29.12.2013 Views

Timoclea ovata - Portal da Biodiversidade dos Açores ...

Timoclea ovata - Portal da Biodiversidade dos Açores ...

Timoclea ovata - Portal da Biodiversidade dos Açores ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

AÇOREANA<br />

Revista de Estu<strong>dos</strong> Açoreanos


AÇOREANA<br />

Revista de Estu<strong>dos</strong> Açoreanos<br />

PROPRIEDADE <strong>da</strong><br />

Socie<strong>da</strong>de Afonso Chaves<br />

Associação de Estu<strong>dos</strong> Açorianos<br />

Sede: Edifício do Museu “Carlos Machado”<br />

Apartado 258 – 9501-903 Ponta Delga<strong>da</strong><br />

São Miguel, <strong>Açores</strong>, Portugal<br />

PRESIDENTE e EDITOR<br />

António M. de Frias Martins<br />

QUADRO EDITORIAL<br />

Brian Morton<br />

Scientific Associate<br />

Department of Zoology<br />

The Natural History Museum<br />

Cromwell Road<br />

London SW7 5BD, UK<br />

António Serralheiro<br />

Departamento de Geologia<br />

Universi<strong>da</strong>de de Lisboa, Portugal<br />

Paulo A.V. Borges<br />

Departamento de Ciências Agrárias<br />

Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, Portugal<br />

PAGINAÇÃO<br />

CLASSICOR, LDA.<br />

IMPRESSÃO E ACABAMENTO<br />

EGA - Empresa Gráfica Açoreana, L<strong>da</strong><br />

Edição subsidia<strong>da</strong> pela<br />

Direcção Regional <strong>da</strong> Ciência,<br />

Tecnologia e Comunicações<br />

do Governo Regional <strong>dos</strong> <strong>Açores</strong><br />

Setembro de 2009<br />

TIRAGEM<br />

750 exemplares<br />

DEPÓSITO LEGAL<br />

113 234 / 98<br />

ISSN<br />

0874 - 0380<br />

Esta edição é totalmente impressa (à excepção <strong>da</strong> capa)<br />

em papel ecológico, sem cloro, áci<strong>dos</strong> ou branqueamentos ópticos


AÇOREANA<br />

Revista de Estu<strong>dos</strong> Açoreanos<br />

SUPLEMENTO 6 SETEMBRO 2009<br />

THE MARINE FAUNA AND FLORA OF THE AZORES<br />

Proceedings of the<br />

Third International Workshop of Malacology<br />

and Marine Biology<br />

Vila Franca do Campo, São Miguel, <strong>Açores</strong><br />

July 17-28, 2006<br />

Sponsored by<br />

Edited by<br />

Socie<strong>da</strong>de Afonso Chaves<br />

Departamento de Biologia<br />

Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong><br />

Ponta Delga<strong>da</strong>


C O N T E Ú D O / C O N T E N T S<br />

7 LIST OF PARTICIPANTS<br />

9 THE AZOREAN WORKSHOPS<br />

António M. de Frias Martins<br />

15 ILLUSTRATED CHECKLIST OF THE INFRALITTORAL MOLLUSCS OFF<br />

VILA FRANCA DO CAMPO<br />

António M. de Frias Martins, José Pedro Borges, Sérgio Ávila, Ana C. Costa,<br />

Patrícia Madeira & Brian Morton<br />

105 ASPECTS OF THE BIOLOGY AND FUNCTIONAL MORPHOLOGY OF<br />

TIMOCLEA OVATA (BIVALVIA: VENEROIDEA: VENERINAE) IN THE<br />

AÇORES, PORTUGAL, AND A COMPARISON WITH CHIONE ELEVATA<br />

(CHIONINAE)<br />

Brian Morton<br />

121 ANATOMY AND BIOLOGY OF MITRA CORNEA LAMARCK, 1811 (MOL-<br />

LUSCA, CAENOGASTROPODA, MITRIDAE) FROM THE AZORES<br />

M. G. Harasewych<br />

137 COMPARATIVE STUDY OF CHEMICAL DEFENCES FROM TWO<br />

ALLOPATRIC NORTH ATLANTIC SUBSPECIES OF HYPSELODORIS<br />

PICTA (MOLLUSCA: OPISTHOBRANCHIA)<br />

Helena Gaspar, Ana Isabel Rodrigues & Gonçalo Calado<br />

145 THE BIOLOGY OF THE ZONING SUBTIDAL POLYCHAETE DITRUPA<br />

ARIETINA (SERPULIDAE) IN THE AÇORES, PORTUGAL, WITH A<br />

DESCRIPTION OF THE LIFE HISTORY OF ITS TUBE<br />

Brian Morton & Andreia Salvador<br />

157 DRILLING PREDATION UPON DITRUPA ARIETINA (POLYCHAETA:<br />

SERPULIDAE) FROM THE MID-ATLANTIC AÇORES, PORTUGAL<br />

Brian Morton & E.M. Harper<br />

167 THE PYCNOGONIDS (ARTHROPODA: PYCNOGONIDA) OF SÃO<br />

MIGUEL, AZORES, WITH DESCRIPTION OF A NEW SPECIES OF<br />

ANOPLODACTYLUS WILSON, 1878 (PHOXICHILIDIIDAE)<br />

Roger N. Bamber & Ana Cristina Costa<br />

183 THE TANAIDACEANS (ARTHROPODA: PERACARIDA: TANAIDACEA)<br />

OF SÃO MIGUEL, AZORES, WITH DESCRIPTION OF TWO NEW<br />

SPECIES, AND A NEW RECORD FROM TENERIFE<br />

Roger N. Bamber & Ana Cristina Costa<br />

201 THE SOFT-SEDIMENT INFAUNA OFF SÃO MIGUEL, AZORES, AND A<br />

COMPARISON WITH OTHER AZOREAN INVERTEBRATE HABITATS<br />

Roger N. Bamber & Roni Robbins<br />

211 SHELL OCCUPANCY BY THE HERMIT CRAB CLIBANARIUS ERYTHRO-<br />

PUS (CRUSTACEA) ON THE SOUTH COAST OF SÃO MIGUEL, AÇORES<br />

Pedro Rodrigues & Roshan K. Rodrigo<br />

217 A CONSERVATIONAL APPROACH ON THE SEABIRD POPULATIONS<br />

OF ILHÉU DE VILA FRANCA DO CAMPO, AZORES, PORTUGAL<br />

Pedro Rodrigues, Joana Micael, Roshan K. Rodrigo & Regina T. Cunha<br />

227 REMEMBERING Joseph C. Britton (1942-2006)


1<br />

2<br />

3<br />

4<br />

5<br />

6 8 10<br />

12<br />

11<br />

7<br />

14 15<br />

9 13 16<br />

Third International Workshop on Malacology and Marine Biology. 1, António M. de Frias Martins;<br />

2, Brian Morton; 3, José Pedro Borges; 4, Ana Cristina Costa; 5, Roshan Rodrigo; 6, Jerry<br />

Harasewych; 7, Vera Malhão; 8, Sérgio Ávila; 9, Joana Xavier; 10, Roni Robbins; 11, Paola Rachello;<br />

12, Roger Bamber; 13, Patrícia Madeira; 14, Andreia Salvador; 15, Pedro Rodrigues; 16, Daniela<br />

Gabriel.<br />

LIST OF PARTICIPANTS<br />

Ana Cristina Costa - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801<br />

Ponta Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - accosta@uac.pt<br />

Andrea Cunha - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal -andrea_cunha@linus.uac.pt<br />

Andreia Salvador - Environment: Coastal & Marine, The Natural History Museum,<br />

Cromwell Road, London SW7 5BD, United Kingdom - a.salvador@nhm.ac.uk<br />

António M. de Frias Martins - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>,<br />

9501-801 Ponta Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - frias@uac.pt<br />

Brian Morton - Scientific Associate, Department of Zoology, The Natural History<br />

Museum, Cromwell Road, London SW7 5BD, U.K. - prof_bsmorton@hotmail.com<br />

Daniela Gabriel - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - <strong>da</strong>nielagferreira@hotmail.com;<br />

dgabriel@uac.pt


Gonçalo Calado - IPM-Instituto Português de Malacologia, Zoomarine EN 125 KM 65,<br />

8200-864 Guia, Portugal - bagoncas@mail.telepac.pt<br />

Jerry Harasewych - Curator of Marine Mollusca, Smithsonian Institution, National Museum<br />

of Natural History, Department of Invertebrate Zoology, P.O. Box 37012 MRC 163,<br />

Washington DC 20013-7012, USA - HarasewychJ@si.edu<br />

Joana Micael - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - joanamicael@cimar.org; jomicap@hotmail.com<br />

Joana Xavier - Institute for Biodiversity and Ecosystem Dynamics (IBED), University of<br />

Amster<strong>da</strong>m, Faculty of Science, Mauritskade 57, 1092 AD Amster<strong>da</strong>m, Netherlands -<br />

xavier@science.uva.nl<br />

José Pedro Borges - IPM-Instituto Português de Malacologia, Zoomarine EN 125 KM 65,<br />

8200-864 Guia, Portugal - josepedroborges@sapo.pt<br />

Kathe Jensen - Reasearch Associate, Zoological Museum, Copenhagen; Sjælør Boulevard 49,<br />

2.tv., 2450 København SV, Denmark - KRJensen@zmuc.ku.dk<br />

Manuela Parente - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - mparente@uac.pt<br />

Maria Ana Dionísio - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - anamdionisio@gmail.com<br />

PaolaG. Rachello Dolmen - Institute for Biodiversity and Ecosystem Dynamics (IBED),<br />

University of Amster<strong>da</strong>m, Faculty of Science, Mauritskade 57, 1092 AD Amster<strong>da</strong>m,<br />

Netherlands - P.Rachello@student.uva.nl<br />

Patrícia Madeira - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - tamissa@hotmail.com<br />

Pedro Rodrigues - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - pedroreisrodrigues@yahoo.com<br />

Roger Bamber - Consultancy Leader, Environment: Coastal & Marine, The Natural History<br />

Museum, Cromwell Road, London SW7 5BD, United Kingdom - r.bamber@nhm.ac.uk<br />

Roni Robbins - Environment: Coastal & Marine, The Natural History Museum, Cromwell<br />

Road, London SW7 5BD, United Kingdom - r.robbins@nhm.ac.uk<br />

Roshan K. Rodrigo - No.47, Saman Mawatha, Gangula, Panadura, Sri Lanka -<br />

rodrigoroshan@yahoo.com<br />

Sérgio Ávila - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - avila@notes.uac.pt<br />

Vera Malhão - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - vmalhao@notes.uac.pt;<br />

veramalhao@hotmail.com


AÇOREANA, Suplemento 6, Setembro 2009: 9-13<br />

THE AZORES WORKSHOPS<br />

António M. de Frias Martins<br />

Socie<strong>da</strong>de Afonso Chaves, 9501-903 Ponta Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal<br />

