

phil.studds@ramboll.co.uk


CONTENTS<br />

General Background<br />

• what is it?<br />

• where does it come from?<br />

• why do we care?<br />

Case Study<br />

• UK legislation & guidance for:<br />

• <strong>in</strong>itial laboratory test<strong>in</strong>g<br />

• standard assessments<br />

• Bespoke Trials<br />

• Remediation options<br />

• Risk Communication<br />

• Conclusions


What Most Relevant is it? Reports<br />

• <strong>Asbestos</strong> is a naturally occurr<strong>in</strong>g<br />

fibrous rock m<strong>in</strong>eral<br />

• M<strong>in</strong>ed commercially <strong>in</strong> Russia,<br />

Canada, Australia, Africa, USA,<br />

Cyprus, Ch<strong>in</strong>a, Brazil, Italy….<br />

• 6no. fibrous types of asbestos<br />

• Excellent physical properties<br />

-Chemical resistance<br />

-Resistant to fire<br />

-Acoustic & condensation protection<br />

• Used extensively <strong>in</strong> the UK until<br />

the late 1990s


Most Relevant Types Reports<br />

• Chrysotile – White<br />

•2000 BC – found <strong>in</strong> clay pots<br />

<strong>in</strong> F<strong>in</strong>land<br />

• 300 BC – oil lamp wicks <strong>in</strong><br />

Greek Acropolis<br />

• Amosite – Brown<br />

• Crocidolite – Blue<br />

• brown & blue more<br />

hazardous<br />

• Apparent colour<br />

not a good <strong>in</strong>dication<br />

of type<br />

• 100 AD – woven table cloths<br />

& handkerchiefs<br />

• 1700s – purses, coats, shirts,<br />

books<br />

• 1800s – theatre safety<br />

curta<strong>in</strong>s and fire fight<strong>in</strong>g<br />

clothes<br />

• 1828 – first US patent for<br />

steam eng<strong>in</strong>e<br />

• 1900s – food purification<br />

filters, gas mask filters, hospital<br />

air filters, surgeon’s thread,<br />

tooth paste filler, cigarette tips<br />

and artificial snow


<strong>Asbestos</strong> Cement<br />

roof<strong>in</strong>g sheets<br />

'Preformed' Thermal<br />

Pipe Insulation<br />

Floor V<strong>in</strong>yl (with<br />

<strong>Asbestos</strong> Paper Back<strong>in</strong>g)<br />

Brakes conta<strong>in</strong><strong>in</strong>g<br />

<strong>Asbestos</strong> Rope<br />

Products<br />

Bakelite toilet<br />

conta<strong>in</strong><strong>in</strong>g Bonded<br />

<strong>Asbestos</strong><br />

<strong>Asbestos</strong> thermal<br />

<strong>in</strong>sulation debris<br />

(contam<strong>in</strong>ation).


<strong>Asbestos</strong> fire blanket Pieces of AIB Perforated AIB ceil<strong>in</strong>g<br />

tiles damaged around<br />

the light fitt<strong>in</strong>g<br />

Suspended AIB<br />

ceil<strong>in</strong>g tiles <strong>in</strong> a corridor<br />

<strong>Asbestos</strong> conta<strong>in</strong><strong>in</strong>g<br />

floor tiles <strong>in</strong> a corridor<br />

<strong>Asbestos</strong> cement


How does it end up <strong>in</strong> the ground?<br />

Only very m<strong>in</strong>or natural sources of asbestos <strong>in</strong> the UK – Cornwall<br />

Chrysoltile<br />

<strong>Asbestos</strong> contam<strong>in</strong>ation by anthropogenic sources<br />

• Process<strong>in</strong>g asbestos – dust fallout of debris from nearby works,<br />

i.e. factory, Armley, Leeds<br />

• Demolished build<strong>in</strong>gs and clearance of build<strong>in</strong>gs conta<strong>in</strong><strong>in</strong>g ACMS<br />

– poor site practice<br />

• Buried pipes/ducts<br />

• Fly tipp<strong>in</strong>g<br />

• Intentionally placed <strong>in</strong> the ground (farmers/power stations)<br />

• Landfill disposal<br />

• Cross contam<strong>in</strong>ation – importation of impacted soils


Who is at risk & why do we care<br />

Current Users<br />

–Recreational Activities<br />

–Residents<br />

- Largest s<strong>in</strong>gle <strong>in</strong>dustrial killer<br />

<strong>in</strong> the UK<br />

- Over 4,000 deaths /yr <strong>in</strong> UK<br />

ris<strong>in</strong>g to 10,000 deaths /yr<br />

–Workers<br />

Contractors <strong>in</strong>volved <strong>in</strong> re-profil<strong>in</strong>g the site<br />

