31.12.2013 Views

The chemistry, mineralogy, and rates of transport of sediments in the ...

The chemistry, mineralogy, and rates of transport of sediments in the ...

The chemistry, mineralogy, and rates of transport of sediments in the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Department <strong>of</strong> <strong>the</strong> Environment M<strong>in</strong>istbre de 1'Environnement<br />

Fisheries <strong>and</strong> Mar<strong>in</strong>e Service Service des Pgches et des Sciences de la mer<br />

Research <strong>and</strong> Development Directorate Direction de la Recherche et D6veloppement<br />

TECHNICAL REPORT NO. 546 'RAPPORT TECHNIQUE N € . 546<br />

(Numbers 1-456 <strong>in</strong> this series were issued (Les numdros 1-456 dans cette s4rie furent<br />

as Technical Reports <strong>of</strong> <strong>the</strong> Fisheries utilises comme Rapports Techniques de l'Office<br />

Research Board <strong>of</strong> Canada . <strong>The</strong> series des recherches sur les p±cheries du Canada .<br />

name was changed with report number 457) Le nom de la s6rie fut change avec le<br />

rapport numbro 457)<br />

THE CHEMISTRY, MINERALOGY, AND<br />

RATES OF TRANSPORT OF SEDIMENTS IN THE<br />

MACKENZIE AND PORCUPINE RIVER WATERSHEDS,<br />

N .W .T . AND YUKON, 1971-73 .<br />

by<br />

G . J . BRUNSKILL<br />

P . CAMPBELL<br />

S . E . M . ELLIOTT<br />

B . W . GRABA,"<br />

W . J . DEhTRY<br />

<strong>and</strong><br />

R . WAGEMANN<br />

This is <strong>the</strong> sixty-third<br />

Ceci est le Soixante-troisi±me<br />

Technical Report from <strong>the</strong> Rapport Technique de la Direction de la<br />

Research <strong>and</strong> Development Directorate<br />

Freshwater Institute<br />

W<strong>in</strong>nipeg, Manitoba<br />

Recherche et Ddveloppement<br />

Institut des eaux douces<br />

W<strong>in</strong>nipeg, Manitoba<br />

1975


ii<br />

<strong>The</strong> data for this report were obta<strong>in</strong>ed as a result <strong>of</strong> <strong>in</strong>vestigations<br />

carried out under <strong>the</strong> Government <strong>of</strong> Canada Environmental-Social<br />

Program, Nor<strong>the</strong>rn Pipel<strong>in</strong>es, Task Force on Nor<strong>the</strong>rn Oil Development .


iii<br />

TABLE OF-CONTENTS<br />

Page<br />

List <strong>of</strong> Tables<br />

iv<br />

List <strong>of</strong> Figures vii<br />

Acknowledgements<br />

viii<br />

Abstract<br />

ix<br />

Introduction<br />

1<br />

Methods<br />

2<br />

Results<br />

6<br />

Discussion ° 10<br />

Conclusion 23<br />

References<br />

25


iv<br />

LIST<br />

OF TABLES<br />

Page<br />

TABLE<br />

1 . Location <strong>of</strong> stations, dimension, <strong>and</strong> properties<br />

<strong>of</strong> rivers <strong>and</strong> streams <strong>of</strong> <strong>the</strong> Mackenzie <strong>and</strong><br />

Porcup<strong>in</strong>e River watersheds, N .W .T . <strong>and</strong> Yukon . 34<br />

2a .<br />

Slopes (b) <strong>and</strong> <strong>in</strong>tercepts (a) <strong>of</strong> <strong>the</strong> regression<br />

l<strong>in</strong>es <strong>in</strong> Fig . 1, SSi W aZ, relat<strong>in</strong>g suspended<br />

sediment concentrations (SSj) to discharge (Qj) . 35<br />

2b .<br />

Slopes (b) <strong>and</strong> <strong>in</strong>tercepts (a) <strong>of</strong> <strong>the</strong> regression<br />

l<strong>in</strong>es relat<strong>in</strong>g PC i <strong>and</strong> Qi (PCi - aQb) . 36<br />

2c . Slopes (b) <strong>and</strong> <strong>in</strong>tercepts (a) <strong>of</strong> th~~ regression,<br />

l<strong>in</strong>es relat<strong>in</strong>g PN,t, <strong>and</strong> Q,~ (PN~, - Z) . 37<br />

2d . Slopes (b) <strong>and</strong> <strong>in</strong>tercepts (a) <strong>of</strong> recession<br />

l<strong>in</strong>es relat<strong>in</strong>g PP A, <strong>and</strong> Qj (PPj aQ) 38<br />

3 . Average annual mass (SS a ) <strong>and</strong> annual mass per<br />

unit watershed area per year (SSw ) <strong>of</strong> suspended<br />

<strong>sediments</strong> <strong>transport</strong>ed out <strong>of</strong> watersheds <strong>of</strong> <strong>the</strong><br />

Mackenzie <strong>and</strong> Porcup<strong>in</strong>e Rivers, 1971- .74 . 39<br />

4 . Laboratory estimates <strong>of</strong> <strong>the</strong> rate <strong>of</strong> 0 2 consumption<br />

by <strong>sediments</strong> from <strong>the</strong> Harris River .<br />

4n<br />

5 . Cation exchange capacities for <strong>sediments</strong> <strong>of</strong><br />

Mackenzie watershed rivers <strong>and</strong> lakes, Mackenzie<br />

Delta, <strong>and</strong> Beaufort Sea . 41<br />

6 . Ammonium acetate (1N) <strong>and</strong> HC1 (1N) extractible .<br />

cations from Mackenzie Delta Channel Station<br />

EC1-3 <strong>sediments</strong> . 42<br />

7a .<br />

Ranges <strong>of</strong> concentrations <strong>of</strong> particulate carbon<br />

(PCi), nitrogen (PNi) <strong>and</strong> phosphorus (PPi) <strong>in</strong><br />

waters from selected Mackenzie <strong>and</strong> Porcup<strong>in</strong>e<br />

River watersheds, 1971-74 . 43<br />

7b . Ranges <strong>of</strong> <strong>and</strong> mean - (x) concentrations <strong>of</strong><br />

particulate carbon (PC), nitrogen (PN) '<strong>and</strong><br />

phosphorus (PP) <strong>in</strong> suspended <strong>sediments</strong>' from<br />

selected Mackenzie <strong>and</strong> Porcup<strong>in</strong>e River watersheds,<br />

1971-74 . 44


V<br />

TABLE<br />

8 .<br />

Page<br />

Mean annual <strong>rates</strong> <strong>of</strong> <strong>transport</strong> <strong>of</strong> particulate<br />

carbon (PC) <strong>in</strong> suspended <strong>sediments</strong> <strong>in</strong> selected<br />

Mackenzie <strong>and</strong> Porcup<strong>in</strong>e River watersheds, 1971-<br />

73 . 45<br />

9 . Mean annual rate <strong>of</strong> <strong>transport</strong> <strong>of</strong> particulate<br />

nitrogen (PN) <strong>in</strong> suspended <strong>sediments</strong> <strong>of</strong><br />

selected Mackenzie <strong>and</strong> Porcup<strong>in</strong>e River watersheds,<br />

1971-73 . 46<br />

10 . Mean annual <strong>rates</strong> <strong>of</strong> <strong>transport</strong> <strong>of</strong> phosphorus<br />

(PP) <strong>in</strong> suspended <strong>sediments</strong> <strong>of</strong> selected Mackenzie<br />

<strong>and</strong> Porcup<strong>in</strong>e River watersheds, 1971-73, <strong>and</strong><br />

mole ratios <strong>of</strong> C, N <strong>and</strong> P <strong>in</strong> suspended <strong>sediments</strong> . 47<br />

11 . Slopes <strong>and</strong> significance <strong>of</strong> regressions <strong>of</strong><br />

<strong>the</strong> log <strong>of</strong> concentrations oC'PPL, PNi, <strong>and</strong> PCi<br />

(per unit volume <strong>of</strong> water) on log concentrations<br />

<strong>of</strong> suspended sediment (SSZ, mg 1 -1 ) for <strong>the</strong><br />

rivers <strong>and</strong> streams <strong>of</strong> Groups 1 <strong>and</strong> 2 . 48<br />

12 . Significance <strong>of</strong> regressions <strong>of</strong> annual <strong>transport</strong><br />

<strong>rates</strong> <strong>of</strong> suspended <strong>sediments</strong> (SSW, <strong>in</strong> kg km -2<br />

yr -1),, PC B , PNW , PPw (<strong>in</strong> moles km' 2yr') on<br />

annual discharge (Qa , <strong>in</strong> m 3yr' 1 ) for available<br />

data on rivers <strong>of</strong> Groups 1 <strong>and</strong> 2 . 49<br />

13 . Results <strong>of</strong> multiple l<strong>in</strong>ear regression analyses<br />

<strong>of</strong> <strong>the</strong> relationsbips between <strong>the</strong> logs <strong>of</strong> mean<br />

(1971-73) annual <strong>rates</strong> <strong>of</strong> <strong>transport</strong> <strong>of</strong> suspended<br />

<strong>sediments</strong> (SS a , <strong>in</strong> metric tons yr - ), PCa , PN a ,<br />

PPa (<strong>in</strong> metric tons yr-1 ), <strong>and</strong> logs <strong>of</strong> <strong>the</strong><br />

variables : watershed area (Ad, <strong>in</strong> km 2 ), relief<br />

(SE, <strong>in</strong> km), river length (L, <strong>in</strong> km), mean annual<br />

daily temperature (T), mean annual precipitation<br />

(P, <strong>in</strong> mm), forest cover (F, <strong>in</strong> arbitrary rank),<br />

<strong>and</strong> surface geology (G, <strong>in</strong> arbitrary rank), for<br />

watersheds <strong>of</strong> Groups 1 <strong>and</strong> 2 . 50<br />

14 . dean concentrations <strong>of</strong> selected major <strong>and</strong> m<strong>in</strong>or<br />

e lements . <strong>in</strong> suspended <strong>sediments</strong>, <strong>and</strong> mean annual<br />

rate <strong>of</strong>. <strong>transport</strong> <strong>of</strong> <strong>the</strong>se elements <strong>in</strong> particulate<br />

material from selected Mackenzie Valley watersheds . 51<br />

15 . Estimated mass <strong>of</strong> suspended <strong>sediments</strong> (SSa, tons<br />

yr' 1 ), particulate carbon (P a ), particulate<br />

nitrogen (PRa ), <strong>and</strong> particulate phosphorus 07a, <strong>in</strong><br />

moles yr' 1 ) that reaches <strong>the</strong> Mackenzie Delta<br />

<strong>and</strong> Beaufort Sea from <strong>the</strong> Peel <strong>and</strong> Mackenzie<br />

Rivers . 52


vi<br />

TABLE<br />

Page<br />

16 . A comparison <strong>of</strong> annual' <strong>rates</strong> <strong>of</strong> sediment<br />

<strong>transport</strong> <strong>in</strong> large <strong>and</strong> small Mackenzie <strong>and</strong><br />

Porcup<strong>in</strong>e River watersheds with o<strong>the</strong>r Arctic,<br />

Subarctic <strong>and</strong> Temperate Zone watersheds . 53<br />

17 . Instantaneous concentrations <strong>of</strong> suspended<br />

<strong>sediments</strong> (SSi), - particulate carbon (PC .,),<br />

particulate nitrogen (PN .), <strong>and</strong> particulate<br />

phosphorus (PP,,) ; <strong>and</strong> <strong>in</strong>stantaneous discharge<br />

(Qt) for selected N .W .T . <strong>and</strong> Y .T . rivers <strong>in</strong><br />

1971-73 . 54


vii<br />

LIST OF FIGURES<br />

Page<br />

Figure 1 . Relationships between <strong>in</strong>stantaneous discharge<br />

(Qi) <strong>and</strong> suspended sediment concentration (SS)<br />

for streams <strong>and</strong> rivers listed <strong>in</strong> Table 1,<br />

1971-73 . All regressions are significant at<br />

least to a a 0 .10 . Most <strong>of</strong> <strong>the</strong> discharge data<br />

are from records <strong>of</strong> Water Survey <strong>of</strong> Canada . .<br />

Figure 2 . Relationship between annual discharge (Qa ) <strong>and</strong><br />

annual suspended sediment <strong>transport</strong> rate per<br />

unit watershed area (SSW ) for rivers listed <strong>in</strong><br />

Groups 1 <strong>and</strong> 2 (exclud<strong>in</strong>g Mackenzie at Norman<br />

Wells) <strong>of</strong> Table 1, 1971-73 . Discharge data<br />

for most rivers are from Water Survey <strong>of</strong><br />

Canada<br />

64<br />

65<br />

Figure 3 .<br />

Relationships between <strong>in</strong>stantaneous discharge<br />

(Q,) <strong>and</strong> concentrations <strong>of</strong> particulate<br />

nitrogen (PN,) for rivers listed <strong>in</strong> Table 1,<br />

1971-1973<br />

66<br />

Figure 4 .<br />

Relationships between <strong>in</strong>stantaneous discharge<br />

(Q j) <strong>and</strong> concentrations <strong>of</strong> particulate<br />

phosphorus (PPi) for rivers listed <strong>in</strong> Table 1,<br />

1971-73 67<br />

Figure 5 . Relationship between annual discharge (QQ )<br />

<strong>and</strong> annual particulate nitrogen <strong>transport</strong> <strong>rates</strong><br />

per unit watershed area (PN W ) for rivers listed<br />

<strong>in</strong> Groups 1 <strong>and</strong> 2 (exclud<strong>in</strong>g Mackenzie at Norman<br />

Wells) <strong>of</strong> Table 1, 1971-73 ~<br />

Figure 6 . Relationship between annual discharge (Q a ) <strong>and</strong><br />

annual particulate phosphorus <strong>transport</strong> <strong>rates</strong><br />

per unit watershed area (PP ) for rivers listed<br />

W<br />

<strong>in</strong> Groups 1 <strong>and</strong> 2 (exclud<strong>in</strong>g Mackenzie at<br />

Norman Wells) <strong>of</strong> Table 1, 1971-73<br />

68<br />

69


N P<br />

viii<br />

ACKNOWLEDGEMENTS<br />

Much <strong>of</strong> <strong>the</strong> field work was done . b y . Kritsch-Vascotto, M . Van<br />

Det, P . Stewart, D . Middleton-Stier, L . Dory, C . Crocker, V . Fraser,<br />

A. Wiens, C . Nicol, J . McComiakey, C . Haight, D . Brackett, D . Bottomley,<br />

P . Michaelis, C Metcalfe, R : Andrew., D . Stier, <strong>and</strong> R . Bernhardt .<br />

Laboratory work <strong>in</strong> Yellowknife was done . b y . Morden, A . Foster, S .<br />

Michaelis, C . Lev<strong>in</strong>e, F . DeVries, C . Rollefson . We thank M . Sta<strong>in</strong>ton,<br />

M. Capel, B . Hauser, J . Tisdale, M . Mork, M . Lee, J . Mooers, R .<br />

Simanavicius, <strong>and</strong> A . Lutz . K . Ramlal <strong>of</strong> University <strong>of</strong> Manitoba Earth<br />

Sciences supplied X-ray fluorescence analyses .<br />

We thank H . L . Wood <strong>and</strong> Kelt Davies <strong>of</strong> Water Survey <strong>of</strong> Canada<br />

.for assistance <strong>in</strong> <strong>the</strong> field <strong>and</strong> for advice <strong>and</strong> data on discharge <strong>and</strong><br />

suspended <strong>sediments</strong> <strong>in</strong> <strong>the</strong> Mackenzie Valley . Many aircraft pilots <strong>and</strong><br />

eng<strong>in</strong>eers from Wardair, Gateway Aviation, LaRonge Aviation, Ptarmigan<br />

Airways, Arctic Air, TNTA, Buffalo Airways, Re<strong>in</strong>deer Air Service,<br />

'Nahanni Helicopters, <strong>and</strong> Okanagan Helicopters are greatefully acknowledged .<br />

D . M . Rosenberg, N . B . Snow, D . W . Sch<strong>in</strong>dler, M . C . Healey,<br />

-S . C . Zoltai <strong>and</strong> R . Newbury provided discussion <strong>and</strong> advice dur<strong>in</strong>g <strong>the</strong><br />

preparation <strong>of</strong> this manuscript . C . Jones, W . Burton <strong>and</strong> B' . van der Veen<br />

assisted <strong>in</strong> <strong>the</strong> shop . S . Zettler <strong>and</strong> staff are thanked for draft<strong>in</strong>g <strong>of</strong><br />

<strong>the</strong> figures . G . Porth, C . Plumridge, C . Madder <strong>and</strong> J . Lewis typed <strong>the</strong><br />

manuscript .


ix<br />

ABSTRACT<br />

Brunskill, G . J ., P . Campbell, . S . Elliott, B . W. Graham, J . Dentry <strong>and</strong><br />

R . Wagemann . 1975 . <strong>The</strong> <strong>chemistry</strong>, <strong>m<strong>in</strong>eralogy</strong> <strong>and</strong> <strong>rates</strong> <strong>of</strong> <strong>transport</strong><br />

<strong>of</strong> <strong>sediments</strong> <strong>in</strong> <strong>the</strong> Mackenzie <strong>and</strong> Porcup<strong>in</strong>e-River watersheds, N .W .T .<br />

<strong>and</strong> Yukon, 1971-1973. Fish . Mar . Serv . Res . Dev . Tech . Rep . 546 :69 pp .<br />

Measurements <strong>of</strong> concentrations-<strong>of</strong> suspended <strong>sediments</strong> (SS), particulate<br />

carbon (PC), particulate nitrogen (PN), particulate phosphorus<br />

(PP), <strong>and</strong> discharge (Q) were made on a variety <strong>of</strong> large <strong>and</strong> small rivers<br />

<strong>and</strong> streams <strong>of</strong> <strong>the</strong> Mackenzie Valley <strong>and</strong> nor<strong>the</strong>rn Yukon . 'Significant<br />

logarithmic relationships were found between concentrations <strong>of</strong> SS, PC,<br />

FN, -PP, <strong>and</strong> discharge for each river station studied . Annual sediment<br />

<strong>and</strong> PC, PN, PP <strong>transport</strong> <strong>rates</strong> -(<strong>in</strong> tons or moles km -2yr-1 ) were also logarithmically<br />

related to annual Q for all rivers studied . Suspended<br />

sediment <strong>transport</strong> <strong>rates</strong> varied between 0 .2 <strong>and</strong> 11 .5 mt km' 2yr-1 ) for<br />

small (15,000 km watershed area) rivers . Multiple l<strong>in</strong>ear<br />

regression analyses on log transformed data for annual <strong>rates</strong> <strong>of</strong> <strong>transport</strong><br />

<strong>of</strong> <strong>sediments</strong>, PC, PN, <strong>and</strong> PP, <strong>and</strong> a variety <strong>of</strong> map-derived geographic<br />

<strong>and</strong> climatic parameters <strong>in</strong>dicated that watershed area, forest cover, relief,<br />

<strong>and</strong> precipitation account for over 97% <strong>of</strong> <strong>the</strong> differences <strong>in</strong> <strong>rates</strong> <strong>of</strong><br />

<strong>transport</strong> values among <strong>the</strong> selected rivers . Rates <strong>of</strong> <strong>transport</strong> <strong>of</strong><br />

suspended <strong>sediments</strong> <strong>in</strong> <strong>the</strong> watersheds studied were similar to data from<br />

o<strong>the</strong>r Arctic <strong>and</strong> Temperate Zone watersheds . Equations were developed to<br />

allow <strong>the</strong> estimation <strong>of</strong> sediment, PC, PN, <strong>and</strong> PP annual <strong>transport</strong> <strong>rates</strong><br />

<strong>in</strong> unsampled watersheds <strong>in</strong> <strong>the</strong> Mackenzie Valley lowl<strong>and</strong>s .<br />

Computed sedimentation <strong>rates</strong> (3 .8 kg <strong>sediments</strong> m -2yr -1 , 9 moles<br />

C m'2yr 1, 0 .3 Moles N m-2yr-1 , 0 .06 Moles p m-2yr-1 , based on Mackenzie<br />

<strong>and</strong> Peel River sediment <strong>transport</strong> <strong>rates</strong>) for <strong>the</strong> Mackenzie Delta <strong>and</strong><br />

near-Delta portions <strong>of</strong> <strong>the</strong> Beaufort Sea agree well with analyses <strong>of</strong> bottom<br />

sediment samples <strong>in</strong> <strong>the</strong>se regions . Bedload <strong>transport</strong> <strong>of</strong> cobbles <strong>and</strong><br />

boulders were estimated <strong>in</strong> one small stream near Ft . Simpson, <strong>and</strong> was<br />

found to be


ottom near <strong>the</strong> site <strong>of</strong> addition .- It was observed that small rivers <strong>and</strong><br />

streams were not immediately able-to carry <strong>in</strong>creased sediment supply derived<br />

from natural <strong>and</strong> technological disturbances <strong>in</strong> <strong>the</strong>ir watersheds . We feel<br />

that careful technological activities <strong>in</strong> this region will not greatly affect<br />

sediment <strong>transport</strong> regimes <strong>of</strong> larger rivers .<br />

We strongly propose . that small experimental research watersheds be<br />

established <strong>in</strong> representative areas with<strong>in</strong>, <strong>and</strong> outside <strong>of</strong> proposed development<br />

routes <strong>in</strong> <strong>the</strong> Mackenzie Valley <strong>and</strong> Nor<strong>the</strong>rn Yukon . <strong>The</strong>se experimental<br />

research watershed's should be carefully ma<strong>in</strong>ta<strong>in</strong>ed to measure <strong>the</strong> effects <strong>of</strong><br />

technological activities on :important components -<strong>of</strong> <strong>the</strong> watershed ecosystem,<br />

to experimentally test many hypo<strong>the</strong>ses concern<strong>in</strong>g <strong>the</strong> <strong>in</strong>teraction <strong>of</strong> controlled<br />

terra<strong>in</strong> disturbance <strong>and</strong> watershed- response, <strong>and</strong> to provide undisturbed control<br />

for future reference purposes . We recommend that <strong>the</strong> present network <strong>of</strong><br />

discharge, suspended ., sediment, <strong>and</strong> meteorological stations be exp<strong>and</strong>ed,' especially<br />

to - <strong>in</strong>c lude more small watersheds <strong>in</strong> a variety <strong>of</strong> regions with<strong>in</strong> <strong>the</strong> Mackenzie<br />

Valley <strong>and</strong> . nor<strong>the</strong>rn Yukon .,-


xi<br />

RESUMt<br />

Brunskill, G . J ., P . Campbell, S . Elliott, B . W . Graham, J . Dentry <strong>and</strong><br />

R. Wagemann . 197 . 5 . <strong>The</strong> <strong>chemistry</strong>, <strong>m<strong>in</strong>eralogy</strong> <strong>and</strong> <strong>rates</strong> <strong>of</strong><br />

<strong>transport</strong> <strong>of</strong> <strong>sediments</strong> <strong>in</strong> <strong>the</strong> Mackenzie <strong>and</strong> Porcup<strong>in</strong>e River water<br />

sheds,'N .LT, <strong>and</strong> Yukon, 1971-1973 . Fish . Mar . Serv . Res . Dev .<br />

Tech. Rep . 546 :69 pp .<br />

On a mesurd lea concentrations de <strong>sediments</strong> en suspension (SS), de<br />

particules de carbone (PC), de particules de nitrogene (PN), de particules<br />

de phosphor* (PP), et le debit (Q) daps un gr<strong>and</strong> nombre de gr<strong>and</strong>s at de<br />

.petits cours d'eau de la vallee du Mackenzie et du nord du Yukon . A<br />

chaque endroit etudid, on a ddcouvert qu'il existait des_rapports<br />

logarithmiques revelateurs entre lea concentrations de SS, PC, PN, PP et<br />

le debit . Pour toutes lea rivieres etudides ; les taux de sedimentation<br />

annuals et de <strong>transport</strong> de PC,'PN et PP (en tonnes ou moles km 2an-1 )<br />

etaient lies aux debits annuels daps un rapport logarithmique . Les taux<br />

de <strong>transport</strong> des <strong>sediments</strong> 'en suspension variaient entre 0 .2 et 11 .5 mt<br />

km-2 an 1 ) pour let petits cours d'eau (bass<strong>in</strong>


plupart des petits cours d'eau des basses terres de la vallEe du<br />

Mackenzie <strong>transport</strong>ent actuellement une quantitE de <strong>sediments</strong> maximum<br />

ou presque maximum pour un debit donnd, et que tous les <strong>sediments</strong><br />

supplementaires se deposeront au fond du lit pros de l'endroit <strong>of</strong> ils<br />

penEtreront dans le cours d'eau . On a remarque que les petits cours<br />

d'eau n'etaient pas capables de <strong>transport</strong>er immfidiatement les nouveaux<br />

<strong>sediments</strong> provenant de bouleversements naturels et technologiques dans<br />

leurs bass<strong>in</strong>s . Nous pensons que, si les activites technologiques sont<br />

effectuees avec so<strong>in</strong> dons cette region, elles n'affecteront pas<br />

EnormEment les regimes de <strong>transport</strong> de <strong>sediments</strong> des rivibres les plus<br />

importantes .<br />

Nous suggErons fermement la creation de petits bass<strong>in</strong>s de recherche<br />

expErimentale dens des regions reprlsentatives, E l'<strong>in</strong>tErieur et I<br />

1'extErieur des routes' de developpement prEvues dans la vallEe du<br />

Mackenzie et le nord du Yukon . Ces bass<strong>in</strong>s de recherche expdrimentale<br />

devront Etre soigneusement entretenus af<strong>in</strong> que 1'on puisse mesurer les<br />

effets des activites technologiques sur les parties constituantes<br />

importantes'de 1'Ecosyst6me du bass<strong>in</strong>, experimenter de nombreuses<br />

hypo<strong>the</strong>ses relatives E 1'<strong>in</strong>teraction des bouleversements de terra<strong>in</strong><br />

controlEs et des consequences sur le bass<strong>in</strong>, et fournir des Elements de<br />

contr6le stables af<strong>in</strong> de permettre des comparaisons ultErieures . Nous<br />

recoam <strong>and</strong>ons 1'exp ansion du reseau actuel de debit, des <strong>sediments</strong> en<br />

suspension et des stations mEtEorologiques, en y <strong>in</strong>corporant notamment<br />

un plus gr<strong>and</strong> nombre de petits bass<strong>in</strong>s dans diverses regions de la<br />

vallEe du Mackenzie et du nord du Yukon .


1<br />

INTRODUCTION<br />

In regions <strong>of</strong> nor<strong>the</strong>rn Canada underla<strong>in</strong> by cont<strong>in</strong>uous or discont<strong>in</strong>uous<br />

permafrost (Brown, 1970), natural <strong>and</strong> man-<strong>in</strong>duced changes <strong>in</strong> <strong>the</strong> <strong>the</strong>rmal<br />

regime <strong>of</strong> high ice-content, f<strong>in</strong>e-gra<strong>in</strong>ed soils usually result <strong>in</strong> <strong>the</strong>rmal<br />

erosion (Mackay, 1970). <strong>The</strong> <strong>the</strong>rmal regime <strong>of</strong> <strong>the</strong>se nor<strong>the</strong>rn frozen soils<br />

has been <strong>in</strong>fluenced'by climatic amelioration (Lachenbruch et al ., 1962 ;<br />

Crampton, 1973), proximity to unfrozen water bodies (Lachenbruch et al .,<br />

1962 ; Judge, 1973 ; Crampton, 1973 ; McRoberts <strong>and</strong> Morgenstern, 1973 ; Code,<br />

1973 ; Mackay, -1963 ; Johnson <strong>and</strong> Brown," 1969), fire (Lotspeich et al ., 1970 ;<br />

Mackay, 1970 ; Heg<strong>in</strong>bottom, 1973 ; We<strong>in</strong> <strong>and</strong> Weber, 1974 ; Kurfurst, .1973 ; Bliss,<br />

1973), changes <strong>in</strong>, or removal <strong>of</strong> vegetation (Bliss, 1973 ; Heg<strong>in</strong>bottom, 1973 ;<br />

Haag <strong>and</strong> Bliss, 1974),<br />

vehicular or animal traffic (Mackay, 1970 : Heg<strong>in</strong>bottom,<br />

1973 ; Hern<strong>and</strong>ez, 1973 ; Rickard <strong>and</strong> Slaughter, 1973 ; Radforth, 1973 ; Strang,<br />

1973 ; Kurfurst ; 1973 ; Beattie et-aZ .,"1973),<strong>and</strong> roads, seismic l<strong>in</strong>e clear<strong>in</strong>gs<br />

<strong>and</strong> pipel<strong>in</strong>e construction (Legget <strong>and</strong> MacFarlane, 1972 ; Lachenbruch, 1970 ;<br />

Kurfurst, 1973 ; Bliss, 1973 ; Mackay, 1970 ; Strang, 1973) . In <strong>the</strong> Mackenzie<br />

<strong>and</strong> Porcup<strong>in</strong>e River Valleys, <strong>the</strong> distribution <strong>of</strong> terra<strong>in</strong> that is likely to be<br />

disturbed by development (roads, pipel<strong>in</strong>e construction) has been described<br />

<strong>and</strong> mapped, based on vegetation, soil, permafrost, <strong>and</strong> surficial geological<br />

<strong>in</strong>formation (Crampton, 1973 ; Zoltai <strong>and</strong> Pettapiece, 1973 ; Zoltai <strong>and</strong> Tarnocai,<br />

1974 ; Lavkulich, 1973 ; Rampton, 1974 ; Tarnocai, 1973 ; Forest Management<br />

Institute, 1974 ; Hughes, 1972 ; Rampton <strong>and</strong> Mackay, 1971 ; Rutter et al ., 1973) .<br />

If high ice-content, f<strong>in</strong>e-gra<strong>in</strong>ed frozen soils on slopes are unwisely disturbed<br />

by construction <strong>and</strong> development, <strong>the</strong> result<strong>in</strong>g slurry <strong>of</strong> water <strong>and</strong><br />

sediment will move downslope to streams, rivers <strong>and</strong> lakes . <strong>The</strong>re exist only<br />

limited data on <strong>the</strong> necessary hydrological <strong>and</strong> meteorological parameters<br />

required to estimate <strong>the</strong> sediment <strong>transport</strong> capacity <strong>of</strong> most rivers <strong>and</strong> streams<br />

<strong>of</strong> <strong>the</strong> Mackenzie Valley <strong>and</strong> nor<strong>the</strong>rn Yukon (Davies, .1973 <strong>and</strong> 1974 ; Water Survey<br />

<strong>of</strong> Canada, 1970 ; Mackay, 1973 ; McDonald <strong>and</strong> Lewis, 1973 ; Hopk<strong>in</strong>s et aZ .,1955 ;<br />

Williams,'1970 ; Church, .1974 ; Newb%ry, 1974 ; Anderson, 1974 ; D<strong>in</strong>gman, 1973a<br />

<strong>and</strong> 1973b' ; Burns, 1973 <strong>and</strong> 1974) . Very limited data are available for estimates<br />

<strong>of</strong> <strong>the</strong> natural variation <strong>of</strong> suspended <strong>sediments</strong>, bed load, <strong>and</strong> discharge<br />

<strong>in</strong> rivers <strong>of</strong> this region (Davies, 1974 ; McDonald <strong>and</strong> Lewis, 1973 ; Brunskill<br />

al ., 1973) .<br />

Hynes (1973) <strong>in</strong>dicated . that sediment added-to temperate <strong>and</strong> tropical<br />

streams (<strong>in</strong> excess <strong>of</strong> <strong>the</strong> maximum suspended sediment load <strong>of</strong> <strong>the</strong> stream) will<br />

be deposited on <strong>the</strong> stream,bottom, <strong>and</strong> will deleteriously affect <strong>the</strong> habitat<br />

<strong>of</strong> fish <strong>and</strong> o<strong>the</strong>r aquatic organisms ., In surveys <strong>of</strong> Mackenzie Valley <strong>and</strong><br />

nor<strong>the</strong>rn Yukon fish resources, Hatfield (1972), Ste<strong>in</strong> et al . (1973), Jessop<br />

et al . (1974), Dryden et al . (1973) ;,, Bryan et al . (1973), <strong>and</strong> Bryan (1973)<br />

have expressed great concern that "siltation" might be deleterious to nor<strong>the</strong>rn<br />

fishes, although no observational or, .experimental demonstration <strong>of</strong> <strong>the</strong> effect<br />

<strong>of</strong> <strong>in</strong>creased sedimentation on nor<strong>the</strong>rn fish was given . Rosenberg <strong>and</strong> Snow<br />

(197`. nd Brunskill et aZ_.(1973) showed, by experiment <strong>and</strong> observations,<br />

* <strong>The</strong> second <strong>in</strong> a series <strong>of</strong> 13 technical reports on ecological studies <strong>of</strong><br />

aquatic systems n <strong>the</strong> )Iackenzi~e <strong>and</strong> Porcup<strong>in</strong>e dra<strong>in</strong>ages <strong>in</strong> relation to<br />

proposed pipel<strong>in</strong>e <strong>and</strong> highway development .


