30.12.2013 Views

Techniques de caracterisation Clinker / ciment - Cours de Génie Civil

Techniques de caracterisation Clinker / ciment - Cours de Génie Civil

Techniques de caracterisation Clinker / ciment - Cours de Génie Civil

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Techniques</strong> <strong>de</strong> <strong>caracterisation</strong><br />

• <strong>Clinker</strong> / <strong>ciment</strong><br />

• Pâte <strong>de</strong> <strong>ciment</strong> / béton<br />

– Soli<strong>de</strong><br />

– pores<br />

<strong>Clinker</strong> / <strong>ciment</strong><br />

• Composition chimique:<br />

– XRF<br />

• Fast<br />

• All elements (B and above)<br />

X-rays


20 µm<br />

«alite»<br />

C 3 S, impure<br />

« belite »<br />

C 2 S, impure<br />

phases<br />

«interstitielles»<br />

«celite»<br />

C 3 A, impure<br />

+ solution<br />

soli<strong>de</strong> <strong>de</strong> ferrite<br />

«C 4 AF »,<br />

liqui<strong>de</strong> pendant<br />

la cuisson<br />

X-ray diffraction -Braggs law<br />

Limitations of conventional<br />

quantitative XRD-analysis:<br />

1200<br />

Belite: Influence of the preferred orientation on the peak area<br />

- Preferred orientation effects<br />

- Overlapping of peaks<br />

- Solid solutions<br />

Intensities (counts)<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

No orientation<br />

Orientation 0.9<br />

Orientation 0.7<br />

Orientation 0.5<br />

25 30 35 40<br />

2-Theta (°)<br />

Theoretical calculation of a mixture of 50 % Alite and 50 % Belite<br />

Solid solutions<br />

*<br />

Example Alite :<br />

(Ca 0,98 Mg 0,01 Al 0,067 Fe 0,00333 ) 3 (Si 0,97 Al 0,03 )O 5<br />

Similar: Belite, Aluminate and Ferrite<br />

Intensities<br />

600<br />

500<br />

400<br />

300<br />

200<br />

Alite<br />

Belite<br />

*<br />

CEMENT CHEMISTRY, H.F.W. Taylor (2nd edition 1997)<br />

100<br />

0<br />

10 20 30 40 50 60<br />

2-Theta (°)


2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

20 25 30 35 40 45 50 55 60<br />

2-theta<br />

0<br />

SECAR 71<br />

SECAR 71<br />

400<br />

300<br />

200<br />

100<br />

20 25 30 35 40 45 50 55 60<br />

2-theta<br />

0<br />

57.2 wt.-% Alite<br />

18.2 wt.-% Belite<br />

12.2 wt.-% Aluminate<br />

7.1 wt.-% Ferrite<br />

4.4 wt.-% Gypsum<br />

0.9 wt.-% Lime<br />

Observed Intensities<br />

Calculated Intensities<br />

Difference<br />

10 20 30 40 50<br />

2-Theta (°)<br />

Quantitative XRD analysis<br />

Intensité (Cps)<br />

Différentes métho<strong>de</strong>s <strong>de</strong> quantification<br />

C) Métho<strong>de</strong> Rietveld<br />

A) Intensité absolue<br />

500<br />

B) Métho<strong>de</strong> surface pic<br />

18 55<br />

0<br />

X<br />

18.2°<br />

Y<br />

Bruit <strong>de</strong> fond<br />

2-theta (°)<br />

Rietveld working principles<br />

Diffractometer BRAGG: n•λ = 2•d•sin Θ<br />

X-RAY beam<br />

cut out<br />

d<br />

x-ray beam<br />

observed diagram<br />

intensity<br />

pow<strong>de</strong>r<br />

sample<br />

Portland Cement<br />

Intensities (counts)<br />

Atoms / Position X Y Z Occup.<br />

calculated diagram<br />

Mg 2+ 0.000 0.000 0.000 0.1667<br />

C 0.000 0.000 0.000 0.1667<br />

O 1- 0.2800 0.000 0.2500 0.5000<br />

intensity<br />

Lattice parameters 4.6330 6.6330 15.0160<br />

Preliminaries: a) stable running Rietveld software<br />

b) precise working control files<br />

The Rietveld method<br />

<strong>Clinker</strong> Port La Nouvelle<br />

300<br />

Observed Intensities<br />

Calculated Intensities<br />

Difference<br />

Intensities (counts)<br />

200<br />

100<br />

0<br />

10 20 30 40 50 60<br />

2-Theta(°)


