30.12.2013 Views

Kump et al EPSL 2005.pdf - Bryn Mawr College

Kump et al EPSL 2005.pdf - Bryn Mawr College

Kump et al EPSL 2005.pdf - Bryn Mawr College

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

L.R. <strong>Kump</strong>, W.E. Seyfried Jr. / Earth and Plan<strong>et</strong>ary Science L<strong>et</strong>ters 235 (2005) 654–662 661<br />

vol. 91. American Geophysic<strong>al</strong> Union, Washington, D.C.,<br />

1995, pp. 222–247.<br />

[4] J.C.G. W<strong>al</strong>ker, P. Brimblecombe, Iron and sulfur in the prebiologic<br />

ocean, Precambrian Res. 28 (1985) 205–222.<br />

[5] D.E. Canfield, A new model for Proterozoic ocean chemistry,<br />

Nature 396 (1998) 450–453.<br />

[6] J.L. Kirschvink, Late Proterozoic glob<strong>al</strong> glaciation: the Snowb<strong>al</strong>l<br />

Earth, in: J.W. Schopf, C. Klein (Eds.), The Proterozoic<br />

Biosphere: A Multidisciplinary Study, Cambridge University<br />

Press, Cambridge, UK, 1992, pp. 51–52.<br />

[7] N.J. Beukes, C. Klein, Models for iron-formation deposition,<br />

in: J.W. Schopf, C. Klein (Eds.), The Proterozoic Biosphere: A<br />

Multidisciplinary Study, Cambridge University Press, Cambridge,<br />

UK, 1992, pp. 147–151.<br />

[8] W.E. Seyfried Jr., K. Ding, Phase equilibria in subseafloor<br />

hydrotherm<strong>al</strong> systems; a review of the role of redox, temperature,<br />

pH and dissolved Cl on the chemistry of hot spring<br />

fluids at mid-ocean ridges, in: S.E. Humphris , R.A. Zierenberg,<br />

L.S. Mullineaux, R.E. Thomson (Eds.), Seafloor Hydrotherm<strong>al</strong><br />

Systems: Physic<strong>al</strong>, Chemic<strong>al</strong>, Biologic<strong>al</strong>, and<br />

Geologic<strong>al</strong> Interactions. Geophysysic<strong>al</strong> Monograph, vol. 91,<br />

Amer. Geop. Union, Washington, D.C., 1995, pp. 248–272.<br />

[9] K.L. Von Damm, Chemistry of hydrotherm<strong>al</strong> vent fluids from<br />

98–108 N, East Pacific Rise: btime zero,Q the immediate posteruptive<br />

period, J. Geophys. Res. 105 (2000) 11,203–11,222.<br />

[10] K.L. Von Damm, L.G. Buttermore, S.E. Oosting, A.M. Bray,<br />

D.J. Fornari, M.D. Lilley, W.C. Shanks III, Direct observation<br />

of the evolution of a seafloor bblack smokerQ from vapor to<br />

brine, Earth Plan<strong>et</strong>. Sci. L<strong>et</strong>t. 149 (1997) 101–111.<br />

[11] K.L. Von Damm, M.D. Lilley, W.C. Shanks, M. Brockington,<br />

A. Bray, K.M. O’Grady, E. Olson, A. Graham, G. Proskurowski,<br />

Extraordinary phase separation and segregation in vent<br />

fluids from the southern East Pacific Rise, Earth Plan<strong>et</strong>. Sci.<br />

L<strong>et</strong>t. 206 (2003) 365–378.<br />

[12] A.D. Anbar, A.H. Knoll, Proterozoic ocean chemistry and<br />

evolution; a bioinorganic bridge? Science 297 (2002)<br />

1137–1142.<br />

[13] M.T. Hurtgen, M.A. Arthur, N.S. Suits, A.J. Kaufman, The<br />

sulfur isotopic composition of Neoproterozoic seawater sulfate:<br />

implications for a Snowb<strong>al</strong>l Earth? Earth Plan<strong>et</strong>. Sci. L<strong>et</strong>t.<br />

203 (2002) 413–429.<br />

[14] M.D. Lilley, J.E. Lupton, D.A. Butterfield, E. Olson, Magmatic<br />

events produce rapid changes in hydrotherm<strong>al</strong> vent<br />

chemistry, Nature 422 (2003) 878–881.<br />

[15] K.L. Von Damm, Evolution of the hydrotherm<strong>al</strong> system at East<br />

Pacific Rise 9850V N: geochemic<strong>al</strong> evidence for changes in the<br />

upper oceanic crust, in: C.R. German, J. Linn, L.M. Parson<br />

(Eds.), Mid-Ocean Ridges: Hydrotherm<strong>al</strong> Interactions B<strong>et</strong>ween<br />

the Lithosphere and Oceans, American Geophysic<strong>al</strong><br />

Union, Washington, D.C., 2004, pp. 285–305.<br />

[16] M.K. Tivey, S.E. Humphris, G. Thompson, M.D. Hannington,<br />

P.A. Rona, Deducing patterns of fluid flow and mixing within<br />

the TAG active hydrotherm<strong>al</strong> mound using miner<strong>al</strong>ogic<strong>al</strong> and<br />

geochemic<strong>al</strong> data, J. Geophys. Res., Solid Earth 100 (B7)<br />

(1995) 12527–12555.<br />

[17] W.C. Shanks III, Stable isotopes in seafloor hydrotherm<strong>al</strong><br />

systems: vent fluids, hydrotherm<strong>al</strong> deposits, hydrotherm<strong>al</strong> <strong>al</strong>teration,<br />

and microbi<strong>al</strong> processes, in: J.W. V<strong>al</strong>ley , D.R. Cole<br />