2<br />

that <strong>in</strong>creased suspended <strong>and</strong> deposited <strong>sediments</strong> <strong>in</strong> small streams <strong>and</strong><br />

lakes resulted <strong>in</strong> reduced abundance <strong>of</strong> zoobenthic organisms . Rosenberg<br />

(<strong>in</strong> prep .) <strong>in</strong>dicated that <strong>in</strong>creased sedimentation above 50 g m-2 <strong>of</strong><br />

stream bottom <strong>in</strong> a 5 hr period <strong>in</strong> <strong>the</strong> Harris River caused <strong>in</strong>creases <strong>in</strong><br />

zoobenthic organisms drift<strong>in</strong>g away from <strong>the</strong> area <strong>of</strong> sediment addition .<br />

From <strong>the</strong> above, it would appear that it is necessary to have<br />

estimates <strong>of</strong> <strong>the</strong> natural <strong>rates</strong> <strong>of</strong> movement <strong>of</strong> suspended <strong>and</strong> deposited<br />

<strong>sediments</strong> <strong>in</strong> streams <strong>in</strong> order to consider <strong>the</strong> effects <strong>of</strong> <strong>in</strong>creased<br />

s:edimentsupply on <strong>the</strong> stream ecosystem . Of <strong>the</strong> many factors that<br />

<strong>in</strong>fluence stream discharge, suspended sediment load, <strong>and</strong> bed load, some<br />

will likely be affected by construction <strong>and</strong> operation <strong>of</strong> roads <strong>and</strong><br />

pipel<strong>in</strong>es . <strong>The</strong> objectives <strong>of</strong> this paper are to 1) estimate natural<br />

suspended sediment <strong>transport</strong> <strong>rates</strong> for selected watersheds, 2) to<br />

identify characteristics <strong>of</strong> streams or <strong>the</strong>ir watersheds that <strong>in</strong>fluence<br />

<strong>the</strong> rate <strong>of</strong> sediment supply to a stream, <strong>and</strong> 3) to relate present <strong>and</strong><br />

projected . <strong>in</strong>creased sediment supply A <strong>the</strong> stream bottom (<strong>the</strong> habitat <strong>of</strong><br />

aquatic organisms) <strong>and</strong> to <strong>the</strong> watershed area ( <strong>the</strong> source <strong>of</strong> stream<br />

<strong>sediments</strong>) .<br />

METHODS<br />

S amp l <strong>in</strong>$<br />

Samples for suspended <strong>sediments</strong> were taken <strong>in</strong> streams <strong>and</strong> rivers<br />

with a) van Dorn samplers at <strong>the</strong> surface <strong>and</strong> at various depths, b) by<br />

h<strong>and</strong> fill<strong>in</strong>g carboys or bottles at <strong>the</strong> surface, <strong>and</strong> c) by us<strong>in</strong>g depth<strong>in</strong>tegrat<strong>in</strong>g<br />

suspended sediment samplers (such as <strong>the</strong> US DH-48 sampler,<br />

see Stichl<strong>in</strong>g, 1974) . Samples were taken when possible at <strong>the</strong> po<strong>in</strong>t <strong>of</strong><br />

maximum velocity <strong>and</strong> depth <strong>in</strong> <strong>the</strong> stream cross section . A few comparisons<br />

<strong>of</strong> depth-<strong>in</strong>tegrated suspended sediment samples <strong>and</strong> samples taken by h<strong>and</strong><br />

fill<strong>in</strong>g a 20 L . carboy at <strong>the</strong> surface <strong>in</strong>dicated that <strong>the</strong> latter method<br />

yielded results with<strong>in</strong> 20% <strong>of</strong> <strong>the</strong> former method . Samples were taken at<br />

least monthly when possible <strong>in</strong> <strong>the</strong> open water period . In some cases,<br />

fewer samples were taken from rivers that' presented logistic problems <strong>of</strong><br />

access dur<strong>in</strong>g break-up <strong>and</strong> ice formation periods . Usually only one or<br />

two samples per year were taken from <strong>the</strong> river sampl<strong>in</strong>g stations under<br />

w<strong>in</strong>ter ice . Sampl<strong>in</strong>g stations were reached by freight canoe, skidoo, <strong>and</strong><br />

aircraft . In situ measurements <strong>of</strong> temperature, turbidity, <strong>and</strong> conductance<br />

were made as described <strong>in</strong> Brunskill et al . (1973) .<br />

In <strong>the</strong> Jean Marie River bedload experiment, 22 August 1973, cobbles<br />

<strong>and</strong> boulders from 0 .100 to 27 kg dry weight were pa<strong>in</strong>ted bright colors<br />

(coded for weight classes) <strong>and</strong> replaced <strong>in</strong> <strong>the</strong> strew : bed, just below a<br />

riffle, <strong>in</strong> a straight l<strong>in</strong>e perpendicular to <strong>the</strong> river channel . After one<br />

year, <strong>the</strong> site was revisited <strong>and</strong> <strong>the</strong> distance travelled by <strong>the</strong> pa<strong>in</strong>ted<br />

stones was measured from a tape stretched across <strong>the</strong> river at <strong>the</strong> site<br />

<strong>of</strong> <strong>the</strong> orig<strong>in</strong>al placement <strong>of</strong> <strong>the</strong> stones .


3<br />

Stream <strong>and</strong> river bottom <strong>sediments</strong> were sampled by h<strong>and</strong> <strong>and</strong> with Lane<br />

buckets, Ekman <strong>and</strong> Ponar dredges . . Shore, <strong>and</strong> bank <strong>sediments</strong> were sampled<br />

with a shovel . Water velocity was measured with Gurley flow meters, <strong>and</strong><br />

steel tapes were used to measure stream cross-section area . Discharge <strong>and</strong><br />

suspended sediment concentrations were also taken from <strong>the</strong> data <strong>of</strong> Davies<br />

(1973 ; 1974) .-<br />

Oxygen-dem<strong>and</strong> <strong>of</strong> Harris bank <strong>sediments</strong> was estimated <strong>in</strong> <strong>the</strong> field <strong>and</strong><br />

laboratory . Harris River bank <strong>sediments</strong>, identical to those <strong>sediments</strong> used<br />

<strong>in</strong> <strong>the</strong> experiments <strong>of</strong> Rosenberg <strong>and</strong> Snow (1975), were added to 300 ml glass<br />

stoppered 02 bottles to yield suspended sediment concentrations <strong>of</strong> 2 to 300 mg/L<br />

<strong>of</strong> Harris River water . <strong>The</strong>se stoppered bottles, with sediment-free controls,<br />

were suspended <strong>in</strong> <strong>the</strong> stream current for 1-4 hours . Oxygen was measured by<br />

<strong>the</strong> W<strong>in</strong>kler method (APHA, 1965) at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>and</strong> <strong>the</strong> end <strong>of</strong> <strong>the</strong> period to<br />

estimate changes <strong>in</strong> 02 concentrations caused by <strong>sediments</strong> . Similar experiments<br />

were done <strong>in</strong> <strong>the</strong> Freshwater Institute laboratory by add<strong>in</strong>g Harris River<br />

bank <strong>sediments</strong> to oxygenated water <strong>in</strong> glass stoppered bottles to yield sediment<br />

concentrations <strong>of</strong> 100-18,500 mg/L . <strong>The</strong>se bottles were wrapped <strong>in</strong> t<strong>in</strong>foil<br />

<strong>and</strong> agitated on an automatic shaker for 16-60 hours . Oxygen was measured as<br />

above .<br />

SampleAnalyses<br />

-Suspended sediment samples were usually filtered on ignited, preweighed<br />

Whatman GF/C 45 mm filters at field camps <strong>in</strong> Ft . Simpson <strong>and</strong> Inuvik, usually<br />

on <strong>the</strong> day <strong>of</strong> sampl<strong>in</strong>g, but sometimes_ as late as one week after sampl<strong>in</strong>g .<br />

Alternately, large volume (20 L . carboy) samples were centrifuged <strong>in</strong> Yellowknife<br />

on a Sorval RC2B centrifuge with a cont<strong>in</strong>uous-flow unit . A comparison<br />

<strong>of</strong> <strong>the</strong> precision <strong>of</strong> <strong>the</strong>se methods is given <strong>in</strong> Campbell <strong>and</strong> Elliott (1975)<br />

which <strong>in</strong>dicates that filtration <strong>of</strong> 1-2 L . <strong>of</strong> sample gives reasonable (±5%)<br />

results, even <strong>in</strong> very low suspended sediment (2-5 mg/L) waters . For analytical<br />

reasons, it was necessary to have large (10 g) samples <strong>of</strong> suspended <strong>sediments</strong>,<br />

which required <strong>the</strong> use <strong>of</strong> <strong>the</strong> cont<strong>in</strong>uous-flow centrifuge . <strong>The</strong> precision <strong>of</strong><br />

suspended sediment determ<strong>in</strong>ation by centrifugation was 15-20% for low suspended<br />

sediment waters (Campbell <strong>and</strong> Elliott, 1975) . <strong>The</strong> sediment collected by<br />

centrifugation was dried at 110°C <strong>in</strong> <strong>the</strong> centrifuge tube, weighed, removed<br />

from <strong>the</strong> tube, ground with mortar <strong>and</strong> pestle, <strong>and</strong> shipped to Freshwater<br />

Institute laboratories for m<strong>in</strong>eralogical <strong>and</strong> chemical analyses . Sediment<br />

on filters was dried, weighed, <strong>and</strong> stored <strong>in</strong> a freezer until analysis . Particulate<br />

phosphorus (PP) was analyzed <strong>in</strong> <strong>the</strong> Yellowknife laboratory from filter<br />

samples accord<strong>in</strong>g to Sta<strong>in</strong>ton et aZ . (1974) . Particulate carbon (PC) <strong>and</strong><br />

particulate nitrogen (PN) were determ<strong>in</strong>ed from filters or subsamples <strong>of</strong><br />

centrifuged sediment on a CHN elemental analyzer accord<strong>in</strong>g to Sta<strong>in</strong>ton et OZ .<br />

(1974) <strong>and</strong> Hauser (1973) .<br />

For <strong>the</strong> analysis <strong>of</strong> copper <strong>and</strong> z<strong>in</strong>c, <strong>sediments</strong> were dried for 1 hour at<br />

100°C, .cooled to room temperature <strong>in</strong> a desiccator, <strong>and</strong> a quantity <strong>in</strong> <strong>the</strong> range<br />

<strong>of</strong> 0 .1-0 .2 grams was weighed accurately <strong>in</strong>to <strong>the</strong> teflon <strong>in</strong>sert <strong>of</strong> an acid<br />

digestion bomb (Parr 4745) . <strong>The</strong> sediment was digested <strong>in</strong> <strong>the</strong> bomb with a


4<br />

nitric/hydr<strong>of</strong>luoric acid mixture (5 :8 volumes respectively <strong>of</strong> concentrated<br />

acids) us<strong>in</strong>g high-purity acids (Aristar) for 48 hours at 140-145°C . After<br />

cool<strong>in</strong>g to room temperature, 4 grams <strong>of</strong> recrystallized reagent grade boric<br />

acid were added, <strong>the</strong> pH was adjusted to 4 .0 with ammonia, <strong>and</strong> <strong>the</strong> digest<br />

was <strong>the</strong>n transferred quantitatively to a 125 ml separatory funnel . <strong>The</strong> heavy<br />

metals were <strong>the</strong>n complexed with ammonium pyrollid<strong>in</strong>e dithicarbamate (AFDC)<br />

(2 ml <strong>of</strong> 2% solution) <strong>and</strong> extracted 3-4 times with 30 ml <strong>of</strong> carbon tetrachloride .<br />

<strong>The</strong> extract was collected <strong>in</strong> a 100 ml volumetric flask, <strong>and</strong> <strong>the</strong> solvent was<br />

<strong>the</strong>n removed from <strong>the</strong> extract with a Buchi Rotavapor evaporator . For this<br />

purpose <strong>the</strong> volumetric flask was attached directly to <strong>the</strong> evaporator via a<br />

special adaptor . Removal <strong>of</strong> solvent was carried out at relatively low temperature<br />

(50-55°C) to prevent loss <strong>of</strong> metals <strong>in</strong> <strong>the</strong> process . <strong>The</strong> residue <strong>in</strong> <strong>the</strong><br />

flask was <strong>the</strong>n oxidized with 5-ml <strong>of</strong> concentrated high-purity (Aristar) nitric<br />

acid, <strong>and</strong> <strong>the</strong> solution was made up to volume with triply distilled (twice <strong>in</strong><br />

quartz) water . <strong>The</strong> heavy metals <strong>in</strong> this aqueous matrix were <strong>the</strong>n analyzed for<br />

Cu <strong>and</strong> Zn by flameless atomic absorption, us<strong>in</strong>g a heated graphite tube atomizer,<br />

70 HGA Perk<strong>in</strong> Elmer, <strong>and</strong> a 403 Perk<strong>in</strong> Elik , Atomic Absorption Spectrophotometer<br />

. Precision, accuracy <strong>and</strong> some operational parameters are given <strong>in</strong><br />

Wagemann (1975) .<br />

<strong>The</strong> elements Si, Al <strong>and</strong> Ca were determ<strong>in</strong>ed simultaneously on a multichannel<br />

ARL X-ray spectrometer (University <strong>of</strong> Manitoba, us<strong>in</strong>g <strong>the</strong> method <strong>of</strong><br />

Wilson et al ., 1965) . This method consists essentially <strong>of</strong> fus<strong>in</strong>g <strong>the</strong> sample<br />

with lithium tetraborate at 1100°C, <strong>the</strong>n gr<strong>in</strong>d<strong>in</strong>g <strong>the</strong> fused bead with <strong>the</strong><br />

appropriate quantities <strong>of</strong> lanthanum oxide <strong>and</strong> boric acid <strong>and</strong> press<strong>in</strong>g <strong>the</strong><br />

mixture <strong>in</strong>to discs appropriate for analysis .<br />

Cation exchange capacity <strong>and</strong> ammonium acetate-extractible cations were<br />

determ<strong>in</strong>ed on Mackenzie Delta channel <strong>sediments</strong> accord<strong>in</strong>g to methods 5A1 <strong>and</strong><br />

3A2a from U . S . Dept . Agriculture (1967) . <strong>The</strong>se <strong>sediments</strong> were also extracted<br />

with HC1 to determ<strong>in</strong>e acid- .labile elements . Oven-dried (110 °C) sediment<br />

(15-25 g) was shaken with 100 ml <strong>of</strong> 1N NH40Ac <strong>and</strong> 1N HC1 for 8 hrs . <strong>The</strong><br />

solution was <strong>the</strong>n filtered through Whatman GF/C filters <strong>and</strong> analyzed for Ca,<br />

Mg, Na, K, Fe <strong>and</strong> Hn by atomic absorption spectrophotometry accord<strong>in</strong>g . t o<br />

Sta<strong>in</strong>ton et al . (1974) .<br />

X-ray diffraction, m<strong>in</strong>eral identifications <strong>and</strong> sediment particle size<br />

determ<strong>in</strong>ations were done by methods given <strong>in</strong> Brunskill et al . (1973,<br />

Appendix VII) .<br />

Data Analysis<br />

Instantaneous concentrations <strong>of</strong> suspended, sediment or particulate nutrients<br />

were obta<strong>in</strong>ed by direct measurement or analysis . Instantaneous discharge<br />

figures were generally taken from Water Survey <strong>of</strong> Canada (Davies, 1973 ; 1974) .<br />

Summations <strong>of</strong> total monthly discharges, computed from <strong>the</strong> mean discharge for<br />

each month, yielded annual discharge. Monthly <strong>rates</strong> <strong>of</strong> <strong>transport</strong> <strong>of</strong> suspended<br />

sediment <strong>and</strong> particulate nutrients were calculated from <strong>the</strong> product<br />

<strong>of</strong> <strong>the</strong> mean concentration dur<strong>in</strong>g <strong>the</strong> month <strong>and</strong> <strong>the</strong> total monthly discharge .


Annual <strong>rates</strong> <strong>of</strong> <strong>transport</strong> were obta<strong>in</strong>ed by summ<strong>in</strong>g monthly <strong>rates</strong> <strong>of</strong> <strong>transport</strong> .<br />

For months dur<strong>in</strong>g which no concentration was measured, a seasonal mean concentration<br />

was generally applied . W<strong>in</strong>ter mean concentrations were calculated<br />

for <strong>the</strong> period November through April <strong>and</strong> summer means for <strong>the</strong> period May to<br />

October .<br />

Consider<strong>in</strong>g each river <strong>in</strong>dividually, <strong>the</strong> <strong>in</strong>stantaneous concentrations<br />

<strong>of</strong> suspendedr<br />

sediment. or particulate nutrients were regressed on <strong>in</strong>stantaneous<br />

discharge ., All data was transformed to logarithms . <strong>The</strong> method for<br />

<strong>the</strong>se simple l<strong>in</strong>ear regressions is discussed <strong>in</strong> Snedecor <strong>and</strong> Cochran (1971) .<br />

Only those analyses produc<strong>in</strong>g regression coefficients significant at a - 0 .10<br />

were subsequently plotted . <strong>The</strong> l<strong>in</strong>ear regression analysis program <strong>of</strong> a Wang-462<br />

was used for.' computations .<br />

t<br />

Annual <strong>rates</strong> <strong>of</strong> <strong>transport</strong> for particulate materials were divided by <strong>the</strong><br />

watershed area above <strong>the</strong> sampl<strong>in</strong>g station . Simple l<strong>in</strong>ear regressions were<br />

<strong>the</strong>n performed on <strong>the</strong> logarithms <strong>of</strong> <strong>the</strong>se normalized <strong>transport</strong> <strong>rates</strong> versus<br />

<strong>the</strong> logarithm <strong>of</strong> correspond<strong>in</strong>g annual discharges . <strong>The</strong> set <strong>of</strong> data pairs consisted<br />

<strong>of</strong> eleven different stations on eight rivers, with a maximum <strong>of</strong> three<br />

years data for any one station . <strong>The</strong> statistical method is discussed <strong>in</strong> Sokal<br />

<strong>and</strong> Rohlf (1969) .<br />

Multiple l<strong>in</strong>ear regressions were performed on mean annual <strong>rates</strong> <strong>of</strong> <strong>transport</strong><br />

versus seven topographic <strong>and</strong> climatic variables . . Transport <strong>of</strong> suspended<br />

sediment, <strong>and</strong> particulate nitrogen, phosphorous <strong>and</strong> carbon were considered<br />

<strong>in</strong>dividually, us<strong>in</strong>g - <strong>the</strong> same eleven stations as above . Logarithmic transformations<br />

were ma<strong>in</strong>ta<strong>in</strong>ed .<br />

Topographic variables <strong>in</strong>cluded watershed area (Ad), change <strong>in</strong> elevation<br />

(LE) <strong>and</strong> length (L) <strong>of</strong> <strong>the</strong> river . Area <strong>of</strong> <strong>the</strong> watershed above <strong>the</strong> sampl<strong>in</strong>g<br />

station was obta<strong>in</strong>ed from Water Survey (Davies, 1973 ; 1974) • where possible,<br />

or by planimetry . Change <strong>in</strong> elevation represents •<strong>the</strong> difference between <strong>the</strong><br />

highest - contour-<strong>in</strong> <strong>the</strong> watershed <strong>and</strong>' <strong>the</strong> contour on which <strong>the</strong> sampl<strong>in</strong>g station<br />

falls . Lengths <strong>of</strong> <strong>the</strong> rivers from <strong>the</strong> source to <strong>the</strong> station were determ<strong>in</strong>ed<br />

with a chartometer . <strong>The</strong> Canadian National topographic map series (Scale 1 :250,-<br />

000) was used for <strong>the</strong>se three determ<strong>in</strong>ations .<br />

Temperature (T), precipitation (P), <strong>and</strong> forest cover (F) represented<br />

climatic <strong>and</strong> vegetation variables . Mean annual daily temperatures for each<br />

watershed were obta<strong>in</strong>ed from Figure 4 .18 <strong>in</strong> Burns, (1973), <strong>and</strong> mean annual<br />

precipitation .from Figure 6 .8 <strong>in</strong> Burns (1974) . In both cases a grid was<br />

drawn over each watershed to obta<strong>in</strong> a mean value for <strong>the</strong> watershed area .<br />

Us<strong>in</strong>g <strong>the</strong> map provided <strong>in</strong> Rowe (1972), •<strong>the</strong> vegetation zones <strong>in</strong>cluded <strong>in</strong> <strong>the</strong><br />

Mackenzie Valley <strong>and</strong> Yukon were'ranked <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g order <strong>of</strong> forest cover :<br />

mounta<strong>in</strong> tundra .- 1, forest <strong>and</strong> grassl<strong>and</strong> = 2, <strong>and</strong> predom<strong>in</strong>ately forest - 3 .<br />

<strong>The</strong> grid method was aga<strong>in</strong> used to determ<strong>in</strong>e an average vegetation type for<br />

<strong>the</strong> watershed .<br />

<strong>The</strong> last variable was representative <strong>of</strong> <strong>the</strong> surface geology <strong>of</strong> each<br />

watershed . A coded system for erodibility (G) <strong>of</strong> rock was obta<strong>in</strong>ed from<br />

Jansen <strong>and</strong> Pa<strong>in</strong>ter (1974) . <strong>The</strong> system assigns higher values to rock-types


6<br />

with a greater susceptibility to erosion : Paleozoic i 3, Mesozoic • S,<br />

Cenozoic • 6, Quaternary • 2 . Crude estimates <strong>of</strong> this parameter were<br />

determ<strong>in</strong>ed from physiographic maps <strong>and</strong> discussion <strong>in</strong> Bostock (1964),<br />

Inl<strong>and</strong> Waters Directorate (1973) .<br />

<strong>The</strong> multiple l<strong>in</strong>ear regression analyses were performed by <strong>the</strong> "step<br />

up method" described <strong>in</strong> Chapter 13 <strong>of</strong> Snedecor <strong>and</strong> Cochran (1971) . Rates<br />

-<strong>of</strong> <strong>transport</strong> were regressed on Ad-<strong>in</strong>itially, <strong>and</strong> <strong>the</strong>n subsequent variables<br />

were added one at a time . Only those variables caus<strong>in</strong>g a significant<br />

<strong>in</strong>crease <strong>in</strong> R from one step to ano<strong>the</strong>r were reta<strong>in</strong>ed . Thus, only <strong>the</strong><br />

fewest number <strong>of</strong> variables which significantly expla<strong>in</strong>ed <strong>the</strong> variance <strong>in</strong><br />

rate <strong>of</strong> <strong>transport</strong> were reta<strong>in</strong>ed . <strong>The</strong>se calculations were performed on a<br />

Hewlett-Packard 9810, by means <strong>of</strong> a Stat-Pac program .<br />

RESULTS<br />

Suspended Sediments<br />

<strong>The</strong> range <strong>of</strong> concentration <strong>of</strong> suspended <strong>sediments</strong> <strong>in</strong> <strong>the</strong> selected<br />

rivers <strong>and</strong> streams varied from


7<br />

<strong>The</strong> total mass <strong>of</strong> <strong>sediments</strong> removed yearly from <strong>the</strong> watershed <strong>of</strong><br />

each river, is given <strong>in</strong> Table 3 . <strong>The</strong> rivers <strong>of</strong> Group 1, with large watershed<br />

areas <strong>and</strong> annual discharges, carried vast amounts <strong>of</strong> <strong>sediments</strong> compared to<br />

<strong>the</strong> smaller rivers <strong>and</strong> streams <strong>of</strong> Group 2 . In order to compare natural erosion<br />

.<strong>rates</strong> <strong>of</strong> sediment from large <strong>and</strong> small watersheds, <strong>the</strong> annual mass <strong>of</strong> sediment<br />

<strong>transport</strong>ed was divided by <strong>the</strong> watershed area <strong>of</strong> <strong>the</strong> river . This<br />

resulted <strong>in</strong> an estimate <strong>of</strong> <strong>the</strong> average annual mass <strong>of</strong> sediment carried<br />

away from a square kilometer <strong>of</strong> <strong>the</strong> l<strong>and</strong> dra<strong>in</strong>age area <strong>of</strong> a river . This<br />

treatment <strong>of</strong> <strong>the</strong> data (Table 3) <strong>in</strong>dicates that <strong>the</strong> watersheds <strong>of</strong> small<br />

streams yielded much less sediment to <strong>the</strong> stream-per unit watershed area<br />

than did <strong>the</strong> large watersheds <strong>in</strong> Group 1 .<br />

<strong>The</strong> annual mass <strong>of</strong> sediment <strong>transport</strong>ed per unit watershed area was<br />

positively related to annual discharge (Fig . 2) . Rivers with annual discharges<br />

greater-than about 5 km3yr-1 <strong>transport</strong>ed 36 to 126-metric tons <strong>of</strong><br />

suspended sediment per km2 <strong>of</strong> watershed area, while rivers <strong>and</strong> streams with<br />

discharges from 0 .01 to 2 km3yr-1 <strong>transport</strong>ed 0 .2'to 12 metric tons <strong>of</strong><br />

<strong>sediments</strong> km-2yr-l . Some idea <strong>of</strong> <strong>the</strong> seasonal variation <strong>in</strong> <strong>the</strong>se parameters<br />

can be obta<strong>in</strong>ed from Fig . 2, where,-,3 years <strong>of</strong> discharge <strong>and</strong> sediment <strong>transport</strong><br />

are given for <strong>the</strong> Willowlake River, Liard River at Ft . Liard, <strong>and</strong> South<br />

Nahanni River above Virg<strong>in</strong>ia Falls : . .<br />

Bedload<br />

We tried to estimate <strong>the</strong> annual movement <strong>of</strong> cobbles <strong>and</strong> small boulders<br />

<strong>in</strong> <strong>the</strong> bed- <strong>of</strong> Jean Marie River (50'km SE <strong>of</strong> Ft . Simpson) . Jean Marie<br />

River has a watershed area (2,960 km-2) a little larger than Mart<strong>in</strong> River,<br />

<strong>and</strong> is probably similar to Mart<strong>in</strong> River <strong>in</strong> its annual discharge pattern,<br />

although it carries very low concentrations <strong>of</strong> suspended <strong>sediments</strong> (see<br />

Campbell •et aZ ., 1975) . We recovered over 90% <strong>of</strong> <strong>the</strong> pa<strong>in</strong>ted stones that<br />

were placed <strong>in</strong> . <strong>the</strong> stream bed, <strong>and</strong> found that <strong>the</strong> maximum distance moved<br />

<strong>in</strong> a year was less than 2 meters . Small stones (0 .10 kg) moved <strong>the</strong> most,<br />

while larger boulders (10-27 kg) moved very little (maximum <strong>of</strong> 0 .2 m for<br />

10 kg stones) or not at all .<br />

Oxygen Dem<strong>and</strong> <strong>of</strong> Sediments <strong>in</strong> Water<br />

Sediments from <strong>the</strong> banks <strong>of</strong>, <strong>the</strong> Harris River do consume measurable<br />

.amounts <strong>of</strong> 02 from water at 20-220C <strong>in</strong> <strong>the</strong> dark (Table 4) . <strong>The</strong>se data<br />

<strong>in</strong>dicate that 02 consumption per unit time was not related to <strong>the</strong> mass <strong>of</strong><br />

sediment added, nor to <strong>the</strong> fraction <strong>of</strong> organic matter <strong>in</strong> <strong>the</strong> added <strong>sediments</strong><br />

