30.12.2013 Views

Effects of Surface Mulch on Soil Health Conditions in ... - ctahr

Effects of Surface Mulch on Soil Health Conditions in ... - ctahr

Effects of Surface Mulch on Soil Health Conditions in ... - ctahr

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Surface</str<strong>on</strong>g> <str<strong>on</strong>g>Mulch</str<strong>on</strong>g> <strong>on</strong><br />

<strong>Soil</strong> <strong>Health</strong> C<strong>on</strong>diti<strong>on</strong>s <strong>in</strong><br />

C<strong>on</strong>servati<strong>on</strong>-Tillage Systems<br />

Ko<strong>on</strong>-Hui Wang, Phd.<br />

PEPS, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Hawaii<br />

Cerruti R.R. Hooks, Ph.D.,<br />

Entomology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Maryland<br />

UH<br />

Susta<strong>in</strong>able Pest<br />

Management Lab


Outl<strong>in</strong>e<br />

Are we keep re-<strong>in</strong>vent<strong>in</strong>g the wheel?<br />

Compar<strong>in</strong>g tilled, no-tilled, and synthetic mulch to<br />

bare ground system<br />

Integrat<strong>in</strong>g no-till cover cropp<strong>in</strong>g with natural farm<strong>in</strong>g


Goals <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g soil health<br />

EI<br />

stress<br />

enriched<br />

stress<br />

depleted<br />

SI<br />

stable<br />

enriched<br />

stable<br />

depleted<br />

(Ferris et al., 2000)<br />

Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g high soil<br />

nutrient enrichment<br />

throughout a cropp<strong>in</strong>g<br />

cycle<br />

Susta<strong>in</strong> a stable soil<br />

food web structure


Different Approaches <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

C<strong>on</strong>servati<strong>on</strong> Tillage<br />

Strip-till<br />

Ridge till<br />

No till<br />

Natural farm<strong>in</strong>g


Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> previous c<strong>on</strong>servati<strong>on</strong> tillage<br />

practices <strong>on</strong> nematode communities<br />

C<strong>on</strong>servati<strong>on</strong> tillage <strong>in</strong>crease bacterivores and<br />

fungivores, but SI was not different between cover<br />

cropp<strong>in</strong>g and fallow dur<strong>in</strong>g a two- year study<br />

Failed to show <strong>in</strong>creases <strong>in</strong> soil food web structure<br />

follow<strong>in</strong>g two years <str<strong>on</strong>g>of</str<strong>on</strong>g> no-tillage<br />

Failed to show <strong>in</strong>creases <strong>in</strong> soil food web structure<br />

follow<strong>in</strong>g two years <str<strong>on</strong>g>of</str<strong>on</strong>g> strip-tillage<br />

Increase SI <strong>in</strong> 6- year <str<strong>on</strong>g>of</str<strong>on</strong>g> no-till system.<br />

Amend<strong>in</strong>g soil with green manure clearly <strong>in</strong>crease<br />

omnivorous and predatory nematodes <strong>in</strong> soil under<br />

greenhouse pot experiments.<br />

Strip-till <str<strong>on</strong>g>of</str<strong>on</strong>g> sunn hemp cover crop followed by<br />

mulch<strong>in</strong>g soil surface periodically with sunn hemp<br />

residues enhanced SI with<strong>in</strong> 2 cropp<strong>in</strong>g cycles.<br />

DuP<strong>on</strong>te et al.,<br />

2009<br />

Hanel, 2003;<br />

M<strong>in</strong>oshima et al.,<br />

2007<br />

Marahatta et al,<br />

2010;<br />

Okada and<br />

Harada, 2007<br />

Wang, McSorley<br />

et al, 2004<br />

Wang, et al.,<br />

2011


Outl<strong>in</strong>e<br />

<br />

Are we keep re-<strong>in</strong>vent<strong>in</strong>g the wheel?<br />

Compar<strong>in</strong>g tilled, no-tilled, and synthetic mulch to<br />

bare ground system<br />

Integrat<strong>in</strong>g no-till cover cropp<strong>in</strong>g with natural farm<strong>in</strong>g