e-mail: afonsochaves.sac@gmail.com<br />

Twenty-one years ago, as a joint initiative<br />

of Socie<strong>da</strong>de Afonso Chaves and<br />

the Department of Biology of the<br />

University of the Azores, and under the<br />

sponsorship of the local Municipality,<br />

about half a dozen foreign scientists gathered<br />

in Vila Franca do Campo and, setting<br />

up an improvised laboratory in the <strong>da</strong>rk<br />

and humid facilities of the local newspaper<br />

“A Crença”, made history with the<br />

realization of the 1 st International<br />

Workshop of Malacology. The workshop<br />

participants came from the most prestigious<br />

scientific institutions: the<br />

Universities of Hong Kong, Harvard,<br />

Rhode Island, Liverpool, from the<br />

Smithsonian Institution, the Muséum<br />

national d’Histoire naturelle, Paris and<br />

the California Academy of Sciences. With<br />

another half dozen local scientists and<br />

academics, and aspiring young students,<br />

science was made right there, next to one<br />

of Vila Franca’s most significant monuments<br />

to culture and education of: the<br />

“Externato”. So worried with the (primitive)<br />

logistics were the organizers that<br />

they did not think of registering the event<br />

photographically for posterity.<br />

Nevertheless, in 1990 the proceedings of<br />

this first workshop came to light and<br />

remain to<strong>da</strong>y a reference document for<br />

the scientific study of the Ilhéu de Vila<br />

Franca do Campo and of the malacological<br />

fauna of the Azorean littoral.<br />

The research workshops, as regular<br />

events, were popularized in the scientific<br />

community by Brian Morton when<br />

Professor of Marine Ecology at the<br />

University of Hong Kong and Director of<br />

the Swire Institute of Marine Science.<br />

Through them, every three years, Brian<br />

rendered available for invited specialists<br />

in various scientific fields two weeks of<br />

research, with but one requisite in return:<br />

to publish in the proceedings of the event<br />

at least one research paper on the marine<br />

biology of Hong Kong. Brian Morton had<br />

visited the Azores in 1965, as a Chelsea<br />

College graduate, and since then has<br />

developed a special appreciation for these<br />

islands. It was then that I had the opportunity<br />

of meeting him and, from that time<br />

on, a relationship based on friendship<br />

and mutual respect developed that time<br />

has only made stronger.<br />

The 2 nd workshop, in 1991, and this<br />

time in the facilities of the fish market in<br />

Vila Franca do Campo, attracted about 40<br />

participants, national and foreign, with<br />

the corresponding scientific production<br />

broadened to other endeavours of marine<br />

biology besides malacology. The spectrum<br />

of participants was equally widened<br />

to include Australia and Hong Kong, various<br />

American institutions (University of<br />

Rhode Island, Smithsonian Institution,


10 AÇOREANA<br />

2009, Sup. 6: 9-13<br />

Harbor Branch Oceanographic Institution,<br />

Field Museum of Natural History,<br />

Chicago, Texas Christian University, Long<br />

Island University) and a fair representation<br />

from Europe (Odense University,<br />

Zoological Museum, Copenhagen, both<br />

in Denmark, Antwerp University/Institut<br />

Royal des Sciences naturelles de Belgique;<br />

University Marine Biological Station,<br />

Millport, UK). The workshop added the<br />

novelty of a panel on Marine<br />

Conservation, sponsored by UNESCO’s<br />

National Committee. The proceedings of<br />

the workshop were published in 1995.<br />

Ecology of the <strong>Açores</strong> had been undertaken<br />

by the Socie<strong>da</strong>de Afonso Chaves to<br />

replace a workshop, so that a systematic<br />

and all-encompassing study of the littoral<br />

would be conducted and reported upon<br />

comprehensively for the benefit, especially<br />

of local students. On the other hand,<br />

the famous expeditions of Albert the 1 st ,<br />

Prince of Monaco, had unravelled some<br />

of the biological secrets of the great<br />

depths around the Azores. To know better<br />

that band between 50 and 200 metres,<br />

well known to the fishermen for its abun<strong>da</strong>nt<br />

fish life but practically absent from<br />

scientific publications due to lack of<br />

research directed at it, was then an obvious<br />

choice for a workshop project.<br />

This practical objective – to better<br />

know Azorean marine biodiversity – was<br />

linked to another, more theoretical goal,<br />

resulting from studies of the distribution<br />

of species through time. Knowing that<br />

After a long interval, marked by other<br />

types of events – for example, the production<br />

of the book Coastal Ecology of the<br />

<strong>Açores</strong>, in 1998 –, the Socie<strong>da</strong>de Afonso<br />

Chaves and the Department of Biology of<br />

the University of the Azores united in<br />

their efforts once again to promote, in the<br />

eternal capital of the island of São Miguel,<br />

from July 17 to 28 of 2006, the 3 rd<br />

International Workshop of Malacology<br />

and Marine Biology, under the auspices of<br />

the Municipality of Vila Franca do Campo<br />

and with the much-appreciated collaboration<br />

of the Clube Naval de Vila Franca<br />

do Campo.<br />

Although open to every aspect of science<br />

of interest to the participants, the 3 rd<br />

workshop had a specific objective: to<br />

research virtually unstudied grounds. In<br />

fact, the Azorean coastal zone has been<br />

profusely studied and the book Coastal<br />

cyclical variations in temperature resulting<br />

from the glaciations lead to the disappearance<br />

of species less a<strong>da</strong>pted to such<br />

fluctuations, could we find species of previous<br />

colder ages that have sought refuge<br />

deeper, where temperatures are lower?<br />

The solution to this double quest rested<br />

on a dredging plan down to 200 metres.<br />

In fact, as it transpired, samples of the sea<br />

bed off Vila Franca do Campo were taken<br />

down to 360 metres during the workshop.


MARTINS: THE AZORES WORKSHOPS 11<br />

The collected material has been deposited<br />

in the Department of Biology reference<br />

collection and remains available to everyone<br />

who desires to conduct further<br />

research on it.<br />

Honouring the core interest of the<br />

workshop – Malacology – special attention<br />

was paid to molluscs and a listing of<br />

those species collected is provided.<br />

However, many other inhabitants of the<br />

sea bed came up in the dredge.<br />

The larger fractions of such samples were<br />

sorted immediately and the finer fractions<br />

preserved for sorting later, in the<br />

laboratory.<br />

As in previous meetings, the proceedings<br />

of the 3 rd workshop are published.<br />

The papers included in the proceedings<br />

result from short projects that the participants<br />

had taken upon themselves to<br />

develop, on the basis of any particular scientific<br />

aspect judged appropriate for the<br />

short time available for gathering <strong>da</strong>ta.


12 AÇOREANA<br />

2009, Sup. 6: 9-13<br />

Whenever possible, a photographic<br />

record of each living animal was<br />

obtained. The wealth of species collected<br />

is a clear sign that this workshop needs to<br />

be continued.<br />

The scientific content of the workshop<br />

is the most visible, desirable, outcome of<br />

an effort that had its roots in the statutes<br />

of the oldest scientific society in the<br />

Azores - the Socie<strong>da</strong>de Afonso Chaves –<br />

and which are to promote the realization<br />

of scientific meetings dealing with the<br />

natural history of the Azores. As in previous<br />

events, the participation of the<br />

Department of Biology of the University of<br />

the Azores provided the scientific support.<br />

The warm hospitality of the Mayor of Vila<br />

Franca do Campo, Rui Melo, and the enthusiastic<br />

collaboration of the Clube Naval and<br />

its president, Paulo Melo, paved the way to<br />

comfortable and efficient logistics. The skill<br />

of Moisés Bolarinho, the skipper of the "Vila<br />

Franca" and the dedication of is crew took<br />

us to the best sites for successful dredging.<br />

The indispensable financing for this 3 rd<br />

workshop came from the DRCT – the<br />

regional governmental organism responsible<br />

for Science and Technology. The Luso-<br />

American Foun-<strong>da</strong>tion for Development<br />

(FLAD), the Foun<strong>da</strong>tion for Science and<br />

Technology (FCT) and the Municipality of<br />

Vila Franca do Campo were also generous<br />

in this area.


MARTINS: THE AZORES WORKSHOPS 13<br />

The choice of Vila Franca do Campo<br />

for the base camp of each workshop is<br />

somehow connected with the beautiful<br />

islet which is the ex-libris of this noble old<br />

capital of the island of São Miguel.<br />

Science is obviously the primary objective<br />

of these meetings. However, besides the<br />

knowledge acquired due to the research<br />

therein developed, there is a clear interest<br />

in fostering culture and education within<br />

the community. We are sure that the better<br />

knowledge about the Ilhéu de Vila<br />

Franca do Campo, in particular, resulting<br />

from the workshops has contributed to<br />

the strengthening of its stature as a nature<br />

reserve, cared for and respected by the<br />

thousands of users that visit it every summer.<br />

The prospect of an aquarium in<br />

Vila Franca do Campo has turned the<br />

attention of the local community towards<br />

one of its most precious resources - the<br />

sea.<br />

Finally, and, as a silent highlight of the<br />

workshop meetings, past, present and<br />

future, the generous offer of the founder<br />

of the workshop concept and of the Swire<br />

Institute of Marine Science, Professor<br />

Brian Morton, to help in the setting up of<br />

a Marine Biology Station in the facilities<br />

where this 3 rd workshop took place, will<br />

continue to bring to Vila Franca do<br />

Campo, a nucleus of resident researchers<br />

and academic guests from around the<br />

world who will undoubtedly act as a catalyst<br />

for science and education in the<br />

community which has so generously<br />

hosted these pioneering adventures.<br />

It is the belief of this author, his local<br />

colleagues and the groups of overseas scientists<br />

who have contributed, over the<br />

years, to the greater understanding of the<br />

unique marine life of the Azores in general<br />

and of the waters of Vila Franca do<br />

Campo in particular, that there is no better<br />

place where a permanent, international,<br />

marine research facility would not just<br />

flourish but would act as the archipelago’s<br />

flagship promoting marine conservation<br />

and technological advancement.<br />

For the benefit of all.


AÇOREANA, Suplemento 6, Setembro 2009: 15-103<br />

ILLUSTRATED CHECKLIST OF THE INFRALITTORAL MOLLUSCS<br />

OFF VILA FRANCA DO CAMPO<br />

António M. de Frias Martins 1 , José Pedro Borges 2 , Sérgio P. Ávila 3,4 , Ana C. Costa 1 ,<br />

Patrícia Madeira 3 & Brian Morton 5<br />

1<br />

CIBIO-Pólo <strong>Açores</strong>, Department of Biology, University of the Azores, 9501-801 Ponta Delga<strong>da</strong>, São Miguel,<br />

Azores, Portugal. e-mail: frias@uac.pt<br />

2<br />

IPM-Instituto Português de Malacologia, Zoomarine EN 125 KM 65, 8200-864 GUIA, Portugal<br />

3<br />

Marine PalaeoBiogeography group, Department of Biology, University of the Azores, 9501-801 Ponta Delga<strong>da</strong>,<br />

São Miguel, Azores, Portugal<br />

4<br />

Centro do IMAR <strong>da</strong> Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9901-862 Horta, Azores, Portugal<br />

5<br />

Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K.<br />

ABSTRACT<br />

A list of the molluscan species dredged during the 3 rd International Workshop of<br />

Malacology and Marine Biology is presented. Positive identification has not been possible<br />

for a number of taxa. However, almost all species are illustrated so as to provide a practical<br />

guide to the species which may occur as beach drift and others which naturally range<br />

up into the interti<strong>da</strong>l.<br />

The distribution of the species at the various collecting stations is also presented as a<br />

table organized by depth, and identifying where specimens were collected alive or, in the<br />

case of bivalves, with both valves attached.<br />

RESUMO<br />

Apresenta-se uma listagem <strong>da</strong>s espécies de moluscos draga<strong>da</strong>s durante o 3º Workshop<br />

Internacional de Malacologia e Biologia Marinha. Uma identificação positiva não foi<br />

possível para um determinado número de taxa. No entanto, quase to<strong>da</strong>s as espécies estão<br />

ilustra<strong>da</strong>s, de modo a providenciar um guia prático para as que podem ocorrer no material<br />

arrojado nas praias e outras que naturalmente estendem a sua distribuição até ao<br />

interti<strong>da</strong>l.<br />

A distribuição <strong>da</strong>s espécies pelas várias estações de colheita é também apresenta<strong>da</strong><br />

numa tabela organiza<strong>da</strong> por profundi<strong>da</strong>de, identificando também onde os exemplares<br />

foram recolhi<strong>dos</strong> vivos ou, no caso <strong>dos</strong> bivalves, com ambas as valvas liga<strong>da</strong>s.<br />

INTRODUCTION<br />

The main purpose behind the 3 rd<br />

International Workshop of Malacology<br />

and Marine Biology was to test the hypothesis<br />

that the deeper, colder, waters around<br />

the Azorean islands acted as a refuge during<br />

the warm periods that interspersed<br />

glaciations. It is thought that when surface<br />

temperatures began to rise, cold-water<br />

species would likely follow their temperature<br />

optima by descending to appropriate<br />

depths. Present results, preliminary as<br />

they are, do not support such a suggestion.<br />

The extensive dredging has produced a<br />

wealth of information about the molluscan<br />

biodiversity of the sublittoral off Vila<br />

Franca do Campo, in a depth range poorly<br />

studied by previous authors in the Azores.<br />

This herein published list of 232 molluscan<br />

species and the pictorial representations of<br />

most of them is a contribution to that<br />

knowledge. The illustrations, whenever<br />

possible, were not only of the collected<br />

shells but of the living animals. This will<br />

provide students and researchers with an<br />

easier identification guide to facilitate<br />

their studies. Also, although in many


16 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

cases positive identifications were not<br />

possible, the provided illustrations supply<br />

a basis for further studies leading to<br />

more accurate taxonomic determinations.<br />

The micromolluscs are unevenly<br />

reported upon because the minimum<br />

dredge mesh was 2.5 mm and only some<br />

hauls were sieved to retain the residual<br />

1mm fraction.<br />

A list of the stations related to the<br />

workshop is provided (see Text figure 1).<br />

All species sorted are reported upon<br />

(Table 1), even though their shells could<br />

only have been transported from other<br />

habitats, including the interti<strong>da</strong>l. Such<br />

situations are commented upon for each<br />

species identified. To facilitate inferences<br />

related to depth distribution, the species<br />

collected alive or, in the case of bivalves,<br />

with both valves attached, are shown in<br />

bold in the Taxonomic List, and the sampling<br />

depths also indicated. Also, in<br />

Table 1 the stations are arranged by<br />

increasing depth and the state of the collected<br />

specimens (fragment, empty<br />

shell/one valve, with animal/two valves)<br />

is differentiated by variations in the density<br />

of their gray overlays, so as to give an<br />

overall pictorial view of the distribution<br />

of each taxon.<br />

The depth ranges of the species given<br />

by Poppe & Gotto (1991-1993) (P&G) and<br />

Macedo et al. (1999) (MM&B) are referred<br />

whenever possible. Also, where appropriate,<br />

reference is made to the species<br />

found alive in the nearby Ilhéu de Vila<br />

Franca do Campo (IVFC) (Martins, 2004).<br />

This is intended as a clarification to the<br />

distribution of these species in the<br />

dredged material.<br />

Previous works on Ilhéu de Vila<br />

Franca do Campo have listed the marine<br />

molluscs of that islet or of the shores nearby,<br />

and Ávila et al. (2000) have provided<br />

the most recent list of the shallow-water<br />

marine molluscs of São Miguel. For comparison<br />

purposes reference to these publications<br />

will be made under the appropriate<br />

taxa. Species are presented following<br />

their current systematic position as set<br />

out in CLEMAM (Check List of European<br />

Marine Molluscs) (http://www.somali.asso.fr/<br />

clemam/index.clemam.html).<br />

LIST OF SAMPLING STATIONS<br />

Forty-six stations were sampled during<br />

the workshop (Text figure 1). Stations 3-4,<br />

9-11, 17 were dive sites and are not included<br />

in this report, except in the notes provided<br />

under the respective station code.<br />

Stations 47-54 were sampled after the<br />

workshop timeframe but followed the<br />

same procedure and are, therefore included<br />

herein. Similarly, stations 56-58,<br />

sampled during fieldwork undertaken for<br />

the Malacology class of the Department of<br />

Biology of the University of the Azores,<br />

were added to the workshop material.<br />

Station 55 represented from the biological<br />

material collected from a stone snagged<br />

by a fishing net.<br />

STATION 1 – in front of the marina – Vila<br />

Franca do Campo.<br />

Date: 17-07-2006.<br />

Depth: 32 fathoms (57 m).<br />

Co-ordinates: N 37° 42’ 12” W 25° 25’ 09”.<br />

Collected by: Frias Martins, Brian Morton, Jerry<br />

Harasewych.<br />

Observations: (large dredge) two tows (A and B)<br />

pooled.<br />

STATION 2 – in front of the marina - Vila<br />

Franca do Campo.<br />

Date: 17-07-2006.<br />

Depth: 75 fathoms (135 m).<br />

Co-ordinates: N 37° 41’ 42” W 25° 25’ 22”.<br />

Collected by: Frias Martins, Brian Morton, Jerry<br />

Harasewych.<br />

Observations: (large dredge).<br />

STATION 3 – around Farilhão, SE of Ilhéu de<br />

Vila Franca do Campo.<br />

Date: 18-07-2006.<br />

Depth: 5-19 m.