. However, Table 4 does <strong>in</strong>dicate that <strong>sediments</strong> added to oxygenated<br />

water may cause a reduction <strong>in</strong> 02' concentrations over a period <strong>of</strong> 10-30<br />

days .<br />

Similar experiments were .done <strong>in</strong> situ on Harris River on 1 August<br />

1974 . In this small, clear water stream, sealed, clear glass bottles<br />

(with vary<strong>in</strong>g amounts <strong>of</strong> suspended <strong>sediments</strong> added) were suspended <strong>in</strong> <strong>the</strong>


8<br />

stream current, <strong>and</strong> 02 was measured before-<strong>and</strong> after <strong>in</strong>cubation . Nearly<br />

all bottles (<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> control bottles) <strong>in</strong>creased <strong>in</strong> 02 concentration,<br />

which <strong>in</strong>dicated that algal photosyn<strong>the</strong>sis produced more 02 than <strong>the</strong> sediment<br />

consumed .<br />

Cation Exchange Capacity <strong>and</strong>Exchangeable Cations <strong>of</strong> Mackenzie Valley<br />

Sediments<br />

Estimates <strong>of</strong> cation exchange capacities are given for selected sediment<br />

samples <strong>in</strong> Table 5 . Most <strong>of</strong> <strong>the</strong> flow<strong>in</strong>g water suspended <strong>and</strong> bottom<br />

<strong>sediments</strong> are ra<strong>the</strong>r low <strong>in</strong> cation exchange capacity, compared to Temperate<br />

Zone prairie soils . This is likely <strong>the</strong> result <strong>of</strong> <strong>the</strong> lack <strong>of</strong> <strong>the</strong> more<br />

reactive clay m<strong>in</strong>erals (e .g .- <strong>the</strong> montmorillonite group) <strong>in</strong> <strong>the</strong>se <strong>sediments</strong> .<br />

Chlorite <strong>and</strong> illite were <strong>the</strong> clay m<strong>in</strong>erals commonly found <strong>in</strong> <strong>the</strong>se samples<br />

(see Campbell et al ., 1975, for sediment <strong>m<strong>in</strong>eralogy</strong> <strong>of</strong> <strong>the</strong>se localities) .<br />

Sediments <strong>of</strong> lakes usually had higher cation exchange capacities than did<br />

flow<strong>in</strong>g water <strong>sediments</strong> . Lakes <strong>in</strong> <strong>the</strong> Mackenzie Delta that frequently<br />

received suspended <strong>sediments</strong> from flood<strong>in</strong>g Mackenzie River waters had lower<br />

exchange capacities than did Delta lakes which rarely receive Mackenzie<br />

River floodwaters . Shell (- Long) Lake, near Inuvik, is not <strong>in</strong> <strong>the</strong> Delta,<br />

does not receive turbid Mackenzie waters, <strong>and</strong> has <strong>the</strong> highest exchange<br />

capacity among our samples .<br />

Acid <strong>and</strong> basic extracts <strong>of</strong> a Mackenzie Delta East Channel sediment<br />

sample <strong>in</strong>dicated that Ca, Mg,-Na, <strong>and</strong> Fe are <strong>the</strong> major reactive ions <strong>in</strong><br />

<strong>the</strong> sediment (Table 6) . <strong>The</strong> large yield <strong>of</strong> Ca <strong>and</strong> Mg <strong>in</strong> <strong>the</strong> acid extract<br />

is likely due to <strong>the</strong> dissolution <strong>of</strong> calcite <strong>and</strong> dolomite <strong>in</strong> <strong>the</strong>se <strong>sediments</strong><br />

(see below) . <strong>The</strong> relatively high yield .<strong>of</strong> Fe <strong>in</strong> <strong>the</strong> acid extract is likely<br />

due to <strong>the</strong> dissolution <strong>of</strong> amorphous hydrated iron oxides <strong>and</strong> hydroxides,<br />

s<strong>in</strong>ce our X-ray diffraction methods revealed no reactive crystall<strong>in</strong>e iron<br />

m<strong>in</strong>erals .<br />

M<strong>in</strong>eralogy <strong>of</strong> Lake <strong>and</strong>River<br />

Sediments<br />

Nearly all samples <strong>of</strong> bottom <strong>sediments</strong>, shore <strong>and</strong> bank <strong>sediments</strong><br />

<strong>and</strong> suspended <strong>sediments</strong> conta<strong>in</strong>ed quartz <strong>and</strong> a Ca-rich plagioclase, <strong>and</strong><br />

several samples from <strong>the</strong> Beaufort Sea conta<strong>in</strong>ed orthoclase (Campbell et at .,<br />

1975 ; Brunskill et al ., 1973, vol . 2, App . IX, Table VI) . <strong>The</strong>se .detrital<br />

m<strong>in</strong>erals were found <strong>in</strong> all size fractions, <strong>and</strong> appeared as both fresh,<br />

sharply angled fragments <strong>and</strong> as highly abraded <strong>and</strong> rounded gra<strong>in</strong>s . Dolomite<br />

<strong>and</strong> calcite were very commonly found <strong>in</strong> bottom <strong>sediments</strong> <strong>and</strong> <strong>in</strong><br />

suspension <strong>in</strong> river waters (see Table 8, PCo/PCZ., Campbell et al . 1975,<br />

<strong>and</strong> Brunskill et al . 1973 .) . <strong>The</strong>se carbonate m<strong>in</strong>erals <strong>in</strong> river systems<br />

are likely all detrital <strong>in</strong> orig<strong>in</strong>, s<strong>in</strong>ce ion activity products computed<br />

from dissolved ion concentration data (Campbell et al ., 1975) <strong>in</strong>dicate<br />

undersaturation with respect to common carbonate (calcite, dolomite)<br />

m<strong>in</strong>erals, <strong>and</strong> <strong>the</strong>re are abundant sources <strong>of</strong> carbonate rocks <strong>in</strong> most <strong>of</strong><br />

<strong>the</strong>se watersheds . Most Mackenzie Delta lake bottom <strong>sediments</strong> have <strong>in</strong>organic<br />

compositions similar to Mackenzie River <strong>sediments</strong>, but have much higher<br />

concentrations <strong>of</strong> organic matter (5-30% weight loss on ignition <strong>in</strong> lake<br />

<strong>sediments</strong>, see Campbell et al . (1975) for tabulated data) .


9<br />

Only two clay m<strong>in</strong>erals were found, chlorite <strong>and</strong> illite, <strong>and</strong> <strong>the</strong>se<br />

were, common <strong>in</strong> nearly all samples . Kaol<strong>in</strong>ite <strong>and</strong> members <strong>of</strong> <strong>the</strong> montmorillonite<br />

group . were sought but not found . See Campbell et aZ . (1975)<br />

for specific data for <strong>in</strong>dividual rivers <strong>and</strong> lakes .<br />

Nutrients N, P, <strong>and</strong> C <strong>in</strong> Suspended Sediments<br />

Concentrations <strong>of</strong> C, N, <strong>and</strong> P <strong>in</strong> suspended <strong>sediments</strong> (PC1,, PN : <strong>and</strong> PPS)<br />

<strong>of</strong> river waters are given <strong>in</strong> Table 7a <strong>and</strong> 7b . Variations <strong>in</strong> concentrations<br />

<strong>of</strong> <strong>the</strong>se elements <strong>in</strong> <strong>the</strong> particulate phase were likely due to changes a) <strong>in</strong><br />

concentration <strong>of</strong> suspended <strong>sediments</strong>, <strong>and</strong> b) <strong>in</strong> <strong>the</strong> relative proportions<br />

<strong>of</strong> <strong>in</strong>organic <strong>and</strong> organic material <strong>in</strong> suspended <strong>sediments</strong> . <strong>The</strong> proportion<br />

<strong>of</strong> C, N, <strong>and</strong> P per unit weight <strong>of</strong> suspended <strong>sediments</strong> is greater <strong>in</strong> <strong>the</strong><br />

smaller Group 2 streams, compared to <strong>the</strong> larger rivers <strong>of</strong> Group 1 (Table 7b) .<br />

Per unit volume <strong>of</strong> river water, <strong>in</strong>stantaneous concentrations <strong>of</strong> PP, :, PN,-<br />

<strong>and</strong> PC, : were related to <strong>in</strong>stantaneous discharge (Qi) as <strong>in</strong>dicated <strong>in</strong> Figs . 3<br />

<strong>and</strong> 4 . With <strong>in</strong>creased discharge, <strong>the</strong>re was usually an <strong>in</strong>crease <strong>in</strong> concentrations<br />

<strong>of</strong> PN1, PP, :, <strong>and</strong> PC, :, with <strong>the</strong> exception <strong>of</strong> rivers <strong>in</strong> Group 3 .<br />

Mean annual <strong>rates</strong> <strong>of</strong> <strong>transport</strong> <strong>of</strong> na, P91a, <strong>and</strong> gPQ <strong>in</strong> suspended sediment<br />

are given <strong>in</strong> Table 8, 9, <strong>and</strong> 10 . In general, Group 1 watersheds<br />

<strong>transport</strong>ed greater amounts <strong>of</strong> PC, PN, <strong>and</strong> PP (<strong>in</strong> units <strong>of</strong> moles yr'1 <strong>and</strong><br />

moles k<strong>in</strong>-2 <strong>of</strong> watershed area yr'l) than did Group 2 rivers <strong>and</strong> streams <strong>of</strong><br />

Table 1 . <strong>The</strong> annual mass <strong>of</strong> PCW, PNu,, <strong>and</strong> PPW <strong>transport</strong>ed per unit watershed<br />

was also positively related to annual discharge (QQ) as shown <strong>in</strong> FiRs .5<br />

<strong>and</strong> 6 . With <strong>in</strong>creas<strong>in</strong>g annual discharge, <strong>the</strong> <strong>transport</strong> <strong>of</strong> PCW, PNw, <strong>and</strong> PP ; .. .<br />

from a square kilometer <strong>of</strong> watershed also <strong>in</strong>creased . Small Qa rivers <strong>and</strong><br />

streams (Group 2 <strong>in</strong> Table 1) <strong>in</strong> <strong>the</strong> Mackenzie Valley lowl<strong>and</strong>s yielded less<br />

PCW, PNu., <strong>and</strong> PP,, ., per unit watershed area than did <strong>the</strong> larger Qa rivers <strong>of</strong><br />

Group 1 .<br />

<strong>The</strong> concentrations <strong>of</strong> PC, :, PN1 <strong>and</strong> PP, : (moles m'3 <strong>of</strong> river water)<br />

.<strong>in</strong>creased exponentially per unit <strong>in</strong>crease <strong>in</strong> <strong>the</strong> concentration <strong>of</strong> suspended<br />

<strong>sediments</strong> (Table 11) . <strong>The</strong> slopes <strong>of</strong> <strong>the</strong> regression l<strong>in</strong>es were <strong>of</strong> similar<br />

magnitude for PC, :, PN: <strong>and</strong> PP,: . - :<strong>The</strong> mean annual <strong>rates</strong> <strong>of</strong> <strong>transport</strong> <strong>of</strong><br />

suspended <strong>sediments</strong> (SSW <strong>in</strong> kg k~'2yr'1), PCW, PNW, <strong>and</strong> PPW (<strong>in</strong> moles<br />

km- yr-1) <strong>in</strong>creased exponentially per unit <strong>in</strong>crease <strong>in</strong> annual discharge<br />

(Table 12 <strong>and</strong> Figs . 2, 5 & 6) .<br />

An attempt was made to provide a means <strong>of</strong> "order <strong>of</strong> magnitude" prediction<br />

<strong>of</strong> na, . Ts a, TNQ, <strong>and</strong> TPQ from parameters that can be obta<strong>in</strong>ed from<br />

topographic,, climatic, vegetation <strong>and</strong> geologic maps . <strong>The</strong> results <strong>of</strong> multiple<br />

l<strong>in</strong>ear regression analyses given <strong>in</strong> Table 13 <strong>in</strong>dicate that watershed area,<br />

forest cover, relief, <strong>and</strong> precipitation are useful parameters <strong>in</strong> estimat<strong>in</strong>g<br />

<strong>the</strong> annual mass <strong>of</strong> suspended <strong>sediments</strong> <strong>and</strong> particulate nutrients flow<strong>in</strong>g out<br />

<strong>of</strong> a Mackenzie Valley watershed . -Estimates <strong>of</strong> annual <strong>transport</strong> (metric tons<br />

yr-1) <strong>of</strong> <strong>the</strong> above mentioned elements can be obta<strong>in</strong>ed from <strong>the</strong> follow<strong>in</strong>g<br />

equations :


10<br />

log Pra -<br />

1 .0892 + 0 .9073 log Ad + 1 .1828 log AE<br />

-2 .8210 log F, R2 - 0 .98 ; ( 2 )<br />

log PWg - 1 .0243 + 1 .1333 log Ad + 0 .6353 log AE - 3 .3231 log F,<br />

R2 - 0 .97 ; (3)<br />

log PE - 4 .5434 + 1 .0059 log Ad + 1 .8438 log AE - 2 .0173 log P<br />

<strong>and</strong><br />

- 3 .7420 log F, R 2 - 0 .98 ; ( 4 )<br />

log •STQ - 8 .8995 + 1 .2741 log<br />

Ad + 1 .1417 log AE - 2 .6367-log P<br />

- 6 .1278 log F, R2 - 0 .98 ( 5 )<br />

<strong>The</strong>se predictive relationships would likely be improved by <strong>in</strong>clusion <strong>of</strong><br />

meterorological <strong>and</strong> soil-permafrost-vegetation parameters, by <strong>in</strong>creased<br />

frequency <strong>of</strong> sampl<strong>in</strong>g, <strong>and</strong> a more widespread geographic distribution <strong>of</strong> river<br />

discharge, suspended sediment, <strong>and</strong> chemical measurement stations . In particular,<br />

small mounta<strong>in</strong> streams <strong>and</strong> <strong>in</strong>termediate sized rivers (i .e . Hare Indian,<br />

Horn, Blackwater, North Nahanni, Root Rivers) are not represented <strong>in</strong> our data<br />

set .<br />

DISCUSSION<br />

<strong>The</strong> Usefulness<strong>of</strong>RelationshipsBetweenConcentrations<strong>of</strong>Particulate_<br />

Material <strong>and</strong>Discharge<br />

As shown <strong>in</strong> Figs . 1, 3, 4 <strong>and</strong> Table 2, <strong>the</strong> concentrations <strong>of</strong> suspended<br />

<strong>sediments</strong> (SS4), <strong>and</strong> to a lesser extent particulate phosphorus (PP,), particulate<br />

nitrogen (PNi), <strong>and</strong> particulate carbon (PCB), vary <strong>in</strong> logarithmic<br />

proportion with discharge (Qi) . Such relationships (usually only for SS,)<br />

have been <strong>in</strong>vestigated <strong>in</strong> Temperate Zone rivers by Leopold et al . (1964,<br />

p : 220) <strong>and</strong> Abrahams <strong>and</strong> Kellerhalls (1973) . Sediment rat<strong>in</strong>g curves, such<br />

as Fig . 1, have been used to estimate, suspended sediment concentrations<br />

between sampl<strong>in</strong>g dates (such as <strong>in</strong> Davies, 1974) . Abrahams <strong>and</strong> Kellerhalls<br />

(1973) suggest that, with careful evaluation <strong>of</strong> 5-9 years <strong>of</strong> data, <strong>the</strong>se<br />

relationships may be useful <strong>in</strong> predictive estimation <strong>of</strong> sediment concentrations<br />

<strong>and</strong> <strong>rates</strong> <strong>of</strong> <strong>transport</strong> <strong>of</strong> <strong>sediments</strong> . When a longer period <strong>of</strong><br />

measurement <strong>of</strong> Qi <strong>and</strong> SSi is available,, <strong>the</strong>se relationships (Fig . 1) could<br />

contribute to a method to observe <strong>the</strong> effects <strong>of</strong> terra<strong>in</strong> disturbance on<br />

suspended . sediment loads <strong>of</strong> smaller rivers <strong>and</strong> streams (i .e . similar <strong>in</strong><br />

size <strong>and</strong> character to <strong>the</strong> rivers <strong>of</strong> Group 2 <strong>in</strong> Table 1) . If <strong>the</strong>re have been<br />

no recent natural erosion events (fires or l<strong>and</strong>slides) <strong>in</strong> a watershed under<br />

technological development (e .g ., rights-<strong>of</strong>-way clear<strong>in</strong>g for pipel<strong>in</strong>es or<br />

roads), <strong>the</strong>n Qi <strong>and</strong> SSi data po<strong>in</strong>ts that fall greatly above <strong>the</strong> regression<br />

l<strong>in</strong>es (or <strong>the</strong>ir confidence limits, not shown) <strong>in</strong> Fig . 1 might <strong>in</strong>dicate


11<br />

<strong>in</strong>creased sediment concentrations caused by terra<strong>in</strong> disturbance . However,<br />

it seems likely that variable fractions <strong>of</strong> <strong>the</strong> sediment added to <strong>the</strong><br />

stream by terra<strong>in</strong> disturbances would settle to <strong>the</strong> stream bed . This would<br />

especially affect Group 2 type streams <strong>in</strong> summer, fall, <strong>and</strong> w<strong>in</strong>ter periods<br />

<strong>of</strong> low velocity <strong>and</strong> Qi. Such added sediment may be dispersed to pool areas<br />

<strong>of</strong> <strong>the</strong> stream or <strong>transport</strong>ed out <strong>of</strong> <strong>the</strong> stream only dur<strong>in</strong>g periods <strong>of</strong> maximum<br />

velocity<br />

such as dur<strong>in</strong>g spr<strong>in</strong>g <strong>and</strong> summer floods . We have<br />

observed <strong>the</strong> .atream's Mean's fractionation <strong>of</strong> po<strong>in</strong>t-source sediment addition at<br />

Caribou Bar Creek (where a natural l<strong>and</strong>slide flowed <strong>in</strong>to <strong>the</strong> stream), at<br />

<strong>the</strong> Dempster Highway cross<strong>in</strong>g <strong>of</strong> <strong>the</strong> Rengleng River, <strong>and</strong> at <strong>the</strong> Mackenzie<br />

Highway cross<strong>in</strong>g <strong>of</strong> <strong>the</strong> Mart<strong>in</strong> River .(see Rosenberg <strong>and</strong> Snow, 1975) . In<br />

<strong>the</strong> case <strong>of</strong> <strong>the</strong> Caribou Bar <strong>and</strong> Rengleng examples, s<strong>and</strong>s <strong>and</strong> silts appeared<br />

to accumulate near <strong>the</strong> po<strong>in</strong>t <strong>of</strong> entry <strong>of</strong> <strong>the</strong> added sediment to <strong>the</strong> river<br />

channel, but f<strong>in</strong>er silts <strong>and</strong> clays were <strong>transport</strong>ed a short . distance (


12<br />

This computation will seriously underestimate most sediment additions<br />

to streams, s<strong>in</strong>ce coarse silt, s<strong>and</strong>, <strong>and</strong> gravel will not be measured <strong>in</strong><br />

SSmax , <strong>and</strong> bedload <strong>transport</strong> is not considered . Results <strong>of</strong> <strong>the</strong> - calculation<br />

(Eq . 6) can <strong>the</strong>n be compared to known relationships between<br />

sedimentation <strong>and</strong> <strong>the</strong> well-be<strong>in</strong>g <strong>of</strong> stream benthic organisms <strong>and</strong> fish<br />

(Rosenberg <strong>and</strong> Snow, 1975) . Rosenberg <strong>and</strong> Snow (1975, <strong>and</strong> unpublished<br />

data) found that experimentally <strong>in</strong>creased sedimentation (<strong>of</strong> 25, 50, 25%<br />

s<strong>and</strong>, silt, clay sediment, respectively) at <strong>rates</strong> <strong>of</strong> 0 .060-3 .9 kg m -2<br />

<strong>of</strong> , stream bottom'hr 1 caused resident zoobenthic organisms <strong>in</strong> <strong>the</strong> stream<br />

bed <strong>of</strong> Harris River to leave <strong>the</strong> site <strong>of</strong> sediment addition . If, by fur<strong>the</strong>r<br />

research, a level <strong>of</strong> sediment addition is found below which little or no<br />

effect on zoobenthos, phytobenthos, <strong>and</strong> fish is observed, <strong>the</strong>n that level<br />

<strong>of</strong> sediment addition should be considered an upper limit on sediment supply<br />

to streams from terra<strong>in</strong> disturbance .<br />

We wish to emphasize that <strong>the</strong> regression l<strong>in</strong>es <strong>in</strong> Fig . 1 are not based<br />

on sufficiently long records, nor on sufficient details, to allow precise<br />

use <strong>of</strong> <strong>the</strong> l<strong>in</strong>es to establish "<strong>in</strong>dividual stream st<strong>and</strong>ards for sediment<br />

concentrations" . For example, for a given Qi on Fig . 1, <strong>the</strong> variation <strong>of</strong><br />

SSi can be from ± 2x to ± 10 x <strong>the</strong> <strong>in</strong>dicated value on <strong>the</strong> vertical axis,<br />

depend<strong>in</strong>g on <strong>the</strong> river type '<strong>and</strong> <strong>the</strong> number <strong>of</strong> Qj <strong>and</strong> SSj data po<strong>in</strong>ts available<br />

to us . Verification, stabilization, <strong>and</strong> an <strong>in</strong>crease <strong>in</strong> confidence <strong>in</strong><br />

<strong>the</strong> regression l<strong>in</strong>es <strong>in</strong> Fig . 1 will result from cont<strong>in</strong>ued monitor<strong>in</strong>g <strong>of</strong><br />

normal <strong>and</strong> natural extreme events . Greater confidence <strong>in</strong> such regression<br />

l<strong>in</strong>es could result from subdivision <strong>of</strong> <strong>the</strong> yearly hydrograph (Q • Vs time)<br />

<strong>in</strong>to a) <strong>the</strong> ascend<strong>in</strong>g limb <strong>of</strong> <strong>the</strong> peak flow hydrograph (May-early June <strong>in</strong><br />

<strong>the</strong> Mackenzie Valley), b)' <strong>the</strong> descend<strong>in</strong>g limb <strong>of</strong> <strong>the</strong> peak flow hydrograph,<br />

<strong>and</strong> c) low flow periods (late summer, fall <strong>and</strong> w<strong>in</strong>ter) . For example, we<br />

were able to improve <strong>the</strong> significance <strong>of</strong> <strong>the</strong> regression <strong>of</strong> SSi on Qj for<br />

<strong>the</strong> Harris River from r - 0 .50 (a - >0 .001) for all data po<strong>in</strong>ts, to r - 0 .72<br />

(a - >0 .001) for only data po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> high Q . period <strong>of</strong> <strong>the</strong> year <strong>in</strong><br />

April, May <strong>and</strong> June (us<strong>in</strong>g data from Davies, 194) . We <strong>the</strong>refore stress<br />

that our purpose is to present this method <strong>of</strong> data treatment <strong>and</strong> to illusstrate<br />

general trends <strong>in</strong> <strong>the</strong> data . <strong>The</strong> absolute values <strong>of</strong> <strong>the</strong> slopes <strong>and</strong><br />

<strong>in</strong>tercepts can be improved . b y more <strong>in</strong>tensive sampl<strong>in</strong>g' over longer periods<br />

<strong>of</strong> time .<br />

We propose that <strong>the</strong> slopes (b) <strong>and</strong> <strong>in</strong>tercepts (a) <strong>of</strong> regression l<strong>in</strong>es<br />

<strong>in</strong> Fig . 1, (see Eq . 1, Table 2a) relat<strong>in</strong>g <strong>the</strong> concentrations <strong>of</strong> suspended<br />

sediment <strong>and</strong> discharge, are general <strong>in</strong>dices <strong>of</strong> erosional characteristics<br />

<strong>of</strong> each river <strong>and</strong> each watershed, respectively . A similar <strong>in</strong>terpretation<br />

was made briefly by MUller <strong>and</strong> Forstner (1968) for European <strong>and</strong> North<br />

American rivers .<br />

We propose that b is an <strong>in</strong>dex <strong>of</strong> <strong>the</strong> ability or energy <strong>of</strong> a river<br />

to <strong>transport</strong> suspended sediment, <strong>and</strong> is a function <strong>of</strong> <strong>the</strong> seasonal <strong>and</strong><br />

annual distribution <strong>of</strong> river water mass, velocity, gradient, bed roughness,<br />

<strong>and</strong> cross-sectional area . We fur<strong>the</strong>r propose that a is an <strong>in</strong>dex <strong>of</strong> <strong>the</strong><br />

susceptibility <strong>of</strong> <strong>the</strong> terrestrial portion'<strong>of</strong> <strong>the</strong> watershed to erosion by<br />

<strong>the</strong> river or stream, <strong>and</strong> is a function <strong>of</strong> watershed surficial geology,<br />

relief, soil properties, vegetation, active layer thickness, seasonal


13<br />

changes <strong>in</strong> albedo, <strong>and</strong> <strong>the</strong> general availability <strong>of</strong> easily erodible<br />

terra<strong>in</strong> . Rivers with high values <strong>of</strong>,b are <strong>in</strong>terpreted to exert a great<br />

erosional pressure on <strong>the</strong>ir watersheds, <strong>and</strong> can <strong>transport</strong> large quantities<br />

<strong>of</strong> sediment . Rivers with loww values <strong>of</strong> b appear to exert less energy<br />

<strong>in</strong> erod<strong>in</strong>g <strong>the</strong>ir watersheds, <strong>and</strong> appear to have a lower capability to<br />

<strong>transport</strong> sediment . This <strong>in</strong>terpretation <strong>of</strong> b is partly supported by a<br />

statistically significant (r .- 0.96, 1-a >99 .9) logarithmic relationship<br />

between b (Table 2a) <strong>and</strong> mean annual sediment erosion <strong>rates</strong> per unit<br />

watershed area MW , see Table 3) for <strong>the</strong> sampled rivers .<br />

Watersheds with high values <strong>of</strong> <strong>the</strong> <strong>in</strong>tercept (a) <strong>in</strong> Fig . 1 are <strong>in</strong><br />

regions <strong>of</strong> low relief with relatively thick deposits <strong>of</strong> alluvial, .eolian,<br />

glacial, <strong>and</strong>/or lacustr<strong>in</strong>e <strong>sediments</strong> (Rutter et al ., 1973 ; Zoltai <strong>and</strong><br />

Pettapiece, 1973 ; Tarnocal, 1973 ; Zoltai <strong>and</strong> Tarnocai, 1974) . <strong>The</strong>se small<br />

to moderate sized watersheds conta<strong>in</strong> relatively low energy streams that<br />

carry relatively low SSi as <strong>the</strong>y slowly cut through easily erodible terra<strong>in</strong> .<br />

Per unit <strong>in</strong>crease <strong>in</strong> Qj, however, <strong>the</strong>se high a watershed streams carry a<br />

larger <strong>in</strong>crement <strong>of</strong> SS, (i .e., <strong>the</strong> arithmetic slopes <strong>of</strong> selected tangents<br />

to <strong>the</strong> curvil<strong>in</strong>ear relationships between SSi <strong>and</strong> Qi, as-dist<strong>in</strong>ct from<br />

<strong>the</strong> logarithmic relationships <strong>of</strong> SSi <strong>and</strong>,Qj <strong>in</strong> Fig . 1 <strong>and</strong> Table 2a), compared<br />

to low a watersheds . This implies . that, for a small <strong>in</strong>crease <strong>in</strong> QV<br />

a unit <strong>of</strong> terra<strong>in</strong> <strong>of</strong> high a watersheds yields more sediment to <strong>the</strong> stream<br />

than does a unit <strong>of</strong> terra<strong>in</strong> <strong>of</strong> low a watersheds, but few high a water-,<br />

sheds <strong>in</strong> Table 2a have <strong>the</strong> susta<strong>in</strong>ed energy <strong>of</strong> high QQ (i .e ., b) to<br />

<strong>transport</strong> this easily eroded sediment .. This fur<strong>the</strong>r implies that <strong>the</strong><br />

stream beds <strong>of</strong> high a <strong>and</strong> low b watersheds should conta<strong>in</strong> a greater range<br />

<strong>of</strong> particle sizes, particularly a greater proportion <strong>of</strong> s<strong>and</strong>, silt <strong>and</strong> clay .<br />

Watersheds with low values <strong>of</strong> a <strong>and</strong> high values <strong>of</strong> b would presumably scour<br />

<strong>the</strong>ir channel beds clean <strong>of</strong> clay, silt,'<strong>and</strong> f<strong>in</strong>e s<strong>and</strong>s, leav<strong>in</strong>g only gravel<br />

<strong>and</strong> boulders (such as <strong>in</strong> <strong>the</strong> case <strong>of</strong> <strong>the</strong> ma<strong>in</strong> channels <strong>of</strong> <strong>the</strong> Mackenzie,<br />

Liard, Peel, South Nahanni, <strong>and</strong> Arctic . Red Rivers) . Watersheds with high<br />

values <strong>of</strong> a (i .e . easily erodible watersheds) <strong>and</strong> low values <strong>of</strong> b (less<br />

capacity to <strong>transport</strong> <strong>sediments</strong>) probably supply <strong>sediments</strong> from <strong>the</strong> l<strong>and</strong><br />

dra<strong>in</strong>age area <strong>in</strong> excess <strong>of</strong> <strong>the</strong> ability <strong>of</strong> <strong>the</strong> stream to carry <strong>the</strong> <strong>sediments</strong><br />

away, result<strong>in</strong>g <strong>in</strong> periodic accumulations <strong>of</strong> s<strong>and</strong>, silt, <strong>and</strong> clay amongst<br />

<strong>the</strong> boulders <strong>and</strong> gravel <strong>of</strong> <strong>the</strong> str?am bed (such as <strong>in</strong> <strong>the</strong> case <strong>of</strong> <strong>the</strong> Harris,<br />