Compar<strong>in</strong>g Tilled, No-tilled, Synthetic<br />

mulch to Bare Ground system<br />

SH+RS BG SH (No-till+liv<strong>in</strong>g mulch)<br />

MM<br />

SH=Sunn hemp<br />

RS = Rapeseed<br />

BG = Bare ground<br />

MM = Metalic mulch


Compar<strong>in</strong>g Tilled, No-tilled, Synthetic<br />

mulch to Bare Ground System<br />

BG = till <strong>on</strong>ce<br />

MM = till <strong>on</strong>ce + metalic mulch<br />

SHRS = sunn hemp & rapeseed<br />

till twice<br />

SH = No-till + SH organic mulch<br />

8/30/12 = term<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cover crop<br />

10/31/12 = term<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> zucch<strong>in</strong>i crop<br />

At end <str<strong>on</strong>g>of</str<strong>on</strong>g> cover crop:<br />

• SH no-till supported highest<br />

richness and diversity.<br />

• SHRS tilled twice has lowest<br />

richness and diversity.


Compar<strong>in</strong>g Tilled, No-tilled, Synthetic<br />

<str<strong>on</strong>g>Mulch</str<strong>on</strong>g> to Bare Ground System<br />

At end <str<strong>on</strong>g>of</str<strong>on</strong>g> zucch<strong>in</strong>i crop:<br />

• SHRS tilled twice has highest<br />

EI, MM & BG has lowest EI.<br />

• Reversed is true for CI.<br />

• N<strong>on</strong>e affect SI.


Summary<br />

Incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cover crop residues<br />

improved soil<br />

enrichment rapidly,<br />

resulted <strong>in</strong> less<br />

stressful soil<br />

c<strong>on</strong>diti<strong>on</strong> (low CI) but<br />

did not improve SI.<br />

SH no-till cover<br />

cropp<strong>in</strong>g system<br />

did not improve<br />

nematode<br />

community<br />

structure with<strong>in</strong> <strong>on</strong>e<br />

cropp<strong>in</strong>g cycle <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

zucch<strong>in</strong>i.<br />

Thus, more work is<br />

needed to speed up<br />

soil health<br />

improvement process.


Outl<strong>in</strong>e<br />

Are we keep re-<strong>in</strong>vent<strong>in</strong>g the wheel?<br />

Compar<strong>in</strong>g tilled, no-tilled, and synthetic mulch to<br />

bare ground system<br />

Integrat<strong>in</strong>g no-till cover cropp<strong>in</strong>g with natural farm<strong>in</strong>g


Pr<strong>in</strong>ciples <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Farm<strong>in</strong>g<br />

Avoidance <str<strong>on</strong>g>of</str<strong>on</strong>g> manufactured <strong>in</strong>puts and<br />

equipment,<br />

Exploits the complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> liv<strong>in</strong>g organisms<br />

that shape each ecosystem, about<br />

“build<strong>in</strong>g the system”,<br />

“the cultivati<strong>on</strong> and perfecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> human<br />

be<strong>in</strong>gs”,<br />

Close observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> local c<strong>on</strong>diti<strong>on</strong>s,<br />

Demands no <strong>in</strong>puts and mimics nature.<br />

Build<strong>in</strong>g the system


Biodiversity <strong>in</strong><br />

Natural area vs M<strong>on</strong>oculture<br />

Enriched with<br />

<strong>in</strong>digenous<br />

micoorganisms<br />

Disturbed agroecosystem<br />

with less biodiversity


Basic Theories <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Korean Natural Farm<strong>in</strong>g<br />

IMO<br />

Introduce <strong>in</strong>digenous microorganisms (IMOs)<br />

Reduce soil disturbance through no-till<br />

Increase producti<strong>on</strong> with <strong>on</strong>-farm <strong>in</strong>puts<br />

Master Cho (Han-Yu Cho)


Cultur<strong>in</strong>g IMO Us<strong>in</strong>g Different<br />

Substrates<br />

1<br />

2/3 full steam rice <strong>in</strong><br />

a box<br />

2<br />

IMO1<br />

3<br />

Check the box <strong>in</strong> 4-5<br />

days for white mold<br />

4<br />

Seal with paper<br />

towel.<br />

C<strong>on</strong>ta<strong>in</strong>er 2/3<br />

full.<br />

Ferment for 7<br />

days<br />

5<br />

IMO2<br />

Cover the rice box and<br />

scattered with bamboo<br />

leaves<br />

Add brown sugar 1:1<br />

(w/w)