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 17<br />

TEXT FIGURE 1. Distribution of the stations.<br />

Co-ordinates: —-<br />

Collected by: Joana Xavier, Paola Rachello, José<br />

Pedro Borges, Gonçalo Calado.<br />

Observations: (SCUBA) 1 ophiurid (10 m)<br />

Hypselodoris picta webbi (4 spcs.), Chromodoris<br />

purpurea (2 spcs.), Platydoris argo


18 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

(1 spc.), Flabellina (1 spc.), Hypselodoris<br />

mi<strong>da</strong>tlantica (1 spc.); Umbraculum<br />

umbraculum (1 spc. feeding on Halichondria<br />

aurantiaca).<br />

STATION 4 – off Cais do Tagarete, Vila Franca<br />

do Campo.<br />

Date: 18-07-2006.<br />

Depth: 7 m.<br />

Co-ordinates: —-<br />

Collected by: Gonçalo Calado, José Pedro<br />

Borges, Paola Rachello.<br />

Observations: (SCUBA).<br />

STATION 5<br />

Date: 19-07-2006.<br />

Depth: 23-24 fathoms (41-43 m)<br />

Co-ordinates: N 37° 42’ 02” W 25° 27’ 18”.<br />

Collected by: Brian Morton, Sérgio Ávila, Pedro<br />

Rodrigues.<br />

Observations: (dredge) 6 minute tow at 1.5<br />

knotts.<br />

STATION 6<br />

Date: 19-07-2006.<br />

Depth: 22-23 fathoms (40-41 m).<br />

Co-ordinates: N 37° 42’ 02” W 25° 27’ 13”.<br />

Collected by: Brian Morton, Sérgio Ávila, Pedro<br />

Rodrigues.<br />

Observations: (dredge) “earthworm” sand fish<br />

Apterichthus caecus (Linnaeus, 1758).<br />

STATION 7<br />

Date: 19-07-2006.<br />

Depth: 93-105 fathoms (167-189 m).<br />

Co-ordinates: N 37° 41’ 34” W 25° 27’ 34”.<br />

Collected by: Brian Morton, Sérgio Ávila, Pedro<br />

Rodrigues.<br />

Observations: (dredge) 10 min tow at 1.5 – 2<br />

knotts.<br />

STATION 8<br />

Date: 19-07-2006.<br />

Depth: 70-95 fathoms (126-171 m).<br />

Co-ordinates: N 37° 41’ 34” W 25° 27’ 15”.<br />

Collected by: Brian Morton, Sérgio Ávila, Pedro<br />

Rodrigues.<br />

Observations: (dredge) 6 minute tow at 1.5 – 2<br />

knotts.<br />

STATION 9 – Portinho <strong>da</strong> Ribeirinha.<br />

Date: 20-07-2006.<br />

Depth: 5-14 m.<br />

Co-ordinates: —-<br />

Collected by: Gonçalo Calado, Joana Xavier,<br />

Patrícia Madeira, Paola Rachello.<br />

Observations: (SCUBA) ophiurids.<br />

STATION 10 – wall and mouth of the marina –<br />

Vila Franca do Campo.<br />

Date: 20-07-2006.<br />

Depth: 6 m.<br />

Co-ordinates: —-<br />

Collected by: Gonçalo Calado, Patrícia Madeira.<br />

Observations: (SCUBA) echinoderms.<br />

STATION 11 – Ilhéu de Vila Franca do Campo<br />

(NE).<br />

Date: 19-07-2006.<br />

Depth: 16 m.<br />

Co-ordinates: —-<br />

Collected by: Gonçalo Calado, José Pedro<br />

Borges, Joana Xavier, Paola Rachello,<br />

Patrícia Madeira.<br />

Observations: (SCUBA).<br />

STATION 12<br />

Date: 21-07-2006.<br />

Depth: 53-67 fathoms (95-121 m).<br />

Co-ordinates: N 37° 41’ 39” W 25° 27’ 11”.<br />

Collected by: Brian Morton.<br />

Observations: (dredge).<br />

STATION 13<br />

Date: 21-07-2006.<br />

Depth: 47.9–40.8 fathoms (86-73 m).<br />

Co-ordinates: N 37° 41’ 34” W 25° 26’ 57”.<br />

Collected by: Brian Morton.<br />

Observations: (dredge).<br />

STATION 14<br />

Date: 21-07-2006.<br />

Depth: 25-26.2 fathoms (45-47 m).<br />

Co-ordinates: N 37° 41’ 51” W 25° 27’ 14”.<br />

Collected by: Brian Morton.<br />

Observations: (dredge).<br />

STATION 15<br />

Date: 21-07-2006.<br />

Depth: 25,7 – 26 fathoms (46-47 m).<br />

Co-ordinates: N 37° 41’ 52” W 25° 27’ 13”.<br />

Collected by: Brian Morton.<br />

Observations: (dredge).


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 19<br />

STATION 16<br />

Date: 21-07-2006.<br />

Depth: 9.9 – 11 fathoms (18-20 m).<br />

Co-ordinates: N 37° 42’ 39” W 25° 27’ 26”.<br />

Collected by: Brian Morton.<br />

Observations: (dredge).<br />

STATION 17 – mouth of Ilhéu de Vila Franca<br />

do Campo.<br />

Date: 20-07-2006.<br />

Depth: 6 m.<br />

Co-ordinates: —-<br />

Collected by: Andrea Cunha, Daniela Gabriel.<br />

Observations: (SCUBA) sponges, sand urchin,<br />

algae.<br />

STATION 18 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 21-07-2006.<br />

Depth: 40 fathoms (72 m).<br />

Co-ordinates: N 37° 42’ 16” W 25° 24’ 45”.<br />

Collected by: Frias Martins, Brian Morton, Roger<br />

Bamber.<br />

Observations: (small dredge) 5 minute tow.<br />

STATION 19 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 21-07-2006.<br />

Depth: 13 fathoms (23 m).<br />

Co-ordinates: N 37° 42’ 33” W 25° 24’ 53”.<br />

Collected by: Roger Bamber, Frias Martins, Brian<br />

Morton.<br />

Observations: (grab).<br />

STATION 20 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 21-07-2006.<br />

Depth: 28 fathoms (50 m).<br />

Co-ordinates: N 37° 42’ 21” W 25° 24’ 43”.<br />

Collected by: Roger Bamber, Frias Martins, Brian<br />

Morton.<br />

Observations: (grab).<br />

STATION 21 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 21-07-2006.<br />

Depth: 66 fathoms (118 m).<br />

Co-ordinates: N 37° 42’ 16” W 25° 24’ 34”.<br />

Collected by: Roger Bamber, Frias Martins, Brian<br />

Morton.<br />

Observations: (grab).<br />

STATION 22 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 24-07-2006.<br />

Depth: 6 fathoms (11 m).<br />

Co-ordinates: N 37° 42’ 51” W 25° 24’ 45”.<br />

Collected by: Frias Martins, Brian Morton.<br />

Observations: (large dredge).<br />

STATION 23 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 24-07-2006.<br />

Depth: 65-25 fathoms (117- 45 m).<br />

Co-ordinates: N 37° 42’ 05” W 25° 25’ 03”.<br />

Collected by: Frias Martins, Brian Morton.<br />

Observations: (large dredge)<br />

STATION 24 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 24-07-2006.<br />

Depth: 65-27 fathoms (117-48 m).<br />

Co-ordinates: 37° 42’ 04” W 25° 25’ 02”.<br />

Collected by: Frias Martins, Brian Morton.<br />

Observations: (large dredge).<br />

STATION 25 – off Praia <strong>da</strong> Vinha <strong>da</strong> Areia.<br />

Date: 24-07-2006.<br />

Depth: 7.6 fathoms (14 m).<br />

Co-ordinates: N 37° 42’ 45” W 25° 25’ 24”.<br />

Collected by: Frias Martins, Brian Morton.<br />

Observations: (large dredge).<br />

STATION 26 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 21-07-2006.<br />

Depth: 94 fathoms (169 m).<br />

Co-ordinates: N 37° 42’ 15” W 25° 24’ 28”.<br />

Collected by: Roger Bamber, Frias Martins, Brian<br />

Morton.<br />

Observations: (dredge).<br />

STATION 27 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 24-07-2006.<br />

Depth: 60-55 fathoms (108-99 m).<br />

Co-ordinates: N 37° 42’ 01” W 25° 25’ 14”.<br />

Collected by: Sérgio Ávila.<br />

Observations: (large dredge) Holothuria.<br />

STATION 28– off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 24-07-2006.<br />

Depth: 65-81 fathoms (117-145 m).<br />

Co-ordinates: N 37° 42’ 01” W 25° 25’ 01”.<br />

Collected by: Sérgio Ávila.<br />

Observations: (large dredge).<br />

STATION 29 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 24-07-2006.<br />

Depth: 110-80 fathoms (198-144 m).<br />

Co-ordinates: N 37° 41’ 57” W 25° 25’ 08”.<br />

Collected by: Sérgio Ávila.<br />

Observations: (large dredge).


20 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

STATION 30 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 24-07-2006.<br />

Depth: 35-19 fathoms (63-34 m).<br />

Co-ordinates: N 37° 42’ 17” W 25° 25’ 09”.<br />

Collected by: Sérgio Ávila.<br />

Observations: (large dredge).<br />

STATION 31 – off Cais do Tagarete, Vila<br />

Franca do Campo.<br />

Date: 25-07-2006.<br />

Depth: 29 fathoms (52 m).<br />

Co-ordinates: N 37° 42’ 07” W 25° 25’ 14”.<br />

Collected by: Frias Martins.<br />

Observations: (large dredge).<br />

STATION 32 – off Cais do Tagarete, Vila<br />

Franca do Campo.<br />

Date: 25-07-2006.<br />

Depth: 100 fathoms (180 m).<br />

Co-ordinates: N 37° 41’ 53” W 25° 25’ 15”.<br />

Collected by: Frias Martins.<br />

Observations: (large dredge).<br />

STATION 33 – off Rosto Branco, Água d’Alto.<br />

Date: 25-07-2006.<br />

Depth: 82-120 fathoms (147-216 m).<br />

Co-ordinates: N 37° 41” 08” W 25° 27’ 18”.<br />

Collected by: Frias Martins.<br />

Observations: (large dredge).<br />

STATION 34<br />

Date: 25-07-2006.<br />

Depth: 9.3 fathoms (17 m).<br />

Co-ordinates: N 37° 42’ 42” W 25° 24’ 38”.<br />

Collected by: Roger Bamber, Joana Xavier, Paola<br />

Rachello.<br />

Observations: (grab) two samples pooled.<br />

STATION 35<br />

Date: 25-07-2006.<br />

Depth: 12.7 fathoms (23 m).<br />

Co-ordinates: N 37° 42’ 37” W 25° 24’ 34”.<br />

Collected by: Roger Bamber, Joana Xavier, Paola<br />

Rachello.<br />

Observations: (grab) two samples pooled.<br />

STATION 36<br />

Date: 25-07-2006.<br />

Depth: 20 fathoms (36 m).<br />

Co-ordinates: N 37° 42’ 33” W 25° 24’ 35”.<br />

Collected by: Roger Bamber, Joana Xavier, Paola<br />

Rachello.<br />

Observations: (grab) two samples pooled.<br />

STATION 37<br />

Date: 25-07-2006.<br />

Depth: 130-75 fathoms (234-135 m) (G); 117-65<br />

fathoms (210-117 m) (H).<br />

Co-ordinates: N 37° 42’ 13” W 25° 24’ 36” (G)<br />

N 37° 41’ 59” W 25° 24’ 44” to N 37° 42’ 11”<br />

W 25° 24’ 45” (H).<br />

Collected by: Joana Xavier, Paola Rachello,<br />

Roger Bamber.<br />

Observations: (large dredge) G+H were pooled.<br />

STATION 38<br />

Date: 25-07-2006.<br />

Depth: 115-72 fathoms (207-129 m).<br />

Co-ordinates: N 37° 41’ 41” W 25° 25’ 06” to N<br />

37° 41’ 17” W 25° 25’ 10”.<br />

Collected by: Joana Xavier, Paola Rachello,<br />

Roger Bamber.<br />

Observations: (large dredge).<br />

STATION 39<br />

Date: 25-07-2006.<br />

Depth: 6.7 fathoms (12 m).<br />

Co-ordinates: N 37° 42’ 47” W 25° 25’ 34”.<br />

Collected by: Roger Bamber, Joana Xavier, Paola<br />

Rachello.<br />

Observations: (grab) two samples pooled.<br />

STATION 40 – off Amora, Ponta Garça.<br />

Date: 26-07-2006.<br />

Depth: 21 fathoms (38 m).<br />

Co-ordinates: N 37° 42’ 43” W 25° 21’ 33”.<br />

Collected by: Frias Martins, Jerry Harasewych.<br />

Observations: (small dredge).<br />

STATION 41 – off Amora, Ponta Garça.<br />

Date: 26-07-2006.<br />

Depth: 200-87 fathoms (360-156 m).<br />

Co-ordinates: N 37° 41’ 57” W 25° 22’ 08”.<br />

Collected by: Frias Martins, Jerry Harasewych.<br />

Observations: (large dredge); bottom drops suddenly<br />

to about 600 fathoms; tow up slope.<br />

STATION 42 – off Praia de Água d’Alto.<br />

Date: 26-07-2006.<br />

Depth: 83.6 fathoms (150 m).<br />

Co-ordinates: N 37° 42’ 35” W 25° 29’ 10”.<br />

Collected by: Frias Martins, Jerry Harasewych.<br />

Observations: (large dredge) rocky; octopus.<br />

STATION 43 – off Praia de Água d’Alto.<br />

Date: 26-07-2006.