Mart<strong>in</strong>, <strong>and</strong> Willowlake Rivers) .<br />

If <strong>the</strong> above <strong>in</strong>terpretations <strong>of</strong> <strong>the</strong> slopes <strong>and</strong> <strong>in</strong>tercepts <strong>of</strong> logarithmic<br />

relationships between,SS- <strong>and</strong> Q, are tentatively accepted, some <strong>in</strong>terest<strong>in</strong>g<br />

speculations regard<strong>in</strong>g <strong>the</strong> biological utilization <strong>of</strong> <strong>the</strong> stream beds can be<br />

made . If zoobenthic species diversity is related to substrate diversity,<br />

<strong>the</strong>n streams <strong>and</strong> rivers with low slope (b) values <strong>and</strong> high <strong>in</strong>tercept (a)<br />

values should have a greater diversity <strong>of</strong> zoobenthos than rivers hav<strong>in</strong>g<br />

high values <strong>of</strong> b<strong>and</strong> low values <strong>of</strong> a .' This cannot be directly,tested with<br />

our present zoobenthic data (Rosenberg <strong>and</strong> Snow, 1975 ; Brunskill et al .,<br />

1973) because <strong>of</strong> <strong>the</strong> lack <strong>of</strong> suitable quantitative zoobenthos <strong>and</strong> sediment<br />

sampl<strong>in</strong>g methods for large rivers . <strong>The</strong>re is some partial support <strong>in</strong> Brunskill<br />

et al . (1973, vol . 2, p. 307-309) <strong>and</strong> Campbell<br />

et aZ .,(1975, Table la <strong>in</strong><br />

.Section 5) for <strong>the</strong> hypo<strong>the</strong>sis that rivers <strong>of</strong> low slope (b) will have a


14<br />

greater range <strong>of</strong> bottom sediment particle sizes, compared to rivers <strong>of</strong><br />

high b values . Rivers <strong>and</strong> streams hav<strong>in</strong>g high values <strong>of</strong> b were observed<br />

to have highly scoured, large particle-sized beds with shift<strong>in</strong>g, unstable,<br />

<strong>and</strong> highly mobile bedload movements, which usually are unfavorable subst<strong>rates</strong><br />

for aquatic organisms . Rivers <strong>and</strong> streams with lower values <strong>of</strong> b<br />

tend to have a wider range <strong>of</strong> sediment particle sizes, a more stable sediment<br />

surface, <strong>and</strong> apparently low bedload <strong>transport</strong> <strong>rates</strong> (see for . example<br />

<strong>the</strong> discussion on bedload <strong>transport</strong> <strong>of</strong> Jean Marie River below) .<br />

Our selection <strong>of</strong> watersheds <strong>and</strong> sampl<strong>in</strong>g sites (largely controlled<br />

by <strong>the</strong> . location <strong>of</strong> Water Survey <strong>of</strong> Canada discharge stations) has biased<br />

<strong>the</strong> Mackenzie Valley data somewhat by represent<strong>in</strong>g only 3 types <strong>of</strong> watersheds<br />

: a) Group 1 large rivers dra<strong>in</strong><strong>in</strong>g from <strong>the</strong> mounta<strong>in</strong>s, high b <strong>and</strong><br />

low a, b) Group 2 moderate to small rivers <strong>and</strong> streams dra<strong>in</strong><strong>in</strong>g <strong>the</strong> Mackenzie<br />

Valley lowl<strong>and</strong>s, low b <strong>and</strong> high a,-<strong>and</strong> c) Groups 3 rivers dra<strong>in</strong><strong>in</strong>g large<br />

lakes or large numbers <strong>of</strong> lakes, to which <strong>the</strong> above <strong>in</strong>terpretation <strong>of</strong><br />

slopes <strong>and</strong> <strong>in</strong>tercepts probably does nr -apply . From our rough survey data<br />

(see Brunskill et aZ . 1973, vol . 2, <strong>and</strong> Campbell et aZ . 1975) <strong>and</strong> topographic,<br />

climatic, terra<strong>in</strong> <strong>and</strong> vegetation maps, we feel that <strong>the</strong>re are<br />

several types <strong>of</strong> watersheds not represented <strong>in</strong> Table 1 <strong>and</strong> Fig . 1 . For<br />

example, small mounta<strong>in</strong> streams, <strong>and</strong> large rivers dra<strong>in</strong><strong>in</strong>g spruce-muskeg,<br />

low relief watersheds, are watershed types that probably would require<br />

new categories . Twisty Creek, a small (Ad - 6 .94 km 2 ) mounta<strong>in</strong> headwater<br />

stream (Q a 1 .1 - 2 .3 x 10 6 m 3yr- 1) <strong>in</strong> <strong>the</strong> Arctic Red River watershed,<br />

has a slope (b) <strong>of</strong> 2 .18, an <strong>in</strong>tercept (a) <strong>of</strong> 94 .8, <strong>and</strong> an SSW <strong>of</strong> 81 to 659<br />

metric tons km-2yr-1 (Jasper, 1974) . . This small stream is clearly <strong>of</strong> a<br />

different character from those listed <strong>in</strong> Table 1, 2, <strong>and</strong> 3 <strong>and</strong> Fig . 1, <strong>and</strong><br />

represents a category <strong>of</strong> small streams that have highly erodible watersheds<br />

<strong>and</strong> a great capacity to carry sediment . Twisty Creek values <strong>of</strong> b<br />

<strong>and</strong> annual suspended sediment erosion rate (SS W ) fit nicely on <strong>the</strong><br />

previously mentioned regression l<strong>in</strong>e for <strong>the</strong>se same parameters for watersheds<br />

<strong>in</strong> Table 1 . However, Twisty Creek carries nearly 50% <strong>of</strong> its total<br />

sediment load as bedload .<br />

As <strong>in</strong>dicated by MUller <strong>and</strong> Forstner (1968), <strong>the</strong> above discussion could<br />

be repeated consider<strong>in</strong>g stream velocity (V) <strong>in</strong>stead <strong>of</strong> discharge (i .e .<br />

SSi a aV') . This would probably result <strong>in</strong> similar trends, but we have not<br />

studied this relationship thoroughly . <strong>The</strong> great disadvantage <strong>of</strong> <strong>the</strong> use <strong>of</strong><br />

Qi - SS, curves to consider <strong>the</strong> effects <strong>of</strong> sediment addition on streams is<br />

that <strong>the</strong> technique does not allow extrapolation to o<strong>the</strong>r, unsampled watersheds .<br />

However, careful measurement, <strong>of</strong> Qi <strong>and</strong> SSi on calibration, control, naturally<br />

<strong>and</strong> technologically_disturbed watersheds will essentially test <strong>the</strong> hypo<strong>the</strong>ses<br />

suggested above, <strong>and</strong> provide examples for use <strong>in</strong> consideration <strong>of</strong> development<br />

<strong>in</strong> o<strong>the</strong>r similar watersheds .<br />

Most <strong>of</strong> <strong>the</strong> above discussion on <strong>the</strong> relationships between Qi <strong>and</strong> SS4,<br />

probably also applies to nutrient elements <strong>in</strong> particulate form (Tables 11<br />

<strong>and</strong> 12, Figs . 3 <strong>and</strong> 4), <strong>and</strong> to most major <strong>and</strong> m<strong>in</strong>or elements <strong>in</strong> particulate<br />

form (?Ca, PCu, PZn, PSi, PA1), s<strong>in</strong>ce <strong>the</strong>se elements appear to form a<br />

relatively- constant proporation <strong>of</strong> SSi <strong>in</strong> <strong>the</strong> sampled rivers (Table 14) .


15<br />

Increases <strong>in</strong> <strong>the</strong> concentrations or <strong>rates</strong> <strong>of</strong> supply <strong>of</strong> PC, PN, <strong>and</strong> PP<br />

to a stream or lake would be an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> rate <strong>of</strong> food supply to<br />

benthic <strong>and</strong> planktonic organisms feed<strong>in</strong>g on organic detritus . However,<br />

<strong>the</strong> organisms would have to- expend more energy sort<strong>in</strong>g through <strong>the</strong><br />

<strong>in</strong>creased <strong>in</strong>organic clays, silts <strong>and</strong> s<strong>and</strong>s to f<strong>in</strong>d this organic material .<br />

Increased <strong>rates</strong> <strong>of</strong> supply <strong>of</strong> particulate organic material to <strong>the</strong> stream<br />

or lake <strong>sediments</strong> will likely also <strong>in</strong>crease <strong>the</strong> rate <strong>of</strong> microbial respiraation<br />

<strong>and</strong> 02 depletion <strong>in</strong> <strong>sediments</strong> .<br />

Factors Controll<strong>in</strong>g Annual Transport Rates bf Suspended Sediments <strong>and</strong><br />

Particulate Elements<br />

It appears, from <strong>the</strong> limited data' at h<strong>and</strong>, that Mackenzie Valley<br />

rivers' (similar to Group 2 <strong>in</strong> Table 1) with large watershed areas (Ad) <strong>and</strong><br />

annual discharges (Qa ) <strong>transport</strong> (per unit watershed area) much more suspended<br />

sediment, PC, PN, PP <strong>and</strong> probably major <strong>and</strong> m<strong>in</strong>or elements <strong>in</strong> <strong>the</strong><br />

particulate phase than do rivers <strong>and</strong> streams with small Ad end Qa <strong>in</strong> <strong>the</strong><br />

Mackenzie Valley lowl<strong>and</strong>s, such as those <strong>in</strong> Group 2 . <strong>The</strong> variation from<br />

river to river <strong>in</strong> mean annual concentration <strong>of</strong> 35,x, Ri, 1s-Ni, <strong>and</strong> WJ was<br />

less than a factor <strong>of</strong> 60, while <strong>the</strong> variation <strong>in</strong> Q a was <strong>in</strong> excess <strong>of</strong> 4000,<br />

among <strong>the</strong> rivers sampled <strong>in</strong> this study . <strong>The</strong>refore, <strong>the</strong> magnitude <strong>of</strong> Q~<br />

or Qa is a more powerful determ<strong>in</strong>ant <strong>of</strong> <strong>the</strong> flux <strong>of</strong> <strong>sediments</strong> <strong>and</strong> particulate<br />

nutrients from <strong>the</strong> watershed than is <strong>the</strong> concentration <strong>of</strong> <strong>the</strong>se<br />

parameters <strong>in</strong> river water . However, <strong>the</strong>re was also an <strong>in</strong>crease <strong>of</strong> mean<br />

annual concentration <strong>of</strong> SSi ; PCi, <strong>and</strong> PPi with <strong>in</strong>creas<strong>in</strong>g Q a <strong>and</strong> Ad among<br />

<strong>the</strong> rivers <strong>and</strong> streams <strong>of</strong> Table 1 . <strong>The</strong>re is, <strong>the</strong>n, some degree <strong>of</strong> autocorrelation<br />

between <strong>the</strong> plotted parameters SS a<br />

<strong>and</strong> SS,, <strong>and</strong> Qa (Figs . 2,<br />

5, <strong>and</strong> 6 ; Table 12), s<strong>in</strong>ce Qi is a component <strong>of</strong> SSa <strong>and</strong> SS w :<br />

= 3J(SSi'x Q . )t = tons yr-1 ; 35W - 3i~SSi x Qi )ti /Ad - tons km-2yr - l . (7)<br />

i-1 -t-1<br />

This does not detract from <strong>the</strong>ir general'value <strong>in</strong> <strong>the</strong> order <strong>of</strong> magnitude prediction<br />

<strong>of</strong> annual <strong>rates</strong> <strong>of</strong> <strong>transport</strong> <strong>of</strong> suspended <strong>sediments</strong>, particulate nutrients<br />

<strong>and</strong> o<strong>the</strong>r elements, <strong>and</strong> perhaps some dissolved elements, based upon estimates<br />

<strong>of</strong> Q a , or simply watershed area, annual precipitation <strong>and</strong> run<strong>of</strong>f coefficients .<br />

We also observed an apparent <strong>in</strong>crease <strong>in</strong> run<strong>of</strong>f (QaIAd) with <strong>in</strong>creas<strong>in</strong>g watershed<br />

area or Qa , which also contributes to <strong>the</strong> relationships shown <strong>in</strong> Figs . 2,<br />

5, 6 <strong>and</strong> Table 12 . This <strong>in</strong>creased run<strong>of</strong>f <strong>in</strong> <strong>the</strong> larger rivers may be due to<br />

a greater percentage <strong>of</strong> <strong>the</strong> watershed area be<strong>in</strong>g <strong>in</strong> mounta<strong>in</strong>s <strong>and</strong> tundra ;<br />

however, this is likely to be a biased judgment due to <strong>the</strong> lack <strong>of</strong> small<br />

mounta<strong>in</strong> streams <strong>in</strong> our data set . Jasper (1974) recorded high<br />

run<strong>of</strong>f :precipitation ratios <strong>in</strong> a mounta<strong>in</strong>ous, small tributary stream to<br />

Arctic Red River . From <strong>the</strong> above discussion, it appears that both <strong>in</strong>creased<br />

run<strong>of</strong>f <strong>and</strong> <strong>in</strong>creased concentrations <strong>of</strong> SSi, PCi, PNi, PPi contribute to<br />

greater . <strong>rates</strong> <strong>of</strong> <strong>transport</strong>-<strong>of</strong> <strong>the</strong>se parameters <strong>in</strong> large or mounta<strong>in</strong>ous<br />

rivers <strong>in</strong> <strong>the</strong> observed relationships <strong>in</strong> Figs . 2, 5, <strong>and</strong> 6 <strong>and</strong> Table 12 . <strong>The</strong><br />

slopes <strong>of</strong> regression l<strong>in</strong>es between concentrations <strong>of</strong> particulate nutrients<br />

(PC,~. PN,,, <strong>and</strong> PP4 ) <strong>and</strong> <strong>the</strong> concentration <strong>of</strong> suspended sediment SS, , are <strong>of</strong><br />

similar magnitude (Table 11),, which may imply that most <strong>of</strong> <strong>the</strong> annual mass


16<br />

<strong>of</strong> PZ`a , "a , <strong>and</strong> "a was <strong>transport</strong>ed <strong>in</strong> a similar form (i .e . particulate<br />

organic matter) . However, some <strong>of</strong> <strong>the</strong> mass <strong>of</strong> PCa is <strong>transport</strong>ed as <strong>in</strong>organic<br />

carbon <strong>in</strong> calcite <strong>and</strong> dolomite (Table 8) <strong>and</strong> some <strong>of</strong> <strong>the</strong> PP a is<br />

likely <strong>in</strong> an <strong>in</strong>organic form .<br />

2<br />

<strong>The</strong> previous discussion is based upon <strong>the</strong> assumption that relationships<br />

between discharge, annual suspended sediment loads <strong>and</strong> chemical<br />

components <strong>of</strong> suspended <strong>sediments</strong> would be useful <strong>in</strong> establish<strong>in</strong>g basel<strong>in</strong>e<br />

data for <strong>the</strong> region, <strong>and</strong> to assist <strong>in</strong> <strong>the</strong> perception <strong>of</strong> changes <strong>in</strong> <strong>the</strong>se<br />

parameters caused by natural events <strong>and</strong> technological disturbance <strong>of</strong> <strong>the</strong><br />

terra<strong>in</strong>. We also suggested that <strong>transport</strong> <strong>rates</strong> <strong>of</strong> most parameters previously<br />

discussed (Tables 3, ;8, 9, 10 <strong>and</strong> 14) <strong>in</strong> units <strong>of</strong> mass per unit<br />

watershed area per year can be extrapolated to unsampled watersheds <strong>of</strong><br />

similar geography, climate, <strong>and</strong> vegetation . For example, we estimated <strong>the</strong><br />

annual mass <strong>of</strong> SS, PC, PN, <strong>and</strong> PP supplied to <strong>the</strong> Mackenzie Delta <strong>and</strong> Beaufort<br />

Sea by <strong>the</strong> Mackenzie <strong>and</strong> Peel Rivers from our data <strong>and</strong> by extrapolation<br />

(Table 15) . We applied <strong>the</strong> <strong>rates</strong> <strong>of</strong> <strong>transport</strong> (per unit watershed area) <strong>of</strong><br />

<strong>the</strong> Arctic Red River to <strong>the</strong> western tr-*1tary area <strong>of</strong> <strong>the</strong> Mackenzie north<br />

<strong>of</strong> Norman Wells, where we have no useful, seasonal data . This assumes that<br />

<strong>the</strong> Carcajou, Mounta<strong>in</strong>, Hume, Ramparts, <strong>and</strong> Ontaratue Rivers have SS,,<br />

PC w , PNw , <strong>and</strong> PPw similar to <strong>the</strong> Arctic Red River, <strong>and</strong> that small tributaries<br />

have a negligible contribution . <strong>The</strong> eastern watershed <strong>of</strong> <strong>the</strong><br />

Mackenzie north <strong>of</strong> Norman Wells was not sampled <strong>in</strong> detail, but its small<br />

contribution to <strong>the</strong> total Mackenzie load was estimated from average <strong>transport</strong><br />

<strong>rates</strong> <strong>of</strong> SS W , PCw , PNw <strong>and</strong> PP, from <strong>the</strong> Willowlake River . We believe<br />

that this approach (or ref<strong>in</strong>ements based on more detailed <strong>and</strong> longer records<br />

<strong>of</strong> data) is better than <strong>the</strong> use <strong>of</strong> <strong>the</strong> Universal Soil Loss Equation (Howard,<br />

1974) . Table 15 <strong>in</strong>dicates that <strong>the</strong> mole ratio N/P <strong>of</strong> <strong>sediments</strong>_ supplied to<br />

<strong>the</strong> Mackenzie Delta <strong>and</strong> Beaufort Sea is very low (5 .6), which may result<br />

from some fraction <strong>of</strong> PPa be<strong>in</strong>g <strong>in</strong> <strong>in</strong>organic form . <strong>The</strong> mole ratio C/P is<br />

close to expected values for liv<strong>in</strong>g organic matter, however . <strong>The</strong> average<br />

sedimentation rate for <strong>the</strong> Mackenzie Delta <strong>and</strong> adjacent Beaufort Sea given<br />

<strong>in</strong> Table 15 is likely somewhat mislead<strong>in</strong>g, s<strong>in</strong>ce much <strong>of</strong> <strong>the</strong> annual supply<br />

<strong>of</strong> <strong>sediments</strong> moves through <strong>the</strong> Mackenzie Delta to be deposited <strong>in</strong> restricted<br />

areas <strong>of</strong> sediment accumulation <strong>in</strong> Kugmallit Bay, Shallow Bay, <strong>and</strong> shallow<br />

areas <strong>in</strong> <strong>the</strong> Beaufort Sea less than 80 km from <strong>the</strong> nor<strong>the</strong>rn edge <strong>of</strong> <strong>the</strong><br />

terrestrial portion <strong>of</strong> <strong>the</strong> Delta . However, sediment <strong>of</strong> <strong>the</strong> composition<br />

given <strong>in</strong> Table 15 is with<strong>in</strong> 5% <strong>of</strong> C, N, <strong>and</strong> P determ<strong>in</strong>ed <strong>in</strong> samples <strong>of</strong><br />

<strong>sediments</strong> from <strong>the</strong> Beaufort Sea, Kugmallit Bay, <strong>and</strong> turbid nor<strong>the</strong>rn Delta<br />

lakes (see Campbell et at ., 1975, for C, N, P, data for <strong>sediments</strong> from<br />

stations BS24, BS26, BS15, KU4, KU5, Lake 1, Lake 3 . To convert sedimentation<br />

rate <strong>in</strong> Table 15 to . concentration (<strong>in</strong> moles/g dry wt . sediment),<br />

divide moles <strong>of</strong> C, N, <strong>and</strong> p 1-2 yr-1 by 3,800 g .SS m-2yr-1 ) .<br />

<strong>The</strong> multiple l<strong>in</strong>ear regression analyses .(Table 13) .clearly identify<br />

watershed area, relief, <strong>and</strong> forest cover as dom<strong>in</strong>ant controll<strong>in</strong>g factors<br />

on <strong>the</strong> <strong>rates</strong> <strong>of</strong> <strong>transport</strong> <strong>of</strong> . <strong>sediments</strong> <strong>and</strong> particulate nutrients for <strong>the</strong><br />

watersheds studied . With <strong>in</strong>creas<strong>in</strong>g Ad, SSa <strong>and</strong> SSW <strong>in</strong>creased . <strong>The</strong> great<br />

importance <strong>of</strong> watershed area seems obvious, s<strong>in</strong>ce all <strong>transport</strong> <strong>rates</strong> discussed<br />

here are a close function <strong>of</strong> <strong>the</strong> magnitude <strong>of</strong> annual discharge,


17<br />

which is positively related to watershed area . This f<strong>in</strong>d<strong>in</strong>g supports <strong>the</strong><br />

largely <strong>in</strong>ferred importance <strong>of</strong> <strong>the</strong> relative size <strong>of</strong> Qa <strong>and</strong> Ad <strong>in</strong> proportion<br />

to a given terra<strong>in</strong> disturbance (Brunskill et al ., 1973) . S<strong>in</strong>ce over<br />

80 <strong>of</strong> <strong>the</strong> variability <strong>in</strong> <strong>transport</strong> <strong>rates</strong> <strong>of</strong> SS a , PCa , PNa <strong>and</strong> PPa was<br />

expla<strong>in</strong>ed by <strong>the</strong>-magnitude <strong>of</strong> <strong>the</strong> l<strong>and</strong> dra<strong>in</strong>age area (Ad), <strong>the</strong>n a given<br />

area <strong>of</strong> l<strong>and</strong> disturbance <strong>in</strong> a small watershed is likely to have much greater<br />

effects on sediment <strong>and</strong> particulate matter supply <strong>rates</strong> to streams than<br />

would <strong>the</strong> same disturbance <strong>in</strong> a large watershed . In fact, it is likely<br />

that streams with low values <strong>of</strong> b (see Table 2) will not be able to carry<br />

added <strong>sediments</strong> <strong>and</strong> nutrients from l<strong>and</strong> disturbance, <strong>and</strong> <strong>the</strong> added <strong>sediments</strong><br />

will accumulate <strong>in</strong> <strong>the</strong> stream bed . In_ Temperate Zones <strong>of</strong> North America,<br />

this Ad-SSW relationship is Just <strong>the</strong> opposite ; i .e . erosion <strong>rates</strong> usually<br />

decrease with <strong>in</strong>creas<strong>in</strong>g Ad (Brune, 1948 ; Langbe<strong>in</strong> <strong>and</strong> Schumm, 1958 ; Schumm,<br />

1963) . It seems likely that <strong>the</strong> absence <strong>of</strong> small mounta<strong>in</strong> streams (such<br />

as Twisty Creek (Jasper, 1974)) <strong>in</strong> our data set has caused an over-emphasis<br />

on <strong>the</strong> importance <strong>of</strong> watershed area <strong>in</strong> controll<strong>in</strong>g erosion <strong>rates</strong> . If we<br />

had a more representative suite <strong>of</strong> watersheds, we feel that Ad would greatly<br />

decrease <strong>in</strong> importance, <strong>and</strong> relief, vegetation, <strong>and</strong> run<strong>of</strong>f coefficients<br />

would be score important .' Our analyses (Table 13) do <strong>in</strong>dicate <strong>the</strong> importance<br />

<strong>of</strong> relief <strong>and</strong> forest cover <strong>in</strong> controll<strong>in</strong>g <strong>transport</strong> (erosion) <strong>rates</strong> <strong>of</strong> particulate<br />

material . <strong>The</strong>se data support <strong>the</strong> work <strong>of</strong> many terra<strong>in</strong> studies, which<br />

also identify <strong>the</strong>se parameters (GE <strong>and</strong> F) as be<strong>in</strong>g important <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

terra<strong>in</strong> stability (for example, Zoltai <strong>and</strong> Pettapiece, 1973 ; Crampton, 1973 ;<br />

Strang, 1973 ; Hughes et al ., - 1973) . Deforestation <strong>in</strong> watersheds <strong>of</strong> moderate<br />

to great relief (i .e . hav<strong>in</strong>g great stream energy to carry <strong>sediments</strong>, high<br />

values <strong>of</strong> b <strong>and</strong> moderate to high values <strong>of</strong> a <strong>in</strong> Table 2) would likely result<br />

<strong>in</strong> measureable <strong>in</strong>creases <strong>in</strong> <strong>the</strong> annual <strong>transport</strong> <strong>of</strong> most elements <strong>in</strong> stream<br />

particulate matter (for an example <strong>in</strong> <strong>the</strong> Temperate Zone, see Hansmann <strong>and</strong><br />

Ph<strong>in</strong>ney, 1972) . In low relief, low energy streams (i .e ., low values <strong>of</strong><br />

<strong>and</strong> high-values <strong>of</strong> a, see Table 2), deforestation <strong>and</strong> l<strong>and</strong> disturbance will<br />

likely result <strong>in</strong> <strong>in</strong>creased . <strong>rates</strong> <strong>of</strong> supply <strong>of</strong> sediment to <strong>the</strong> stream, but<br />

<strong>the</strong> stream will' be less able to carry this added'sediment .<br />

Bedload<br />

Our limited data for Jean-Marie Creek <strong>in</strong>dicate that <strong>in</strong> small streams<br />

(A


18<br />

d<br />

In areas <strong>of</strong> greater relief (or with high values <strong>of</strong> b, see Table 2)<br />

streams <strong>and</strong> rivers likely scour <strong>the</strong>ir beds with great energy, <strong>and</strong> bedload<br />

<strong>transport</strong> will be an important component <strong>of</strong> <strong>the</strong> total sediment load<br />

(Nanson, 1974 ; Balster <strong>and</strong> Parsons, 1968) . In <strong>the</strong> mounta<strong>in</strong>ous headwaters<br />

<strong>of</strong> <strong>the</strong> Arctic Red River, Twisty Creek carries 502 <strong>of</strong> its total sediment<br />

load as bedload (Jasper, 1974) .<br />

Reactivity <strong>of</strong> Suspended <strong>and</strong> Bottom Sediments<br />

<strong>The</strong> low cation exchange capacity <strong>of</strong> suspended <strong>and</strong> bottom <strong>sediments</strong> <strong>of</strong><br />

Mackenzie Valley rivers (Table 5) is <strong>in</strong> <strong>the</strong> expected, range for <strong>the</strong> relatively<br />

simple clay m<strong>in</strong>erals illite <strong>and</strong> chlorite (Grim, 1968 ; p . 189) which<br />

are found <strong>in</strong> nearly all samples . <strong>The</strong>se values are similar to those found<br />

by Allan et at . (1969) for poorly-dra<strong>in</strong>ed <strong>in</strong>terior Alaskan soils . Even<br />

with <strong>the</strong>se relatively low exchange capacities, <strong>the</strong> mass <strong>of</strong> elements that<br />

can potentially be exchanged from particulate phase to <strong>the</strong> solution phase<br />

(usually caused by a change <strong>in</strong> solution <strong>chemistry</strong>, such as Mackenzie waters<br />

mix<strong>in</strong>g with Beaufort Sea water) is . ra<strong>the</strong>r large when applied to <strong>the</strong> estimated<br />

115 x 106 metric tons <strong>of</strong> sediment brought to <strong>the</strong> sea by <strong>the</strong> Mackenzie<br />

<strong>and</strong> Peel Rivers . Us<strong>in</strong>g a ca'tion exchange capacity <strong>of</strong> 15 meq/100 g dry<br />

sediment, <strong>the</strong> annual exchange capacity <strong>of</strong> <strong>sediments</strong> supplied to <strong>the</strong> Mackenzie<br />

Delta is roughly 17 x 10 12 meq yr-1 . Most heavy metals <strong>and</strong> some syn<strong>the</strong>tic<br />

organic materials result<strong>in</strong>g„from technological activities <strong>in</strong> <strong>the</strong> Mackenzie<br />

Valley will-likely-be<br />

<strong>transport</strong>ed to <strong>the</strong> Delta by sorption or on exchangeable<br />

sites <strong>of</strong> suspended <strong>sediments</strong> (Gibbs, 1973 ; Menzel, 1974 ; Gard<strong>in</strong>er, 1974 ;<br />

Reddy <strong>and</strong> Perk<strong>in</strong>s, 1974 ; McHenry et at ., 1974) .<br />

a<br />

<strong>The</strong> lake sediment samples from' <strong>the</strong> Mackenzie Delta (Table 5) have much<br />

higher exchange capacities (7-47 meq/100 g) <strong>and</strong> are likely to be greatly<br />

<strong>in</strong>fluenced by changes <strong>in</strong> ionic composition <strong>of</strong> <strong>the</strong> overly<strong>in</strong>g lake waters<br />

(i .e . freezeout <strong>of</strong> dissolved salts, or contam<strong>in</strong>ation from technological<br />

operations) . <strong>The</strong>se <strong>sediments</strong> would probably act as a s<strong>in</strong>k for added heavy<br />

metals, which would greatly <strong>in</strong>crease <strong>the</strong> retention time <strong>of</strong> <strong>the</strong>se metals <strong>in</strong><br />

lakes that are <strong>in</strong>frequently flooded .<br />

Lake-Controlled<br />

Rivers<br />

Rivers with large or many lakes <strong>in</strong> <strong>the</strong>ir watersheds usually do not fit<br />

<strong>the</strong> relationships shown <strong>in</strong> Figs . 1-6 . This is because <strong>the</strong> lakes act as<br />

reservoirs for sediment collected by tributaries to <strong>the</strong> lake, <strong>and</strong> <strong>the</strong> lake<br />

outflow carries little or none <strong>of</strong> <strong>the</strong> sediment eroded from <strong>the</strong> watershed<br />

<strong>of</strong> <strong>the</strong> lake . For this reason, lake-fed rivers are usually relatively free<br />

<strong>of</strong> suspended <strong>sediments</strong> <strong>and</strong> have a more regular seasonal distribution <strong>of</strong><br />

discharge (i.e . such as Group 3 rivers <strong>and</strong> Mackenzie River at Norman Wells<br />

<strong>in</strong> Table 1) . An exception to this is <strong>the</strong> Brackett River which has been<br />

ra<strong>the</strong>rr turbid <strong>in</strong> 1972-74, yet dra<strong>in</strong>s a lake-rich watershed (see Campbell,<br />

1975 for Brackett River data) . In general, this group <strong>of</strong> rivers probably<br />

carries much less sediment than <strong>the</strong>ir maximum capacity based upon discharge


19<br />

<strong>and</strong> velocity (Fig . 1) . For <strong>the</strong>se reasons, Group 3 rivers, <strong>and</strong> <strong>the</strong><br />