Cultur<strong>in</strong>g IMO Us<strong>in</strong>g Different<br />

Substrates<br />

6<br />

2 oz IMO2 +<br />

60 lb mill run<br />

+ 5 gal<br />

water (with<br />

120 ml <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

SES)<br />

Compost for 7 days, < 110F<br />

8<br />

IMO3<br />

7<br />

IMO3 + field soil +<br />

soil from natural<br />

area (2: 1: 1) + 5<br />

gal water (with 120<br />

ml <str<strong>on</strong>g>of</str<strong>on</strong>g> SES), cover<br />

and composted for<br />

~7 days.<br />

IMO4<br />

9


What does IMO do?<br />

1) Increase soil nutrient cycl<strong>in</strong>g organisms?<br />

2) Increase soil dwell<strong>in</strong>g mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna?<br />

3) Increase root mycorrhizae?<br />

4) Increase plant growth promot<strong>in</strong>g<br />

rhizobacteria (PGPR)?<br />

Mycorrhizae<br />

PGPR


<strong>Soil</strong> Food Web<br />

Detrital N, P<br />

Inorganic N, P<br />

Plant<br />

N, P<br />

Fungal N, P<br />

Bacterial N, P<br />

Fungal-feed<strong>in</strong>g Nematode<br />

Bacterial-feed<strong>in</strong>g Nematode<br />

Omnivorous and Predatory<br />

Nematode<br />

(modified from Ingham et al., 1985)


Anticipated <strong>Soil</strong> health <strong>in</strong>dicati<strong>on</strong><br />

Bacterivore Fungivore Herbivore Omnivore Predator<br />

EI=Enrichment <strong>in</strong>dex<br />

CI=Channel <strong>in</strong>dex<br />

SI=Structure <strong>in</strong>dex<br />

+ richness, diversity


Foliar Spray (Nutrient <strong>in</strong>puts)<br />

• BRV: brown rice v<strong>in</strong>egar<br />

• FPJ: fermented plant juice<br />

• LAB: lactic acid bacteria<br />

• FAA: fish am<strong>in</strong>o acid<br />

• OHN: oriental herb nutrients<br />

• WCAP: water soluble Ca-Phosphate<br />

• WCA: water soluble Ca<br />

• MA: M<strong>in</strong>eral A, B, C, D<br />

• SW: sea water


Korean Natural Farm<strong>in</strong>g<br />

Korean Natural Farm<strong>in</strong>g = a practice to deliberately<br />

culture and re<strong>in</strong>troduced naturally occurr<strong>in</strong>g soil<br />

microorganisms <strong>in</strong>to no-till agroecosystem,<br />

followed by foliar nutrients <strong>in</strong>puts <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

fermented or nutrient extracted farm waste.<br />

<br />

Scatter IMO4, cover with mulch (7 days)


Evaluat<strong>in</strong>g Benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> KNF us<strong>in</strong>g<br />

Nematodes as <strong>Soil</strong> <strong>Health</strong> Indicators<br />

Four farm trials compar<strong>in</strong>g KNF to either<br />

c<strong>on</strong>venti<strong>on</strong>al (CONV) or organic (ORG) farm<strong>in</strong>g.<br />

<br />

Farm Crop(s) Plot size (#<br />

plots/treatment)<br />

Poamoho Grape tomato 8 30 ft 2<br />

(3/treatment)<br />

Farm #1 soybean 8 20 ft 2<br />

Farm #2<br />

Permaculture<br />

Farm<br />

kabocha<br />

squash<br />

kale, beet,<br />

broccoli,<br />

<strong>on</strong>i<strong>on</strong>, leek<br />

(4/treatment)<br />

2 2 ft 2<br />

(10/treatment)<br />

4 100 ft 2<br />

(2/treatment)<br />

<str<strong>on</strong>g>Surface</str<strong>on</strong>g> mulch<br />

Sunn hemp<br />

no-till farm<strong>in</strong>g<br />

Sunn hemp<br />

cover crop<br />

Wood chips<br />

Macadamia<br />

nut husks


Poamoho Trial (Grape Tomato)<br />

1. KNF+ SH<br />

2. KNF + WM<br />

3. CONV + SH<br />

4. CONV + WM<br />

C<strong>on</strong>v = Organic<br />

fertilizer<br />

(Chicken pellets<br />

fertilizer 180<br />

lb/acre)<br />

Sunn hemp (SH)<br />

Weed Mat (WM)