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 21<br />

Depth: 130 fathoms (234 m).<br />

Co-ordinates: N 37° 41’ 44” W 25° 28’ 44”.<br />

Collected by: Frias Martins, Jerry Harasewych.<br />

Observations: (large dredge) rock.<br />

STATION 44 – off Praia de Água d’Alto.<br />

Date: 26-07-2006.<br />

Depth: 37 fathoms (66 m).<br />

Co-ordinates: N 37° 42’ 24” W 25° 28’ 59”.<br />

Collected by: Frias Martins, Jerry Harasewych.<br />

Observations: (small dredge).<br />

STATION 45 – off Vinha <strong>da</strong> Areia, Vila Franca<br />

do Campo.<br />

Date: 26-07-2006.<br />

Depth: 16.5 fathoms (30 m).<br />

Co-ordinates: N 37° 42’ 18” W 25° 25’ 26”.<br />

Collected by: Frias Martins, Jerry Harasewych.<br />

Observations: (small dredge) near sewage outlet.<br />

STATION 46 – off Vinha <strong>da</strong> Areia, Vila Franca<br />

do Campo.<br />

Date: 26-07-2006.<br />

Depth: 31 fathoms (56 m).<br />

Co-ordinates: N 37° 42’ 37” W 25° 25’ 18”.<br />

Collected by: Frias Martins, Jerry Harasewych.<br />

Observations: (small dredge).<br />

STATION 47 – off Vinha <strong>da</strong> Areia, Vila Franca<br />

do Campo.<br />

Date: 05-09-2006.<br />

Depth: 43 fathoms (77 m).<br />

Co-ordinates: N 37° 42’ 09” W 25° 25’ 04”.<br />

Collected by: Frias Martins, Patrícia Madeira,<br />

Henk van Goor.<br />

Observations: (small dredge).<br />

STATION 48 – off Vinha <strong>da</strong> Areia, Vila Franca<br />

do Campo.<br />

Date: 05-09-2006.<br />

Depth: 35 fathoms (63 m).<br />

Co-ordinates: N 37° 42’ 12” W 25° 25’ 09”.<br />

Collected by: Frias Martins, Patrícia Madeira,<br />

Henk van Goor.<br />

Observations: (small dredge).<br />

STATION 49 – off Vinha <strong>da</strong> Areia, Vila Franca<br />

do Campo.<br />

Date: 05-09-2006.<br />

Depth: 45 fathoms (81 m).<br />

Co-ordinates: N 37° 42’ 00” W 25° 25’ 15”.<br />

Collected by: Frias Martins, Patrícia Madeira,<br />

Henk van Goor.<br />

Observations: (small dredge).<br />

STATION 50 – off Vinha <strong>da</strong> Areia, Vila Franca<br />

do Campo.<br />

Date: 05-09-2006.<br />

Depth: 37 fathoms (66 m).<br />

Co-ordinates: N 37° 41’ 59” W 25° 25’ 22”.<br />

Collected by: Frias Martins, Patrícia Madeira,<br />

Henk van Goor.<br />

Observations: (small dredge).<br />

STATION 51 – off Amora, Ponta Garça.<br />

Date: 05-09-2006.<br />

Depth: 195 fathoms (351 m).<br />

Co-ordinates: N 37° 42’ 06” W 25° 20’ 47”.<br />

Collected by: Frias Martins, Patrícia Madeira,<br />

Henk van Goor.<br />

Observations: (large dredge) sponge, corals.<br />

STATION 52 – off Amora, Ponta Garça.<br />

Date: 05-09-2006.<br />

Depth: 150 fathoms (270 m).<br />

Co-ordinates: N 37° 42’ 07” W 25° 21’ 24”.<br />

Collected by: Frias Martins, Patrícia Madeira,<br />

Henk van Goor.<br />

Observations: (large dredge).<br />

STATION 53 – off Ponta Garça.<br />

Date: 05-09-2006.<br />

Depth: 177 fathoms (318 m).<br />

Co-ordinates: N 37° 42’ 01” W 25° 23’ 07”.<br />

Collected by: Frias Martins, Patrícia Madeira,<br />

Henk van Goor.<br />

Observations: (large dredge).<br />

STATION 54 – off Vinha <strong>da</strong> Areia, Vila Franca<br />

do Campo.<br />

Date: 05-09-2006.<br />

Depth: 37 fathoms (66 m).<br />

Co-ordinates: N 37° 42’ 11” W 25° 25’ 04”.<br />

Collected by: Frias Martins, Patrícia Madeira,<br />

Henk van Goor.<br />

Observations: (small dredge).<br />

STATION 55 – off Vila Franca do Campo.<br />

Date: 07-09-2006.<br />

Depth: 90 fathoms (162 m).<br />

Co-ordinates: —<br />

Collected by: Moisés Bolarinho, skipper of the<br />

fishing boat ‘Vila Franca’.


22 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

Observations: rock snagged on fishing gear;<br />

covered with mud, two white gorgonians,<br />

some sponges and living Chama.<br />

STATION 56 – off Vila Franca do Campo, east<br />

of Ilhéu.<br />

Date: 03-10-2006.<br />

Depth: 32 fathoms (58 m).<br />

Co-ordinates: N 37° 42’ 12” W 25° 25’ 08”.<br />

Collected by: Malacology class (Department of<br />

Biology, University of Azores).<br />

Observations: (small dredge) one tow 5 min<br />

and another 15 min, pooled.<br />

STATION 57 – off Vila Franca do Campo,<br />

west of Ilhéu.<br />

Date: 03-10-2006.<br />

Depth: 18 fathoms (32 m).<br />

Co-ordinates: N 37° 42’ 08” W 25° 26’ 49”.<br />

Collected by: Malacology class (Department of<br />

Biology, University of Azores).<br />

Observations: (small dredge) tow during 15<br />

min.<br />

STATION 58 – off Vila Franca do Campo,<br />

west of Ilhéu.<br />

Date: 03-10-2006.<br />

Depth: 18 fathoms (32 m).<br />

Co-ordinates: N 37° 42’ 08” W 25° 26’ 49”.<br />

Collected by: Malacology class (Department of<br />

Biology, University of Azores).<br />

Observations: (grab) 4 samples, pooled.<br />

TAXONOMIC LIST<br />

Phylum MOLLUSCA<br />

Class POLYPLACOPHORA Gray, 1821<br />

Order LEPIDOPLEURIDA Thiele, 1909<br />

Family Leptochitoni<strong>da</strong>e Dall, 1889<br />

Lepidochiton cimicoides (Monterosato, 1879)<br />

(Figure 1)<br />

Remarks: Specimens collected only at Station<br />

37; alive. Depth range: 0-50 m (P&G); 0-200 m<br />

(MM&B); this study, alive: 117-234 m.<br />

Order CHITONIDA Thiele, 1909<br />

Family Acanthochitoni<strong>da</strong>e Simroth, 1894<br />

Acanthochitona fascicularis (Linnaeus, 1767)<br />

(Figure 2)<br />

Remarks: Only loose valves were found; however,<br />

the number and freshness of the valves<br />

collected suggests that it could live on nearby<br />

rocky habitats. Ávila et al., 2000. Depth range:<br />

0-50 m (P&G); 0-200 m (MM&B); this study:<br />

30-129 m. Alive on IVFC (Martins, 2004).<br />

Class GASTROPODA Cuvier, 1797<br />

Subclass PROSOBRANCHIA Milne Edwards,<br />

1848<br />

Order ARCHAEOGASTROPODA Thiele, 1925<br />

Suborder DOCOGLOSSA Troschel, 1866<br />

Superfamily PATELLOIDEA Rafinesque, 1815<br />

Family Patelli<strong>da</strong>e Rafinesque, 1815<br />

Patella candei d’Orbigny, 1840<br />

Patella aspera Röding, 1798<br />

Remarks: Only small and very worn shells<br />

were found. These are known shallow water<br />

species and their presence in the samples is<br />

considered accidental. Alive on IVFC<br />

(Martins, 2004). Patella aspera has been incorrectly<br />

synonymized with P. ulyssiponensis<br />

Gmelin, 1791. Weber & Hawkins (2005) consider<br />

both genetically distinct, the name P.<br />

aspera referring to the Macaronesian populations<br />

whereas P. ulyssiponenis is applied to<br />

those in the continental coasts.<br />

Superfamily LOTIOIDEA Gray, 1840<br />

Family Lotii<strong>da</strong>e Gray, 1840<br />

Tectura virginea (O.F. Müller, 1776)<br />

(Figure 3)<br />

Remarks: Worn shells, in various degrees of<br />

preservation were found. The abun<strong>da</strong>nce,<br />

size and freshness of some specimens indicate<br />

that they could live on nearby rocky habitats.<br />

Ávila et al., 2000. Depth range: 0-100 m (P&G);<br />

this study: 14-360 m. Common alive on IVFC<br />

(Martins, 2004).<br />

Family Lepeti<strong>da</strong>e Gray, 1840<br />

Propilidium exiguum (Thompson, 1844)<br />

(Figure 4)<br />

Remarks: Only one specimen found. Depth<br />

range: 7-600 m (P&G); 1.480-2.190 m (MM&B,<br />

as P. ancyloide Forbes, 1849); this study: 156-<br />

360 m.<br />

Suborder VETIGASTROPODA Salvini-<br />

Plawén, 1980<br />

Superfamily FISSURELLOIDEA Fleming, 1822<br />

Family Fissurelli<strong>da</strong>e Fleming, 1822<br />

Emarginula sp.<br />

(Figure 5)<br />

Remarks: Only one specimen found, probably


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 23<br />

E. rosea Monterosato in Locard, 1892, or a juvenile<br />

of E. guernei Dautzenberg & Fischer, 1896.<br />

Depth range: 0-90 m (P&G); 0 m (MM&B); this<br />

study: 117-234 m.<br />

Family Scissurelli<strong>da</strong>e Gray, 1847<br />

Sinezona cingulata (O.G. Costa, 1861)<br />

(Figure 6)<br />

Remarks: Only one specimen found. Bullock et<br />

al., 1990 as Scissurella crispata Fleming, 1828;<br />

Bullock, 1995 as Schismope fayalensis<br />

Dautzenberg, 1889; Ávila et al., 2000. Depth<br />

range: 900 m (MM&B); this study: 117-145 m.<br />

Superfamily HALIOTOIDEA Rafinesque, 1815<br />

Family Halioti<strong>da</strong>e Rafinesque, 1815<br />

Haliotis coccinea Reeve, 1846<br />

(Figure 7)<br />

Remarks: Only small and worn shells were<br />

found. It is possible that the presence of shells<br />

in deeper water is accidental. Ávila et al., 2000.<br />

Depth range: 2-25 m (P&G; MM&B); this study:<br />

30-360 m. Common alive on IVFC (Martins,<br />

2004).<br />

?Haliotis sp.<br />

(Figure 8)<br />

Remarks: The only specimen collected had two<br />

holes topically similar to those of Haliotis and<br />

could be a juvenile. However, the shell morphology<br />

differs from that typical of the genus,<br />

namely the flattened columellar lip, and, therefore,<br />

it is only tentatively referred to Haliotis.<br />

Superfamily LEPETELLOIDEA Dall, 1882<br />

Family Lepetelli<strong>da</strong>e Dall, 1882<br />

Lepetella laterocompressa (de Rayneval & Ponzi,<br />

1854)<br />

(Figure 9)<br />

Remarks: Common in small fractions of deeper<br />

samples. Depth range, this study: 99-234 m.<br />

Family Addisonii<strong>da</strong>e Dall, 1882<br />

Addisonia excentrica (Tiberi, 1855)<br />

(Figure 10)<br />

Remarks: Only one specimen found. Depth<br />

range: 370-3.307 m (MM&B); this study: 117-<br />

234 m.<br />

Superfamily TROCHOIDEA Rafinesque, 1815<br />

Family Trochi<strong>da</strong>e Rafinesque, 1815<br />

Clelandella azorica Gofas, 2005<br />

(Figures 11-12)<br />

Remarks: Live specimens found only when the<br />

dredge hit hard surface. Endemic. Depth<br />

range, this study: 30-360 m; alive: 144-198 m.<br />

Clelandella sp.<br />

(Figure 13)<br />

Remarks: Rare. Depth range: 117-234 m.<br />

Jujubinus pseudogravinae Nordsieck, 1973<br />

(Figures 14-15)<br />

Remarks: Although live specimens were not collected,<br />

some shells were fresh, indicating that<br />

they could live in nearby habitats. Endemic.<br />

Ávila et al., 2000. Depth range: 0-200 m (P&G,<br />

MM&B, as J. exasperatus (Pennant, 1777)); this<br />

study: 18-360 m. Common alive on IVFC<br />

(Martins, 2004).<br />

Gibbula delgadensis Nordsieck, 1982<br />

(Figures 16-17)<br />

Remarks: Uncommon. Not collected alive but<br />

some shells were fresh, indicating that they<br />

could live in nearby habitats. Endemic. Depth<br />

range, this study: 38-234 m. Common alive on<br />

IVFC (Martins, 2004).<br />

Gibbula magus (Linnaeus, 1758)<br />

(Figures 18-22)<br />

Remarks: Common on sandy bottoms. The<br />

specimens from the Azores are smaller than<br />

their European conspecifics. Bullock et al.,<br />

1990; Ávila et al., 2000. Depth range: 0-70 m<br />

(P&G); this study: 14-360 m; alive: 18-360 m.<br />

Common alive on IVFC (Martins, 2004)<br />

Margarites sp.<br />

(Figure 23)<br />

Remarks: A few rolled specimens collected.<br />

Depth range, this study: 99-198 m.<br />

Family Solarielli<strong>da</strong>e Powell, 1951<br />

Solariella azorensis (Watson, 1886)<br />

(Figures 24-26)<br />

Remarks: Relatively common. Some ultrajuvenile<br />

specimens collected (Figure 26) fit<br />

the description provided by A<strong>da</strong>m &<br />

Knudsen (1969) for Rhodinoliotia roseotincta<br />

(Smith, 1871); since specimens of the latter<br />

species were not available for comparison, a<br />

decision on synonymy is not warranted.