Mackenzie at Norman Wells, were excluded from most <strong>of</strong> <strong>the</strong> regression<br />

analyses . This group <strong>of</strong> rivers tends to be ra<strong>the</strong>r productive biologically,<br />

<strong>and</strong> is frequently a migration route for fish (Brunskill et at ., 1973 ;<br />

Hatfield, 1972) .<br />

Comparison <strong>of</strong> Sediment Transport <strong>in</strong> <strong>the</strong> Mackenzie Valley with O<strong>the</strong>r<br />

Subarctic, Arctic, <strong>and</strong> Temperate Regions .<br />

Table 16 <strong>in</strong>dicates that <strong>the</strong> large Subarctic <strong>and</strong> Arctic rivers-(Group<br />

1 <strong>in</strong> Table 1) <strong>of</strong> <strong>the</strong> Mackenzie <strong>and</strong> Porcup<strong>in</strong>e watershed <strong>transport</strong> relatively<br />

large amounts <strong>of</strong> suspended sediment per unit watershed area, compared to<br />

o<strong>the</strong>r major North American rivers . This occurs despite 6-7 months <strong>of</strong> . ice<br />

cover <strong>and</strong> frozen watersheds dur<strong>in</strong>g <strong>the</strong> relatively long w<strong>in</strong>ters <strong>of</strong> <strong>the</strong><br />

Mackenzie Valley, compared to year-around open-water flow <strong>in</strong> some <strong>of</strong> <strong>the</strong><br />

Temperate Zone rivers-listed <strong>in</strong> Table 16 . This may be <strong>the</strong> result <strong>of</strong> less<br />

l<strong>and</strong> stabilization by vegetation <strong>in</strong> <strong>the</strong> headwaters <strong>of</strong> <strong>the</strong>se large rivers<br />

<strong>in</strong> <strong>the</strong> Mackenzie Valley, . <strong>the</strong> presence <strong>of</strong> degrad<strong>in</strong>g permafrost tables, <strong>and</strong><br />

relatively great relief <strong>in</strong>most <strong>of</strong> <strong>the</strong>se watersheds .<br />

Corbel (1964) estimated, based largely on precipitation <strong>and</strong> evapotranspiration,<br />

an average erosion rate <strong>of</strong> 52 mt kn -2yr-1 for <strong>the</strong> entire<br />

Mackenzie watershed, which is remarkably-close to our largely measured<br />

estimate <strong>of</strong> 68 mt km- 2yr-1 (Table 16) . Our Eq . 5, or improvements on<br />

it from more detailed <strong>and</strong> longer records <strong>of</strong> data, could be used with<br />

similar equations developed by Jansen <strong>and</strong> Pa<strong>in</strong>ter (1974) to estimate<br />

erosion <strong>rates</strong> for unsampled watersheds <strong>in</strong> <strong>the</strong> Mackenzie Valley lowl<strong>and</strong>s .<br />

A separate evaluation <strong>of</strong> small mounta<strong>in</strong> streams will have to be made,<br />

because Eq .-2-5 do not apply to <strong>the</strong>se types <strong>of</strong> watersheds . It seems<br />

likely that our Eq . 2-5 will not be <strong>of</strong> use for predict<strong>in</strong>g sediment or<br />

particulate nutrient <strong>transport</strong> <strong>rates</strong> <strong>in</strong> most o<strong>the</strong>r areas - <strong>of</strong> <strong>the</strong> North<br />

American Arctic <strong>and</strong> Subarctic . . <strong>The</strong> Mackenzie Valley appears to be<br />

somewhat exceptional'' <strong>in</strong> <strong>the</strong> relative abundance <strong>of</strong> trees <strong>and</strong> higher<br />

vegetation,- a relatively moderate climate, <strong>and</strong> an abundance <strong>of</strong> easily<br />

eroded lacustr<strong>in</strong>e <strong>and</strong> glaci<strong>of</strong>luviatile <strong>sediments</strong> <strong>in</strong> <strong>the</strong> Mackenzie Valley<br />

lowl<strong>and</strong>s . Most watersheds <strong>of</strong> <strong>the</strong> eastern North American Subarctic <strong>and</strong><br />

Arctic have a much more severe climate, less vegetation, <strong>of</strong>ten less<br />

erodible (or soluble) surface soils, <strong>and</strong> less' relief .<br />

Table 16 also <strong>in</strong>dicates that <strong>the</strong> smaller (Group 2) watersheds have<br />

moderate or low <strong>rates</strong> <strong>of</strong> <strong>transport</strong> <strong>of</strong> <strong>sediments</strong>, compared to o<strong>the</strong>r Arctic,<br />

Subarctic <strong>and</strong> Temperate zone watersheds . This proportional relationship<br />

between a) watershed area or annual discharge, <strong>and</strong> b) annual <strong>transport</strong><br />

rate found for Mackenzie watersheds is <strong>the</strong> <strong>in</strong>verse <strong>of</strong> <strong>the</strong> same relationships<br />

found <strong>in</strong> temperate North American watersheds (see Ritter, 1967) .<br />

Accord<strong>in</strong>g to Ritter, smaller watersheds (Ad .c80 km 2 ) . <strong>in</strong> temperate regions<br />

<strong>of</strong> North America have greater-sediment <strong>transport</strong> <strong>rates</strong> than larger rivers .<br />

,We emphasize that <strong>the</strong> smaller watersheds <strong>in</strong> Group 2 <strong>of</strong> Table 1 are all <strong>in</strong><br />

<strong>the</strong> Mackenzie lowl<strong>and</strong>s, <strong>and</strong> do not <strong>in</strong>clude any <strong>of</strong> <strong>the</strong> numerous mounta<strong>in</strong> streams<br />

<strong>in</strong> <strong>the</strong> Nahanni, Mackenzie, Richardson, <strong>and</strong> British Mounta<strong>in</strong>s to <strong>the</strong> west .


20<br />

I<br />

Speculations on <strong>the</strong>Effects<strong>of</strong>TechnologicalDevelopment onStreams,<br />

<strong>and</strong>Rivers<br />

Based on past experience <strong>and</strong> experimental studies (see Radforth, 1973 ;<br />

Strang, 1973 ; Mackay, 1970), it is likely that any technological activity<br />

(on high ice-content f<strong>in</strong>e-gra<strong>in</strong>ed soils <strong>of</strong> <strong>the</strong> Mackenzie <strong>and</strong> <strong>the</strong> Nor<strong>the</strong>rn<br />

Yukon) will cause a disturbance to <strong>the</strong> <strong>the</strong>rmal balance <strong>of</strong> <strong>the</strong> vegetationsoil-permafrost<br />

system, <strong>and</strong> will result <strong>in</strong> <strong>the</strong>rmal erosion . <strong>The</strong> magnitude<br />

<strong>of</strong> sediment mass t ransferred . to streams, rivers, <strong>and</strong> lakes from this <strong>the</strong>rmal<br />

erosion will likely be proportional to <strong>the</strong> area <strong>of</strong> l<strong>and</strong> disturbed by technological<br />

activity . S<strong>in</strong>ce watershed area, relief, <strong>and</strong> forest cover exert a<br />

dom<strong>in</strong>ant control over sediment <strong>transport</strong> <strong>rates</strong> (<strong>rates</strong> <strong>of</strong> erosion) (see<br />

Table 13) we propose that disturbances to <strong>the</strong> natural stability <strong>of</strong> <strong>the</strong><br />

terra<strong>in</strong> will <strong>in</strong>crease sediment supply <strong>in</strong> proportion to percentage <strong>of</strong> <strong>the</strong><br />

watershed area disturbed by natural <strong>and</strong> technological events . <strong>The</strong> duration<br />

<strong>of</strong> <strong>the</strong> period <strong>of</strong> <strong>in</strong>creased sediment sup *y caused by one or several discrete<br />

major l<strong>and</strong> disturbances is likely to be -<strong>in</strong> excess <strong>of</strong> 5 years, based on<br />

experience <strong>and</strong> observation <strong>of</strong> natural <strong>and</strong> technologically-caused <strong>the</strong>rmokarst<br />

l<strong>and</strong> movements (Mackay, .1970 ; Zoltai, personal communication ; <strong>and</strong><br />

personal observations by Brunskill <strong>and</strong> Snow, 1971-74) .<br />

It seems likely that small watersheds (Ad


21<br />

It will be necessary to quantify <strong>the</strong>se judgements listed above . <strong>The</strong><br />

basel<strong>in</strong>e or lower limit <strong>of</strong> sediment supply from a watershed to a stream can<br />

be measured (Table 3), estimated from map measurements <strong>of</strong> <strong>the</strong> components <strong>of</strong><br />

Eq . 5, estimated from measurement <strong>of</strong> QQ <strong>and</strong> Fig . 2, or more crudely estimated<br />

by techniques such as those <strong>of</strong> Jansen <strong>and</strong> Pa<strong>in</strong>ter (1974), Corbel<br />

(1964), or Howard (1974) based upon data specific to <strong>the</strong> Mackenzie Valley<br />

<strong>and</strong> <strong>the</strong> Nor<strong>the</strong>rn Yukon . Previous to development, estimates <strong>of</strong> <strong>the</strong> <strong>in</strong>crease<br />

<strong>in</strong> sediment supply, per unit l<strong>and</strong> area disturbed, will have to orig<strong>in</strong>ate<br />

from careful monitor<strong>in</strong>g <strong>of</strong> sediment accumulation <strong>in</strong> <strong>the</strong> stream bed, stream<br />

Qi, SSi,, <strong>and</strong> bedload <strong>transport</strong> over several years at exist<strong>in</strong>g terra<strong>in</strong> disturbance<br />

sites, by Eq . 6,, or by direct experimental disturbance <strong>of</strong> watersheds<br />

<strong>in</strong> representative regions <strong>of</strong> <strong>the</strong> Mackenzie Valley <strong>and</strong> <strong>the</strong> Nor<strong>the</strong>rn Yukon .<br />

S<strong>in</strong>ce <strong>the</strong> effect <strong>of</strong> watershed disturbance on sediment yield is likely to<br />

be an - <strong>in</strong>crease <strong>in</strong> no or 'w by a factor <strong>of</strong> 2 to 100 (see Table 20 <strong>in</strong><br />

Brunskili et al ., 1973), or deposition <strong>of</strong> <strong>sediments</strong> on <strong>the</strong> stream bed, we<br />

predict a general decrease <strong>in</strong> abundance <strong>and</strong>/or change <strong>in</strong> species <strong>of</strong> <strong>the</strong><br />

stream flora <strong>and</strong> fauna <strong>in</strong> proportion to <strong>the</strong> mass <strong>of</strong>,f<strong>in</strong>e <strong>sediments</strong> added<br />

to <strong>the</strong> area <strong>of</strong> <strong>the</strong> stream bottom (Rosenberg <strong>and</strong> Snow, 1975, <strong>and</strong> unpublished) .<br />

We fur<strong>the</strong>r predict that most <strong>of</strong> <strong>the</strong> watersheds to <strong>the</strong> east <strong>of</strong> <strong>the</strong> Mackenzie<br />

River, due to <strong>the</strong>ir relatively small watershed areas, low relief, high percentage<br />

forest cover, low velocity <strong>and</strong> discharge, relatively high transparency<br />

(low suspended <strong>sediments</strong>), <strong>and</strong> biological diversity, will be much more<br />

sensitive to <strong>in</strong>creased sediment supply than would <strong>the</strong> larger, usually turbid<br />

rivers to <strong>the</strong> west <strong>of</strong> <strong>the</strong> Mackenzie River (see also Brunskill et al ., 1973) .<br />

Small, clear-water rivers with headwaters <strong>in</strong> <strong>the</strong> Mackenzie lowl<strong>and</strong>s <strong>and</strong><br />

which flow to <strong>the</strong> Mackenzie River from <strong>the</strong> west, will also be more sensitive<br />

to sediment addition than adjacent rivers with mounta<strong>in</strong>ous headwater areas .<br />

Heavy metal-rich wastes or spills, many petroleum products, pesticides,<br />

<strong>and</strong> syn<strong>the</strong>tic organic materials will enter Mackenzie watersheds dur<strong>in</strong>g<br />

development . . Many <strong>of</strong> <strong>the</strong>se technological products, or . <strong>the</strong>ir waste products,<br />

will be sorbed, complexed, chelated, or chemically bound to bottom <strong>and</strong> suspended<br />

<strong>sediments</strong> <strong>of</strong> streams . <strong>The</strong> natural exchange capacity <strong>of</strong> suspended<br />

<strong>sediments</strong> (Table 5) is relatively low, but dissolved organic carbon <strong>in</strong> river<br />

waters (0 .1-1 Mole C m-3 , Brunskill, unpublished) will likely have a great<br />

capacity to <strong>transport</strong> <strong>the</strong>se types <strong>of</strong> substances (Pierce et OZ ., 1974) . Our<br />

knowledge <strong>of</strong> <strong>transport</strong> <strong>rates</strong> <strong>and</strong>'lature <strong>of</strong> dissolved <strong>and</strong> particulate organic<br />

matter <strong>in</strong> Mackenzie <strong>and</strong> nor<strong>the</strong>rn Yukon watersheds is <strong>in</strong>adequate (Peake et a', .,<br />

1972), <strong>and</strong> our knowledge <strong>of</strong> <strong>the</strong> fluxes <strong>of</strong>-heavy metals from <strong>the</strong> watershed is<br />

m<strong>in</strong>imal (Table 14, <strong>and</strong> see Campbell et al ., 1975) .<br />

Requirements for Future Research<br />

In order to guide technological development <strong>in</strong> <strong>the</strong> Mackenzie <strong>and</strong><br />

nor<strong>the</strong>rn Yukon, environmental scientists must contribute to a practical<br />

compromise somewhere between <strong>the</strong> natural, undisturbed ecosystem <strong>and</strong> a<br />

greatly altered, usually deleteriously changed ecosystem . In order to<br />

seriously contribute to proposals for such a compromise, it is necessary<br />

to have an underst<strong>and</strong><strong>in</strong>g <strong>of</strong> a) <strong>the</strong> natural state <strong>of</strong> selected, representative<br />

watersheds, <strong>and</strong> b) an estimate <strong>of</strong> <strong>the</strong> impact <strong>of</strong> <strong>the</strong> proposed disturbance on


22<br />

<strong>the</strong>se "known" watersheds . This could be done best, <strong>in</strong> our op<strong>in</strong>ion, by<br />

establish<strong>in</strong>g experimental research watersheds <strong>in</strong> a variety <strong>of</strong> representative<br />

areas along <strong>the</strong> route <strong>of</strong> development . Some experimental research<br />

watersheds should be <strong>in</strong> areas where <strong>in</strong>tensive <strong>and</strong> widespread technological<br />

disturbance will occur, <strong>and</strong> some should be <strong>in</strong> areas that are not likely, to<br />

be greatly disturbed (for natural history <strong>and</strong> experimental control purposes,<br />

or controlled experimental manipulation <strong>of</strong> parts <strong>of</strong> <strong>the</strong> watershed) . Where<br />

possible, <strong>the</strong>se experimental research watersheds should become calibration<br />

sites for development <strong>in</strong> undisturbed regions . For example, estimates <strong>of</strong><br />

<strong>the</strong> <strong>in</strong>crease <strong>in</strong> sediment supply (per unit area <strong>of</strong> disturbance) to streams<br />

caused by technological development <strong>of</strong> roads or pipel<strong>in</strong>es could have been<br />

obta<strong>in</strong>ed by designat<strong>in</strong>g <strong>the</strong> Mart<strong>in</strong> <strong>and</strong> Rengleng Rivers watersheds as<br />

experimental research watersheds before <strong>the</strong> construction <strong>of</strong> highways <strong>and</strong><br />

pipel<strong>in</strong>es . Detailed <strong>and</strong> syn<strong>the</strong>tic studies, <strong>in</strong>volv<strong>in</strong>g <strong>the</strong> discipl<strong>in</strong>es <strong>of</strong><br />

wildlife, aquatic ecology, hydrology, geology, meteorology, vegetation,<br />

soils, permafrost, geomorphology, <strong>and</strong> eng<strong>in</strong>eer<strong>in</strong>g would likely allow a more<br />

quantative <strong>and</strong> predictive approach to development <strong>in</strong> undisturbed regions .<br />

Specifically, <strong>and</strong> for <strong>the</strong> purpose <strong>of</strong> us<strong>in</strong>g <strong>and</strong> test<strong>in</strong>g <strong>the</strong> <strong>in</strong>formation<br />

<strong>and</strong> hypo<strong>the</strong>ses <strong>in</strong> this paper, we recommend <strong>the</strong> follow<strong>in</strong>g :<br />

1) that experimental research watersheds be designated <strong>in</strong> a variety<br />

<strong>of</strong> suitable <strong>and</strong> representative areas <strong>of</strong> <strong>the</strong> Mackenzie Valley <strong>and</strong><br />

nor<strong>the</strong>rn Yukon ;<br />

2) that <strong>the</strong> network <strong>of</strong> discharge <strong>and</strong> suspended sediment monitor<strong>in</strong>g<br />

stations be <strong>in</strong>creased <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> this region for <strong>the</strong> duration<br />

<strong>of</strong> construction <strong>and</strong> at least 5 years after completion <strong>of</strong> <strong>the</strong> development<br />

<strong>of</strong> roads <strong>and</strong> pipel<strong>in</strong>es, <strong>and</strong> that this expansion <strong>of</strong> Q <strong>and</strong> SS<br />

stations <strong>in</strong>clude representative small watersheds with<strong>in</strong> <strong>and</strong> outside<br />

<strong>of</strong> areas <strong>of</strong> development ;<br />

3) that meteorological data ga<strong>the</strong>r<strong>in</strong>g stations accompany all discharge<br />

<strong>and</strong> suspended sediment stations ;<br />

4) that research <strong>in</strong>to <strong>the</strong> importance<br />

port <strong>of</strong> <strong>sediments</strong> be encouraged, <strong>and</strong><br />

<strong>and</strong>,<br />

<strong>and</strong> magnitude <strong>of</strong> bedload transthat<br />

it be monitored seasonally ;<br />

5) that <strong>the</strong> <strong>chemistry</strong> <strong>of</strong> suspended <strong>sediments</strong> be more fully studied,<br />

specifically <strong>the</strong> annual <strong>rates</strong> <strong>of</strong> sediment <strong>transport</strong> <strong>of</strong> selected<br />

heavy metals, pesticides, dissolved <strong>and</strong> particulate organic matter,<br />

<strong>and</strong> naturally-occurr<strong>in</strong>g hydrocarbons .<br />

9


23<br />

CONCLUSIONS<br />

1 . For selected rivers <strong>in</strong> <strong>the</strong> Mackenzie <strong>and</strong> Porcup<strong>in</strong>e dra<strong>in</strong>ages, a<br />

positive logarithmic relationship was found between a) <strong>the</strong> annual mass,<br />

<strong>and</strong> <strong>the</strong> annual mass per unit watershed area <strong>of</strong> suspended <strong>sediments</strong>,<br />

particulate carbon, nitrogen, <strong>and</strong> phosphorus, <strong>and</strong> b) annual discharge .<br />

2 . <strong>The</strong> magnitude <strong>of</strong> annual <strong>transport</strong> <strong>rates</strong><br />

particulate carbon, nitrogen, <strong>and</strong> phosphorus<br />

controlled by watershed area, relief, forest<br />

accord<strong>in</strong>g to a multiple l<strong>in</strong>ear regression <strong>of</strong><br />

<strong>of</strong> suspended <strong>sediments</strong>, <strong>and</strong><br />

were found to be largely<br />

cover, <strong>and</strong> precipitation,<br />

data from selected watersheds .<br />

3 . <strong>The</strong> slopes (b) <strong>of</strong> regression l<strong>in</strong>es relat<strong>in</strong>g <strong>in</strong>stantaneous suspended<br />

sediment concentrations <strong>and</strong> <strong>in</strong>stantaneous discharge for selected rivers<br />

were positively <strong>and</strong> significantly related to mean annual erosion <strong>rates</strong> for<br />

<strong>the</strong>se same rivers . We propose that <strong>the</strong>se slope values are <strong>in</strong>dices <strong>of</strong> <strong>the</strong><br />

erosive power <strong>of</strong> <strong>the</strong> river, or <strong>the</strong> capacity <strong>of</strong> <strong>the</strong> river to carry away<br />

added sediment .<br />

4 . <strong>The</strong> <strong>in</strong>tercepts (a) <strong>of</strong> regression l<strong>in</strong>es relat<strong>in</strong>g <strong>in</strong>stantaneous suspended<br />

sediment concentrations <strong>and</strong> <strong>in</strong>stantaneous discharge for selected rivers were<br />

<strong>in</strong>terpreted to be <strong>in</strong>dices <strong>of</strong> <strong>the</strong> susceptibility <strong>of</strong> <strong>the</strong> terrestrial portion<br />

<strong>of</strong> <strong>the</strong> watershed to erosion by streams <strong>and</strong> rivers . <strong>The</strong>se <strong>in</strong>tercept values<br />

may also be <strong>in</strong>dices <strong>of</strong> average watershed sensitivity to terra<strong>in</strong> disturbance<br />

from technological development . This hypo<strong>the</strong>sis requires verification by<br />

experiments'or-case history studies .<br />

5 . Undisturbed small rivers <strong>and</strong> streams (Ad 1) <strong>transport</strong><br />

annually larger amounts <strong>of</strong> suspe ded sediment, particulate carbon, nitrogen,<br />

<strong>and</strong> phosphorus, per unit water'S}ied area, than do small (Ad


24<br />

11 . <strong>The</strong> <strong>in</strong>crease <strong>in</strong> <strong>the</strong> rate <strong>of</strong> supply <strong>of</strong> <strong>sediments</strong> <strong>and</strong> o<strong>the</strong>r particulate<br />

elements to streams <strong>and</strong> rivers caused by technological disturbances <strong>and</strong> deforestation<br />

<strong>of</strong> <strong>the</strong> watershed will likely be proportional to <strong>the</strong> l<strong>and</strong> area <strong>of</strong><br />

terra<strong>in</strong> disturbance <strong>and</strong> deforestation .<br />

12 . Small watershed streams will suffer proportionately greater sediment<br />

supply-<strong>in</strong>crements from a given terra<strong>in</strong> disturbance, compared to larger<br />

rivers . This is because a larger proportion <strong>of</strong> a small stream's watershed<br />

will be disturbed, compared to <strong>the</strong> same disturbance <strong>in</strong> a large watershed .<br />

13 . Computed sedimentation <strong>rates</strong> for suspended sediment,_ particulate C,<br />

N, <strong>and</strong> P <strong>in</strong> <strong>the</strong> Mackenzie Delta <strong>and</strong> deltaic regions <strong>of</strong> <strong>the</strong> Beaufort Sea<br />

agree well with bottom sediment analyses . This <strong>in</strong>dicates that <strong>the</strong>re is<br />

little or no alteration <strong>of</strong> Mackenzie <strong>and</strong> Peel River <strong>sediments</strong> upon deposition<br />

<strong>in</strong> <strong>the</strong> Delta, with respect to C, N <strong>and</strong> P .<br />

14 . More discharge, suspended sediment, <strong>and</strong> meteorological stations are<br />

required <strong>in</strong> <strong>the</strong> Mackenzie Valley <strong>and</strong> nor<strong>the</strong>rn Yukon to improve descriptive<br />

<strong>and</strong> predictive studies on <strong>sediments</strong>, sedimentation, <strong>and</strong> <strong>the</strong>ir effects on<br />

stream subst<strong>rates</strong> <strong>and</strong> stream biology . This is particularly true for smaller<br />

watersheds .<br />

15 . Experimental research watersheds <strong>in</strong> representative regions <strong>of</strong> <strong>the</strong><br />

Mackenzie Valley . <strong>and</strong> nor<strong>the</strong>rn Yukon should be established, <strong>in</strong>strumented,<br />

<strong>and</strong> monitored to obta<strong>in</strong> control <strong>and</strong> disturbance-related changes <strong>in</strong> <strong>the</strong><br />

watershed ecosystem . Experimental research watersheds should also be used<br />

to test hypo<strong>the</strong>ses on <strong>the</strong> effects <strong>of</strong> terra<strong>in</strong> disturbances <strong>in</strong> a scientific<br />

<strong>and</strong> a controlled manner . <strong>The</strong>se experimental research watersheds should be<br />

ma<strong>in</strong>ta<strong>in</strong>ed for <strong>the</strong> duration <strong>of</strong> major technological developments, <strong>in</strong> <strong>the</strong><br />

Mackenzie Valley <strong>and</strong> nor<strong>the</strong>rn Yukon .<br />

a<br />

3


25<br />

REFERENCES<br />

Abrahams, A . D . <strong>and</strong> . R . Kellerhalls . 1973 . Correlation s between water<br />

discharge <strong>and</strong> concentrations <strong>of</strong> suspended solids for four large<br />

prairie rivers, p . 96-113 . In Fluvial processes <strong>and</strong> sedimentation .<br />

Proc . Hydrol . Symp . Univ . Alberta, Edmonton, May 8, 9 ; 1973 .<br />

Allan, R . J ., J . Brown, <strong>and</strong> S . Rieger . 1969 . Poorly dra<strong>in</strong>ed soils with<br />

permafrost <strong>in</strong> Interior Alaska . Proc . Soil Sci . Soc . Am . 33(4) :<br />

599-605 .<br />

Anderson, J . C . 1974 . Permafrost - Hydrology Studies at Boot Creek <strong>and</strong><br />

Peter Lake Watersheds, N .W .T ., p . 39-44 . 1n , J . Demers (ed .) Permafrost<br />

Hydrology . Canada Nat . Comm . Int . Hydrol . Decade, Env . Canada,<br />

Ottawa .<br />

Arnborg, L ., H . J . Walker, <strong>and</strong> J . Peippo . 1966 . Water discharge<br />

Colville River, 1962 . Geogr . Ann . 48 A(4) :195-210 .<br />

<strong>in</strong> <strong>the</strong><br />

Arnborg, L ., H . J . Walker, <strong>and</strong> J . Peippo . 1967 . Suspended load <strong>in</strong> <strong>the</strong><br />

Colville River, Alaska, 1962 . Geogr . Ann . 49A (2-4) :131-144 .<br />

Balster, C . A . <strong>and</strong> R . B . Parsons . 1968 . . Sediment <strong>transport</strong>ation on steep<br />

terra<strong>in</strong>, Oregon Coast Range . Northwest Sci . 42(2) :62-70 .<br />

Beattie, C . A ., D . Erickson, A . Mart<strong>in</strong>, <strong>and</strong> D . M . Grey . 1973 . Energy<br />

budget studies <strong>in</strong> <strong>the</strong> Arctic over areas subjected to different levels<br />

<strong>of</strong> vehicular activity - 1972-73 . Canada Task Force N . Oil Dev . Env .<br />

Soc . Comm . Report 73-23 . Information Canada Cat . No . R72-8873 .<br />

QS-1527-000-EE-Al : 32p .<br />

Bliss, L . C . (ed .) . 1973 . Botanical studies <strong>of</strong> natural <strong>and</strong> man-modified<br />

habitats <strong>in</strong> <strong>the</strong> Mackenzie Valley, eastern Mackenzie Delta region,<br />

<strong>and</strong> <strong>the</strong> Arctic isl<strong>and</strong>s . ALUR72-73-14 . Canada Task Force N . Oil Dev .<br />

Env . Soc . Comm . Report 73-41. Information Canada Cat . No . R72-8673 .<br />

LAND Publ . No . QS-1539-000-EE-Al . 162 p .<br />

Bostock, H . S . 1964 . A provisional physiographic map <strong>of</strong> Canada ., Geol .<br />

Surv . Can . Dept . M<strong>in</strong>es <strong>and</strong> Tech . Surv . Paper 64-35 .<br />

Bormann, F . H ., G . E . Likens, <strong>and</strong> J . S . Eaton . 1969 . Biotic regulation<br />

<strong>of</strong> particulate <strong>and</strong> solution losses from a forest ecosystem . Bio<br />

Science 19(7) :600-610 .<br />

Brown, R . J .-E . 1970 . Permafrost <strong>in</strong> Canada . Its <strong>in</strong>fluence on nor<strong>the</strong>rn<br />

development .. Univ . <strong>of</strong> Toronto Press, Toronto . 234 p .