Poamoho Trial<br />

(Grape Tomato)<br />

Sunn hemp grown<br />

from May-July,<br />

2012 produced<br />

14.7 t<strong>on</strong>s/acre <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

biomass.<br />

Roller crimper = no-till<br />

equipment for organic farm<strong>in</strong>g


Poamoho Trial<br />

Plant health<br />

• KNF works well<br />

with SH mulch;<br />

org fert (C<strong>on</strong>v)<br />

works well with<br />

WM.<br />

• KN+SH was<br />

comparable to<br />

C<strong>on</strong>v+WM.<br />

SPAD Chlorophyll meter


Sunn Hemp Suppress Plant-parasitic<br />

nematodes but not KNF


Poamoho Trial<br />

<strong>Soil</strong> health<br />

• KNF+SH has better<br />

bacterial decompositi<strong>on</strong><br />

than KNF+WM < 3<br />

m<strong>on</strong>ths after tomato<br />

plant<strong>in</strong>g.<br />

• KNF resulted <strong>in</strong> more<br />

bacterial decompositi<strong>on</strong><br />

at the end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experiment.<br />

• SH <strong>in</strong>creased fungal<br />

decompositi<strong>on</strong> up to ~<br />

3m<strong>on</strong>ths.


<strong>Soil</strong> <strong>Health</strong><br />

• KNF+SH <strong>in</strong>creased<br />

omnivorous and<br />

predatory nematodes<br />

(< 3 m<strong>on</strong>ths).<br />

• Indicat<strong>in</strong>g reduced<br />

disturbance, improve<br />

<strong>in</strong> soil community<br />

structure, more stable<br />

soil food web.<br />

• It took 2 years to<br />

reach this c<strong>on</strong>diti<strong>on</strong>s<br />

<strong>in</strong> strip-till SH cover<br />

cropp<strong>in</strong>g system<br />

(Wang et al, 2011).


Poamoho Trial (Grape Tomato)<br />

KNF + SH at 3 m<strong>on</strong>ths after plant<strong>in</strong>g


Tomato Yield <strong>in</strong> KNF+SH is<br />

Comparable to CONV+WM<br />

Tomato yield (Kg/plant)


Nutrient Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> IMO4<br />

mg/dm 3<br />

pH 8.3 Mn 523<br />

N 0.67 % Fe 12<br />

P 825 ppm Cu 8.1<br />

K 1900 ppm Zn 36<br />

Ca 1361 ppm


Summary<br />

Nutrient source from IMO4 is m<strong>in</strong>imal, yet KNF practice<br />

produced comparable tomato yield as chicken pellets<br />

fertilized crop.<br />

IMO4 treatment resulted <strong>in</strong> more bacterial dom<strong>in</strong>ated<br />

decompositi<strong>on</strong> <strong>in</strong> KNF plots especially when <strong>in</strong>tegrated<br />

with organic mulch (e.g. SH).<br />

KNF+SH had highest omnivorous and predatory<br />

nematodes ~ 3 m<strong>on</strong>ths after plant<strong>in</strong>g, <strong>in</strong>dicat<strong>in</strong>g stable soil<br />

food web structure, though WM treatment catch up later.


Materials and Methods<br />

Four farm trials compar<strong>in</strong>g KNF to either<br />

c<strong>on</strong>venti<strong>on</strong>al (CONV) or organic (ORG) farm<strong>in</strong>g.<br />

<br />

<br />

<br />

Farm Crop(s) Plot size (#<br />

plots/treatmen<br />

t)<br />

Poamoho Grape tomato 8 30 ft 2<br />

(3/treatment)<br />

Farm #1 soybean 8 20 ft 2<br />

Farm #2<br />

Permacultur<br />

e<br />

Farm<br />

kabocha<br />

squash<br />

kale, beet,<br />

broccoli,<br />

<strong>on</strong>i<strong>on</strong>, leek<br />

(4/treatment)<br />

2 2 ft 2<br />

(10/treatment<br />

)<br />

4 100 ft 2<br />

(2/treatment)<br />

<str<strong>on</strong>g>Surface</str<strong>on</strong>g> mulch<br />

Sunn hemp<br />

no-till farm<strong>in</strong>g<br />

Sunn hemp<br />

cover crop<br />

Wood chips<br />

Macadamia<br />

nut husks


Farm #1 (Soybean)<br />

KNF improve Plant <strong>Health</strong><br />

C<strong>on</strong>v = Amm<strong>on</strong>ium sulfate<br />

KNF (greener)<br />

KNF<br />

CONV<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Yield (kg)<br />

**<br />

Chlorophyll c<strong>on</strong>tent<br />

(µmol m–2)<br />

CONV KNF<br />

*<br />

N (%)