24 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE I<br />

1. Leptochiton cimicoides (Monterosato, 1879) (Sta37)<br />

2. Acanthochitona fascicularis (Linnaeus, 1767) (Sta31)<br />

3. Tectura virginea (O.F. Müller, 1776) (Sta28)<br />

4. Propilidium exiguum (Thompson, 1844) (Sta41)<br />

5. Emarginula sp. (Sta37)<br />

6. Sinezona cingulata (O.G. Costa, 1861) (Sta28)<br />

7. Haliotis coccinea Reeve, 1846 (Sta26)<br />

8. ?Haliotis cf. coccinea Reeve, 1846 (juvenile) (Sta29)<br />

9. Lepetella laterocompressa (Rayneval & Ponzi, 1854) (Sta38)<br />

10. Addisonia excentrica (Tiberi, 1855) (Sta37)<br />

11. Clelandella azorica Gofas, 2005 (Sta29)<br />

12. Clelandella azorica Gofas, 2005 (Sta53)<br />

13. Clelandella sp. (Sta37)<br />

14. Jujubinus pseudogravinae Nordsieck, 1973 (Sta44)<br />

15. Jujubinus pseudogravinae Nordsieck, 1973 (Sta27)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 25


26 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE II<br />

16. Gibbula delgadensis Nordsieck, 1982 (Sta6)<br />

17. Gibbula delgadensis Nordsieck, 1982 (Sta46)<br />

18. Gibbula magus (Linnaeus, 1758) (Sta44)<br />

19. Gibbula magus (Linnaeus, 1758) (Vila Franca do Campo, 1991)<br />

20. Gibbula magus (Linnaeus, 1758) (Sta15)<br />

21. Gibbula magus (Linnaeus, 1758) (Sta15)<br />

22. Gibbula magus (Linnaeus, 1758) (Sta15)<br />

23. Margarites sp. (Sta29)<br />

24. Solariella azorensis Watson, 1886 (Sta29)<br />

25. Solariella azorensis Watson, 1886 (ultrajuvenile) (Sta12)<br />

26. Solariella azorensis Watson, 1886 (ultrajuvenile) (Sta12)<br />

27. Calliostoma hirondellei Dautzenberg & Fischer, 1896 (Sta37)<br />

28. Calliostoma lividum Dautzenberg 1927 (Sta37)<br />

29. Calliostoma lividum Dautzenberg 1927 (Sta45)<br />

30. Cirsonella gaudryi (Dautzenberg & Fisher, 1896) (Sta37)<br />

31. Tricolia pullus azorica (Dautzenberg, 1889) (Sta56)<br />

32. Tricolia pullus azorica (Dautzenberg, 1889) (Sta38)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 27


28 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE III<br />

33. Bittium cf. latreillii (Payraudeau, 1826) (Sta1)<br />

34. Bittium cf. latreillii (Payraudeau, 1826) (Sta40)<br />

35. Bittium latreillii (Payraudeau, 1826) (Sta32)<br />

36. Fossarus ambiguus (Linnaeus, 1758 (Sta28)<br />

37. Fossarus ambiguus (Linnaeus, 1758 (Sta2)<br />

38. Cheirodonta pallescens (Jeffreys, 1867) (Sta1)<br />

39. Cheirodonta pallescens (Jeffreys, 1867) (Sta12)<br />

40. Cheirodonta pallescens (Jeffreys, 1867) (Sta18)<br />

41. Cheirodonta pallescens (Jeffreys, 1867) (Sta28)<br />

42. Similiphora similior (Bouchet & Guillemot, 1978) (Sta18)<br />

43. Similiphora similior (Bouchet & Guillemot, 1978) (Sta25)<br />

44. Similiphora similior (Bouchet & Guillemot, 1978) (Sta56)<br />

45. Similiphora similior (Bouchet & Guillemot, 1978) (Sta40)<br />

46. Similiphora similior (Bouchet & Guillemot, 1978) (Sta6)<br />

47. Marshallora adversa (Montagu, 1803) (Sta13)<br />

48. Marshallora adversa (Montagu, 1803) (Sta44)<br />

49. Marshallora adversa (Montagu, 1803) Sta56)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 29


30 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE IV<br />

50. Marshallora adversa (Montagu, 1803) (Sta1)<br />

51. Marshallora adversa (Montagu, 1803) (Sta38)<br />

52. Marshallora adversa (Montagu, 1803) (Sta56)<br />

53. Marshallora adversa (Montagu, 1803) (Sta1)<br />

54. Marshallora adversa (Montagu, 1803) (Sta37)<br />

55. Marshallora cf. adversa (Montagu, 1803) (Sta32)<br />

56. Monophorus sp. (Sta1)<br />

57. Monophorus erythrosoma (Bouchet & Guillemot, 1978) (Sta54)<br />

58. Monophorus erythrosoma (Bouchet & Guillemot, 1978) (Sta56)<br />

59. Monophorus erythrosoma (Bouchet & Guillemot, 1978) (Sta40)<br />

60. Monophorus erythrosoma (Bouchet & Guillemot, 1978) (Sta24)<br />

61. Pogonodon pseudocanaricus (Bouchet, 1985) (Sta1)<br />

62. Monophorus thiriotae Bouchet, 1985 (Sta32)<br />

63. Monophorus thiriotae Bouchet, 1985 (Sta1)<br />

64. Monophorus thiriotae Bouchet, 1985 (Sta1)<br />

65. Strobiligera brychia (Bouchet & Guillemot, 1978) (Sta37)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 31


32 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE V<br />

66. Metaxia cf. abrupta (Watson, 1880) (Sta38)<br />

67. Cerithiopsis tubercularis (Montagu, 1803) (Sta2)<br />

68. Cerithiopsis tubercularis (Montagu, 1803) (Sta56)<br />

69. Cerithiopsis tiara (Monterosato, 1874) (Sta38)<br />

70. Cerithiopsis jeffreysi Watson, 1885 (Sta28)<br />

71. Cerithiopsis scalaris Locard, 1892 (Sta1)<br />

72. Cerithiopsis scalaris Locard, 1892 (Sta1)<br />

73. Cerithiopsis scalaris Locard, 1892 (Sta38)<br />

74. Cerithiopsis scalaris Locard, 1892 (Sta29)<br />

75. Cerithiopsis minima (Brusina, 1865) (Sta40)<br />

76. Cerithiopsis minima (Brusina, 1865) (Sta15)<br />

77. Cerithiopsis cf. minima (Brusina, 1865) (Sta2)<br />

78. Cerithiopsis cf. minima (Brusina, 1865) (Sta1)<br />

79. Cerithiopsis fayalensis Watson, 1886 (Sta28)<br />

80. Cerithiopsis fayalensis Watson, 1886 (Sta37)<br />

81. Krachia cf. guernei (Dautzenberg & Fischer, 1896) (Sta37)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 33


34 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE VI<br />

82. Epitonium turtonis (Turton, 1819) (Sta44)<br />

83. Epitonium clathrus (Linnaeus, 1758) (Sta44)<br />

84. Epitonium pulchellum (Bivona, 1832) (Sta12)<br />

85. Epitonium pulchellum (Bivona, 1832) (Sta27)<br />

86. Epitonium pulchellum (Bivona, 1832) (Sta56)<br />

87. Epitonium celesti (Ara<strong>da</strong>s, 1854) (Sta7)<br />

88. Epitonium celesti (Ara<strong>da</strong>s, 1854) (Sta44)<br />

89. Epitonium celesti (Ara<strong>da</strong>s, 1854) (Sta1)<br />

90. Epitonium celesti (Ara<strong>da</strong>s, 1854) (Sta1)<br />

91. Punctiscala cerigottana (Sturany, 1896) (Sta38)<br />

92. Opaliopsis atlantis (Clench & Turner, 1952) (Sta7)<br />

93. Cirsotrema cf. cochlea (Sowerby, 1844) (Sta31)<br />

94. Cirsotrema cf. cochlea (Sowerby, 1844) (Sta18)<br />

95. Acirsa subdecussata (Cantraine, 1835) (juvenile) (Sta1)<br />

96. Opalia hellenica (Forbes, 1844) (Sta48)<br />

97. Opalia sp. 1 (Sta27)<br />

98. Opalia sp. 2 (Sta38)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 35


36 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE VII<br />

99. Melanela bosci Payraudeau, 1826 (Sta37)<br />

100. Melanella cf. crosseana (Brusina, 1886) (Sta13)<br />

101. Melanella cf. crosseana (Brusina, 1886) (Sta2)<br />

102. Melanella cf. trunca (Watson, 1897) (Sta40)<br />

103. Parvioris microstoma (Brusina, 1864) (Sta2)<br />

104. Parvioris sp. (Sta2)<br />

105. Crinophteiros collinsi (Sykes, 1903) (Sta37)<br />

106. Sticteulima jeffreysiana (Brusina, 1869) (Sta12)<br />

107. Vitreolina sp. (Sta2)<br />

108. Vitreolina curva (Monterosato, 1884) (Sta1)<br />

109. Vitreolina curva (Monterosato, 1884) (Sta32)<br />

110. Pelseneeria minor Koehler & Vaney, 1908 (Sta28)<br />

111. Skeneopsis planorbis (Fabricius, 1870) (Sta1)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 37


38 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE VIII<br />

112. Rissoa guernei Dautzenberg, 1889 (Sta27)<br />

113. Rissoa guernei Dautzenberg, 1889 (Sta44)<br />

114. Rissoa guernei Dautzenberg, 1889 (Sta28)<br />

115. Rissoa sp. 1 (Sta28)<br />

116. Rissoa sp. 2 (Sta28)<br />

117. Setia subvaricosa Gofas, 1991 (Sta27)<br />

118. Setia subvaricosa Gofas, 1991 (Sta27)<br />

119. Setia cf. quisquiliarum (Watson 1886) (Sta41)<br />

120. Crisilla postrema (Gofas, 1991) (Sta27)<br />

121. Crisilla cf. postrema (Sta27)<br />

122. Crisilla cf. postrema (Sta28)<br />

123. Pseu<strong>dos</strong>etia azorica Bouchet & Warén, 1993 (Sta18)<br />

124. Pseu<strong>dos</strong>etia azorica Bouchet & Warén, 1993 (Sta38)<br />

125. Cingula trifasciata (A<strong>da</strong>ms, 1798) (Sta2)<br />

126. Manzonia unifasciata Dautzenberg, 1889 (Sta1)<br />

127. Manzonia unifasciata Dautzenberg, 1889 (Sta37)<br />

128. Manzonia unifasciata Dautzenberg, 1889 (Sta1)<br />

129. Onoba moreleti Dautzenberg, 1889 (Sta12)<br />

130. Onoba moreleti Dautzenberg, 1889 (Sta2)<br />

131. Onoba moreleti Dautzenberg, 1889 (Sta37)<br />

132. Onoba moreleti Dautzenberg, 1889 (Sta37)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 39


40 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE IX<br />

133. Alvania angioyi van Aartsen, 1982 (Sta1)<br />

134. Alvania angioyi van Aartsen, 1982 (Sta28)<br />

135. Alvania poucheti (Dautzenberg, 1889) (Sta1)<br />

136. Alvania poucheti (Dautzenberg, 1889) (Sta27)<br />

137. Alvania poucheti (Dautzenberg, 1889) (Sta32)<br />

138. Alvania mediolittoralis Gofas, 1989 (Sta1)<br />

139. Alvania punctura (Montagu, 1803) (Sta37)<br />

140. Alvania sp. (?tarsodes Watson, 1886) (Sta1)<br />

141. Alvania sleursi (Amati, 1987) (Sta1)<br />

142. Alvania sleursi (Amati, 1987) (Sta37)<br />

143. Alvania cancellata (<strong>da</strong> Costa, 1778) (Sta1)<br />

144. Alvania cancellata (<strong>da</strong> Costa, 1778) (Sta58)<br />

145. Alvania cancellata (<strong>da</strong> Costa, 1778) (Sta44)<br />

146. Alvania cancellata (<strong>da</strong> Costa, 1778) (Sta44)<br />

147. Alvania cancellata (<strong>da</strong> Costa, 1778) (Sta37)<br />

148. Alvania platycephala Dautzenberg & Fisher, 1896 (Sta41)<br />

149. Alvania platycephala Dautzenberg & Fisher, 1896 (Sta41)<br />

150. Alvania platycephala Dautzenberg & Fisher, 1896 (Sta37)<br />

151. Alvania platycephala Dautzenberg & Fisher, 1896 (Sta37)<br />

152. Alvania cimicoides (Forbes, 1844) (Sta37)<br />

153. Alvania cimicoides (Forbes, 1844) (Sta37)<br />

154. Alvania cf. cimicoides (Forbes, 1844) (Sta41)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 41


42 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE X<br />

155. Caecum wayae Pizzini & Nofroni, 2001 (Sta12)<br />

156. Caecum wayae Pizzini & Nofroni, 2001 (Sta18)<br />

157. Talassia cf. tenuisculpta (Watson 1873) (Sta37)<br />

158. Talassia cf. tenuisculpta (Watson 1873) (Sta27)<br />

159. Capulus ungaricus (Linnaeus, 1758) (Sta7)<br />

160. Lamellaria perspicua (Linnaeus, 1758) (Vila Franca do Campo, 1991)<br />

161. Lamellaria perspicua (Linnaeus, 1758) (Sta56)<br />

162. Trivia pulex (Solander in J.E. Gray, 1828 (Vila Franca do Campo, 1991)<br />

163. Trivia pulex (Solander in J.E. Gray, 1828 (Sta56)<br />

164. Trivia pulex (Solander in J.E. Gray, 1828 (Sta56)<br />

165. Trivia candidula (Gaskoin, 1835) (Sta44)<br />

166. Erato sp. (juvenile) (Sta2)<br />

167. Erato sp. (juvenile) (Sta38)<br />

168. Aperiovula juanjosensii Perez & Gomez, 1987 (Sta38)<br />

169. Notocochlis dillwynii (Payraudeau, 1826) (Sta53)<br />

170. Natica prietoi (Hi<strong>da</strong>lgo, 1873) (Sta15)<br />

171. Natica prietoi (Hi<strong>da</strong>lgo, 1873) (Sta40)<br />

172. Natica prietoi (Hi<strong>da</strong>lgo, 1873) (Sta56)<br />

173. Natica cf. prietoi (Hi<strong>da</strong>lgo, 1873) (Sta57)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 43


44 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XI<br />

174. Atlanta peronii Lesueur, 1817 (Sta13)<br />

175. Protatlanta souleyeti (E.A. Smith, 1888) (Sta13)<br />