26<br />

Brune, G . 1948 . Rates <strong>of</strong> sediment production Midwestern United States :<br />

Soil Conservation Service . Tech . publ . 65 . 40 pp .<br />

Brunskill, G . J ., D . M. Rosenberg, N . B• . Snow, G . L . Vascotto, <strong>and</strong> R .<br />

Wagemann . 1973 . Ecological studies <strong>of</strong> aquatic systems <strong>in</strong> <strong>the</strong><br />

Mackenzie-Porcup<strong>in</strong>e dra<strong>in</strong>ages <strong>in</strong> relation to proposed pipel<strong>in</strong>e<br />

<strong>and</strong> highway developments . Canada Task Force N . Oil Dev . Env . Soc .<br />

Comm . Vol . 1 . Repor t 73-40 . Information Canada Cat . No .<br />

R72-10073/1-1 . QS-1533-010-Al . 131 p . Vol . II . Appendices<br />

Report 73-41 . Information Canada Cat . No . R72-10073/1-2 . QS-<br />

1533-020-EE-A1 . 345 p .<br />

2<br />

Bryan, J . E . - 1973 . <strong>The</strong> <strong>in</strong>fluence <strong>of</strong> pipel<strong>in</strong>e development on freshwater<br />

fishery resources <strong>of</strong> nor<strong>the</strong>rn Yukon Territory . Aspects <strong>of</strong> research<br />

conducted <strong>in</strong> 1971 <strong>and</strong> 1972 . Canada Task Force N . Oil Dev . Env . Soc .<br />

Comm . Report 73-6 . Information Canada Cat . No . R72-9773 . 63 p .<br />

Bryan, J . E ., C . E . Walker, R . E . Ken;del, <strong>and</strong> M . S . Elson . 1973 . Freshwater<br />

aquatic ecology'<strong>in</strong> nor<strong>the</strong>rn Yukon territory . 1971 . Canada<br />

Task Force N . Oil Dev . Env . Soc . Comm. Report 73-21 . Information<br />

Canada Cat . No . R57-3/1973 . QS-1523-000-EE-A1 . 64 p .<br />

Burns, B . M. 1973 . <strong>The</strong> climate <strong>of</strong>, <strong>the</strong> Mackenzie Valley - Beaufort Sea .<br />

Atmospheric Env . Climatological Studies No . 24, Env . Canada .<br />

Information Canada Cat . No . En 57-7/24-1 . 273 p .<br />

9-<br />

Burns, B . M. 1974 . <strong>The</strong> climate <strong>of</strong> <strong>the</strong> Mackenzie Valley-Beaufort Sea .<br />

Vol . II . Atmospheric Env. Climatological Studies No . 24, Env .<br />

Canada . Information' Canada Cat .-No . En 57-7/24-1 . 239 p .<br />

Campbell, P ., J . Dentry, G . W . Morden, S . E . Elliott, G . J . Brunskill,<br />

R . Wagemann <strong>and</strong> B . W . Graham . 1975 . General physical <strong>and</strong> chemical<br />

data for water <strong>and</strong> sediment <strong>of</strong> <strong>the</strong> Mackenzie <strong>and</strong> Porcup<strong>in</strong>e watersheds<br />

<strong>and</strong> <strong>rates</strong> <strong>of</strong> <strong>transport</strong> <strong>of</strong> dissolved <strong>and</strong> suspended elements<br />

at selected stations <strong>in</strong> <strong>the</strong> Mackenzie <strong>and</strong> Porcup<strong>in</strong>e watersheds,<br />

1971-74 . Fish- Mar . Serv . Res . Dev . Tech . Rep . 556 :'396 pp .<br />

Campbell, P . <strong>and</strong> S . Elliott . 1975 . Assessment <strong>of</strong> centrifugation <strong>and</strong><br />

filtration as methods for determ<strong>in</strong><strong>in</strong>g low concentrations <strong>of</strong><br />

suspended sediment <strong>in</strong> natural waters . Fish . Mar . Serv . Res . Dev .<br />

Tech. Rep . 545 : 18 pp .<br />

Church, M. 1974 . Hydrology <strong>and</strong> permafrost with reference to nor<strong>the</strong>rn<br />

North America, p . 1-18 . In J . Demers (ed .) . Permafrost hydrology<br />

. Canada Nat . Comm . Int . Hydrol . Decade, Env . Canada, Ottawa .<br />

Code, J . A. 1973 . <strong>The</strong> stability <strong>of</strong> natural slopes <strong>in</strong> <strong>the</strong> Mackenzie<br />

Valley . Canada Task Force N . Oil Dev . Env . Soc . Comm . Report<br />

73-9 . Information Canada Cat . No . R72-10573 . 18 p . <strong>and</strong> maps .


27<br />

Corbel, J . 1964 . L erosion terrestre, etude quantitative (methodestechniques-resultats)<br />

. : Ann . Geogr . 73(398) :385-412 .<br />

Crampton, C . B ., 1973 . Studies<br />

<strong>in</strong> <strong>the</strong> Mackenzie Valley :<br />

Mackenzie Valley . Canada<br />

Report 73-8 . Information<br />

maps .<br />

<strong>of</strong> vegetation, l<strong>and</strong>form <strong>and</strong> permafrost<br />

l<strong>and</strong>scape survey <strong>in</strong> <strong>the</strong> upper <strong>and</strong> central<br />

Task Force N . Oil Dev . Env . Soc . Comm<br />

Canada Cat . No . R72-8073 . 67 p . <strong>and</strong><br />

D'Anglejean, B ., F ., <strong>and</strong> E . C . Smith . 1973 . Distribution, <strong>transport</strong> <strong>and</strong><br />

composition <strong>of</strong> suspended matter <strong>in</strong> <strong>the</strong> St . Lawrence estuary . Can .<br />

J . Earth Sci . 10 :1380-1396 .<br />

Davies, K . F . 19 .73 . Hydrometric data collection <strong>in</strong> <strong>the</strong> Mackenzie River<br />

bas<strong>in</strong> . Canada Task Force N . Oil Dev . Env . Soc . Comm . Report 73-5 .<br />

Information Canada Cat . No . R72-10673 . 82 p .<br />

Davies, K . F . .1974 . Hydrometric data summary . Mackenzie River bas<strong>in</strong>,<br />

1973 . Canada Task Force N . . Oil Dev . Env . Soc . Comm . Report 74-R .<br />

Information Canada Cat . No . R57-6/1973 . QS-1559-000-EE-Al . 84 p .<br />

i<br />

de March, L . 1974 . Nutrient budgets for a high Arctic lake . Verh .<br />

Internat . Vere<strong>in</strong> . Limnol . 19 (<strong>in</strong> press) .<br />

de March, L . 1975 . Nutrient budgets <strong>and</strong> sedimentation <strong>in</strong> Char Lake,<br />

N .W .T . (75o N) . Msc . <strong>The</strong>sis, University <strong>of</strong> Manitoba (<strong>in</strong> press) .<br />

D<strong>in</strong>gman, S .. L . 1973a . <strong>The</strong> water balance <strong>in</strong> arctic <strong>and</strong> subarctic regions :<br />

annotated bibliography <strong>and</strong> prelim<strong>in</strong>ary assessment . U . S . Army,<br />

Corps <strong>of</strong> Eng<strong>in</strong>eers, CRREL, . .Spec . Report 187 . 131 p .<br />

D<strong>in</strong>gman, S . L . 1973b . Effects <strong>of</strong> permafrost on streamflow characteris-<br />

' .tics .<strong>in</strong> <strong>the</strong> discont<strong>in</strong>uous permafrost zone <strong>of</strong> central Alaska, p . 447-<br />

453 . In Permafrost . <strong>the</strong> N . Amer . contribution to <strong>the</strong> Second Int .<br />

Conf . Wash<strong>in</strong>gton, N . A . S .<br />

Dryden, R . L ., .B . G . Su<strong>the</strong>rl<strong>and</strong>, <strong>and</strong> J . N . Ste<strong>in</strong> . 1973 . An evaluation <strong>of</strong><br />

<strong>the</strong> fish resources <strong>of</strong> <strong>the</strong> Mackenzie River valley as related to<br />

pipel<strong>in</strong>e development . Canada Task . Force N . Oil Dev . Env . Soc .<br />

Comm . Vol . II . Repor t 73-2 . Information Canada Cat . No . Fs-37-<br />

1973 11-2 . 176 p .<br />

Forest Management Institute . 1974 . Vegetation types <strong>of</strong> <strong>the</strong> Mackenzie<br />

corridor . Canada Task Force N . Oil Dev . Env . Soc . Comm . Report<br />

73-46 . Information Canada Cat . No . R72-9073 . QS-1550-000-EE-Al .<br />

85 p . <strong>and</strong> appendices .<br />

Frey, P . J ., E . W . Mueller, <strong>and</strong> E . C . Berry . 1970 . <strong>The</strong> Chena River .<br />

Th-e<br />

No .<br />

study <strong>of</strong> a subarctic stream . Fed . Water Qual . Adm<strong>in</strong> . Project<br />

1610-10/70 .


28<br />

Gard<strong>in</strong>er, J . 1974 . <strong>The</strong> <strong>chemistry</strong> -<strong>of</strong> cadmium <strong>in</strong> natural water - II .<br />

<strong>The</strong> adsorption <strong>of</strong> cadmium on river muds <strong>and</strong> naturally occurr<strong>in</strong>g<br />

solids . Water Research 8 :157-164 .<br />

Gibbs, R . J . 1973 . Mechanisms <strong>of</strong> trace<br />

Science 180 :71-73 .<br />

metal <strong>transport</strong> <strong>in</strong> rivers .<br />

Grim, R . E . 1968 . Clay <strong>m<strong>in</strong>eralogy</strong> . Second ed . McGraw-Hill -<br />

Co ., New York . 596 p .<br />

Book<br />

Haag, R. W ., <strong>and</strong> L . C . Bliss . 1974 . Energy budget changes follow<strong>in</strong>g<br />

surface disturbance to upl<strong>and</strong> tundra . Jour . Appl . Ecol . 11(1) :<br />

355-374 .<br />

Hansmann, E . W ., <strong>and</strong> . H . K . Ph<strong>in</strong>ney . 1973 . Effects <strong>of</strong> logg<strong>in</strong>g on periphyton<br />

<strong>in</strong> coastal streams <strong>of</strong> Oregon . Ecology 54(1) :194-199 .<br />

Hatfield, C . T ., J . N . Ste<strong>in</strong>, M . R . tack, <strong>and</strong> C . S . Jessop . 1972 .<br />

Fish resources <strong>of</strong> <strong>the</strong> Mackenzie River valley . Interim Report 1,<br />

Vol . 1 . Fisheries Service, Env . Can . 247 p .<br />

Hauser, B . W . 1973 . Modifications to Carlo-Erba elemental analyser<br />

for rapid determ<strong>in</strong>ation <strong>of</strong> carbon <strong>and</strong> nitrogen <strong>in</strong> suspended<br />

matter <strong>of</strong> natural water . Fish . Res . Bd . Canada, Tech . Rep . No .<br />

412 . 10 p .<br />

Heg<strong>in</strong>bottom, J . A . 1973 . Some effects <strong>of</strong> surface disturbance on <strong>the</strong><br />

permafrost active layer at Inuvik, N .W .T . Canada Task Force N .<br />

Oil Dev . Env . Soc . Comm . Report 73-16 . Information Canada Cat .<br />

No . R72-9573 . LAND Publ . No . QS-1515-000-EE-Al . 29 p . <strong>and</strong><br />

appendices .<br />

Hern<strong>and</strong>ez, H . 1973 . Natural plant recolonization <strong>of</strong> surficial disturbances,<br />

Tuktoyaktuk Pen<strong>in</strong>sula Region, Northwest Territories . Can .<br />

J . Bot . 51 :2177-2196 .<br />

Hopk<strong>in</strong>s, D . M ., T . N . V . Karlstrom <strong>and</strong> o<strong>the</strong>rs . 1955 . Permafrost <strong>and</strong><br />

ground water <strong>in</strong> Alaska . Geol . Surv. Pr<strong>of</strong> . paper 264-F, U . S .<br />

.Dept . <strong>of</strong> <strong>the</strong> Interior, Wash<strong>in</strong>gton, D .C . 177 p .<br />

Howard, C . D . D . 1974 . Mackenzie gas pipel<strong>in</strong>e,' Alaska to Alberta .<br />

Effects on <strong>the</strong> aquatic physical environment . In Environmental<br />

impact assessment <strong>of</strong> <strong>the</strong> portion <strong>of</strong> <strong>the</strong> Mackenzie gas pipel<strong>in</strong>e<br />

from Alaska to Alberta . Environmental Protection Board, W<strong>in</strong>nipeg<br />

308 p .<br />

Hubbard, J . E . <strong>and</strong> W . D . Striffer . 1973 . Cesium 137 <strong>in</strong> a mounta<strong>in</strong><br />

stream channel . Water Resour . Res . 9(5) :1440-1442 .<br />

Hughes, 0 . L . 1972 . Surficial geology <strong>of</strong> nor<strong>the</strong>rn Yukon Territory <strong>and</strong><br />

northwestern District <strong>of</strong> Mackenzie, Northwest Territories . Geol .<br />

Suv . Can . Paper 69-36 . Dept . Energy, M<strong>in</strong>es <strong>and</strong> Resources, Information<br />

Canada Cat . No . M44-69-36 . 11 p . <strong>and</strong> map .


29<br />

Hughes, 0 . L ., J . J . Veillette, J . Pilion, P . T . Hanley, <strong>and</strong> R . 0 . van<br />

Everd<strong>in</strong>gen . 1973 . Terra<strong>in</strong> evaluation with respect to pipel<strong>in</strong>e<br />

construction, Mackenzie Transportation Corridor, Central Part,<br />

Lat . 640 to 68 0 N . Environ .;-Soc . Comet ., No . Pipel<strong>in</strong>es, Task Force<br />

on No . Oil Dev . Rept . No . .73-37, Information Canada Cat . No .<br />

R72-11873 . QS-1531-000-EE-Al .<br />

Bynes, H. . •B . N . 1973 . <strong>The</strong> effects <strong>of</strong> sediment on <strong>the</strong> biota <strong>in</strong> runn<strong>in</strong>g<br />

water . Proceed<strong>in</strong>gs <strong>of</strong> 9th Canadian Hydrology Symposium, University<br />

<strong>of</strong> Alberta, Edmonton, Canada .<br />

Inl<strong>and</strong> Waters Directorate . 1973. . <strong>The</strong> Mackenzie Bas<strong>in</strong> . Proc . Intergovernmental<br />

sem<strong>in</strong>ar, Inuvik, N .W .T ., June 24-27, 1972 . Env .<br />

Canada, Ottawa, 129 p .<br />

Jacobs, L . W . <strong>and</strong> D . R . Keeney . 1974 . Methylmercury formation <strong>in</strong> mercurytreated<br />

river <strong>sediments</strong> dur<strong>in</strong>g,<strong>in</strong> situ equilibration . J . Env . Quality<br />

3(2) :121-125 .<br />

Jansen, J . M . L . <strong>and</strong> R . B . Pa<strong>in</strong>ter . 1974 . Predict<strong>in</strong>g sediment yield from<br />

climate <strong>and</strong> topography . J . Hydrol . 21 :371-380 .<br />

Jasper,`I . N . 1974 . Hydrologic Studies at "Twisty Creek" <strong>in</strong> <strong>the</strong> Mackenzie<br />

Mounta<strong>in</strong>s, N .W .T . Environ .-Soc . Comm . N o . Pipel<strong>in</strong>es Task Force on<br />

No . . .Oil Dev . Report - No . 74-12, pp . 259-279 . Information Canada Cat .<br />

No . R57-1/1974 . QS-1574-000-EE-A1 . .<br />

Jessop, C . S ., K . T . J .,Chang-Kue, J . W . Lilley, <strong>and</strong> R . J . Percy . 1974 .<br />

A fur<strong>the</strong>r evaluation <strong>of</strong> <strong>the</strong> fish resources <strong>of</strong> <strong>the</strong> Mackenzie River<br />

valley as related to pipel<strong>in</strong>e development . Canada Task Force N .<br />

Oil Dev . Env . Soc . Comet . Report 74-7 . Information Canada Cat . No .<br />

R72-13674 . QS-1555-000-EE-Al . 95 p .<br />

Johnson, G . H . <strong>and</strong> R . S . E . Brown . 1961 .. Effect <strong>of</strong> 'a lake on distribution<br />

<strong>of</strong> permafrost <strong>in</strong> <strong>the</strong> Mackenzie River . delta . Nature 1972 (4799) :<br />

251-252 .<br />

Judge, A . S . 1973 ., <strong>The</strong> <strong>the</strong>rmal-regime <strong>of</strong> <strong>the</strong> Mackenzie Valley : observations<br />

<strong>of</strong> . <strong>the</strong> natural state . Canada Task Force N . Oil _Dev : Env .<br />

Soc . Comm . Report 73-38 . Information Canada Cat . No . R72-11973 .<br />

Qs-1535.-000-EE-Al . 177 p .<br />

Kurfurst, P . S . 1973 . Terra<strong>in</strong> disturbance susceptibility, Norman Wells<br />

area, .Mackenzie Valley . Canada Task Force N . Oil Dev . Env . Soc .<br />

Comm . Report 73-24 . Information Canada Cat . No,. R72-9373 . QS-<br />

1525-000-EE-A1 . 36 p . <strong>and</strong> maps .<br />

Lachenbruch, A . H . 1970 . Some estimates <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal effects <strong>of</strong> a<br />

heated pipel<strong>in</strong>e <strong>in</strong> permafrost . U . S . Geol . Surv . Circular 632 .<br />

Wash<strong>in</strong>gton, D . C . 23 p .


30<br />

Lachenbruch, A . H ., M . C . Brewer, G . W . Greene, <strong>and</strong> B . V . Marshall .<br />

1962 . Temperatures <strong>in</strong> permafrost, p . 791-803 . In Temperature -<br />

its movement <strong>and</strong> control <strong>in</strong> science <strong>and</strong> <strong>in</strong>dustry, 3 . Re<strong>in</strong>hold<br />

Publ . Corp ., New York .<br />

Langbe<strong>in</strong>, W. B . <strong>and</strong> S . A . Schumm. 1958 . Yield <strong>of</strong> sediment <strong>in</strong> relation<br />

to mean annual precipitation . Amer . Geophys . Union, Trans . 30 :<br />

1076-1084 .<br />

Lavkulich, L . M . 1973 . Soils-vegetation-l<strong>and</strong>forms <strong>of</strong> <strong>the</strong> Wrigley area,<br />

N .W .T . Canada Task Force N . Oil Dev . Env . Soc . Comm. Report 73-18 .<br />

Information Canada Cat . No . R72-10273 . QS-1519-000-EE-A1 . 257 p .<br />

<strong>and</strong> maps .<br />

Legget, R . F., <strong>and</strong> I . C . MacFarlane, ed . 1972 . Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong><br />

Canadian Nor<strong>the</strong>rn Pipel<strong>in</strong>e Research Conference, 2-4 February 1972 .<br />

National Research Council Tech . Memor<strong>and</strong>um No . 104, NRCC 12498 .<br />

Leopold, L . B ., M . G . Wolman, <strong>and</strong> J . P . Miller . 1964 . Fluvial processes<br />

<strong>in</strong> geomorphology . W . H . Freedman <strong>and</strong> Co ., San Francisco . 522 p .<br />

Lotspeich, F . G., E . W . Mueller, <strong>and</strong> P . J . Frey . 1970 . Effects <strong>of</strong> large<br />

scale forest fires on water quality <strong>in</strong> <strong>in</strong>terior Alaska . U . S . Dept .<br />

Int . Fed . Wate r Poll . Control Adm<strong>in</strong> ., Alaska Water Lab, College,<br />

Alaska . 115 p .<br />

McHenry, J . R ., J . C . Ritchie, <strong>and</strong> A .' C . . Gill . 1973 . Accumulation <strong>of</strong><br />

fallout cesium 137 <strong>in</strong> soils <strong>and</strong> <strong>sediments</strong> <strong>in</strong> selected watersheds .<br />

Water Resour . Res . 9(3) :676-686 .<br />

MacKay, D . K . 1973 . Hydrologic aspects <strong>of</strong> nor<strong>the</strong>rn pipel<strong>in</strong>e development,<br />

p . 1-18 . In Hydrologic aspects <strong>of</strong> pipel<strong>in</strong>e development .<br />

Canada Task Force N . Oil Dev . Env . Soc . Comm . Report 73-3 .<br />

Information Canada Cat . No . R27-172 .<br />

Mackay, J . R. 1963 . <strong>The</strong> Mackenzie delta area, N .W .T . Memoir 8 . Geog .<br />

Br ., Can . Dept .-M<strong>in</strong>es, Tech . Surv ., Queen's Pr<strong>in</strong>ter, Ottawa . 202 .p .<br />

Mackay, J . R. 1970 . Disturbances to <strong>the</strong> tundra <strong>and</strong> forest tundra environment<br />

<strong>of</strong> <strong>the</strong> western Arctic . Can . Geotech . J . 7 :420-432 .<br />

Mat<strong>the</strong>ws, M. D . 1973 . Flocculation as exemplified <strong>in</strong> <strong>the</strong> turbidity<br />

maximum <strong>of</strong> Acharon Channel, Yukon River delta, Alaska . Ph .D . <strong>The</strong>sis .<br />

Northwestern University, Evanston, Ill<strong>in</strong>ois . 88 p .<br />

McDonald, B . C . <strong>and</strong> C . P . Lewis . 1973 . Geomorphic <strong>and</strong> sedimentologic<br />

processes <strong>of</strong> rivers <strong>and</strong> coast, Yukon coastal pla<strong>in</strong> . Canada Task<br />

Force N . Oil Dev . Env . Soc . Comm . Report 73-39 . Information Canada<br />

Cat . No . R72-1273 . QS-1534-000-EE-Al . 245 p . <strong>and</strong> maps .


33<br />

McRoberts, E . C . <strong>and</strong> N . R . Morgenstern . . 1973 . A study <strong>of</strong> l<strong>and</strong>slides<br />

<strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong> Mackenzie River mile 205 to 660 . Canada<br />

Task Force N . Oil Dev . Env . Soc . Comm . Report 73-35 . Information<br />

Canada Cat . No . R72-12373 . QS-1530-000-EE-Al . 96 p .<br />

Menzel, R . G . 1974 . L<strong>and</strong> surface erosion <strong>and</strong> ra<strong>in</strong>fall as sources <strong>of</strong><br />

strontium-90 <strong>in</strong> streams . J . Env . Quality 3(3) :219-223 .<br />

Miller, G . <strong>and</strong> U . Forstner .- 1968 . ,General relationship between suspended<br />

sediment concentration <strong>and</strong> water discharge <strong>in</strong> <strong>the</strong> Alpenrhe<strong>in</strong> <strong>and</strong><br />

some o<strong>the</strong>r rivers . Nature 217 :244-245 .<br />

Nanson, G . C . 1974 . Bedload <strong>and</strong> suspended load <strong>transport</strong> <strong>in</strong> a small,<br />

steep, mounta<strong>in</strong> stream . Amer . 3 .,Sci . 274 :471-486 .<br />

Newbury, R . W . 1974 . River .hydrology <strong>in</strong>-permafrost areas, p . 31-38 . In<br />

J . Demers (ad .) Permafrost hydrology . Canada Nat . Comm . Int . Hydrol .<br />

Decade, Env : Canada, Ottawa .<br />

Peake, E ., B . L . Baker <strong>and</strong> G . W . Hodgson . 1972 . Hydrogeo<strong>chemistry</strong> <strong>of</strong><br />

<strong>the</strong> surface waters <strong>of</strong> <strong>the</strong> Mackenzie River dra<strong>in</strong>age bas<strong>in</strong>, Canada-II .<br />

<strong>The</strong> contribution <strong>of</strong> am<strong>in</strong>o acids, hydrocarbons <strong>and</strong> chlor<strong>in</strong>s to <strong>the</strong><br />

Beaufort Sea by <strong>the</strong> Mackenzie River system . Geochimica et Cosmochimica<br />

Acta 36 :867-883 .<br />

Pierce, R . H . Jr ., C . E . Olney, <strong>and</strong> G . T . Felbeck, Jr . 1974 . DDT absorption<br />

to suspended •particulate'matter <strong>in</strong> sea water . Geochim .<br />

Cosmochim . Acta 38(7) :1061-1073 .<br />

Radforth, J . R . 1973 . Long term effects <strong>of</strong> summer traffic by tracked<br />

vehicles on tundra . ALUR 72-73-13 . Canada Task Force N . Oil Dev .<br />

Env . Soc . Comm . Report 73-22 . Information Canada Cat . No . R57-<br />

2/1973 . LAND Publ . No . QS-1522-000-EE-Al . 60 p .<br />

Rampton, V . N . 1974 . Terra<strong>in</strong> evaluation with respect to pipel<strong>in</strong>e construction,<br />

Mackenzie <strong>transport</strong>ation corridor . Nor<strong>the</strong>rn part, Lat .<br />

68' N ' *to coast . Canada Task-Force N . Oil Dev . Env . Soc . Comm .<br />

Report 73-47 . Information Canada Cat . No . R72-9273 . QS-1561-000-<br />

LE-Al . 44 p .<br />

Rampton, •V . N ., <strong>and</strong> J . R . Mackay . 1971 . Massive ice <strong>and</strong> icy <strong>sediments</strong><br />

throughout. <strong>the</strong> Tuktoyaktuk Pen<strong>in</strong>sula, Richards Isl<strong>and</strong>s <strong>and</strong> nearby<br />

areas, District <strong>of</strong> Mackenzie_. Ge.ol . . Survey,,Canada, Paper 71-21 .<br />

16 p .<br />

Reddy .' X . R . <strong>and</strong> H . F . Perk<strong>in</strong>s . 1974 . Fixation <strong>of</strong> z<strong>in</strong>c by clay m<strong>in</strong>erals .<br />

Soil Sci . Soc . Amer . Proc . 38 :229-231 .


73-1<br />

454-11, 13<br />

32<br />

Rickard, W . T ., <strong>and</strong> C . W. Slaughter . 1973 . Thaw <strong>and</strong> erosion on<br />

vehicular trails <strong>in</strong> permafrost l<strong>and</strong>scapes . Jour . Soil <strong>and</strong> Water<br />

Conserv . 28(6) :263-266 .<br />

Ritter, D . F . 1967 . Rates <strong>of</strong> denudation . J . Geo . Ed . 15(4) :154-<br />

159 .<br />

Rosenberg, D . M ., <strong>and</strong> N ._ B . Snow . 1975 . Ecological studies <strong>of</strong> aquatic<br />

organisms <strong>in</strong> <strong>the</strong> Mackenzie <strong>and</strong> Porcup<strong>in</strong>e River dra<strong>in</strong>ages <strong>in</strong><br />

relation to sedimentation . Fish. Mar . Serv . Res . Dev . Tech . Rep .<br />

547 : 86 p .<br />

Rowe, J . S . 1972 . Forest regions <strong>of</strong> Canada . Can . Forestry Serv .<br />

Publ . No . 1300 . Canada Dept . Env . 172 p .<br />

Rutter, N . W ., A . N . Boydell, K . W . Savigny, <strong>and</strong> R . 0 . van Everd<strong>in</strong>gen .<br />

1973 . Terra<strong>in</strong> evaluation with respect to pipel<strong>in</strong>e construction,<br />

Mackenzie <strong>transport</strong>ation corrid'r . Sou<strong>the</strong>rn part, Lat . 600 to<br />

640 N . Canada Task Force N . Oil Dev . Env . Soc . Comm . Report<br />

73-36 . Information Canada Cat . No . R72-10373 . QS-1532-000-EE-A1 .<br />

135 p . <strong>and</strong> maps .<br />

Schumm, S . A . . 1963 . <strong>The</strong> disparity between present <strong>rates</strong> <strong>of</strong> denudation<br />

<strong>and</strong> o rogeny . U . S . Geol . Surv . Pr<strong>of</strong> . pape r<br />

. pp .<br />

Snedecor, G . W . <strong>and</strong> W . G . Cochran . 1971 . Statistical methods . Sixth<br />

ed . Iowa State Univ . Press, Ames, Iowa, U .S .A . 593 p .<br />

Sokal, R . R . <strong>and</strong> F . J . Rohlf . 1960 . Biometry, <strong>the</strong> pr<strong>in</strong>ciples <strong>and</strong><br />

practice <strong>of</strong> statistics <strong>in</strong> biological research . W . H . Freedman <strong>and</strong><br />

Co ., San Francisco . 776 p .<br />

Sta<strong>in</strong>ton, M . P ., M . J . Capel, <strong>and</strong> F . A . J . Armstrong .. 1974 . '<strong>The</strong><br />

chemical analysis <strong>of</strong> freshwater . Fish <strong>and</strong> Mar<strong>in</strong>e Serv ., Dept .<br />

Env . Misc . Spec . Publ . No . 25 . 120 p .<br />

Stichl<strong>in</strong>g, W . 1974 . Sediment loads <strong>in</strong> Canadian rivers . Tech . Bull .<br />

No . 74 . Inl<strong>and</strong> Waters Dir ., Water Resources Br . Information<br />

Canada Cat . No . En 36-503/74 . 27 p . <strong>and</strong> map .<br />

Ste<strong>in</strong>, J . N ., C . S . Jessop, T . R . Porter, <strong>and</strong> K . T . J . Chang-Kue, 1973 .<br />

An evaluation <strong>of</strong> fish resourcess <strong>of</strong> . <strong>the</strong> Mackenzie River valley<br />

as related to pipel<strong>in</strong>e development . Canada Task Force N . Oil<br />

D ev . Env . Soc . Comm . Vol . I . Repor t . Information Canada<br />

Cat . No . FS 37-1973/1-1 . 121 p .<br />

Strang, R . M . 1973 . Studies <strong>of</strong> vegetation l<strong>and</strong>form <strong>and</strong> permafrost <strong>in</strong><br />

<strong>the</strong> Mackenzie Valley : some case histories <strong>of</strong> disturbance . Canada<br />

Task Force N . Oil Dev . Env . Soc . Comet . Report 73-14 . Information<br />

Canada Cat . No . R72-8173 . 49 p . <strong>and</strong> charts .