Farm #1 (Soybean)<br />

KNF improve soil health<br />

No. nematodes/250 cm 3 s<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

CONV<br />

KNF<br />

** **<br />

Bacterivore Fungivore Omnivore Predator


Farm #1 (Soybean)<br />

KNF reduced soil compacti<strong>on</strong><br />

Numbers/250 cm 3 soil<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

*<br />

Enchytreid worm<br />

CONV<br />

KNF<br />

**<br />

<strong>Soil</strong> depth<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

<strong>Soil</strong> depth (cm)


Farm #2<br />

KNF improves <strong>Soil</strong> Tilth<br />

Numbers/250 cm 3 soil<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

CONV<br />

KNF<br />

*<br />

Enchytreid worm<br />

KNF did <strong>in</strong>creased<br />

enchytreid worm that<br />

could c<strong>on</strong>tribute to<br />

better soil tilth <strong>in</strong> Farm<br />

#2.


Materials and Methods<br />

Four farm trials compar<strong>in</strong>g KNF to either<br />

c<strong>on</strong>venti<strong>on</strong>al (CONV) or organic (ORG) farm<strong>in</strong>g.<br />

<br />

Farm Crop(s) Plot size (#<br />

plots/treatment)<br />

Poamoho Grape tomato 8 30 ft 2<br />

(3/treatment)<br />

Farm #1 soybean 8 20 ft 2<br />

Farm #2<br />

Permaculture<br />

Farm<br />

kabocha<br />

squash<br />

kale, beet,<br />

broccoli,<br />

<strong>on</strong>i<strong>on</strong>, leek<br />

(4/treatment)<br />

2 2 ft 2<br />

(10/treatment)<br />

4 100 ft 2<br />

(2/treatment)<br />

<str<strong>on</strong>g>Surface</str<strong>on</strong>g> mulch<br />

Sunn hemp notill<br />

farm<strong>in</strong>g<br />

Sunn hemp<br />

cover crop<br />

Wood chips<br />

Macadamia nut<br />

husks


Farm #3<br />

<strong>Soil</strong> depth (cm)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Results (<strong>Soil</strong> Compacti<strong>on</strong>)<br />

*<br />

Leek<br />

KNF<br />

Org<br />

**<br />

Burdock


Summary<br />

Incorporat<strong>in</strong>g cover crop residues <strong>in</strong>creased soil<br />

nutrient enrichment (EI) transiently, but it did not<br />

improve community structure (SI).<br />

No-till cover cropp<strong>in</strong>g did not <strong>in</strong>crease EI and SI<br />

with<strong>in</strong> <strong>on</strong>e zucch<strong>in</strong>i cropp<strong>in</strong>g cycle.<br />

Add<strong>in</strong>g IMO4 compost to no-till SH <strong>in</strong>creased<br />

bacterivores, fungivores, and resulted <strong>in</strong> higher<br />

omnivorous and predatory nematodes with<strong>in</strong> 3<br />

m<strong>on</strong>ths after tomato plant<strong>in</strong>g.<br />

Thus, <strong>in</strong>troduc<strong>in</strong>g IMO could speed up soil health<br />

improvement process <strong>in</strong> a no-till cover cropp<strong>in</strong>g<br />

practice.


Acknowledgement<br />

Michael Dup<strong>on</strong>te<br />

Ray Uchida<br />

Russell Nagata, Ph.D.<br />

Susan Miyasaka, Ph.D.<br />

Theodore J. Radovich,<br />

Ph.D.<br />

Jari Sugano<br />

Carl Evensen, Ph.D.<br />

Glenn Sako<br />

Jensen Uyeda<br />

Joe McG<strong>in</strong>n<br />

Mary Lorenz<br />

D<strong>on</strong>a Willoughby<br />

Leanne Okamoto<br />

David W<strong>on</strong>g<br />

Jane Tavares<br />

D<strong>on</strong>na Meyer<br />

Ikaia Leleiwi<br />

Angelo L<str<strong>on</strong>g>of</str<strong>on</strong>g>fredo<br />

Juan Castilo<br />

Miriam L<strong>on</strong>gs<br />

Shelby Ch<strong>in</strong>g<br />

AFRI<br />

ORG program<br />

Univ Maryland<br />

Hooks’ Lab

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!