176. Ocenebra erinaceus juvenile (Linnaeus, 1758) (Sta27)<br />

177. Ocenebra sp. (Sta56)<br />

178. Ocinebrina aciculata (Lamarck,1822) (Sta40)<br />

179. Ocinebrina cf. aciculata (Payraudeau, 1826) (Sta41)<br />

180. ? Ocinebrina aciculata (Lamarck,1822) (Sta40)<br />

181. ?Ocinebrina cf. aciculata (Payraudeau, 1826) (Sta27)<br />

182. ?Ocinebrina sp. (Sta15)<br />

183. Orania fusulus (Brocchi, 1814) (Sta1)<br />

184. Orania fusulus (Brocchi, 1814) (Sta1)<br />

185. Orania fusulus (Brocchi, 1814) (Sta41)<br />

186. Trophonopsis barvicensis (Johnston, 1825) (Sta29)<br />

187. Trophonopsis barvicensis (Johnston, 1825) (Sta29)<br />

188. Trophonopsis barvicensis (Johnston, 1825) (Sta29)<br />

189. Trophonopsis barvicensis (Johnston, 1825) (Sta44)<br />

190. Trophonopsis barvicensis (Johnston, 1825) (Sta27)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 45


46 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XII<br />

191. Trophonopsis barvicensis (Johnston, 1825) (Sta46)<br />

192. Trophonopsis barvicensis (Johnston, 1825) (Sta15)<br />

193. Trophonopsis cf. muricatus (Montagu,1803) (Sta5)<br />

194. Trophonopsis cf. muricatus (Montagu,1803) (Sta27)<br />

195. Coralliophila cf. meyendorfii (Calcara, 1845) (Sta7)<br />

196. Coralliophila panormitana (Monterosato, 1896) (Sta37)<br />

197. Stramonita haemastoma (Linnaeus, 1767) (Sta27)<br />

198. Gibberula vignali (Dautzenberg & Fischer 1896) (Sta41)<br />

199. Gibberula cf. lazaroi Contreras, 1992 (Sta37)<br />

200. Mitra cornea Lamarck, 1811 (Sta31)<br />

201. Pollia dorbignyi (Payraudeau, 1826) (Sta45)<br />

202. Pollia dorbignyi (Payraudeau, 1826) Ilhéu de Vila Franca do Campo.<br />

203. Nassarius incrassatus (Ström, 1768) (Sta40)<br />

204. Nassarius incrassatus (Ström, 1768) (Sta30)<br />

205. Nassarius incrassatus (Ström, 1768) (Sta26)<br />

206. Nassarius incrassatus (teratology) (Ström, 1768) (Sta40)<br />

207. Nassarius cf. cuvierii (Payraudeau, 1826). Juvenile (Sta44)<br />

208. Nassarius recidivus (Martens, 1876) (Sta53)<br />

209. Columbella a<strong>da</strong>nsoni Menke, 1853 (Sta44)<br />

210. Mitrella pallaryi (Dautzenberg, 1927) (Sta37)<br />

211. Anachis avaroides Nordsieck, 1975 (Sta44)<br />

212. Anachis avaroides Nordsieck, 1975 (Sta1)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 47


48 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XIII<br />

213. Brocchinia clenchi Petit, 1986 (Sta49)<br />

214. Brocchinia clenchi Petit, 1986 (Sta1)<br />

215. Mitromorpha azorensis Mifsud, 2001 (Sta46)<br />

216. Mitromorpha azorensis Mifsud, 2001 (Sta1)<br />

217. Bela nebula (Montagu, 1803) (Sta56)<br />

218. Bela nebula (Montagu, 1803) (Sta1)<br />

219. Bela nebula (Montagu, 1803) (Sta1)<br />

220. Bela nebula (Montagu, 1803) (Sta56)<br />

221. Bela nebula (Montagu, 1803) (Sta56)<br />

222. Bela nebula (Montagu, 1803) (Sta18)<br />

223. Mangelia cf. costata (Donovan, 1804) (Sta25)<br />

224. Mangelia cf. costata (Donovan, 1804) (Sta29)<br />

225. Mangelia cf. costata (Donovan, 1804) (Sta29)<br />

226. Mangelia cf. costata (Donovan, 1804) (Sta30)<br />

227. Mangelia cf. costata (Donovan, 1804) (Sta1)<br />

228. Mangelia cf. costata (Donovan, 1804) (Sta1)<br />

229. Mangelia cf. costata (Donovan, 1804) (Sta18)<br />

230. Raphitoma purpurea (Montagu, 1803) (Sta56)<br />

231. Raphitoma linearis (Montagu, 1803) (Sta40)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 49


50 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XIV<br />

232. Raphitoma cf. aequalis (Jeffreys, 1867) (Sta56)<br />

233. Raphitoma cf. aequalis (Jeffreys, 1867) (Sta27)<br />

234. Raphitoma cf. aequalis (Jeffreys, 1867) (Sta57)<br />

235. Raphitoma cf. aequalis (Jeffreys, 1867) (Sta56)<br />

236. Raphitoma cf. aequalis (Jeffreys, 1867) (Sta40)<br />

237. Raphitoma cf. aequalis (Jeffreys, 1867) (Sta5)<br />

238. Raphitoma cf. aequalis (Jeffreys, 1867) (Sta56)<br />

239. Raphitoma cf. aequalis (Jeffreys, 1867) (Sta30)<br />

240. Raphitoma cf. aequalis (Jeffreys, 1867) (Sta40)<br />

241. Raphitoma sp. (Sta58)<br />

242. Pleurotomella gibbera Bouchet & Warén, 1980 (Sta29)<br />

243. Pleurotomella gibbera Bouchet & Warén, 1980 (Sta32)<br />

244. Pleurotomella gibbera Bouchet & Warén, 1980 (Sta27)<br />

245. Pleurotomella cf. gibbera Bouchet & Warén, 1980 (Sta29)<br />

246. Teretia teres (Reeve, 1844) (Sta28)<br />

247. Teretia teres (Reeve, 1844) (Sta27)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 51


52 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XV<br />

248. Crassopleura maravignae (Bivona, 1838) (Sta56)<br />

249. Crassopleura maravignae (Bivona, 1838) (Sta50)<br />

250. Crassopleura maravignae (Bivona, 1838) (Sta37)<br />

251. Haedropleura septangularis (Montagu, 1803) (Sta15)<br />

252. Haedropleura septangularis (Montagu, 1803) (Sta56)<br />

253. Philippia krebsi (Mörch, 1875) (Sta46)<br />

254. Pseudotorinia architae (O.G. Costa, 1841) (Sta32)<br />

255. Pseudomalaxis zanclaeus (Philippi, 1844) (Sta37)<br />

256. Mathil<strong>da</strong> cochlaeformis Brugnone, 1873 (Sta29)<br />

257. Mathil<strong>da</strong> retusa Brugnone, 1873 (Sta37)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 53


54 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XVI<br />

258. ?Rissoella sp. 1 (Sta41)<br />

259. ?Rissoella sp. 2 (Sta2)<br />

260. Omalogyra atomus (Philippi, 1841) (Sta28)<br />

261. O<strong>dos</strong>tomella doliolum (Philippi, 1844) (Sta37)<br />

262. O<strong>dos</strong>tomella doliolum (Philippi, 1844) (Sta32)<br />

263. Chrysalli<strong>da</strong> cf. flexuosa (Monterosato, 1874 ex Jeffreys) (Sta41)<br />

264. O<strong>dos</strong>tomia bernardi Aartsen, Gittenberger & Goud, 1998 (Sta58)<br />

265. O<strong>dos</strong>tomia cf. verhoeveni Aartsen, Gittenberger & Goud, 1998 (Sta1)<br />

266. O<strong>dos</strong>tomia duureni Aartsen, Gittenberger & Goud, 1998 (Sta15)<br />

267. O<strong>dos</strong>tomia cf. striolata Forbes & Hanley, 1850 (Sta18)<br />

268. Eulimella sp. (Sta38)<br />

269. Turbonilla rufa (Philippi, 1836) (Sta1)<br />

270. Turbonilla lactea (Linnaeus, 1758) (Sta56)<br />

271. Turbonilla sp. 1 (Sta38)<br />

272. Turbonilla sp. 2 (Sta38)<br />

273. Turbonilla sp. 3 (Sta37)<br />

274. Turbonilla sp. 4 (Sta38)<br />

275. Ebala nitidissima (Montagu, 1803) (Sta28)<br />

276. Ebala nitidissima (Montagu, 1803) (Sta18)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 55


56 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XVII<br />

277. Colpo<strong>da</strong>spis pusilla Sars, 1870 (Sta7)<br />

278. Retusa truncatula (Bruguière, 1792) (Sta27)<br />

279. Retusa truncatula (Bruguière, 1792) (Sta1)<br />

280. Haminoea cf. orteai Talavera, Murillo & Templado, 1987 (Sta58)<br />

281. Atys macandrewi E.A. Smith, 1872 (Sta56)<br />

282. Atys sp. (Sta15)<br />

283. Philine approximans Dautzenberg & Fischer, 1896 (Sta13)<br />

284. Philine sp. (Sta18)<br />

285. ?Chelidonura africana Pruvot-Fol, 1953 (Sta37)<br />

286. Cavolinia inflexa (Lesueur, 1813) (Sta56)<br />

287. Cavolinia inflexa (Lesueur, 1813) (Sta29)<br />

288. Cavolinia tridentata (Forskal, 1775) (Sta37)<br />

289. Diacria trispinosa (Lesueur, 1821) (Sta50)<br />

290. Diacria trispinosa (Lesueur, 1821) (Sta12)<br />

291. Cuvierina atlantica (Bé, MacClintock & Currie, 1972) (Sta38)<br />

292. Clio pyrami<strong>da</strong>ta Linnaeus, 1767 (Sta29)<br />

293. Clio pyrami<strong>da</strong>ta Linnaeus, 1767 (Sta12)<br />

294. Limacina cf. helicina (Phipps, 1774) (Sta32)<br />

295. Limacina inflata (d’Orbigny, 1836) (Sta1)<br />

296. Umbraculum umbraculum (Lightfoot, 1786) (Sta31)<br />

297. Tylodina perversa (Gmelin, 1791) (Sta28)<br />

298. Williamia gussonii (O.G. Costa, 1829) (St12)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 57


58 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

Endemic. Depth range, this study: 14-360 m;<br />

alive from 14-207 m.<br />

Calliostomati<strong>da</strong>e Thiele, 1924<br />

Calliostoma hirondellei Dautzenberg & Fisher,<br />

1896<br />

(Figure 27)<br />

Remarks: Rare. Depth range, this study: 72-<br />

234 m.<br />

Calliostoma lividum Dautzenberg, 1927<br />

(Figures 28-29)<br />

Remarks: Sometimes subti<strong>da</strong>l in the Azores.<br />

Endemic. Ávila et al., 2000 as C. cf. conulus<br />

(Linnaeus, 1758). Depth range: 20-200 m<br />

(P&G and MM&B, as C. conulum (L.)); this<br />

study: 30-360 m. Alive on IVFC (Martins,<br />

2004).<br />

Superfamily TURBINOIDEA Rafinesque,<br />

1815<br />

Family Turbini<strong>da</strong>e Rafinesque, 1815<br />

Cirsonella gaudryi (Dautzenberg & Fisher,<br />

1896)<br />

(Figure 30)<br />

Remarks: Rare. Depth range, this study: 117-<br />

234 m.<br />

Family Phasianelli<strong>da</strong>e Swainson, 1840<br />

Tricolia pullus azorica (Dautzenberg, 1889)<br />

(Figures 31-32)<br />

Remarks: Some specimens were fresh, indicating<br />

that they could live in nearby habitats.<br />

Endemic. Bullock et al., 1990, Bullock, 1995<br />

and Knudsen, 1995 as T. pullus (Linnaeus,<br />

1758); Ávila et al., 2000. Depth range: interti<strong>da</strong>l-35<br />

m (P&G, as T. pullus (L.)); this study:<br />

14-360 m. Common alive on IVFC (Martins,<br />

2004).<br />

Order APOGASTROPODA Salvini-Plawén &<br />

Haszprunar, 1987<br />

Suborder CAENOGASTROPODA Cox, 1959<br />

Superfamily CERITHIOIDEA Fleming, 1822<br />

Family Cerithii<strong>da</strong>e Fleming, 1822<br />

Bittium cf. latreillii (Payraudeau, 1826)<br />

(Figures 33-34)<br />

Remarks: This form of Bittium has been questionably<br />

ascribed to B. latreillii, and awaits further<br />

study to clarify its taxonomic status.<br />

Shells are very common. Bullock et al., 1990<br />

and Bullock, 1995 as B. reticulatum (<strong>da</strong> Costa,<br />

1779); Ávila et al., 2000. Depth range: littoral<br />

(MM&B); this study: 14-360 m; alive at 38 m.<br />

Common alive on IVFC (Martins, 2004).<br />

Bittium latreillii (Payraudeau, 1826)<br />

(Figure 35)<br />

Remarks: Very rare. This specimen conforms to<br />

the description of B. latreillii. Depth range: littoral<br />

(MM&B); this study: 180 m.<br />

Family Planaxi<strong>da</strong>e Gray, 1850<br />

Fossarus ambiguus (Linaeus, 1758)<br />

(Figures 36-37)<br />

Remarks: Occurs regularly in the samples.<br />

Houbrick, 1990; Bullock, 1995; Knudsen, 1995;<br />

Ávila et al., 2000. Depth range: littoral<br />

(MM&B); this study: 30-180 m. Common alive<br />

on IVFC (Martins, 2004).<br />

Superfamily TRIPHOROIDEA Gray, 1847<br />

Triphori<strong>da</strong>e Gray, 1847<br />

NOTE: Triphorids were present in most samples.<br />

No living specimens were collected,<br />

although some shells appeared to be fresh;<br />

commonly, they exhibited clear signs of pre<strong>da</strong>tion.<br />

The species of this family are difficult to<br />

identify without information on the animal<br />

and the larval shell; the granulation of the<br />

spiral and basal cords is often less distinct and<br />

intermediate. Although tentatively identified<br />

to species, they are however illustrated<br />

profusely to record their variability, and<br />

to provide a basis for further, perhaps more<br />

