26.10.2012 Views

Mariana Vargas Magana - Berkeley Center for Cosmological Physics

Mariana Vargas Magana - Berkeley Center for Cosmological Physics

Mariana Vargas Magana - Berkeley Center for Cosmological Physics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Redshift<br />

Distortions<br />

<strong>Mariana</strong> <strong>Vargas</strong> <strong>Magana</strong><br />

Laboratorie Astroparticule & Cosmologie- Universite Paris 7-Denis Diderot<br />

ssential Cosmology <strong>for</strong> the next generation 2011 BCCP-IAC Puerto Vallarta , Mexico, January, 2011


INTRODUCTION<br />

A FIRST EXPLORATION<br />

OUTLINE<br />

LOGNORMAL SIMULATIONS IN LINEAR REGIME<br />

MONTE CARLO REALIZATIONS OF A N-BODY<br />

SIMULATION (HORIZON PROJECT)<br />

PERSPECTIVES.


INTRODUCTION TO<br />

REDSHIFT DISTORTIONS<br />

IN REDSHIFT SURVEYS WE MAP THE UNIVERSE IN 3 DIMENSIONS<br />

USING REDSHIFT TO MESURE DISTANCE.<br />

REDSHIFT DISTANCES S ( ) DIFFERS FROM TRUE DISTANCES<br />

R ( )BY PECULIAR VELOCITIES.<br />

r = H0d<br />

s = r + v<br />

s ≡ cz<br />

v ≡ �r · v<br />

PECULIAR VELOCITIES CAUSE THAT DISTANCES TO APPEAR<br />

DISPLACED ALONG THE LINE OF SIGHT IN REDSHIFT SPACE.


ILUSTRATION OF REDSHIFT<br />

DISTORTIONS<br />

LARGE<br />

SCALES<br />

SMALL<br />

SCALES<br />

GALAXIES UNDERGOING INFALL VELOCITIES<br />

TOWARS A SPHERICAL OVERDENSIY<br />

LARGE SCALES,<br />

PECULIAR<br />

VELOCITY OF<br />

INFALL SHELL IS<br />

SMALL<br />

COMPARED WITH<br />

ITS RADIUS.<br />

SMALL SCALES,<br />

RADIUS OF<br />

SPHERE IS<br />

SMALLER,<br />

ALSO PECULIAR<br />

VELOCITY IS<br />

LARGER


WHY STUDING REDSHIFT<br />

DISTORTIONS?<br />

REDSHIFT DISTORTIONS GIVE ACCESS TO THE LINEAR GROWTH<br />

RATE FACTOR OF DENSITY PERTURBATION “THAT IS A POWERFUL<br />

OBSERVABLE QUANTITY OF FUTURE LARGE REDSHIFT SURVEYS TO PROBE PHYSICAL<br />

PROPERTIES OF DARK ENERGY AND TO DISTINGUISH AMONG VARIOUS GRAVITY<br />

THEORIES.”[ TEPPEI OKUMURA AND Y. P. JING arXiv:1004.3548v2 ]


LINEAR REGIME APPROXIMATION<br />

IN LINEAR REGIME , KAISER’S FORMULA’S [1987] APPLIES, THE EFFECT OF<br />

REDSHIFT DISTORTIONS IS THE AMPLIFICATION OF THE UNREDSHIFTED MODE BY<br />

A FACTOR<br />

AMPLITUDE REDSHIFT<br />

DISTORTIONS<br />

β = f(ΩM )= dLnD<br />

dLna<br />

P s (k) = (1 + βµ 2 k) 2 P (k)<br />

MASS DENSITY<br />

PARAMETER AT Z<br />

ANGLE BETWEEN WAVE<br />

VECTOR & LOS DIRECTION<br />

LINEAR GROWTH RATE OF DENSITY<br />

PERTURBATIONS<br />

GROWTH INDEX<br />

f(ΩM )= γ =0.55 FOR GR<br />

(LINDER 2005)<br />

ΩM<br />

γ<br />

b<br />

LIGHT TO MASS BIAS<br />

δ = bδM<br />

REDSHIFT DISTORTIONS ALLOWS TO PROBE DEVIATIONS FROM GR.<br />

DEGENERATE PARAMETER COMBINATION (DENSITY OF MATTER & BIAS)


