31.12.2013 Views

The chemistry, mineralogy, and rates of transport of sediments in the ...

The chemistry, mineralogy, and rates of transport of sediments in the ...

The chemistry, mineralogy, and rates of transport of sediments in the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

12<br />

This computation will seriously underestimate most sediment additions<br />

to streams, s<strong>in</strong>ce coarse silt, s<strong>and</strong>, <strong>and</strong> gravel will not be measured <strong>in</strong><br />

SSmax , <strong>and</strong> bedload <strong>transport</strong> is not considered . Results <strong>of</strong> <strong>the</strong> - calculation<br />

(Eq . 6) can <strong>the</strong>n be compared to known relationships between<br />

sedimentation <strong>and</strong> <strong>the</strong> well-be<strong>in</strong>g <strong>of</strong> stream benthic organisms <strong>and</strong> fish<br />

(Rosenberg <strong>and</strong> Snow, 1975) . Rosenberg <strong>and</strong> Snow (1975, <strong>and</strong> unpublished<br />

data) found that experimentally <strong>in</strong>creased sedimentation (<strong>of</strong> 25, 50, 25%<br />

s<strong>and</strong>, silt, clay sediment, respectively) at <strong>rates</strong> <strong>of</strong> 0 .060-3 .9 kg m -2<br />

<strong>of</strong> , stream bottom'hr 1 caused resident zoobenthic organisms <strong>in</strong> <strong>the</strong> stream<br />

bed <strong>of</strong> Harris River to leave <strong>the</strong> site <strong>of</strong> sediment addition . If, by fur<strong>the</strong>r<br />

research, a level <strong>of</strong> sediment addition is found below which little or no<br />

effect on zoobenthos, phytobenthos, <strong>and</strong> fish is observed, <strong>the</strong>n that level<br />

<strong>of</strong> sediment addition should be considered an upper limit on sediment supply<br />

to streams from terra<strong>in</strong> disturbance .<br />

We wish to emphasize that <strong>the</strong> regression l<strong>in</strong>es <strong>in</strong> Fig . 1 are not based<br />

on sufficiently long records, nor on sufficient details, to allow precise<br />

use <strong>of</strong> <strong>the</strong> l<strong>in</strong>es to establish "<strong>in</strong>dividual stream st<strong>and</strong>ards for sediment<br />

concentrations" . For example, for a given Qi on Fig . 1, <strong>the</strong> variation <strong>of</strong><br />

SSi can be from ± 2x to ± 10 x <strong>the</strong> <strong>in</strong>dicated value on <strong>the</strong> vertical axis,<br />

depend<strong>in</strong>g on <strong>the</strong> river type '<strong>and</strong> <strong>the</strong> number <strong>of</strong> Qj <strong>and</strong> SSj data po<strong>in</strong>ts available<br />

to us . Verification, stabilization, <strong>and</strong> an <strong>in</strong>crease <strong>in</strong> confidence <strong>in</strong><br />

<strong>the</strong> regression l<strong>in</strong>es <strong>in</strong> Fig . 1 will result from cont<strong>in</strong>ued monitor<strong>in</strong>g <strong>of</strong><br />

normal <strong>and</strong> natural extreme events . Greater confidence <strong>in</strong> such regression<br />

l<strong>in</strong>es could result from subdivision <strong>of</strong> <strong>the</strong> yearly hydrograph (Q • Vs time)<br />

<strong>in</strong>to a) <strong>the</strong> ascend<strong>in</strong>g limb <strong>of</strong> <strong>the</strong> peak flow hydrograph (May-early June <strong>in</strong><br />

<strong>the</strong> Mackenzie Valley), b)' <strong>the</strong> descend<strong>in</strong>g limb <strong>of</strong> <strong>the</strong> peak flow hydrograph,<br />

<strong>and</strong> c) low flow periods (late summer, fall <strong>and</strong> w<strong>in</strong>ter) . For example, we<br />

were able to improve <strong>the</strong> significance <strong>of</strong> <strong>the</strong> regression <strong>of</strong> SSi on Qj for<br />

<strong>the</strong> Harris River from r - 0 .50 (a - >0 .001) for all data po<strong>in</strong>ts, to r - 0 .72<br />

(a - >0 .001) for only data po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> high Q . period <strong>of</strong> <strong>the</strong> year <strong>in</strong><br />

April, May <strong>and</strong> June (us<strong>in</strong>g data from Davies, 194) . We <strong>the</strong>refore stress<br />

that our purpose is to present this method <strong>of</strong> data treatment <strong>and</strong> to illusstrate<br />

general trends <strong>in</strong> <strong>the</strong> data . <strong>The</strong> absolute values <strong>of</strong> <strong>the</strong> slopes <strong>and</strong><br />

<strong>in</strong>tercepts can be improved . b y more <strong>in</strong>tensive sampl<strong>in</strong>g' over longer periods<br />

<strong>of</strong> time .<br />

We propose that <strong>the</strong> slopes (b) <strong>and</strong> <strong>in</strong>tercepts (a) <strong>of</strong> regression l<strong>in</strong>es<br />

<strong>in</strong> Fig . 1, (see Eq . 1, Table 2a) relat<strong>in</strong>g <strong>the</strong> concentrations <strong>of</strong> suspended<br />

sediment <strong>and</strong> discharge, are general <strong>in</strong>dices <strong>of</strong> erosional characteristics<br />

<strong>of</strong> each river <strong>and</strong> each watershed, respectively . A similar <strong>in</strong>terpretation<br />

was made briefly by MUller <strong>and</strong> Forstner (1968) for European <strong>and</strong> North<br />

American rivers .<br />

We propose that b is an <strong>in</strong>dex <strong>of</strong> <strong>the</strong> ability or energy <strong>of</strong> a river<br />

to <strong>transport</strong> suspended sediment, <strong>and</strong> is a function <strong>of</strong> <strong>the</strong> seasonal <strong>and</strong><br />

annual distribution <strong>of</strong> river water mass, velocity, gradient, bed roughness,<br />

<strong>and</strong> cross-sectional area . We fur<strong>the</strong>r propose that a is an <strong>in</strong>dex <strong>of</strong> <strong>the</strong><br />

susceptibility <strong>of</strong> <strong>the</strong> terrestrial portion'<strong>of</strong> <strong>the</strong> watershed to erosion by<br />

<strong>the</strong> river or stream, <strong>and</strong> is a function <strong>of</strong> watershed surficial geology,<br />

relief, soil properties, vegetation, active layer thickness, seasonal

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!