33<br />

Tarnocai, C . 1973 . Soils <strong>of</strong> <strong>the</strong> Mackenzie River area . Canada Task<br />

Force N . Oil Dev . Env . Soc . Comm . Report 73-26 . Information<br />

Canada Cat . No . R72-9673 . QS-1528-000-EE-Al . 136 p .<br />

U . S . Department <strong>of</strong> Agriculture . 1967 . Soil Survey Laboratory Methods<br />

<strong>and</strong> Procedures for Collect<strong>in</strong>g Soil Samples . Soil Survey Investigations<br />

Report No . 1, Wash<strong>in</strong>gton, D .C .<br />

Wagemann, R . 1973 . Liard River total precision test, p . 109-118 . In<br />

G . J . Brunskill et aZ . Ecological studies <strong>of</strong>f aquatic systems <strong>in</strong><br />

<strong>the</strong> Mackenzie-Porcup<strong>in</strong>e dra<strong>in</strong>ages <strong>in</strong> relation to proposed pipel<strong>in</strong>e<br />

<strong>and</strong> highway developments . Appendix VIII B . Canada Task Force N .<br />

Oil Dev . Env . Soc . Comm . Vol . II . Appendices . Repor t 73-41 .<br />

Information Canada Cat . No . R72-10073/1-2 . QS-1533-020-EE-A1 .<br />

345 p .<br />

Wagemann, R . 1975 . Reliability <strong>of</strong> trace metal determ<strong>in</strong>ation <strong>in</strong> freshwater<br />

by flameless atomic absorption (graphite tube atomization) <strong>in</strong><br />

comparison with o<strong>the</strong>r chemical <strong>and</strong> physical methods . Fish . Mar .<br />

Serv . Res . Dev . Tech . Rep . 555 : 20 p .<br />

Water Survey <strong>of</strong> Canada . 1970 . Surface water data . Yukon Territory . <strong>and</strong><br />

Northwest Territories . Inl<strong>and</strong> Waters Dir ., Dept . Env ., Ottawa .<br />

44 p .<br />

Wa<strong>in</strong>, R . W . <strong>and</strong> M . G . Weber . 1974 . Recovery <strong>of</strong> vegetation <strong>in</strong> Arctic<br />

regions after burn<strong>in</strong>g . Canada Task Force N . Oil Dev . Env . Soc .<br />

Comm . Report 74-6 . Information Canada Cat . No . R72-13574 . QS-1554-<br />

000-EE-Al . 63 p .<br />

Williams, J . R . 1970 . Ground water <strong>in</strong> <strong>the</strong> permafrost regions <strong>of</strong> Alaska .<br />

Geol . Surv . Pr<strong>of</strong> . Paper 696, U . S . Dept . <strong>of</strong> <strong>the</strong> Interior, Wash<strong>in</strong>gton,<br />

D . C . 83 p .<br />

Wilson, H . D . B ., P . Andrews, R . L . Maxham, <strong>and</strong> K . Ramlal . 1965 . Archaen<br />

Volcanism <strong>in</strong> <strong>the</strong> Canadian Shield . Can . Jour . Earth Sci . 2 :161-175 .<br />

Wilson, L . 1963 . Variation <strong>in</strong> mean<br />

<strong>of</strong> mean annual precipitation .<br />

annual sediment yield as a function<br />

J . Amer . Sci . 273 :335-349 .<br />

Zoltai, S . C . <strong>and</strong> W . W . Fettapiece . 1973 . Studies<br />

form <strong>and</strong> permafrost <strong>in</strong> <strong>the</strong> Mackenzie Valley :<br />

permafrost relationships <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn part<br />

<strong>and</strong> nor<strong>the</strong>rn Yukon . Canada Task Force N . Oil<br />

Report 73-4 . Information Cat . No . R72-7973 .<br />

<strong>of</strong> vegetation, l<strong>and</strong>terra<strong>in</strong>,<br />

vegetation <strong>and</strong><br />

<strong>of</strong> <strong>the</strong> Mackenzie Valley<br />

Dev . Env . Soc . Co=n .<br />

105 p .<br />

Zoltai, S . C . <strong>and</strong> C . Tarnocai . 1974 . Soils <strong>and</strong> vegetation <strong>of</strong> hummocky<br />

terra<strong>in</strong> . Canada Task Force N . Oil Dev . Env . Soc . Comm . Report 74-5 .<br />

Information Canada Cat . No . R72-13374 . QS-1552-000-EE-A1 . 86 p .


TABLE 1 . Location <strong>of</strong> stations, dimension, <strong>and</strong> properties <strong>of</strong> rivers <strong>and</strong> streams <strong>of</strong> <strong>the</strong><br />

Mackenzie <strong>and</strong> Porcup<strong>in</strong>e River watersheds, N .W .T . <strong>and</strong> Yukon . Ad - watershed<br />

area <strong>in</strong> 10 3 km 2 , Qa = range <strong>of</strong> annual discharge <strong>in</strong> km3, L = length <strong>in</strong> km,<br />

SSi = range <strong>of</strong> suspended sediment concentrations <strong>in</strong> mg L-1 , all for 1971-74<br />

period <strong>of</strong> observation . Some data (Qa <strong>and</strong> Ad) is from Water Survey <strong>of</strong> Canada<br />

records . See Campbell et al . (1975) for complete data .<br />

River Ad Qa SS4<br />

Location <strong>of</strong> Station 1<br />

W<br />

GROUP 1<br />

Arctic Red R . 18 .0 4 .60 - 4 .94 460 0 .46 - 790 66°47' 133°06'<br />

Peel R . 70 .0 19 .8 - 22 .0 550 0 .24 - 580 67°27' 134°52'<br />

Mackenzie R . (Norman Wells) 1570 247 - 285 872 3 .5 - 1800 65°16' 126°49'<br />

Liard R . (Ft . Liard) 222 53 .3 - 63 .9 685 3 .3 - 560 60°15' 123°29'<br />

Liard R . (Ft . Simpson) 248 78 .4 - 78 .9 1000 0 .36 - 1100 61°50' 121 ° 20'<br />

South Nahanni R . (Clausen Creek) 33 .4 11 .3 - 13 .3 312 18 - 500 61°15' 124°02'<br />

South Nahanni R . (Virg<strong>in</strong>ia Falls) 14 .6 7 .08 - 7 .14 177 0 .66 - 230 61°38' 125°30'<br />

GROUP 2<br />

Willowlake R . 21 .6 1 .44 - 1 .99 264 1 .3 - 100 69 ° 39' 122°S5'<br />

Mart<strong>in</strong> R . 1 .98 0 .156 - '105 2 .2 . - 120 61 °55' 121 ° 35'<br />

Harris R . 0 .741 0 .017 50 -


,<br />

35<br />

e<br />

TABLE 2a . Slopes ') <strong>and</strong> <strong>in</strong>te cepts (a), <strong>of</strong> <strong>the</strong> regression l<strong>in</strong>es<br />

<strong>in</strong> Fig . 1, SS,~ - , relat<strong>in</strong>g suspended sediment<br />

concentrations (SSi) to discharge (Qi) . Also given<br />

are <strong>the</strong> levels <strong>of</strong> significance <strong>of</strong> <strong>the</strong> slopes (a) <strong>and</strong><br />

<strong>the</strong> correlation coefficient (r) for each l<strong>in</strong>e .<br />

River a b r 1-a (%)<br />

GROUP 1<br />

N<br />

Arctic Red<br />

0 .03 - 1 .55 0 .92 99 .9<br />

Peel 0 .006 1 .38 0 .87 99 .9<br />

Mackenzie (Norman Wells) 0 .0000003 2 .12 0 .85 99 .9<br />

Liard (Ft . Liard) 0 .04 1 .03 0 .81 99 .5<br />

Liard (Ft . Simpson) : 0 .000006 2 .05 0 .91 99 .9<br />

South Nahanni (Clausen Creek) 0 .0001 2 .17 0 .97 95 .0<br />

South Nahanni (Virg<strong>in</strong>ia Falls) 0 .01 1 .40 0 .94 99 .9<br />

GROUP 2<br />

Will owlake<br />

0 .52 0 .60 0 .64 97 .5<br />

Mart<strong>in</strong> 4 .54 0 .44 0 .62 99 .5<br />

Harris 1 .86 0 .30 0 .54 97 .5<br />

Caribou Bar 1 .45 0 .94 0 .89 99 .9<br />

GROUP 3 4--<br />

Mackenzie (Ft . Providence) 0 .008 0 .78 0 .48 90 .0<br />

0 .03 1 .14 0 .98 97 .5<br />

Trout (at Highway)<br />

Great Bear<br />

(Not significant)


36<br />

TABLE 2b . Slopes (b) <strong>and</strong> <strong>in</strong>tercepts (a) <strong>of</strong> th! regression<br />

l<strong>in</strong>es relat<strong>in</strong>g PCi <strong>and</strong> Qi (PCB, - aQ.) . Also given<br />

are <strong>the</strong> levels <strong>of</strong> significance <strong>of</strong> <strong>the</strong> slopes (1-a)<br />

<strong>and</strong> <strong>the</strong> correlation coefficient (r) for each l<strong>in</strong>e .<br />

River b 1-a (X) r<br />

GROUP 1<br />

Arctic Red 20 .0 0 .58 95 .0 0 .70<br />

Peel 3 .03 0 .61 97 .5 0 .73<br />

Mackenzie (Norman Wells) 0 .003 1 .24 97 .5 0 .63<br />

Liard (Ft . Liard) - -


37<br />

i<br />

TABLE 2c . Slopes (b) <strong>and</strong> <strong>in</strong>tercepts (a) <strong>of</strong> th~~ regression<br />

l<strong>in</strong>es relat<strong>in</strong>g PNi <strong>and</strong> Q, , (PNi - a), (see Fig .<br />

3) . Also given are <strong>the</strong> levels <strong>of</strong> significance <strong>of</strong><br />

<strong>the</strong> slopes (1-a) <strong>and</strong> <strong>the</strong> correlation coefficient<br />

(r) for each l<strong>in</strong>e .)<br />

River a b 1-a (%) r<br />

GROUP 1<br />

,<br />

Arctic Red 1 .11 0 .56 95 .0 0 .75<br />

Peel 0 .24 0 .58 97 .5 0 .72°<br />

Mackenzie (Norman Wells) 0 .003 0 .93 95 .0 0 .56<br />

Liard (Ft . Liard) - -


38<br />

TABLE 2d . Slopes (b) <strong>and</strong> <strong>in</strong>tercepts (a) <strong>of</strong> regression l<strong>in</strong>es<br />

relat<strong>in</strong>g PP,~ <strong>and</strong> Q~•, (PP,~ aQb) (see Fig . 4) . Also<br />

given are <strong>the</strong> levels <strong>of</strong> significance <strong>of</strong> <strong>the</strong> slopes<br />

(1-o) <strong>and</strong> <strong>the</strong> correlation coefficient (r) for each<br />

l<strong>in</strong>e .<br />

River a b 1-a(%) r<br />

GROUP 1 4 .<br />

Arctic Red 0 .12 0 .62 90 .0 0 .65<br />

Peel- 0 .004 0 .90 97 .5 0 .74<br />

Mackenzie (Norman Wells) 2 x 10- 5 1 .24 '99 .0 0 .66<br />

Liard (Ft . Liard) - -


i<br />

39<br />

b<br />

TABLE 3 . Average annual mass (SSa ) <strong>and</strong> annual mass per<br />

unit watershed area per year (mow) <strong>of</strong> suspended<br />

<strong>sediments</strong> <strong>transport</strong>ed out <strong>of</strong> watersheds <strong>of</strong> <strong>the</strong><br />

Mackenzie <strong>and</strong> Porcup<strong>in</strong>e Rivers, 1971-74 . See<br />

Campbell et aZ . (1975) for more detailed data .<br />

River<br />

Annual mass <strong>of</strong><br />

suspended <strong>sediments</strong><br />

(metric tons year - l)<br />

SS a<br />

Annual mass <strong>of</strong><br />

<strong>sediments</strong> per km 2<br />

(metric tons km -2<br />

year -1 )<br />

SS --<br />

GROUP 1<br />

6<br />

Arctic Red 1,900,000 126<br />

Peel 6,180,000 88 .3<br />

Mackenzie (Norman Wells) 101,000,000 64 .5<br />

Liard (Ft . Liard) 10,100,000 45 .4<br />

Liard (Ft . Simpson) 31,200,000 126<br />

South Nahanni (Clausen Creek) ! 2,100,000 62 .9<br />

South Nahanni (Virg<strong>in</strong>ia Falls) ! 530,000 36 .3<br />

GROUP 2<br />

Willowlake 79,800 3 .7<br />

Mart<strong>in</strong> 3,150 1 .6<br />

Harris 130 0 .18<br />

Caribou Bar 4,390 11 .5<br />

GROUP 3<br />

Mackenzie (Ft . Providence) 621,000 0 .64<br />

Trout 7,280 0 .80<br />

Great Bear 59,900 0 .41


40<br />

TABLE 4 . Laboratory estimates <strong>of</strong> <strong>the</strong> rate <strong>of</strong> 0 2 consumption<br />

by <strong>sediments</strong> from <strong>the</strong> Harris River . Experiments were<br />

done <strong>in</strong> triplicate at room temperature (20-22 °C .) <strong>in</strong><br />

shaken, sealed bottles <strong>in</strong> <strong>the</strong> dark . Air-bubbled<br />

W<strong>in</strong>nipeg tap water was used . Control bottles (with<br />

no sediment added) were used <strong>in</strong> <strong>the</strong> calculation . <strong>The</strong><br />

Harris River bank sediment conta<strong>in</strong>ed 2 .5 mMoles <strong>of</strong>organic<br />

carbon per gram <strong>of</strong> dry sediment .<br />

Concentration <strong>of</strong><br />

Added Sediment<br />

Duration <strong>of</strong><br />

Incubation<br />

(hr~f -<br />

02 Consumption<br />

(per gram <strong>of</strong><br />

sediment per day)<br />

7 .41 g L-1 16 0 .34 mg 02 9 - lday-1<br />

3 .32 60 1 .1<br />

I<br />

4 .86 60 0 .33<br />

3 .97 60 0 .60


41<br />

v<br />

b<br />

TABLE 5 . Cation exchange capacities (NaOAcetate at pH 8 .2) for<br />

<strong>sediments</strong> <strong>of</strong> Mackenzie watershed rivers <strong>and</strong> lakes, Mackenzie<br />

Delta <strong>and</strong> Beaufort Sea . See Campbell et al . (1975) for<br />

details on sediment <strong>m<strong>in</strong>eralogy</strong> <strong>and</strong> <strong>chemistry</strong> .<br />

Location Types <strong>of</strong> Samples- Number <strong>of</strong><br />

Samples<br />

Cation exchange I<br />

capacity<br />

(meq/100 g)<br />

Liard River, near<br />

Ft . Simpson Suspended sediment 1 11<br />

Liard River, near<br />

Ft . Simpson Bank sediment 1 21<br />

Mart<strong>in</strong> River Suspended sediment 1 9 .1<br />

Mackenzie Delta<br />

Channels (1)<br />

Mackenzie Delta<br />

Lakes (2)<br />

Shell Lake, near<br />

Inuvik<br />

F<strong>in</strong>e bottom <strong>and</strong><br />

shore <strong>sediments</strong> 9 8 .9 - 23<br />

Bottom <strong>sediments</strong> from<br />

near maximum depth 9 7 .1 - 36<br />

Bottom sediment from<br />

near maximum depth 1 46 .6<br />

Kugmallit Bay (3) Bottom <strong>sediments</strong> 4 8 .5 - 13<br />

Beaufort Sea, near<br />

<strong>the</strong> outer Delta Bottom <strong>sediments</strong> 6 8 .3 - 18 .4<br />

Isl<strong>and</strong> (4)<br />

(1) Stations EC1-1, EC1-2, EC1-3, EC3-1, EC3-2, EC3-3, EC4-1, EC4-2, EC4-3 .'<br />

See Brunskill et al . (1973), Appendix 1 for locations <strong>of</strong> stations .<br />

(2) Lakes 1, 3, 4, 5, 7, C4, 4C <strong>and</strong> EC2 . See Brunskill et al . (1973),<br />

Appendix 1 for locations <strong>of</strong> stations .<br />

(3) Stations KU4 <strong>and</strong> KU5 . See Brunskill et al . (1973), Appendix 1, for<br />

locations <strong>of</strong> stations .<br />

(4) Stations BS13, BS15, <strong>and</strong> BS26 . See Brunskill et al . (1973), Appendix<br />

1, for locations <strong>of</strong> stations .


42<br />

TABLE 6 . Ammonium acetate (IN) <strong>and</strong> HCI (IN) extracible<br />

cations from Mackenzie Delta Channel Station<br />

EC1-3 <strong>sediments</strong> . See Brunskill et at . (1973,<br />

Appendix 1) for location <strong>of</strong> station, <strong>and</strong> see<br />

Campbell et at . (1975) for sediment m<strong>in</strong>erology<br />

<strong>and</strong> <strong>chemistry</strong> . This sediment sample had 1 .4<br />

mMoles organic carbon/g dry wt . <strong>and</strong> 1 .5 mMoles<br />

C03-C/9- Samples were analyzed <strong>in</strong> duplicate,<br />

<strong>and</strong> average values are given . Cation exchange<br />

capacity for this sample was 23 .2 meq/100 g .<br />

Elements<br />

NH 4OAc Extract<br />

(umoles/g dry wt .<br />

<strong>of</strong> sediment)<br />

HC1 Extract<br />

(umoles/g)<br />

101 1,220<br />

I<br />

Mg 13, 610<br />

Na 1 .1 34<br />

K 0 .8 3<br />

Fe


N<br />

c .<br />

P<br />

TABLE 7a . Ranges <strong>of</strong> concentrations <strong>of</strong> particulate carbon (PC(), nitrogen (PNe)<br />

<strong>and</strong> phosphorus (PPi) <strong>in</strong> waters from selected Mackenzie <strong>and</strong> Porcup<strong>in</strong>e<br />

River watersheds, 1971-74 . Values given are per cubic meter <strong>of</strong><br />

river water .<br />

River mMoles N mMoles PP( m-3 mMoles PCi m - 3<br />

GROUP 1<br />

Arctic Red 1 .0 - 73 0 .07 - 17 12 - 1600<br />

Peel 0 .64 - 51 0 .07 - 4 .9 8 .0 - 920<br />

-Mackenzie (Norman Wells) 3 .5 - 180 0.36 - 27 - 62 - 6300<br />

Liard (Ft . Liard) 0 .27 - 45 0 .35 - 6 .9 3 .3 - 690<br />

Liard (Ft . Simpson) 2 .2 - 110 0 .12 - 24 32 - 2200<br />

South Nahanni (Clausen Creek) 4 .2 - 32 0 .29 - 6 .4 24 - 1100<br />

South Nahanni (Virg<strong>in</strong>ia Falls) 0 .36 - ,28


TABLE 7b . Ranges <strong>of</strong> <strong>and</strong> mean (x) concentrations <strong>of</strong> particulate carbon (PC),nitrogen (PN)<br />

<strong>and</strong> phosphorus (PP) <strong>in</strong> suspended <strong>sediments</strong> from selected Mackenzie <strong>and</strong> Porcup<strong>in</strong>e<br />

River watersheds, 1971-74 . Values given are per gram dry weight <strong>of</strong> suspended<br />

sediment .<br />

River mMoles PN m 1 mMoles PP gm -l mMoles PC gm-1<br />

GROUP I Range x Range x Range x<br />

Arctic Red 0 .02 - 5 .6 0 .804 0 .01 - 0 .83 0 .102 0 .71 - 97 13 .2<br />

Peel 0 .09 - 15 1 .38 0 .02 - 0 .04 0 .028 - 1 .6 - 360 30 .3<br />

Mackenzie (Norman Wells) 0 .06 - 1 .0 0 .214


I<br />

a<br />

m<br />

r<br />

TABLE 8 .<br />

Mean annual <strong>rates</strong> <strong>of</strong> <strong>transport</strong> <strong>of</strong> particulate carbon (PC) <strong>in</strong> suspended<br />

<strong>sediments</strong> <strong>in</strong> selectod Mackenzie <strong>and</strong> Porcup<strong>in</strong>e River watersheds, 1971-73 .<br />

Co = organic carbon, C,-,1 = <strong>in</strong>organic carbon, 15T? = total annual moles <strong>of</strong><br />

dissolved HC03 .<br />

River 109 Moles PCa yr -1 *10 3 Moles yz~w<br />

km- 2 yr-1<br />

PCo /PC<strong>in</strong><br />

TCa fffC a<br />

GROUP 1<br />

Arctic Red . 4 .42 292 2 .53 0.076<br />

Peel 11 .0 158 2 .05 0.039<br />

Mackenzie (Norman Wells) 226 144 0 .654 0.085<br />

Liard (Ft . Liard) 17 .1 77 .1 0 .353 0.022<br />

Liard (Ft . Simpson) 24 .9 100 0 .401 0.029<br />

South Nahanni (Clausen Creelb 7 .04 211 0 .050<br />

South Nahanni (Virg<strong>in</strong>ia Falls) 1 .34 91 .8 1 .80 0 .019<br />

GROUP 2<br />

Willowlake 0 .251 11 .7 9 .62 0 .014<br />

Mart<strong>in</strong> 0 .045 22 .6 3 .01 0 .026<br />

Harris 0 .001 1 .68 17 .5 0.008<br />

Caribou Bar 0 .006 16 .8 0 .200 0 .017<br />

GROUP 3<br />

Mackenzie (Ft . Providence) 7 .81 8 .05 0.457 0 .008<br />

Trout 0 .106 11 .7 0.283 0 .012<br />

Great Bear 1 .07 7 .34 0 .178 0 .011


TABLE 9 . Mean annual rate <strong>of</strong> <strong>transport</strong> <strong>of</strong> particulate nitrogen (PN)<br />

<strong>in</strong> suspended <strong>sediments</strong> <strong>of</strong> selected Mackenzie<br />

<strong>and</strong> Porcup<strong>in</strong>e River watersheds, 1971-73 . TDNa = Annual mass<br />

<strong>of</strong> Total Dissolved Nitrogen . -<br />

River 10 6 Moles PN a yr -1 10 3 Moles PNw km 2 yr -1 TDNa/PNa<br />

GROUP 1<br />

Arctic Red 222 13 .6 0 .248<br />

Peel 643 9 .19 0 .544<br />

Mackenzie (Norman Wells) 7900 5 .02 1 .07<br />

Liard (Ft . Liard) 1350 6 .08 1 .11<br />

Liard (Ft . Simpson) 1660 6 .69 1 .80<br />

South Nahanni (Clausen Creek) 244 7 .31 0 .424<br />

South Nahanni (Virg<strong>in</strong>ia Falls) 45 .9 3 .14 1 .94<br />

GROUP 2<br />

Willowlake 14 .9 0 .690 4 .42<br />

Mart<strong>in</strong> 0 .529 0 .267 9 .45<br />

Harris 0.084 0 .113 13 .2<br />

Caribou Bar 0 .381 1 .00 6 .30<br />

GROUP 3<br />

Mackenzie (Ft . Providence) 697 0 .718 2 .77<br />

Trout 7 .03 0 .773 4 .97<br />

Great Bear 75 .5 0 .517 4 .80<br />

4<br />

'k<br />

b<br />

a<br />

a


01<br />

TABLE 10. Mean annual <strong>rates</strong> <strong>of</strong> <strong>transport</strong> <strong>of</strong> phosphorus (PP) <strong>in</strong> suspended<br />

<strong>sediments</strong> <strong>of</strong> selected Mackenzie <strong>and</strong> Porcup<strong>in</strong>e River watersheds,<br />

1.971-73, <strong>and</strong> mole ratios <strong>of</strong> C, N <strong>and</strong> P <strong>in</strong> suspended <strong>sediments</strong>,<br />

calculated from PPa , PNa <strong>and</strong> PC a . TDPa = Annual mass <strong>of</strong> Total<br />

Dtssolved Phosphorus .<br />

River<br />

10 6 Moles PPa<br />

yr -1<br />

10 3 Moles T7w<br />

km-2 yr -1<br />

TDPQ PP a<br />

PC :PN :PP<br />

GROUP 1<br />

Arctic Red 52 .3 2 .90 0.173 84 :4 .3 :1<br />

Peel 58 .5 0 .836 0 .179 188 :11 :1<br />

Mackenzie (Norman Wells) 1400 0 .892 0 .197 162 :5 .6 :1<br />

Liard (Ft . Liard) 167 0 .755 0 .329 -149 :8 .1 :1<br />

Liard (Ft . Simpson) 233 0 .939 0 .166 73 :7 .1 :1<br />

South Nahanni (Clausen CreekT Creekf 38 .3 1 .14 0 .335 183 :7 .8 :1<br />

South Nahanni (Virg<strong>in</strong>ia Falls) 7 .91 0 . .542. 0 .342 169 :13 .6 :1<br />

GROUP 2<br />

. Willowlake 1 .87 0 .087 0 .622 '134 :25 :1<br />

Mart<strong>in</strong> 0 .089 0 .045 0 .640 506 :5 .9 :1<br />

Harris 0 .006 0 .008 1 .41 166 :14 :1<br />

Caribou Bar 0 .040 0 .1 .05 1 .69 150 :9 .5 :1<br />

GROUP 3<br />

Mackenzie (Ft . Providence) 44 .8 0 .046 1 .32 174 :16 :1<br />

Trout 0 .469 0 .052 2 .64 226 :15 :1<br />

Great Bear 5 .90 0 .040 4 .16 181 :12 :1


48<br />

TABLE 11 . Slopes <strong>and</strong> significance <strong>of</strong> <strong>the</strong> regressions <strong>of</strong> <strong>the</strong><br />

log <strong>of</strong> concentrations <strong>of</strong> PPi, PNi, <strong>and</strong> PCi(per unit<br />

volume <strong>of</strong> water) on log concentration <strong>of</strong> suspended<br />

sediment (SS,) mg l-') for all data from <strong>the</strong> rivers<br />

<strong>and</strong> streams <strong>of</strong> Groups 1 <strong>and</strong> 2 (exclud<strong>in</strong>g Mackenzie<br />

at Norman Wells) <strong>in</strong> Table 1 .<br />

Relation<br />

Slope<br />

Level <strong>of</strong><br />

Significance<br />

(%)<br />

- 2<br />

log PPi vs log SSi 0 .5869 > 99 .9 0 .78<br />

log PN, vs log SSi 0 .4105 > 99 .9 0 .50<br />

log PCi vs log SSA 0 .4845 > 99 .9 0 .55


49<br />

TABLE 12 . Significance <strong>of</strong> regressions <strong>of</strong> annual <strong>transport</strong> <strong>rates</strong><br />

<strong>of</strong> suspended <strong>sediments</strong> (SSW , <strong>in</strong> kg km" 2yr" 1 ) ; PCw PN ,<br />

PPy , (<strong>in</strong> moles km" 2yr-1 ) on annual discharge (QQ , <strong>in</strong> m3<br />

yr'1) for available data (Tables,1,3,8) on rivers <strong>of</strong><br />

Groups 1 <strong>and</strong> 2 (exclud<strong>in</strong>g Mackenzie at Norman Wells)<br />

<strong>in</strong> Table 1 . See, also Figs . 2, 5 <strong>and</strong> 6 .<br />

Relation Slope Level <strong>of</strong><br />

Significance<br />

(1)<br />

r 2<br />

log SS, vs log Qa 0 .6452 > 99 .9 0 .67<br />

log PP :, vs log QQ 0 .5180 > 99 .9 0 .61<br />

log P'L' vs log Qa 0 .4889 > 99 .9 0 .64<br />

log P,CW vs log Qa 0 .4333 > 99 .9 0 .53


50<br />

TABLE 13 .<br />

Results <strong>of</strong> multiple l<strong>in</strong>ear regression analyses <strong>of</strong> <strong>the</strong><br />

relationships between <strong>the</strong> logs <strong>of</strong> mean (1971-73) annual<br />

<strong>rates</strong> <strong>of</strong> traport <strong>of</strong> suspended <strong>sediments</strong> (ST , <strong>in</strong> metric<br />

tons qr' 1 ), PCa , PNa , PPa (<strong>in</strong> metric tons yr-f3 <strong>and</strong> logs<br />

<strong>of</strong> <strong>the</strong> variables : watershed area (Ad, <strong>in</strong> km 2 ), relief<br />

(1E, <strong>in</strong> km), river length (L, <strong>in</strong> km), mean annual daily<br />

temperature (T), mean annual precipitation (P, <strong>in</strong> mm),<br />

forest cover (F, <strong>in</strong> arbitrary rank, see Methods Section),<br />

<strong>and</strong> surface geology (G, <strong>in</strong> arbitrary rank, see Methods<br />

Section), for rivers <strong>and</strong> watersheds listed <strong>of</strong> Groups 1 <strong>and</strong><br />

2 (exclud<strong>in</strong>g Mackenzie at Norman Wells) <strong>in</strong> Table 1 .<br />

Mean Annual Rate<br />

<strong>of</strong> Transport<br />

<strong>of</strong><br />

Total Variability Relative Contribution Of Each<br />

Accounted For (X*"* 'Variable* (Y)<br />

AE<br />

SS 98 84 .6 5 .7 0 .7 7 .1 -<br />

a<br />

PC 98 .86 .7 9 .0 2 .2 -<br />

a<br />

PN<br />

a<br />

I<br />

97 89 .0 5 .3 2 .9 - -<br />

PP 98 85 .6 8 .7 0 .7 3 .0<br />

a<br />

* Assum<strong>in</strong>g that <strong>the</strong> preced<strong>in</strong>g parameter (i .e . to <strong>the</strong> left) is already <strong>in</strong><br />

<strong>the</strong> model, <strong>the</strong> table shows <strong>the</strong> percent contribution <strong>of</strong> each paramenter<br />

to <strong>the</strong> total variability <strong>in</strong> <strong>rates</strong> <strong>of</strong> <strong>transport</strong> accounted for by <strong>the</strong><br />

multiple regression .