DECOMPOSITION IN HARMONICS<br />

IN THE LINEAR REGIME<br />

FOR PLANE PARALLEL APROXIMATION, POWER SPECTRUM CAN BE WRITTEN<br />

AS A SUM OF EVEN HARMONICS.<br />

P s (k) =ΣPl(µk)P s<br />

l (k)<br />

(KAISER’S FORMULA )IN LINEAR THEORY REDSHIFTED POWER SPECTRUM IS<br />

COMPLETLY CHARACTERZED BY L=0,2,4, THE HEXADECAPOLE (L=4) IS<br />

SMALL COMPARED WITH THE OTHERS & NOISY<br />

HARMONICS OF REDSHIFT CORRELATION ARE DEFINED SIMILARLY TO<br />

THOSE OF POWER SPECTRUM [HAMILTON (1992)]<br />

ξ s (s, µ) =P0(µs)ξ s 0(s)+P2(µs)ξ s 2(s)+P4(µs)ξ s 4(s)<br />

ξ s 0(s) = (1 + 2/3β +1/5β 2 )ξ(r)<br />

ξ s 2(s) = (4/3β +4/7β 2 )(ξ(r) − ¯ ξ(r))<br />

ξ0(s)<br />

ξ(r)<br />

2 1<br />

= 1 + β +<br />

3 5 β2<br />

¯ ξ(r) = 3r −3<br />

ξ2(s)<br />

ξ s 0 (s) + (3/s3 ) � s<br />

0 ξs 0 (s′ )s ′ 2 ds ′ =<br />

THESE RATIOS YIELD AN ESTIMATE OF AT EACH DISTANCE.<br />

β<br />

� r<br />

0<br />

4 4<br />

3β + 7β2 1+ 2<br />

3<br />

ξ(s)s 2 ds<br />

1 = G(β)<br />

β + 5β2


MODELING REDSHIFT DISTORTIONS<br />

IN NONLINEAR REGIME<br />

EXTRACT INFORMATION WHERE THE POWER SPECTRUM DOES NOT MATCH TO THE<br />

LINEAR REGIME.<br />

NON-LINEARITY IN THE VELOCITY AND DENSITY FIELDS PRODUCES DISTORTIONS IN AN<br />

OPPOSITE SENSE TO THE LINEAR THEORY PREDICTIONS, LEADING TO LOWER ESTIMATES<br />

OF<br />

β<br />

β<br />

IN ORDER TO ESTIMATE USING CURRENTLY AVAILABLE REDSHIFT SURVEYS IS<br />

ESSENTIAL TO MODEL THE NON-LINEARITIES ACCURATELY<br />

STANDARD PROCEDURE CONSIST ON THE MODIFICATION OF KAISER'S FORMULA<br />

INCLUDING A TERM TAKING IN ACCOUNT THE UNCORRELATED VELOCITY<br />

DISPERSION .<br />

P s (k) = (1 + βµ 2 k) 2 P (k) G(k, µ 2 )<br />

limk→0G(k, µ 2 ) = 1<br />

DISTRIBUTION OF RANDOM<br />

PAIR VELOCITIES ,<br />

(EXPONENCIAL. GAUSSIAN)


BIAS PARAMETER OVERSIMPLIFIED?<br />

β = Ω0.6<br />

m<br />

b<br />

RATIO OF RMS GALAXY FLUCTUATIONS TO<br />

RMS MASS FLUCTUATIONS ON SCALE R.<br />

RELATION BETWEEN THE GALAXY AND MASS DENSITY FIELDS DEPENDS ON THE COMPLEX<br />

PHYSICS OF GALAXY FORMATION, AND IT CAN BE IN GENERAL NON-LINEAR, STOCHASTIC,<br />

AND PERHAPS NON-LOCAL..<br />

WAS ESTIMED USING DIFFERENT TECHNIQUES AND USING COMPLEX BIAS MODELS.<br />

IT WAS FOUND THAT β ESTIMATED FROM DIFFERENT METHODS WAS SIMILAR TO THE<br />

ASYMPTOTIC VALUE OF ( β = ) FOR R LARGE. [ ANDREAS A. BERLIND , VIJAY K.<br />

NARAYANAN ,DAVID H. WEINBERG arXiv:astro-ph/0008305v1]<br />

Ω0.6<br />

m<br />

bσ(r)<br />

β<br />

b(r) =σg(r)/σm(r)<br />

β = Ω0.6<br />

m<br />

bσ(r)<br />

CONVENTIONAL INTERPRETATION OF CONTINUES<br />

TO HOLD EVEN FOR COMPLEX BIAS MODELS.<br />

β


FIRST EXPLORATION....<br />

FIRST GOAL INVESTIGATE HOW WELL I CAN RECONSTRUCT<br />

AMPLIFICATION REDSHIFT PARAMETER WITH SIMULATIONS.<br />

GENERATE LOG NORMAL RANDOM FIELD<br />

FOLLOWS ΛCDM<br />

.COSMOLOGY TO SIMULATE<br />

DENSITY FIELD, AND USE THIS FIELD AS PDF TO<br />

POPULATE WITH GALAXIES.<br />

GENERATE VELOCITIES USING EXPRESSION FROM<br />

LINEAR REGIME .