–Earthworks / enabl<strong>in</strong>g works<br />

–Cut and Fill operation and muck shift<br />

–Pill<strong>in</strong>g Contractors<br />

–Services / <strong>Dr</strong>a<strong>in</strong>age Gangs<br />

–House builders<br />

HSE Statistic<br />

every week on average...<br />

- 4 plumbers die<br />

- 20 tradesmen die<br />

- 6 electricians die<br />

- 8 jo<strong>in</strong>ers die


1. Mesothelioma<br />

2. Lung cancer<br />

3. <strong>Asbestos</strong>is<br />

4. Diffuse pleural thicken<strong>in</strong>g


ASBESTOS IN SOIL<br />

CASE STUDY – HOBMOOR SCHOOL,<br />

BIRMINGHAM


Case study - Introduction<br />

New School site at Yardley<br />

• Client – Balfour Beatty Construction<br />

Limited,<br />

• PFI Contractor for 10 Birm<strong>in</strong>gham<br />

Schools<br />

• New Hobmoor School<br />

• Site Context<br />

• Soft landscap<strong>in</strong>g, sports areas,<br />

significant cut and fill<br />

• Previously developed land - <strong>in</strong>dustrial<br />

• Historic review and site visit established significant volumes of<br />

demolition rubble from prefabricated build<strong>in</strong>gs across the site<br />

• Surround<strong>in</strong>g residential area


Case Study<br />

Initial Assessments<br />

• Significant demolition rubble<br />

across the site<br />

• <strong>Asbestos</strong> Conta<strong>in</strong><strong>in</strong>g Materials<br />

(ACM) encountered dur<strong>in</strong>g<br />

site clearance<br />

• Specialist Survey (Specialist<br />

Contractor) undertaken -<br />

sampl<strong>in</strong>g, perimeter air<br />

monitor<strong>in</strong>g<br />

• <strong>Asbestos</strong> cement –<br />

chrysotile<br />

• <strong>Asbestos</strong> <strong>in</strong>sulat<strong>in</strong>g board<br />

- amosite<br />

• ACM located <strong>in</strong> the top<br />

100 – 150mm of top soil


Regulations<br />

Most Relevant Reports<br />

• The Health and Safety at Work Act 1974<br />

• The <strong>Asbestos</strong> Licens<strong>in</strong>g Regulations 1983<br />

(as amended)<br />

• The <strong>Asbestos</strong> (Prohibition) Regulations<br />

1992 (as amended)<br />

•The Control of <strong>Asbestos</strong> at Work<br />

Regulations 2002<br />

•The Control of <strong>Asbestos</strong> Regulations 2006<br />

• Construction (Design and Management)<br />

Regulations 2007


UK Guidance<br />

No def<strong>in</strong>itive guidance for<br />

concentrations <strong>in</strong> soil.<br />

• ICRCL Guidance Note 64/85 “<strong>Asbestos</strong> on Contam<strong>in</strong>ated Sites”<br />

published 1990<br />

• If obvious ACM present – treat as contam<strong>in</strong>ated<br />

• Addison et al, HSE Contract Report 83/96<br />

• Introduce idea of test<strong>in</strong>g for free fibres<br />

• Hazardous Waste Regulations<br />

• 0.10%wt asbestos <strong>in</strong> soil – threshold for hazardous waste


Sampl<strong>in</strong>g and Analysis<br />

• ≥1 kg samples<br />

• Bulk ID<br />

– presence/absence of asbestos m<strong>in</strong>erals<br />

• First stage of quantification<br />

• Weigh soil sample<br />

– lab specifically accredited for soils<br />

• Pick out ACMs, describe type e.g. chrysotile cement<br />

• Weigh ACMs<br />

• Use standard asbestos contents to calculate % asbestos<br />

• Second stage – quantify loose fibre content us<strong>in</strong>g optical<br />

microscopy (f/ml)-


Laboratory Analysis<br />

Gravimetric w/w percentage asbestos <strong>in</strong> soil<br />

• Cheap easy to obta<strong>in</strong> result<br />

• Limited value and difficult to <strong>in</strong>terpret number because it calculates %<br />

concentration of asbestos <strong>in</strong> ACMs as a % of whole soil sample<br />