accurate identifications. Information on<br />

www.naturamediterraneo.com, based on<br />

Bouchet & Guillemot (1978) and Bouchet<br />

(1984), was helpful for species identification.<br />

Cheirodonta pallescens (Jeffreys, 1867)<br />

(Figures 38-41)<br />

Remarks: Shell light-brown to whitish, uniformly<br />

coloured; protoconch bi-carinated; spiral<br />

cord 4 and basal cords smooth; supranumerary<br />

cords on last whorl. Depth range, this study:<br />

30-145 m.<br />

Similiphora similior (Bouchet & Guillemot, 1978)<br />

(Figures 42-46)<br />

Remarks: Shell brownish, variously coloured; 1 st<br />

whorl of protoconch uni-carinated, remaining<br />

bi-carinated; spiral cord 4 granulated, basal


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 59<br />

cords smooth; supranumerary cords on last<br />

whorl. Depth range, this study: 14-360 m.<br />

Marshallora adversa (Montagu, 1803)<br />

(Figures 47-54)<br />

Remarks: Shell brownish, variously coloured;<br />

protoconch bi-carinated; spiral cord 4 and<br />

basal cords smooth; tubercles on last whorl<br />

elongated; absence of supranumerary cords on<br />

last whorl. Depth range, this study: 30-234 m.<br />

Marshallora cf. adversa (Montagu, 1803)<br />

(Figure 55)<br />

Remarks: The presence of brownish markings<br />

between tubercles is reminiscent of M. thiriotae,<br />

but other characters indicate affinity with M.<br />

adversa. Depth range, this study: 46 m.<br />

Monophorus sp.<br />

(Figure 56)<br />

Remarks: Depth range, this study: 40-135 m.<br />

Monophorus erythrosoma (Bouchet & Guillemot,<br />

1978)<br />

(Figures 57-60)<br />

Remarks: Shell brownish, unicoloured or variously<br />

coloured; protoconch bi-carinated; spiral<br />

cord 4 granulated, basal cords 1-2 granulated, 3<br />

smooth; supranumerary cords on last whorl.<br />

Depth range, this study: 38-243 m.<br />

Monophorus thiriotae Bouchet, 1985<br />

(Figures 62-64)<br />

Remarks: Shell brownish, variously coloured;<br />

protoconch bi-carinated; spiral cord 4 granulated,<br />

basal cords 1-2 granulated, 3 smooth;<br />

absence of supranumerary cords on last whorl;<br />

brownish intertuberculary markings. Depth<br />

range, this study: 30-207 m.<br />

Pogonodon pseudocanaricus (Bouchet, 1985)<br />

(Figure 61)<br />

Remarks: Shell whitish, brown vertical markings;<br />

protoconch redish, bi-carinated; spiral cord 4<br />

granulated, basal cords 1-2 granulated. Only<br />

one apparently fresh specimen, but with last<br />

whorl crushed. Depth range, this study: 57 m.<br />

Strobiligera brychia (Bouchet & Guillemot,<br />

1978)<br />

(Figure 65)<br />

Remarks: Tubercles of spiral cord 1 smaller than<br />

those of remaining cords. Rare. Depth range,<br />

this study: 117-234 m.<br />

Metaxia cf. abrupta (Watson, 1880)<br />

(Figure 66)<br />

Remarks: Only one specimen collected, apparently<br />

a juvenile. Depth range, this study: 129-<br />

207 m.<br />

Family Cerithiopsi<strong>da</strong>e A<strong>da</strong>ms H. & A., 1853<br />

Cerithiopsis tubercularis (Montagu, 1803)<br />

(Figures 67-68)<br />

Remarks: Relatively rare. Depth range: littoral-<br />

100 m (MM&B); this study: 41-207m.<br />

Cerithiopsis tiara (Monterosato, 1874)<br />

(Figure 69)<br />

Remarks: Rare. Depth range, this study: 129-<br />

207 m.<br />

Cerithiopsis jeffreysi Watson, 1885<br />

(Figure 70)<br />

Remarks: Rare. Depth range, this study: 117-<br />

207 m.<br />

Cerithiopsis scalaris Locard, 1892<br />

(Figures 71-74)<br />

Remarks: Shells uncommon but some specimens<br />

appeared fresh. Depth range, this study:<br />

57-234 m.<br />

Cerithiopsis minima (Brusina, 1865)<br />

(Figures 75-76)<br />

Remarks: Uncommon. Depth range, this study:<br />

38-207 m.<br />

Cerithiopsis cf. minima (Brusina, 1865)<br />

(Figures 77-78)<br />

Remarks: Uncommon. Depth range, this study:<br />

57-135 m.<br />

Cerithiopsis fayalensis Watson, 1886<br />

(Figures 79-80)<br />

Remarks: Shells uncommon but some specimens<br />

appeared fresh. Depth range, this study:<br />

99-234 m.<br />

Krachia cf. guernei (Dautzenberg & Fischer,<br />

1896)<br />

(Figure 81)<br />

Remarks: Rare. Depth range, this study: 117-<br />

234 m.


60 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

Superfamily JANTHINOIDEA Gray, 1847<br />

Family Epitonii<strong>da</strong>e S.S. Berry, 1910 (1812)<br />

Gyroscala lamellosa (Lamarck, 1822)<br />

Remarks: Only one fragment. Depth range:<br />

Infralittoral to 620 m (MM&B); this study: 56 m.<br />

Epitonium turtonis (Turton, 1819)<br />

(Figure 82)<br />

Remarks: Rare. Depth range: 5-70 m (P&G); this<br />

study: 66m.<br />

Epitonium clathrus (Linnaeus, 1758)<br />

(Figure 83)<br />

Remarks: Rare. Depth range: 5-70 m (P&G); this<br />

study: 66-72 m.<br />

Epitonium pulchellum (Bivona, 1832)<br />

(Figures 84-86)<br />

Remarks: Not uncommon. Depth range: 20-40 m<br />

(P&G; MM&B); this study: 58-145 m.<br />

Epitonium celesti (Ara<strong>da</strong>s, 1854)<br />

(Figures 87-90)<br />

Remarks: Not uncommon. Depth range: 50-1250<br />

m (P&G; MM&B); this study: 57-207 m.<br />

Punctiscala cerigottana (Sturany, 1819)<br />

(Figure 91)<br />

Remarks: Rare. Only one <strong>da</strong>maged specimen<br />

found. Depth range: 50-600 m (MM&B); this<br />

study: 129-207 m.<br />

Opaliopsis atlantis (Clench & Turner, 1952)<br />

(Figure 92)<br />

Remarks: Rare. Only one <strong>da</strong>maged specimen<br />

found. Depth range: 810-825 m (MM&B); this<br />

study: 167-189 m.<br />

Cirsotrema cf. cochlea (Sowerby, 1844)<br />

(Figures 93-94)<br />

Remarks: Uncommon. The Azorean specimens<br />

are stouter and more globose than the illustrations<br />

consulted (P&G). Depth range:<br />

Infralittoral-60 m (MM&B); this study: 40-318 m;<br />

alive: 66-72 m.<br />

Acirsa subdecussata (Cantraine, 1835)<br />

(Figure 95)<br />

Remarks: Only one fresh specimen collected.<br />

Depth range: 12-500 m (P&G; MM&B); this study:<br />

57 m.<br />

Opalia hellenica (Forbes, 1844)<br />

(Figure 96)<br />

Remarks: Uncommon. Ávila et al., 2000. Depth<br />

range: 20-770 m (MM&B); this study: 63-234 m;<br />

alive: 66-81 m.<br />

Opalia sp. 1<br />

(Figure 97)<br />

Remarks: Rare. Depth range, this study: 99-<br />

108 m.<br />

Opalia sp. 2<br />

(Figure 98)<br />

Remarks: Only one shell collected, with broken<br />

tip. Depth range, this study: 129-207 m.<br />

Superfamily EULIMOIDEA Philippi, 1853<br />

Family Eulimi<strong>da</strong>e Philippi, 1853<br />

Melanella bosci Payraudeau, 1826<br />

(Figure 99)<br />

Remarks: Rare. Depth range: 10-150 m (P&G);<br />

this study: 45-234 m.<br />

Melanella cf. crosseana (Brusina, 1886)<br />

(Figures 100-101)<br />

Remarks: Uncommon. Depth range, this study:<br />

73-145 m.<br />

Melanella cf. trunca (Watson, 1897)<br />

(Figure 102)<br />

Remarks: Rare. Depth range, this study: 30-<br />

38 m.<br />

Parvioris microstoma (Brusina, 1864)<br />

(Figure 103)<br />

Remarks: Rare. Depth range, this study: 135 m.<br />

Parvioris sp.<br />

(Figure 104)<br />

Remarks: Rare. Depth range, this study: 135-<br />

207 m.<br />

Crinophteiros collinsi (Sykes, 1903)<br />

(Figure 105)<br />

Remarks: Rare. Depth range, this study: 117-<br />

234 m.<br />

Sticteulima jeffreysiana (Brusina, 1869)<br />

(Figure 106)<br />

Remarks: Rare. Depth range, this study: 95-<br />

121 m.


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 61<br />

Vitreolina sp.<br />

(Figure 107)<br />

Remarks: Rare. Depth range, this study: 135 m.<br />

Vitreolina curva (Monterosato, 1884)<br />

(Figures 108-109)<br />

Remarks: Rare. Depth range, this study: 57-180 m.<br />

Pelseneeria minor Koehler & Vaney, 1908<br />

(Figure 110)<br />

Remarks: Only one specimen collected. Depth<br />

range: 90-185 m (MM&B); this study: 117-145 m.<br />

Superfamily LITTORINOIDEA Children, 1834<br />

Family Littorini<strong>da</strong>e Children, 1834<br />

Littorina striata King & Broderip, 1832<br />

Remarks: This is a supralittoral species, and<br />

its presence in the dredged material is accidental.<br />

Melarhaphe neritoides (Linnaeus, 1758)<br />

Remarks: This is a supralittoral species, and its<br />

presence in the dredged material is accidental.<br />

Family Skeneopsi<strong>da</strong>e Ire<strong>da</strong>le, 1915<br />

Skeneopsis planorbis (Fabricius, 1870)<br />

(Figure 111)<br />

Remarks: Uncommon. Reported as very common<br />

(Bullock et al., 1990; Bullock, 1995). Knudsen, 1995;<br />

Ávila et al., 2000. Depth range: Infralittoral to 70m<br />

(P&G; MM&B); this study: 32-145 m. Common<br />

alive on IVFC (Martins, 2004).<br />

Superfamily RISSOOIDEA Gray, 1847<br />

Family Rissoi<strong>da</strong>e Gray, 1847<br />

Rissoa guernei Dautzenberg, 1889<br />

(Figures 112-114)<br />

Remarks: Uncommon but some specimens<br />

appeared fresh. Endemic. Reported as very common<br />

(Bullock et al., 1990; Ávila, 2000). Gofas, 1990;<br />

Knudsen, 1995; Ávila et al., 2000. Depth range, this<br />

study: 32-234 m. Common alive on IVFC<br />

(Martins, 2004).<br />

Rissoa sp. 1<br />

(Figure 115)<br />

Remarks: Rare. Depth range, this study: 117-145 m.<br />

Rissoa sp. 2<br />

(Figure 116)<br />

Remarks: Rare. Depth range, this study: 99-180 m.<br />

Setia subvaricosa Gofas, 1990<br />

(Figures 117-118)<br />

Remarks: Rare. Endemic. This species is<br />

common in 15-20 m (Gofas, 1990; Ávila, 2000).<br />

Ávila et al., 2000. Depth range, this study: 99-<br />

135 m. Collected alive at IVFC (Martins, 2004).<br />

Setia cf. quisquiliarum (Watson 1886)<br />

(Figure 119)<br />

Remarks: Rare. Endemic. Depth range, this<br />

study: 237-360 m.<br />

Crisilla postrema (Gofas, 1990)<br />

(Figure 120)<br />

Remarks: Rare. Endemic. Infralittoral to 20 m;<br />

collected alive at IVFC (Gofas, 1990). Bullock et<br />

al., 1990 as Rissoa pulcherima (Jeffreys, 1848);<br />

Bullock, 1995 as Alvania postrema. Depth range,<br />

this study: 56-360m.<br />

Crisilla cf. postrema (Gofas, 1990)<br />

(Figures 121-122)<br />

Remarks: Rare. Depth range, this study: 99-<br />

207 m.<br />

Pseu<strong>dos</strong>etia azorica Bouchet & Warén, 1993<br />

(Figures 123-124)<br />

Remarks: Rare. Endemic. Depth range, this<br />

study: 72-207 m.<br />

Cingula trifasciata (A<strong>da</strong>ms, 1798)<br />

(Figure 125)<br />

Remarks: Rarely collected. Specimens eroded,<br />

probably transported from the interti<strong>da</strong>l,<br />

where it is common. Depth range, this study:<br />

38-180 m.<br />

Manzonia unifasciata Dautzenberg, 1889<br />

(Figures 126-128)<br />

Remarks: Relatively common; probably transported<br />

from infralittoral zone where it is very<br />

common from 0-10 m (Ávila, 2003). Bullock et<br />

al., 1990 and Bullock, 1995 as M. crassa<br />

(Kanmacher, 1798); Gofas, 1990; Knudsen,<br />

1995; 1995; Ávila et al., 2003. Depth range, this<br />

study: 237-360 m. Collected alive at IVFC<br />

(Martins, 2004).<br />

Onoba moreleti Dautzenberg, 1889<br />

(Figures 129-132)<br />

Remarks: Uncommon. Endemic. Depth range,<br />

this study: 95-234 m.