TABLE 14 . Mean concentrations <strong>of</strong> selected major <strong>and</strong> m<strong>in</strong>or elements <strong>in</strong> suspended <strong>sediments</strong>, <strong>and</strong> mean<br />

annual rate <strong>of</strong> transp ort <strong>of</strong> <strong>the</strong>se elements <strong>in</strong> particulate material from selected Mackenzie<br />

Valley watersheds . I'Xw = mean rate <strong>of</strong> <strong>transport</strong> <strong>of</strong> element X <strong>in</strong> particulate phase, per<br />

unit watershed area per year, <strong>in</strong> 10 3 Moles km-2 yr - l . PX,j - mean concentration <strong>of</strong> element<br />

X <strong>in</strong> particulate phase per gram dry weight <strong>of</strong> suspended sediment, <strong>in</strong> moles g-1 . <strong>The</strong>se .<br />

data are based on small numbers <strong>of</strong> analyses for <strong>the</strong> elements (1-4 measurementsfelement)<br />

<strong>and</strong> large numbers <strong>of</strong> suspended sediment determ<strong>in</strong>ations (10-40) for each river .<br />

Ca Si Al Cu<br />

River<br />

a ix V a f 1 ; 10 f i PA I x 10 FCu x 10 Muw PZn- x 10 nw<br />

Arctic Red 1 .14* 140 0 .91 1140 2 .59 330 5 .65 0 .07 1 .26 0 .13<br />

Liard (Ft . Liard) 1 .74 74 1 .00 440 2 .50 110 5 .26 0.02 1 .38 0 .06<br />

Liard (Ft . Simpson) 0.94 120 1 .07 1350 2 .75 350 7 .26 0 .09 1 .08 0 .14<br />

Peel 0 .92 82 1 .06 940 2 .88 260 4 .98 0.04 1 .04 0 .09<br />

South Nahanni<br />

(Virg<strong>in</strong>ia Falls) 2 .67 98 1 .21 380 2 .08 76 -- -- - --<br />

Harris -- -- -- -- 17 .0 0.0008 3 .43 0 .004<br />

1<br />

Z st<strong>and</strong>ard deviation<br />

<strong>of</strong> mean annual concentrations<br />

for 1971-73 .<br />

50 38 14 55 51<br />

* <strong>The</strong> mean concentration <strong>of</strong> Ca <strong>in</strong> particulate phase Is 1 .14 x 10-3 Moles per gram dry weight (110°)<br />

<strong>of</strong> suspended sediment .<br />

L L


52<br />

V<br />

TABLE 15 . Estimated mass <strong>of</strong> susjended <strong>sediments</strong> (SS a , tons_r 1 ),<br />

particulate carbon (PC s ), pa rt iculate nitrogen (PNa ),<br />

<strong>and</strong> particulate phosphorus (PP a , <strong>in</strong> moles yi 1 )that<br />

reaches <strong>the</strong> Mackenzie Delta <strong>and</strong> Beaufort Sea from <strong>the</strong><br />

Peel <strong>and</strong> Mackenzie Rivers . Based on data <strong>in</strong> Tables 3,<br />

8, 9, 10 <strong>and</strong> by extrapolation <strong>of</strong> <strong>the</strong>se data to unsampled<br />

watersheds . <strong>The</strong> area <strong>of</strong> deposition <strong>of</strong> <strong>the</strong>se_<br />

<strong>sediments</strong> was calculated to be 30,000 km2 , from Mackay<br />

(1963) <strong>and</strong> <strong>in</strong>spection <strong>of</strong> ERTS color <strong>in</strong>frared photographs<br />

<strong>of</strong> <strong>the</strong> Delta <strong>and</strong> Beaufort Sea <strong>in</strong> Summer 1973 <strong>and</strong> 1974 .<br />

e<br />

Sedimentation Rate<br />

Parameter Mass/year (Mass/area-year)<br />

Sediments 115 x 10 6 metric tons yr 1<br />

3 .8kgm 2 yr 1<br />

Particulate Carbon 2 .6 x 10 11 moles yr 1<br />

Particulate Nitrogen 9 .5 x 10 9 moles yr- 1<br />

9 moles C m 2 yr 1<br />

0 .3 moles N m 2yr -1<br />

a<br />

Particulate Phosphorus 1 .7 x 10 9<br />

moles yt-1<br />

0 .06 moles P m 2yr 1


9<br />

Q<br />

TABLE 16 . A comparison <strong>of</strong> annual <strong>rates</strong> <strong>of</strong> sediment <strong>transport</strong> <strong>in</strong> large <strong>and</strong><br />

small Mackenzie <strong>and</strong> Porcup<strong>in</strong>e River watersheds with o<strong>the</strong>r Arctic,<br />

Subarctic <strong>and</strong> Temperate Zone watersheds . Ad - watershed area <strong>in</strong><br />

km 2 , Q a - annual discharge <strong>in</strong> m3 yr- 1, SSw = annual sediment<br />

<strong>transport</strong> per unit watershed area <strong>in</strong> metric tons km -2 yr-1 . .<br />

I<br />

River Ad Q A<br />

SSw Reference<br />

(km2 ) (m 3 vr-1 ) (metric tons<br />

km- 2 yr" 1)<br />

Yukon, Alaska 955 x 10 3 173 x 109 1n3 Mat<strong>the</strong>ws, 1973<br />

Colville, Alaska 50 x 10 3 16 x In 9 15n Arnborg et al ., 1966, 1967<br />

Chena River, Alaska 5 .1 x 1n 3 -1 .7 x 1n 9 17 Prey et al ., 1970<br />

Mississippi 3 .2 x 10 6 563 x <strong>in</strong>9 85 Ritter, 1967<br />

Colorado 357 x 10 3 -- 378' Ritter, 1967<br />

St . Lawrence 936 x 10 3 315 x 10 9 0 .64 D'Anglejan <strong>and</strong> Smith, 1973<br />

Columbia 265 x 10 3 -- 35 Ritter, 1967<br />

Large Rivers <strong>in</strong><br />

Mackenzie Valley,<br />

Group 1 <strong>in</strong> Table 1 14-1570 x to 3 4-285 x 1n9<br />

36-126 This study<br />

Mackenzie & Peel 1 .-69 x 1n~ 313 x 109 68 This study<br />

Char Lake streams,<br />

Cornwallis Is ., N .W .T . 3 .5 49 x 10 4<br />

,5 .5 de March, 1974, 1975<br />

Hubbard Brook (W6) 0 .13 1n0 1 .n 3 2 .5 Aormann et al ., 1969<br />

Small Rivers <strong>in</strong> Mackenzie<br />

Valley, Croup 2 i n<br />

Table 1<br />

0.4-21 x<br />

W ,<br />

10 3 17-20no x 10 6 0 .17 - 11 .5 This study


TABLE 17 .<br />

Instantaneous concentrations <strong>of</strong> suspended <strong>sediments</strong> (SS-), particulate carbon (PCi),<br />

particulate nitrogen (PNi), <strong>and</strong> particulate phosphorus (PPi) ; <strong>and</strong> <strong>in</strong>stantaneous discharge<br />

(QiL) at time <strong>of</strong> sampl<strong>in</strong>g . Qi is from Water Survey <strong>of</strong> Canada, except for Boot Creek data,<br />

which is from D . K . MacKay <strong>and</strong> J . C . Anderson <strong>of</strong> Hydrologic Sciences, DOE, Ottawa .<br />

River Year Date Q . SSA PCi PNi PP, •<br />

(m 3 sec -1 ) (g m -3 ) (mloles m -3 )<br />

Arctic Red at Arctic Red River 1972 July 6 254 158 67 .1 12 .1 1 .77<br />

July 13 166 43 .3 210 16 .3 1 .87<br />

July 22 303 217 544 33 .3 4 .22<br />

Sept 8 190 126 127 21 .7 1 .56<br />

Sept 21 237 60 .4 212 10 .5 1 .02<br />

1973 June 19 261 12 .7 90 2 .5 3 .65<br />

Arctic Red at Mart<strong>in</strong> House 1971 June 2* 594 794 1,250 60 .0 16 .6<br />

June 2* 594 589 1,010 54 .8 17 .1<br />

July 8 153 251 889 29 .6 8.84<br />

Aug 3 314 427 1,610 72 .6 10 .8<br />

Sept 12 300 106 395 21 .3 2 .27<br />

1972 March 10* 8 .75 0 .787 76 .6 4 .4 0 .65<br />

March 10* 8 .75 0 .787 74 .9 4 .4 0 .51<br />

May 25 283 40 .8 145 9 .50 1 .59<br />

Aug 3 445 380 420 38 .1 3 .99<br />

Sept 10 163 470 184 8 .64 0 .73<br />

Peel 1971 June 4,980 581 918 50 .5<br />

Aug 3 1,700 179 478 28 .8 4 .87<br />

Sept 12 1,210 15 .7 36 .0 2 .29 0 .496<br />

* replicate samples<br />

m<br />

b ,,<br />

4


TABLE 17 . cont'd<br />

River Year Date<br />

SS4<br />

PC<br />

PM4<br />

PPi<br />

(m 3sec -1 )<br />

(g m -3 )<br />

(mMoles m -3 )<br />

Peel 1972 March 22 57 .1 0 .240 85 .8 3 .70<br />

July 7 917 77 .6 244 22 .8 1 .46<br />

July 18 503 123 4 .06<br />

Aug 3 713 140 440 35 .7 3 .86<br />

Sept 8 1,040 49 .8 . 152 11 .1 0 .95<br />

Sept 10 897 64 .5 189 10 .1 1 .47<br />

1973 April 5 43 .8 2 .67 15 .7 1 .64 0 .07<br />

Sept 26 710 53 .8 .. 163 ; 9 .29 1 .48<br />

Mackenzie at Norman Wells 1971 June 5*1 15,300 217 723 16 .1 3 .75<br />

June<br />

5* ; 15,300 170 6 .30 1 .28<br />

June 5* i 15,300 229<br />

June 5*' 15,300 213 624 14 .1 3 .79<br />

July 9 16,100 364 1,150 10 .5 68 .8<br />

Aug 5 13,500 1,780 6,300 180 27 .2<br />

Sept 12 10,100 62 .2 170 7 .40 2 .49<br />

1472 March 31 2,470 3 .47 61 .6 3 .50 0 .70<br />

July 6 18,700 175 220 25 .9 2 .98<br />

Aug 1 23,100 827 838 46 .8 4 .43<br />

Sept 10 10,600' 40 .7 213 9 .93 0 .71<br />

1 .973 April 3 3,250 19 .8 93 .5 11 .4 0 .36<br />

June 7 19,900 856 12 .2<br />

June 29 20,200 279 812 2 .39<br />

July 20 1 .6 , 600 207 817 15 .9 3 .81.<br />

Aug 9 14 ,000 329 250 24 .6 4 .75<br />

Sept 4 13,000 70 .9 1 .71 8 .00 1 .26<br />

Oct 7 9, 880 27 .3 7Q .2 4 .07 0 .64


TABLE 17 . cont'd<br />

River Year Date<br />

S Si<br />

PCB PN ;<br />

PP,c<br />

(m 3sec -1 )<br />

(g m -3 )<br />

(mMoles m -3 )<br />

Liard at Ft . Liard 1971 May 28 4,530 3 .29 3 .32 0 .27<br />

Aug 7 1,850 117 344 14 .5 2 .28<br />

Sept 9 1,980 230 442 34 .3 6 .88<br />

1972 March 27 ! 194 32 .1 184 11 .1 1 .34<br />

May 24 6,310 555 691 45 .1 0 .92<br />

July 4 4,190 196 201 24 .1 2 .35<br />

July 31 4,560 377 417 33 .2 2 .96<br />

Sept 12 1,730 53 .5 206 9 .29 1 .45<br />

. 1973 April 2 328 7 .30 71 .3 4 .14 0 .346<br />

June 5 5,940 298 90 .8 24 .5 3 .54<br />

Oct 11 1,360 11 .5 144 11 .9 0.568<br />

I<br />

Liard at Ft . Simpson 1972 May 27 6,140 775 441 23 .4 7 .81<br />

June 7 I 9,850 554 420 50 .8 4 .19<br />

June 20 10,200 708 198 10 .9 5 .09<br />

July 4 6,030 379 281 21 .0 3 .44<br />

July 18 3,880 . 435 234 17 .6 3 .01<br />

Aug 1 7,160 961 734 55 .6 3 .66<br />

Aug 16 3,760 72 .7 331 17 .3 2 .47<br />

Aug 29 2,970 176 17 .4<br />

Sept 19 2,070 38 .7 11 .7 0 .26<br />

1973 April 6 402 1 .03 31 .8 4 .64 0 .119<br />

May 15 4, 270<br />

I 4 80 498 29 .1 3 .45<br />

May 30 6,716 496 3 .22<br />

J une 12 8,860 767 3 .25<br />

July 10 6,450 66 .7 525 13 .4 1 .60<br />

July 24 4,330 108 368 11 .3 1 .78<br />

Aug 7 3,370 95 .6 280 8 .93 1 .68<br />

9 q<br />

O<br />

d,<br />

,O<br />

tic


S<br />

TAME 17 .<br />

cont'd<br />

River Year Date<br />

S S ~.<br />

PCti<br />

PNj<br />

PP 4<br />

m;sec<br />

(R m -3)<br />

(mMoles m -3 )<br />

Aug 22 2,440 47 .9 123 4 .79 1 .18<br />

Sept 5 2,890 49 .5 118 2 .36 1 .29<br />

Sept 20 2,990 66 .3 110 5 .85 2 .10<br />

Oct 4 1,950 27 .3 69 .2 3 .00 0 .65<br />

. South Nahanni at Clausen Creek 1971 May 30 1,050 290 1,090 31 .9 4 .23<br />

July 6 968 140 797 22 .0 3 .74<br />

Aug 7 535 66 .3 121 4 .20 1 .97<br />

Sept 9 317 17 .9 24 .2 0 .291<br />

. South Nahanni at Virg<strong>in</strong>ia Falls 1971 May 28 354 60 .0 267 8 .79 1 .45<br />

Aug 7 303 715 240 2 .59 1 .45<br />

Sept 9 199 7 .15 21 .2 0.822 0 .194<br />

1972 March 27 18 .7 0 .664 54 .9 3 .1 0 .40<br />

1973 April 25 .8 1 .96 7 .0 0 .57 0 .42<br />

June 5 821 130 167 8 .71 1 .13<br />

July 9 . 413 25 .2 155 2 .29 0:39<br />

Aug 6 622 231 45 .7 10 .4 1 .07<br />

Oct 4 136 5 .91 3 .93 0 .36 0 .232<br />

Wtllowlake, near mouth 1971 Aug 6 45 .6 9 .76 66 .0 3 .53 0 .5R1<br />

1.972 July 5 148 8 .60 0 .79<br />

Aug I 77 .3 3 .09 72 .5 10 .3 0 .22<br />

Sept II 25 .5 1 .90 142 10 .5 0 .29


44<br />

TABLE 17 . cont'd<br />

River Year Date Qi<br />

SSj<br />

PC,t<br />

PN,~<br />

PPi<br />

(iu 3 sec<br />

(g m-3 )<br />

(mMoles m -3 )<br />

1973 April 3 5 .18 3 .59 38 .2 2 .93 0 .22<br />

June 5 128 6 .88 73 .3 5 .64 0 .32<br />

July 1 160 59 .0 133 7 .36 0 .85<br />

July 19 36 .2 2 .41 26 .7 2 .43 0 .11<br />

Aug 8 43 .0 2 .96 27 .5 2 .57 0 .19<br />

Sept 6 50 .7 2 .38 12 .5 1 .29 0 .09<br />

Oct 4 25 .2 4 .68 53 .3 2 .79 0 .18<br />

I<br />

Mart<strong>in</strong>, near mouth 1972 May 31 47 .2 119 45 .0 1 .43 1 .75<br />

June 15 10 .7 12 .6 77 .1 7 .75 0 .52<br />

June 22 6 .20 8 .99 21 .4 4 .33 0 .54<br />

July 3 2 .62 6 .28 72 .9 12 .3 0 .39<br />

Aug 1 12 .8 3 .81 86 .9 7 :92 0.40<br />

Aug 29 3 .35 3 .14 76 .7 3 .11<br />

Sept 12 2 .31 2 .24 138 8 .14 1 .04<br />

Sept 28 1 .41 2 .45 254 9 .60 0 .35<br />

Nov 27 0 .39 10 .0 270 10 .7 0 .94<br />

1973 March 28 0 .17 8 .93 176 11 .4 0 .64<br />

May 22 14 .9 18 .6 573 2 .57 0 .54<br />

June 5 8 .66 13 .3 i 42 .5 2 .71 0 .37<br />

June 20 30 .6 50 .1 184 6 .86 1 .27<br />

July 4 22 .1 25 .4 82 .5 4 .57 0 .51<br />

July 22 2 .82 6 .58 29 .2 2 .79 0 .30<br />

July 31 1 .31 5 .61 23 .3 2 .36 0 .29<br />

Aug 21 8 .86 7 .41 28 .3 1 .71 0 .26<br />

Sept 12 1 .86 2 .97 13 .3 1 .21 0 .15<br />

Sept 23 1 .16 3 .14 19 .2 1 .36 0 .11<br />

N<br />

(4<br />

0


TABLE 17 .<br />

cont'd<br />

River Year Date Qt<br />

Ssi<br />

Pct<br />

PNi<br />

1'Pi<br />

(m 3sec -1 )<br />

(g m 3 )<br />

(mMoles m-3 )<br />

1974 March 1R 0 .068 24 .6 252 15 .7 1 .07<br />

May 13 57 .7 61 .5 .254 23 .3 1 .13<br />

Aug 7 6 .06 66 .0 125 - 10 .0 1 .62<br />

Sept 12 4 .53 2 .96 17 .7 0 .128<br />

.<br />

.<br />

Harris, near mouth 1972 May 31 8 .61 3 .54 90 .8 7 .50 0 .39<br />

June 10 3 .33 45 .0 5 .58 0 .29<br />

June 24 0 .822 -3 .82 41 .4 7 .42 0 .18<br />

July 6 0..416 0 .61 42 .1 7 .75 0 .05<br />

Aug ,8 0 .042 1 .73 78 .2 8 .21 0 .38<br />

Aug 18 0 .011 0 .57 96 .4 7 .50 0.21<br />

Aug' 31 0 .495 0 .36 55 .3 1 .86 0 .22<br />

Sept 28 0 .035 0 .36 126 1 .71 0 .19<br />

1973 March 28 0 .0 35 .0' 114 9 .14 0 .765<br />

May 8 8 .47 15 .8 98 .3 11 .9 0 .84<br />

May 22 2 .56 4 .43 15 .0 1 .07 0 .10<br />

June 5 0 .977 3 .02 14 .1 1 .36 0.09<br />

June 18 0 .793 2 .90 19 .1 1 .71 0 .12<br />

July 3 1 .81 3 .28 266 4 .57 0 .20<br />

July 27 0 .153 1 .86 0 .16<br />

Aug 17 0 .034 0 .95 3 .33 0 .29 0 .16<br />

Aug 28 0 .207 0 .81 23 .3 1 .07 0 .63<br />

Sept 9 0 .14 0 .96 18 .3 1 .50 0 .06<br />

Sept 23- 0 .076 0 .588 10 .8 1 .07 0 .08


I<br />

I<br />

TABLE 17 . cont'd<br />

River Year Date Q,- SSi Pci PNj PP4<br />

3<br />

<strong>in</strong> sec<br />

(g m-3 )<br />

(mtoles m -3 )<br />

I<br />

Caribou Bar, near mouth 1972 June 16'<br />

3 .60 ' 2 .90 63 .3 6 .29 0.38<br />

July 26 0 .417 0 .36 69 .8 3 .42 0 .19<br />

Aug 18 7 .53 i 25 .6<br />

Aug 30 3 .11 I 8 .0 81 .8 5 .5 0 .41<br />

1<br />

1973 May 23 36 .5 I 72 .3 99 .2 5 .5 0 .53<br />

June 10 8 .94 10 .9 26 .7 1 .93 0 .48<br />

June 22 0 .103 0 .79 15 .0 0 .29 0 .13<br />

June 29 0 .930 1 .14 11 .7 0 .43 0.07<br />

July 7 1 .92 0 .71 12 .5 0.86 0.16<br />

July 13 0 .864 1 .1 7 .5 0.50 0 .30 0<br />

July 20 0 .968 1 .50 25 .8 2 .29 0 .04<br />

July 27 0 .646 I 1 .27 25 .8 1 .43 0 .32<br />

Aug 3 0 .510 0 .63 5 .80 0 .71 0.06<br />

Aug 10 0 .734 0 .76 6 .67 0 .64 0.03<br />

Aug 17 1 .54 0 .98 14 .2 1 .36 0.09<br />

Aug 24 8 .24 11 .2 30 .8 3 .07 0 .233<br />

Aug 28* 8 .98 12 .2 2 .43 0 .21<br />

Aug 28* 8 .98 32 .5 2 .21 0.29<br />

Mackenzie at Ft . Providence 1971 July 5 5,520 7 .00 33 .3 2 .33 0 .258<br />

Aug 8 5,350 7 .52 28 .4 1 .76 0 .291<br />

Sept 8 i 4,980 6 .03 29 .7 2 .54 0 .226<br />

replicate samples<br />

i<br />

i<br />

0 d


It •<br />

TABLE 17 . cont'd<br />

River Year Date Qt<br />

SSi<br />

PC,<br />

PNi<br />

PP4<br />

(m3 sec -l )<br />

(R m-3 )<br />

(m4oles m-3 )<br />

1972 March 28 1,590 2 .30 ; 76 .6 7 .40 0 . .934<br />

May 24 6,820 5 .51 80 .8 7 .21 0 .800<br />

July 4 7,080 5 .06 70 .0 12 .8 0 .200<br />

July 31 6,960 . 4 .67 189 14 .3 0 .28<br />

Sept 12 6,340 2 .71 96 .3 4 .93 0 .18<br />

.<br />

1973 June 4 7,020 10 .9' 82 .5 5 .21 0.12<br />

July 3 7,080 11 .2 44 .2 3.64<br />

July 17 7,020 4 .69 35 .8 '3 .14 0.28<br />

Aug 7 6,710 7 .04 40 .8 4 .36 0 .32<br />

Sept 8 6 .735 28 .7 74 .2 6 .86 0 .81<br />

Oct 3 -6,110 10 .9 21 .7 2 .29 0 .24<br />

Trout at highway 1971 July 12 33 .4 .1 .68 5 .43 0 .166 0.194<br />

1973 June 4 77 .0 3 .53 34 .2 2 .36 0.12<br />

July 3 200 14 .0 84 .2 5 .29<br />

Aug 7 56 .3 2 .94 37 .9 37 .9 0 .21<br />

Sept 9 45 .8 2 .82 30 .0 3 .07 0 .19<br />

Great Bear, near Brackett 1.971 June 5 .597 0 .250<br />

River confluence July 9 631 0 .017 104 4 .46 0 .581<br />

Aug 2 640 0 .157 12 .1 3 .57. 0 .097<br />

Sept 11 625 5 .20 30 .5 1 .95 0 .129


TABLE 17 . cont'd<br />

River Year Date Qi SSi PC,t PNi PPi<br />

I(m 3 sec -1 ) (b m -3 ) (mMoles m -3 )<br />

1972 May 25 ! 526 2 .20 75 .0 5 .43 0 .41<br />

July 6 603 6 .76 85 .8 7 .71 0.46<br />

Aug 1 617 2 .33 96 .7 9 .21 0 .19<br />

1973 June 6 560 4 .16 22 .5 1 .29 0 .20<br />

June 30 589 3 .96 20 .8 1 .71<br />

July 20 608 3 .22 15 .0 1 .50 0 .12<br />

Aug 9 606 6 .40 37 .5 1 .07 0 .33<br />

Sept 4 620 3 .38 26 .7 1 .64. 0 .22<br />

Oct 7 583<br />

4 .60 15 .8<br />

1 .07 0 .10<br />

a'<br />

N<br />

Boot Creek, near mouth 1974<br />

I<br />

May 20<br />

0 .68 19 .9 182<br />

20 .1<br />

1 .32<br />

June 9 0 .14 I 2 .48 42 .5 6 .00 0 .323<br />

June 23 0 .283 I 2 .46 24 .2 3 .07 0 .439<br />

July 9 0 .821 67 .9 86 .7 5 .43 2 .76<br />

July 21 0 .235 4 .00 45 .0 4 .29 0 .285<br />

Aug 17 0 .024 14 .2 61 .7 4 .71 1 .95<br />

Porcup<strong>in</strong>e at Caribou Bar 1972 June 24 368 45 .1 203 15 .6 1 .67<br />

Creek July 21 408 9 .66 206 18 .1 0 .74<br />

Aug 30 ~ 801 91 .8 342 24 .0 2 .06<br />

a


TABLE 17 . cant 'd<br />

River Year Date<br />

Q'C'<br />

(m3sec- 1 )<br />

SS,L PC) PNi<br />

(g m -3 )<br />

(mMol es m -3 )<br />

PP {<br />

1973 May 28 3,220 175 306 22 .6 3 .97<br />

June 22 481 59 .6 668 37 .6 3 .03<br />

June 29 623 23 .4 94 .2 6 .43 1 .34<br />

July 7 4 39 12 .2 47 .5 3 .43 0 .53<br />

July 13 501 19 .6 77 .5 5 .20 0 .75<br />

July 20 572 13 .4 .53 .3 4 .21 0 .46<br />

July 27 1,200 175 475' 33 .9 4 .23<br />

Aug 3 410 11 .2 90 .0 5 .21 1 .58<br />

Aug 10 379 6 .31 43 .3 4 .57 0 .49<br />

Aug 17 1,430 73 .1 216 14 .2 1 .99<br />

Aug 24 2,090 214 815 41 .9 5 .80<br />

Aug 28 1,430 90 .0 266 14 .6 1 .46<br />

Aug 31 1,440 5 .12 256 14 .4 0 .87<br />

+ Porcup<strong>in</strong>e River discharge from Old Crow Water Survey Station, 64 km upstream from our Caribou Bar<br />

Creek Camp .


Figure 1 . Relationships between <strong>in</strong>stantaneous discharge ((u)<br />

<strong>and</strong> suspended sediment concentration (SSA) for streams<br />

<strong>and</strong> rivers listed <strong>in</strong> Table 1, 1971-73 . All regressions<br />

are significant at least to a = 0 .10 . Most <strong>of</strong> <strong>the</strong><br />

discharge data are from records <strong>of</strong> Water Survey <strong>of</strong><br />

Canada .<br />

1,000 -<br />

100 -<br />

_q_<br />

rn<br />

1 .0<br />

0.1<br />

0.1<br />

10 100<br />

i<br />

1,000<br />

i<br />

10,000<br />

Q L (m' sec :' )<br />

4<br />

4 4<br />

to


2 =0.67<br />

100,000-<br />

N<br />

E<br />

Y<br />

a 10,000-<br />

Y<br />

it<br />

U)<br />

N<br />

1,000-<br />

• MARTIN<br />

ARCTIC RED (MH) A LIARD (FT S)<br />

ARCTIC RED (ARR) ∎<br />

•PEEL<br />

S. NAHANNI (CC)* PE<br />

S . NAHANNI (VF) •<br />

S NAHANNI (CC)A<br />

S.<br />

NAHANNI (VF) ∎<br />

AS. NAHANNI (VF)<br />

• WILLOWLAKE<br />

∎<br />

WILLOWLAKE<br />

A WILLOWLAKE<br />

LIARD WT U<br />

LIARD IFT L)<br />

LIARO IFT L.)<br />

A 1971<br />

∎ 1972<br />

+ 1973<br />

100<br />

10<br />

x HARRIS<br />

I<br />

100<br />

I<br />

I<br />

1,000 10,000 100,000 I P00,000<br />

Qa(m 3 year -'x 10 6 )<br />

Figure 2 . Relationship between annual discharge (Q.) <strong>and</strong> annual suspended sediment <strong>transport</strong> rate per unit<br />

watershed area for rivers <strong>in</strong> ( :roup : I <strong>and</strong> 2 (exrIttd<strong>in</strong> Mackenzie at Norman Wells) <strong>of</strong> Table 1,<br />

1071-11 - 0-1-eh,- darn for must river!. are from '-'ater Survey <strong>of</strong> Canada .


0 .1 1 1 1<br />

0.1<br />

1 .0 10 100<br />

Q L(m' sec - ' )<br />

Figure 3 . Relationships between <strong>in</strong>stantaneous discharge (O ) <strong>and</strong><br />

for rivers listed <strong>in</strong> Table 1, 1971-73 .<br />

concentrations <strong>of</strong> particulate nitrogen (PNi)<br />

61 4)<br />

4 1+<br />

a


c<br />

11<br />

I<br />

C-<br />

10 -<br />

E<br />

n<br />

I,<br />

0<br />

10-<br />

E<br />

e<br />

0.1<br />

001<br />

0.1<br />

1<br />

I .0<br />

f<br />

10<br />

I<br />

100<br />

Q 1 (m' sec -')<br />

Figure 4 . Relationships between <strong>in</strong>stantaneous discharge (n,-) <strong>and</strong> conrentrati.ons<br />

for rivers listed <strong>in</strong> Table 1, 1771-73 .<br />

I<br />

I<br />

1,000 10,000 100,000<br />

<strong>of</strong> particulate phosphorus (rr 1 )<br />

I<br />

hl:


Figure '~ . Relationship b twt •cn <strong>in</strong>nual discharge ((),,) ru<strong>in</strong> annu .11 nart.iculatt' nitru~ o o.c n transptlrt <strong>rates</strong><br />

per unit watershed area (Pli es ) for rivers I i : :tcd <strong>in</strong> Grow) :: l <strong>and</strong> ? (exclud<strong>in</strong>g I 4ackenzie<br />

at Norman `Jells) <strong>of</strong> "'able 1, 1971-7 : .<br />

100,000-<br />

r 2 =0.64<br />

0<br />

a,<br />

N<br />

E<br />

mot:<br />

U)<br />

_N<br />

O<br />

E<br />

v<br />

Z<br />

0<br />

10,000-<br />

1 1000-<br />

+CARIBOU BAR<br />

A ARCTIC RED (MH)<br />

ARCTIC RED (AR) ∎<br />

S. NAHANNI (CC)<br />

m<br />

S NAHANNI (CC)<br />

S .<br />

NAHANNI (VF) ∎<br />

• WILLOWLAKE<br />

+WILL OWLAKE<br />

PEEL<br />

∎PEEL<br />

SrNAHANNI (VF)<br />

A S . :NAHANNI (VF)<br />

LIARD (FT S.)<br />

LIARD (FT L)<br />

LIARD (FT L .)<br />

A + IARD (FT S .)<br />

LIARD (FTL)<br />

+ MARTIN<br />

A WILLOWLAKE<br />

A 1971<br />

∎ 1972<br />

+ 1973<br />

100<br />

10<br />

+ HARRIS<br />

I<br />

100<br />

I 1<br />

1,000 10,000<br />

I<br />

100,000<br />

QQ (m 3 year - ' x 10")<br />

4N<br />

;q 0<br />

w


II (m 3 vnnr - ' v In'6 1<br />

r<br />

r,<br />

m<br />

A<br />

r r,<br />

10,000-<br />

r 2= 0 .61<br />

Figure 6 . Relationship between annual di.scharre (Q) <strong>and</strong> annual particulate phorphorus<br />

<strong>transport</strong> <strong>rates</strong> per unit watershed area (PPW) for rivers listed <strong>in</strong> Groups 1<br />

<strong>and</strong> 2 (exclud<strong>in</strong>g Mackenzie at Norman Wells) <strong>of</strong> Table 1, 1971-73 .<br />

A ARCTIC RED (MM)<br />

€ ARCTIC RED (AR)<br />

1,000-<br />

S NAHANNI (CC) €<br />

ULIARD (FTS .)<br />

UARD (FT L.)<br />

v<br />

W<br />

S. NAHANNI (VF) €<br />

S. NAHANNI (VF) A<br />

+ LIARD (FT S.)<br />

+ LIARD (FT L)<br />

€LIARD (FT L .1<br />

N<br />

-19<br />

W 100 -<br />

0<br />

cc<br />

a.<br />

+ MARTIN<br />

+ WI LLOWLAKE<br />

± WILLOWLAKE<br />

A WILLOWLAKE<br />

10-<br />

+ HARRIS<br />

A 1971<br />

€ 1972<br />

+ 1973<br />

I<br />

10<br />

I<br />

I00<br />

1<br />

1,000 10,000<br />

. 1<br />

100,000

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!