• Lead to large overestimate of asbestos content, e.g.:<br />

• Thermal <strong>in</strong>sulation – 6-85%<br />

• <strong>Asbestos</strong> Boards – 37-97%<br />

• Res<strong>in</strong> – 30-70%<br />

• Basic gravimetric analysis not appropriate for assess<strong>in</strong>g waste<br />

classification or potential risk to human health<br />

• Risk - How to relate hazard (ACMs) to risk (from respirable asbestos<br />

fibres)?<br />

• Remediation - How to effectively plan remediation (or do noth<strong>in</strong>g)<br />

scheme without all necessary <strong>in</strong>formation


Dust<strong>in</strong>ess Test<strong>in</strong>g<br />

• Measures the propensity of the material<br />

to release airborne dust.<br />

• It is a comparative measurement.<br />

• Carried out by apply<strong>in</strong>g a standard set<br />

of measurement conditions and<br />

select<strong>in</strong>g a def<strong>in</strong>ed fraction (e.g.<br />

respirable).<br />

• European Standard EN15051 method<br />

• Range of dust<strong>in</strong>ess values extend over 5<br />

orders of magnitude.<br />

• Replicates the worse case airborne<br />

release – only used for difficult sites


Detection of Airborne Fibres<br />

Scann<strong>in</strong>g Electron Microscopy


Assessment of Data<br />

• No UK Tier 1 SGV def<strong>in</strong>ed for concentrations (or percentage) of<br />

asbestos <strong>in</strong> soils – i.e. levels regarded as NOT represent<strong>in</strong>g<br />

SPOSH<br />

• EA/Defra, IOM, EIC + others work<strong>in</strong>g on this.<br />

• Dutch Guidel<strong>in</strong>es -


Assessment Difficulties cont…<br />

• Test methods for fibre release – (mean<strong>in</strong>gful tests required).<br />

• Typical background asbestos fibre counts <strong>in</strong> outdoor urban air 1<br />

0.0001f/ml<br />

• HPA advise on an unofficial environmental limit of 0.0005f/ml<br />

• But standard air fibre monitor<strong>in</strong>g equipment gives a 0.01f/ml<br />

detection limit! (SEM – 0.001 f/ml)<br />

• Modell<strong>in</strong>g Tools – once site specific exposure data is gathered,<br />

how are the risks evaluated? There is currently no public<br />

available modell<strong>in</strong>g to assess soil source asbestos exposure<br />

(1) – Health Effects Institute US


Assess<strong>in</strong>g Risk - Summary<br />

• Impact from asbestos should be assessed like any other soil<br />

contam<strong>in</strong>ant (i.e. S-P-R), except;<br />

• Impact occurs as discrete fragments<br />

• Potential for exposure <strong>in</strong>creases with time as material breaks down<br />

with time<br />

• Hazard assessment based on % w/w crude and does not relate to<br />

concentration of air borne fibres, the real risk<br />

• Risk from exposure to airborne asbestos from soil dependent on:<br />

• <strong>Asbestos</strong> content <strong>in</strong> soil;<br />

• Type of asbestos present;<br />

• Matrix of soil (clay or sand dom<strong>in</strong>ated), moisture content<br />

• Site use and exposure duration/behaviour of receptor


Case Study<br />

RISK MANAGEMENT – PHASE 1<br />

• Pollutant l<strong>in</strong>kages identified – dur<strong>in</strong>g<br />

construction and operation of the site<br />

• Free fibres, friable materials (asbestos<br />

cement, AIB)<br />

• Remedial Options Appraisal<br />

1. Dig & dump (vegetation strip)<br />

- >£800 000<br />

2. Handpick ACMs and cap and with<br />

imported top soil (300mm) + marker<br />

layer ~£0.5M<br />

3. Assess risks of reus<strong>in</strong>g top soil <strong>in</strong> situ<br />

• Developed a bespoke methodology<br />

• Comprehensive worldwide review of<br />

asbestos legislation & guidel<strong>in</strong>es


Case Study<br />

BESPOKE ASSESSMENTS – ARE TOP SOILS<br />

SUITABLE FOR REUSE ON SITE?<br />

I<br />

OBJECTIVES<br />

All ACM has been removed from the top soil<br />

as far as reasonably practicable.<br />

II<br />

There is no significant amount of residual<br />

free fibres with<strong>in</strong> the top soil.<br />

OBJECTIVE TESTING<br />

III<br />

Vigorous disturbance of the soil, greater<br />

than the worst case envisaged dur<strong>in</strong>g<br />

school operation, will not generate<br />

detectable levels of asbestos fibres <strong>in</strong><br />

outdoor air.<br />

Soil Screen<strong>in</strong>g<br />

Soil Fibre Analysis<br />

Air Monitor<strong>in</strong>g<br />

I, III, IV, V<br />

II<br />

III, V<br />

IV<br />

Vigorous disturbance of the soil, greater<br />

than the worst case envisaged dur<strong>in</strong>g<br />

school operation, will not generate<br />

detectable levels of asbestos fibres <strong>in</strong><br />

<strong>in</strong>door air.<br />

Indoor Air Experiment<br />

IV, V<br />

V<br />

There will be no significant load of asbestos<br />

fibres <strong>in</strong>to the environment dur<strong>in</strong>g future<br />

school operations.