(Eds.), Stable Isotope Geochemistry, Miner<strong>al</strong>ogic<strong>al</strong> Soci<strong>et</strong>y of<br />

America, Washington, D.C., 2001, pp. 469–526.<br />

[18] J.C. Alt, Sulfur isotopic profiles through the oceanic crust:<br />

sulfur mobility and seawater–crust<strong>al</strong> sulfur exchange during<br />

hydrotherm<strong>al</strong> <strong>al</strong>teration, Geology 23 (1995) 585–588.<br />

[19] K. Ding, W.E. Seyfried Jr., D<strong>et</strong>ermination of Fe–Cl complexing<br />

in the low-pressure supercritic<strong>al</strong> region (NaCl fluid)—iron<br />

solubility constraints on pH of subseafloor hydrotherm<strong>al</strong><br />

fluids, Geochim. Cosmochim. Acta 56 (1992) 3681–3692.<br />

[20] W.E. Seyfried Jr., D.R. Janecky, Heavy m<strong>et</strong><strong>al</strong> and sulfur<br />

transport during subcritic<strong>al</strong> and supercritic<strong>al</strong> hydrotherm<strong>al</strong><br />

<strong>al</strong>teration of bas<strong>al</strong>t: influence of fluid pressure and bas<strong>al</strong>t<br />

composition and cryst<strong>al</strong>linity, Geochim. Cosmochim. Acta<br />

49 (1985) 2245–2260.<br />

[21] D. Butterfield, I.R. Jonasson, G.J. Massoth, R.A. Feely, K.K.<br />

Roe, R.W. Embley, J.F. Holden, J.R. McDuff, M.D. Lilley,<br />

J.R. Delaney, Seafloor eruptions and evolution of hydrotherm<strong>al</strong><br />

fluid chemistry, Philos. Trans. R. Soc. Lond., A 355<br />

(1997) 369–386.<br />

[22] S.E. Drummond, H. Ohmoto, Chemic<strong>al</strong> evolution and miner<strong>al</strong><br />

deposition in boiling hydrotherm<strong>al</strong> systems, Econ. Geol. 80<br />

(1986) 126–147.<br />

[23] D. Butterfield, W.E. Seyfried Jr., M. Lilley, Composition and<br />

evolution of hydrotherm<strong>al</strong> fluids, in: P. H<strong>al</strong>bach , V. Tunnicliffe,<br />

J.R. Hein (Eds.), Energy and Mass Transfer in Marine<br />

Hydrotherm<strong>al</strong> Systems, Dahlem University Press, Berlin, Germany,<br />

2003, pp. 123–163.<br />

[24] K.L. Von Damm, J.L. Bischoff, Chemistry of hydrotherm<strong>al</strong><br />

solutions from the Southern Juan de Fuca Ridge, J. Geophys.<br />

Res. 92 (1987) 11334–11346.<br />

[25] D.A. Butterfield, G.J. Massoth, Geochemistry of the North<br />

Cleft segment vent fluids: tempor<strong>al</strong> changes in chlorinity and<br />

their possible relation to recent volcanism, J. Geophys. Res. 99<br />

(1994) 4951–4968.<br />

[26] S. Schoofs, U. Hansen, Depl<strong>et</strong>ion of a brine layer at the base of<br />

ridge–crest hydrotherm<strong>al</strong> systems, Earth Plan<strong>et</strong>. Sci. L<strong>et</strong>t. 180<br />

(2002) 341–353.<br />

[27] M.J. Hambrey, W.B. Harland, Earth’s Pre-Pleistocene Glaci<strong>al</strong><br />

Record, Cambridge University Press, Cambridge, UK, 1981,<br />

1004 pp.<br />

[28] H.D. Holland, The Chemic<strong>al</strong> Evolution of the Atmosphere<br />

and Oceans, Princ<strong>et</strong>on University Press, Princ<strong>et</strong>on, NJ, 1984,<br />

582 pp.<br />

[29] A.J. Watson, D.C.E. Bakker, A.J. Ridgwell, P.W. Boyd, C.S.<br />

Law, Effect of iron supply on southern ocean CO 2 uptake and<br />

implications for glaci<strong>al</strong> atmospheric CO 2 , Nature 407 (2000)<br />

730–733.<br />

[30] N. Christie-Blick, L.E. Sohl, M.J. Kennedy, Considering a<br />

Neoproterozoic Snowb<strong>al</strong>l Earth, Science 284 (1999) 1087.<br />

[31] W.T. Hyde, T.J. Crowley, S.K. Baum, W.R. Peltier, Neoproterozoic<br />

bSnowb<strong>al</strong>l EarthQ simulations with a coupled climate/<br />

ice-she<strong>et</strong> model, Nature 205 (2000) 425–429.<br />

[32] N. Lefevre, A.J. Watson, Modelling the geochemic<strong>al</strong> cycle of<br />

iron in the oceans and its impact on atmospheric carbon<br />

dioxide concentrations, Glob. Biogeochem. Cycles 13 (1999)<br />

727–736.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!