SIMULATION LOGNORMAL GALAXIES<br />

REAL CONFIGURATION SPACE


SIMULATION LOGNORMAL GALAXIES<br />

REDSHIFT CONFIGURATION SPACE


π [Mpc]<br />

CORRELATION FUNCTION IN 2D<br />

100<br />

0<br />

-100<br />

C(r p,π)<br />

-100 0 100<br />

r p [Mpc]<br />

NO VELOCITIES<br />

-1.6<br />

-1.8<br />

-2.0<br />

-2.2<br />

s [Mpc]<br />

BAO PEAK<br />

ξ 0(s)× s 2<br />

100<br />

0<br />

ξ 2(s)× s 2<br />

-100<br />

400<br />

300<br />

200<br />

100<br />

0<br />

C(s,θ)<br />

0 50 100 150 200<br />

s [Mpc.h -1 -1.0<br />

]<br />

0 50 100 150 200<br />

s [Mpc.h -1 -20<br />

-40<br />

-60<br />

]<br />

0<br />

20<br />

60<br />

40<br />

-2.0<br />

-2.5<br />

-50 0 50<br />

θ [Degrees]<br />

0.0<br />

-0.5<br />

-1.5<br />

ξ 0(s)× s 2<br />

ξ 2(s)× s 2


π [Mpc]<br />

CORRELATION FUNCTION IN 2D<br />

100<br />

0<br />

-100<br />

C(r p,π)<br />

-100 0 100<br />

r p [Mpc]<br />

WITH VELOCITIES<br />

-1.6<br />

-1.8<br />

-2.0<br />

ξ 0(s)× s 2<br />

s [Mpc]<br />

ξ 2(s)× s 2<br />

100<br />

0<br />

-100<br />

0 50 100<br />

s [Mpc.h<br />

150 200<br />

-1 500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

C(s,θ)<br />

0.0<br />

-0.5<br />

]<br />

-1.0<br />

0 50 100 150 200<br />

s [Mpc.h -1 -100<br />

-200<br />

-300<br />

]<br />

0<br />

300<br />

200<br />

100<br />

-50 0 50<br />

-2.0<br />

-2.5<br />

θ [Degrees]<br />

-1.5<br />

2<br />

ξ (s)× s 2


s(Mpc)<br />

CORRELATION FUNCTION 2D &<br />

MONOPOLE AND QUADRUPOLE ESTIMATION<br />

ξ(s, θ)<br />

θ( ◦ )<br />

r �<br />

ξ(r⊥,r �)<br />

r⊥<br />

FOR EACH BIN IN R , A<br />

POLINOMIAL FIT IS DONE TO<br />

CORRELATION FUNCTION<br />

ξ s (s, µ) =P0(µs)ξ s 0(s)+P2(µs)ξ s 2(s)+P4(µs)ξ s 4(s)<br />

ξ(ri, cos 2 θ)<br />

cos 2 (θ)


LOG-NORMAL SIMULATION<br />

REAL SPACE


s [Mpc]<br />

100<br />

0<br />

-100<br />

LOG-NORMAL SIMULATION<br />

C(s,θ)<br />

-50 0 50<br />

θ [Degrees]<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

-1.2<br />

ξ 0(s)× s 2<br />

ξ 2(s)× s 2<br />

ξ 4(s)× s 2<br />

150<br />

100<br />

50<br />

0<br />

Input without RS dist.<br />

Linear RS dist.<br />

Simulation<br />

0 50 100<br />

s [Mpc.h<br />

150 200<br />

-1 -50<br />

]<br />

400<br />

200<br />

0<br />

-200<br />

0 50 100<br />

s [Mpc.h<br />

150 200<br />

-1 -400<br />

]<br />

150<br />

100<br />

50<br />

0<br />

0 50 100<br />

s [Mpc.h<br />

150 200<br />

-1 -50<br />

]<br />

REDSHIFT SPACE


BETA STIMATION USING REDSHIFTED<br />

AND REAL MONOPOLE RATIO<br />

ξ 0(s) / ξ 0(r)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

ξ0(s)<br />

ξ(r)<br />

β =1<br />

Bias = 2.00<br />

2 1<br />

= 1 + β +<br />

3 5 β2<br />

Horizon rpi<br />

50 100<br />

s [Mpc.h<br />

150 200<br />

-1 ]