Case Study<br />

INDOOR AIR EXPERIMENT<br />

• Estimate potential air fibre release dur<strong>in</strong>g<br />

school operation e.g. soil derived <strong>in</strong>door<br />

dust<br />

• Simulate realistic and real time situation –<br />

worst case<br />

• Purpose built 12m 3 sealed enclosure with air<br />

lock entry<br />

• Vigorous disturbance of soil (5m<strong>in</strong>s for every<br />

15m<strong>in</strong>s over a 1h period) – generate dust<br />

• Air monitor<strong>in</strong>g and test<strong>in</strong>g<br />

• Phase Contrast Optical Microscopy (PCOM)<br />

analyses<br />

ACM impacted soils<br />

generat<strong>in</strong>g dust <strong>in</strong> a school<br />

build<strong>in</strong>g


Case Study<br />

SOIL FIBRE ANALYSIS<br />

• Analysis of “screened soils” for “free<br />

fibres”<br />

• Samples sent to specialist lab - Institute<br />

of Occupational Medic<strong>in</strong>e (IOM) <strong>in</strong><br />

Ed<strong>in</strong>burgh<br />

• Qualitative analysis – b<strong>in</strong>ocular &<br />

Polarised Light Microscopy (PLM)<br />

• Quantitative analysis (% w/w) –<br />

Quantitative Phase Contrast Microscopy<br />

• No detected “free fibres”<br />

• Vigorous disturbance of soils does not<br />

generate secondary asbestos fibres<br />

• Specific to conditions on the Hobmoor<br />

site – soil type, asbestos type etc.


Soil Remediation<br />

• Ex situ soil<br />

treatment – hand<br />

pick<strong>in</strong>g<br />

• Waste exemption<br />

for re-use on site –<br />

deep burial and<br />

capp<strong>in</strong>g<br />

• Suitable for use,<br />

risk-based target<br />

• Validation of<br />

stockpiles


• The pr<strong>in</strong>cipal method<br />

- disposal to landfill or capp<strong>in</strong>g.<br />

• Segregate<br />

Soil Remediation<br />

• Reduce the volume of soil go<strong>in</strong>g to<br />

landfill<br />

• Allow a reduction <strong>in</strong> the<br />

classification of the soils to nonhazardous<br />

• Allow the retention of treated soils<br />

on site<br />

• Sav<strong>in</strong>gs of at least 30%, >60%<br />

compared to straight disposal to<br />

landfill.


Case Study<br />

SOIL SCREENING<br />

• Hand pick<strong>in</strong>g of asbestos cement and AIB fragments<br />

• Licensed contractor, HSE approved methodology<br />

• Trommel siev<strong>in</strong>g (14mm mesh)<br />

• Air monitor<strong>in</strong>g across the perimeter of the site & <strong>in</strong> “Control Zone”


Case Study<br />

RISK COMMUNICATION<br />

• <strong>Asbestos</strong> is an emotive subject<br />

• “Perceived” hazards and risks<br />

• Stakeholder Management was key to<br />

the success of this project<br />

• Balfour Beatty<br />

• Health & Safety Executive<br />

• Environment Agency<br />

• Birm<strong>in</strong>gham City Council Contam<strong>in</strong>ated<br />

Land Officer<br />

• Environmental Health Departments<br />

• School Board of Governors<br />

• Complex air monitor<strong>in</strong>g – confidence<br />

to neighbours


Case Study<br />

CONCLUSIONS<br />

• Screened top soil – fit for purpose<br />

• Reused <strong>in</strong> soft landscape without<br />

capp<strong>in</strong>g layer<br />

• Site Specific & Bespoke risk<br />

assessment methods developed and<br />

implemented<br />

• Worst case activities simulated and<br />

tested<br />

• No residual fibres detected<br />

• Concluded residual risks Low<br />

• Risk Communication undertaken


Case Study – Conclusions cont.<br />

• In total 80 soil samples were analysed and 14 were identified with<br />

visible ACM debris, all of which were less than 0.05% by weight of<br />

the sample.<br />

• No free fibres were detected <strong>in</strong> any of the 11 samples tested.<br />

• Results of all air monitor<strong>in</strong>g - below detection limit of the<br />

standard HSE method i.e.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!