1 2 3 4 5 6 7<br />

Weight-%<br />

Content of Alite<br />

80<br />

Samples 1-5:<br />

<strong>Clinker</strong> Type A<br />

75<br />

Samples 6-7:<br />

<strong>Clinker</strong> Type B<br />

70<br />

65<br />

Rietveld calculation<br />

60<br />

Sample X-rayed in Halle<br />

Rietveld calculation<br />

Sample X-rayed at LCR<br />

55<br />

Microscopy CTS<br />

50<br />

Sample No.<br />

Weight-%<br />

Content of Aluminate<br />

12<br />

Rietveld calculation<br />

10<br />

Sample X-rayed in Halle<br />

Rietveld calculation<br />

Sample X-rayed at LCR<br />

8<br />

Microscopy CTS<br />

6<br />

4 Samples 1-5:<br />

<strong>Clinker</strong> Type A<br />

2 Samples 6-7:<br />

<strong>Clinker</strong> Type B<br />

0<br />

1 2 3 4 5 6 7<br />

Sample No.<br />

wt.-%<br />

wt.-%<br />

10<br />

10<br />

8<br />

8<br />

6<br />

6<br />

4<br />

4<br />

2<br />

2<br />

0<br />

0<br />

% gypse dsc<br />

% gypse dsc<br />

% standard<br />

% standard<br />

% gypse rietveld<br />

% gypse rietveld<br />

2 3 4 1 5 6 7 8 9<br />

1 2 3 4 5 6 7 8 9<br />

Samples 1 to 9<br />

Samples 1 to 9<br />

wt.-%<br />

wt.-%<br />

12<br />

12<br />

10<br />

10<br />

8<br />

8<br />

6<br />

6<br />

4<br />

4<br />

2<br />

2<br />

0<br />

0<br />

% sh dsc<br />

% sh dsc<br />

% standard<br />

% standard<br />

% sh rietveld<br />

% sh rietveld<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

4<br />

4<br />

5<br />

5<br />

6<br />

6<br />

7<br />

7<br />

8<br />

Samples<br />

8<br />

Samples<br />

1<br />

1<br />

to<br />

to<br />

9<br />

9<br />

À cause <strong>de</strong>s solutions soli<strong>de</strong>s<br />

Le calcul « Bogue » n’est qu’une<br />

estimation<br />

C 3 S<br />

BOGUE<br />

59<br />

QXDA<br />

67<br />

C 2 S<br />

C 3 A<br />

«C 4 AF »<br />

13<br />

9<br />

9<br />

15<br />

5<br />

6<br />

Écarts typiques<br />

Pâte <strong>de</strong> <strong>ciment</strong> / béton - solids<br />

Hydrates<br />

• Hydroxi<strong>de</strong>s <strong>de</strong> calcium, Ca(OH) 2<br />

• C-S-H ?


NMR – RMN – resonance magnetic nucleaire<br />

• Nucleus with non-zero magnetic moment<br />

• Strong magnetic field,<br />

strong radio frequency pulse aligns nagnetic<br />

moments<br />

• Magnetic moments relax back to equilibrium<br />

positions<br />

• Fourier transform of time <strong>de</strong>pen<strong>de</strong>ncy ><br />

frequency spectrum<br />

Nuclear Magnetic Resonance : application to<br />

silicates<br />

One chemical environement<br />

→ one chemical shift (in ppm) on the<br />

29 Si MR spectrum<br />

Q 0<br />

Q 1<br />

Q 2<br />

29 Si chemical shift table<br />

(Engelhardt and Michel)<br />

Q 3<br />

Q 0<br />

Cement<br />

Q 4<br />

-60 -70 -80 -90 -100 -110 -120<br />

ppm<br />

Q 3<br />

Q 2<br />

Q 1<br />

Calcium Silicate<br />

Hydrates<br />

Quartz, silica<br />

fume<br />

Q 4<br />

Characterisation of <strong>ciment</strong> : 29 Si spectrum<br />

Q 1<br />

C-S-H<br />

Q 2<br />

Q 2p<br />

cement<br />

sand and quartz Q 4<br />

Q 0<br />

-140<br />

silica fume Q 4<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

-100<br />

-110<br />

-120<br />

-130<br />

(ppm)


NMR<br />

Q2(1Al) indicates Al in<br />

C-S-H chains<br />

120<br />

100<br />

80<br />

Q 2 (1Al)<br />

Q 0<br />

Q 1<br />

Q 2 (0Al)<br />

x10 3<br />

60<br />

40<br />

20<br />

0<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

ppm<br />

-100<br />

-110<br />

Al subsituting for Si<br />

in bridging sites<br />

-120<br />

9/17<br />

Aluminium in concretes : charactérisation<br />

by using 27 Al NMR<br />

Al IV<br />

cement *<br />

140<br />

120 100 80 60 40 20 0<br />

(ppm)<br />

-20<br />

-40<br />

-60<br />

* = rotating si<strong>de</strong> bands<br />

C-S-H<br />

Aluminium in concretes : charactérisation<br />

by using 27 Al NMR<br />

Si<br />

ettringite<br />

Ca<br />

AFm<br />

Al V<br />

Al IV<br />

paste : water +<br />

cement<br />

140<br />

*<br />

120 100 80 60 40 20 0<br />

(ppm)<br />

*<br />

*<br />

-20<br />

-40<br />

-60<br />

* = rotating si<strong>de</strong> bands


Sections polie, electron retrodiffusé<br />

pores<br />

sand (aggregate)<br />

“outer” or<br />

“undifferentiated”<br />

C-S-H<br />

“inner” C-S-H<br />

partially reacted<br />

cement grain<br />

calcium hydroxi<strong>de</strong><br />

(CH)<br />

Many microanalyses in precise locations<br />

Outer C-S-H :<br />

C-S-H formed<br />

outsi<strong>de</strong> the largest<br />

cement grains.<br />

Inner C-S-H :<br />

C-S-H formed within<br />

the boundaries of the<br />

former cement grains.<br />

EXAMPLE<br />

mechanism of expansion<br />

of mortars cured at elevated<br />

temperatures<br />

0.2<br />

Non-expanding mortar<br />

S/Ca<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

After heating<br />

After 200 days<br />

0 0.05 0.1 0.15 0.2<br />

Al/Ca<br />

S/Ca<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

Expanding mortar<br />

After heating<br />

After 200 days<br />

0 0.05 0.1 0.15 0.2<br />

Al/Ca


Overall reaction<br />

• Heat output – calorimetry<br />

SO 3 =2.6; C 3 A=10<br />

SO 3 /C 3 A=0.88<br />

SO 3 =3.1; C 3 A=12.1<br />

SO 3 /C 3 A=0.87<br />

SO 3 =2.2; C 3 A=10.1<br />

SO 3 /C 3 A=0.73<br />

Overall reaction<br />

• Heat output – calorimetry<br />

• Bound water<br />

weight loss 110°C – 800 °C

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!