HORIZON SIMULATION<br />

HALOS OF DARK MATTER OF N-BODY SIMULATION, 2 GPC SIDE<br />

s [Mpc]<br />

100<br />

0<br />

-100<br />

C(s,θ)<br />

-50 0 50<br />

θ [Degrees]<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

-2.5<br />

ξ 0(s)× s 2<br />

ξ 2(s)× s 2<br />

400<br />

300<br />

200<br />

100<br />

0<br />

20<br />

60<br />

40<br />

0 50 100 150 200<br />

s [Mpc.h -1 ]<br />

0 50 100<br />

s [Mpc.h<br />

150 200<br />

-1 -20<br />

-40<br />

-60<br />

]<br />

0


s [Mpc]<br />

100<br />

0<br />

-100<br />

HORIZON SIMULATION<br />

C(s,θ)<br />

-50 0 50<br />

θ [Degrees]<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

-2.5<br />

ξ 0(s)× s 2<br />

ξ 2(s)× s 2<br />

0 50 100 150 200<br />

s [Mpc.h -1 400<br />

300<br />

200<br />

100<br />

0<br />

]<br />

300<br />

200<br />

100<br />

0 50 100<br />

s [Mpc.h<br />

150 200<br />

-1 -100<br />

-200<br />

-300<br />

]<br />

0


ξ 0(s) / ξ 0(r)<br />

BETA STIMATION IN HORIZON<br />

BIAS USING RATE BETWEEN REDSHIFTED /REAL MONOPOLE<br />

4<br />

3<br />

2<br />

1<br />

0<br />

b =1<br />

β = ΩM0<br />

b<br />

ξ0(s)<br />

ξ(r)<br />

Bias = 1.40<br />

γ ∼ 0.46<br />

2 1<br />

= 1 + β +<br />

3 5 β2<br />

Horizon rtheta<br />

50 100 150 200<br />

s [Mpc.h -1 ]


PERSPECTIVES...<br />

FINISH BIAS ESTIMATON USING QUADRUPOLE.<br />

ADD ANGULAR AND RADIAL SELECTION FONCTIONS TO<br />

SIMULATE REAL DATA.<br />

APPLIED TO OTHERS MOCK CATALOGUES OF GALAXIES<br />

(LAS DAMAS) TO SEE SMALL SCALES (FINGERS OF GOD).<br />

GENERATE MOCK CATALOGUES OF GALAXIES USING FOF<br />

OF HORIZON SIMULATION WITH DIFERENT PRESCRIPTIONS<br />

FOR BIAS ?<br />

APPLIED TO SDSS PUBLIC DATA (DR7) AND COMPARED<br />

WITH PREVIOUS WORK<br />

APPLIED TO SDSS-III BOSS DATA.


FIN


BIAS USING QUADRUPOLE<br />

NORMALIZED<br />

ξ2(s)<br />

ξ s 0 (s) + (3/s3 ) � s<br />

0 ξs 0 (s′ )s ′ 2 ds ′ =<br />

4 4<br />

3β + 7β2 1+ 2<br />

3<br />

1 = G(β)<br />

β + 5β2


QUADRUPOLE ET BIAS IN HORIZON<br />

GENERE PLOT<br />

ξ2(s)<br />

ξ s 0 (s) + (3/s3 ) � s<br />

0 ξs 0 (s′ )s ′ 2 ds ′ =<br />

4 4<br />

3β + 7β2 1+ 2<br />

3<br />

1 = G(β)<br />

β + 5β2


GENERATION DE SIMULATION<br />

LOG NORMAL<br />

GENERATION OF A LOG NORMAL RANDOM FIELD,FOR<br />

EACH MODE K WITH VARIANCE PROPORCIONAL TO PK<br />

INPUT.<br />

LES GALAXIES ARE PLACED USING DENSITY FIELD AS A<br />

PROBABILITY DENSITY FUNCTION.<br />

VELOCITIES ARE GENERATED USING DENSITY FIELD IN<br />

THE LINEAR APROXIMATION :<br />

v = −β∇∇ −2 δ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!