62 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

Alvania angioyi van Aartsen, 1982<br />

(Figures 133-134)<br />

Remarks: Rare. Endemic. Infralittoral to 20 m<br />

(Gofas, 1990). Bullock et al., 1990 as A, watsoni<br />

(Schwartz MS) Watson, 1873; Bullock, 1995;<br />

Knudsen, 1995; Ávila et al. 2000. Depth range,<br />

this study: 57-360 m. Collected alive at IVFC<br />

(Martins, 2004).<br />

Alvania poucheti Dautzenberg, 1889<br />

(Figures 135-137)<br />

Remarks: Relatively common; some specimens<br />

appeared fresh. Endemic. Gofas, 1990;<br />

Bullock et al., 1990; Bullock, 1995; Knudsen,<br />

1995; Ávila et al. 2000. Depth range, this<br />

study: 38-207 m. Collected alive at IVFC<br />

(Martins, 2004).<br />

Alvania mediolittoralis Gofas, 1989<br />

(Figure 138)<br />

Remarks: Rare. Common interti<strong>da</strong>lly (Gofas,<br />

1990). Depth range, this study: 30-207 m.<br />

Alvania punctura (Montagu, 1803)<br />

(Figure 139)<br />

Remarks: Very rare. Depth range, this study:<br />

117-234 m.<br />

Alvania sp. (?tarsodes Watson, 1886)<br />

(Figure 140)<br />

Remarks: Very rare. Depth range, this study:<br />

57 m.<br />

Alvania sleursi (Amati, 1987)<br />

(Figures 141-142)<br />

Remarks: Common; some specimens appeared<br />

fresh. Infralittoral, common at 20 m (Gofas,<br />

1990; Knudsen, 1995). Depth range, this study:<br />

30-234 m.<br />

Alvania cancellata (<strong>da</strong> Costa, 1778)<br />

(Figures 143-147)<br />

Remarks: Common; some specimens appeared<br />

fresh. Infralittoral, most common at 20 m<br />

(Gofas, 1990; Knudsen, 1995). Depth range,<br />

this study: 30-360 m.<br />

Alvania platycephala Dautzenberg & Fischer,<br />

1896<br />

(Figures 148-151)<br />

Remarks: Rare. Endemic. Depth range, this<br />

study: 129-360 m.<br />

Alvania cimicoides (Hoenselaar & Goud,<br />

1998)<br />

(Figures 152-153)<br />

Remarks: Rare. Depth range, this study: 99-<br />

360 m. Collected alive at 117-234.<br />

Alvania cf. cimicoides (Hoenselaar & Goud,<br />

1998)<br />

(Figure 154)<br />

Remarks: Only one specimen collected. Depth<br />

range, this study: 156-360 m.<br />

Family Caeci<strong>da</strong>e Gray, 1850<br />

Caecum wayae Pizzini & Nofroni, 2001<br />

(Figures 155-156)<br />

Remarks: Common. Depth range, this study:<br />

57-171 m.<br />

Superfamily VANIKOROIDEA Gray, 1840<br />

Family Vanikori<strong>da</strong>e Gray, 1840<br />

Talassia cf. tenuisculpta (Watson, 1873)<br />

(Figures 157-158)<br />

Remarks: Rare. Depth range, this study: 99-234 m.<br />

Superfamily CAPULOIDEA Fleming, 1822<br />

Family Capuli<strong>da</strong>e Fleming, 1822<br />

Capulus ungaricus (Linnaeus, 1758)<br />

(Figure 159)<br />

Remarks: Rare. Depth range: sublittoral to 850<br />

m (P&G). Depth range, this study: 117-189 m.<br />

Superfamily VELUTINOIDEA Gray, 1850<br />

Family Velutini<strong>da</strong>e Gray, 1850<br />

Lamellaria perspicua (Linnaeus, 1758)<br />

(Figures 160-161)<br />

Remarks: Uncommon. Depth range: littoral to<br />

200 m (P&G; MM&B.) Depth range, this study:<br />

58-135 m. Collected alive at about 20 m, in previous<br />

workshop.<br />

Family Trivii<strong>da</strong>e Troschel, 1863<br />

Trivia pulex (Solander in J.E. Gray, 1828)<br />

(Figures 162-164)<br />

Remarks: Common. Depth range, this study:<br />

30-234 m. Ávila et al., 2000. Collected alive at<br />

about 20 m, during previous workshop.<br />

Trivia candidula (Gaskoin, 1835)<br />

(Figure 165)<br />

Remarks: Common; some specimens appeared<br />

fresh. Interti<strong>da</strong>l (MM&B). Ávila et al., 2000.<br />

Depth range, this study: 12-360 m.


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 63<br />

Erato sp.<br />

(Figures 166-167)<br />

Remarks: Rare; the specimens herein represented<br />

are tentatively identified as juveniles.<br />

Depth range, this study: 135-207 m<br />

Family Ovuli<strong>da</strong>e Feming, 1822<br />

Aperiovula juanjosensii Perez & Gomez, 1987<br />

(Figure 168)<br />

Remarks: Only a fragment was collected.<br />

Depth range, this study: 129-207 m.<br />

Superfamily NATICOIDEA Guilding, 1834<br />

Family Natici<strong>da</strong>e Guilding, 1834<br />

Notocochlis dillwynii (Payraudeau, 1826)<br />

(Figure 169)<br />

Remarks: Rare. Depth range: 1-25 m (MM&B;<br />

P&G); this study: 318 m<br />

Natica prietoi Hi<strong>da</strong>lgo, 1873<br />

(Figures 170-172)<br />

Remarks: Common, variable. Previously cited<br />

as Natica a<strong>da</strong>nsoni de Blainville, 1825 (Ávila et<br />

al., 2000). Depth range: infralittoral to 200 m<br />

(MM&B); this study: 14-360 m; alive: 18-<br />

318 m.<br />

Natica cf. prietoi Hi<strong>da</strong>lgo, 1873<br />

(Figure 173)<br />

Remarks: Rare. Depth range, this study: 32 m.<br />

Superfamily TONNOIDEA Suter, 1913<br />

Family Tonni<strong>da</strong>e Suter, 1913<br />

Phalium undulatum (Gmelin, 1791)<br />

Remarks: Only fragments. Depth range: 8-80<br />

m (P&G); infralittoral to 115 m (MM&B); this<br />

study: 32-207 m.<br />

Superfamily PTEROTRACHEOIDEA<br />

Rafinesque, 1814<br />

Family Atlanti<strong>da</strong>e Rang, 1829<br />

Atlanta peroni Lesueur, 1817<br />

(Figure 174)<br />

Remarks: Pelagic.<br />

Protatlanta souleyeti (E.A. Smith, 1888)<br />

(Figure 175)<br />

Remarks: Pelagic.<br />

Superfamily MURICOIDEA Rafinesque, 1815<br />

Family Murici<strong>da</strong>e Rafinesque, 1815<br />

Ocenebra erinaceus (Linnaeus, 1758)<br />

(Figure 176)<br />

Remarks: Rare. Only juveniles collected. Depth<br />

range: interti<strong>da</strong>l to150 m (P&G); this study: 32-<br />

207 m.<br />

Ocenebra sp.<br />

(Figure 177)<br />

Remarks: Uncommon. Depth range, this study:<br />

58-189 m.<br />

Ocinebrina aciculata (Lamarck, 1822)<br />

(Figure 178)<br />

Remarks: Relatively common. Ávila et al., 2000.<br />

Depth range: interti<strong>da</strong>l to at least 25 m (P&G); this<br />

study: 30-360 m.<br />

Ocinebrina cf. aciculata (Lamarck, 1822)<br />

(Figure 179)<br />

Remarks: Relatively common. Depth range, this<br />

study: 38-360 m.<br />

?Ocinebrina cf. aciculata (Lamarck, 1822)<br />

(Figures 180-181)<br />

Remarks: Uncommon. Depth range, this study:<br />

45-207 m.<br />

?Ocinebrina sp.<br />

(Figure 182)<br />

Remarks: Rare. Depth range, this study: 45-47 m.<br />

Orania fusulus (Brocchi, 1814)<br />

(Figures 183-185)<br />

Remarks: Depth range: 95-920 m (MM&B); 100-<br />

150 m (P&G); this study: 30-360 m; alive: 30-57 m.<br />

Trophonopsis barvicensis (Johnston, 1825)<br />

(Figures 186-192)<br />

Remarks: Commonly found. Depth range: 440-550<br />

m (MM&B); this study: 32-207 m.<br />

Trophonopsis cf. muricatus (Montagu, 1803)<br />

(Figures 193-194)<br />

Remarks: Commonly found. Ávila et al., 2000.<br />

Depth range: 10-200 m, with records down to<br />

2000 m (MM&B; P&G); this study: 41-108 m.<br />

Coralliophila cf. meyendorfii (Calcara, 1845)<br />

(Figure 195)<br />

Remarks: Uncommon. Depth range: infralittoral<br />

to circalittoral (MM&B); this study: 30-189 m.<br />

Coralliophila panormitana (Monterosato, 1896)<br />

(Figure 196)<br />

Remarks: Rare. Depth range: below low tide to<br />

640m (P&G); this study: 99-234 m.


64 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

Stramonita haemastoma (Linnaeus, 1767)<br />

(Figure 197)<br />

Remarks: Uncommon; specimens rolled, mostly<br />

juvenile, probably transported from the littoral.<br />

Knudsen, 1995 as Thais haemastoma flori<strong>da</strong>na<br />

(Conrad, 1837); Ávila et al., 2000. Depth range:<br />

interti<strong>da</strong>l to 3 m (P&G); this study: 32-360 m.<br />

Alive on IVFC (Martins, 2004).<br />

Family Cystici<strong>da</strong>e Stimpson, 1865<br />

Gibberula vignali (Dautzenberg & Fischer 1896)<br />

(Figure 198)<br />

Remarks: Rare. Depth range, this study: 156-360m.<br />

Gibberula cf. lazaroi Contreras, 1992<br />

(Figure 199)<br />

Remarks: Rare. Could be a juvenile of G. vignali,<br />

but resembles Gibberula lazaroi, described from the<br />

interti<strong>da</strong>l of Pico and Terceira islands (Contreras,<br />

1992). Depth range, this study: 117-234 m.<br />

Family Mitri<strong>da</strong>e Swainson, 1831<br />

Mitra cornea Lamarck, 1811<br />

(Figure 200)<br />

Remarks: Uncommon; specimens rolled, mostly<br />

juveniles. Knudsen, 1995 as M. nigra (Gmelin,<br />

1791); Ávila et al., 2000. Depth range: interti<strong>da</strong>l<br />

to 40 m (MM&B, as M. cornicula (Linnaeus);<br />

this study: 30-207 m; alive at IVFC (Martins,<br />

2004).<br />

Superfamily BUCCINOIDEA Rafinesque, 1815<br />

Family Buccini<strong>da</strong>e Rafinesque, 1815<br />

Pollia dorbignyi (Payraudeau, 1826)<br />

(Figures 201-202)<br />

Remarks: one fresh fragment. Depth range: in and<br />

just above littoral zone (MM&B; P&G); this study:<br />

30 m; alive at IVFC (Martins, 2004).<br />

Family Nassarii<strong>da</strong>e Ire<strong>da</strong>le, 1916<br />

Nassarius incrassatus (Ström, 1768)<br />

(Figures 203-206)<br />

Remarks: Common, mostly fragmented shells.<br />

Ávila et al., 2000. Depth range: interti<strong>da</strong>l to 200 m<br />

(MM&B; P&G); this study: 18-.360 m.<br />

Nassarius cf. cuvierii (Payraudeau, 1826)<br />

(Figure 207)<br />

Remarks: One juvenile specimen collected.<br />

Depth range: in and just above littoral zone<br />

(MM&B; P&G); this study: 66 m.<br />

Nassarius recidivus (Martens, 1876)<br />

(Figure 208)<br />

Remarks: Rare. Depth range, this study: 167-318 m.<br />

Family Columbelli<strong>da</strong>e Swainson, 1840<br />

Columbella a<strong>da</strong>nsoni Menke, 1853<br />

(Figure 209)<br />

Remarks: Uncommon, mostly fragmented shells;<br />

some juveniles appeared fresh. Knudsen, 1995;<br />

Ávila et al., 2000. Depth range: 4-1402 m (MM&B,<br />

as C. rustica (Linnaeus)); this study: 30-360 m;<br />

common alive at IVFC (Martins, 2004).<br />

Mitrella pallaryi (Dautzenberg, 1758)<br />

(Figure 210)<br />

Remarks: Rare. Depth range: 40-200 m (MM&B;<br />

P&G); this study: 129-360 m.<br />

Anachis avaroides Nordsieck, 1975<br />

(Figures 211-212)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: infralittoral (MM&B), this study: 30-207 m;<br />

common alive at IVFC (Martins, 2004).<br />

Superfamily CANCELLARIOIDEA Forbes &<br />

Hanley, 1851<br />

Family Cancellarii<strong>da</strong>e Forbes & Hanley, 1851<br />

Brocchinia clenchi Petit, 1986<br />

(Figures 213-214)<br />

Remarks: Frequent in some samples. Depth range,<br />

this study: 40-07 m; alive: 58-81 m.<br />

Superfamily CONOIDEA Fleming, 1822<br />

Family Coni<strong>da</strong>e Fleming, 1822<br />

Mitromorpha (Mitrolumna) azorensis Mifsud, 2001<br />

(Figures 215-216)<br />

Remarks: Uncommon. Bullock, 1995 as Mitrolumna<br />

olivoidea (Cantraine, 1835); Ávila et al., 2000.<br />

Depth range, this study: 30-207 m<br />

Bela nebula (Montagu, 1803)<br />

(Figures 217-222)<br />

Remarks: Common throughout the sampled depth<br />

range. Ávila et al., 2000. Depth range: 10-30 m<br />

(P&B); this study: 14-360 m; alive: 38-169 m.<br />

Mangelia cf. costata (Montagu, 1803)<br />

(Figures 223-229)<br />

Remarks: Common. Depth range: infralittoral<br />

40 m (MM&B); this study: 14-360 m; alive: 66-<br />

189 m.


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 65<br />

Raphitoma purpurea (Montagu, 1803)<br />

(Figure 230)<br />

Remarks: Uncommon. Depth range, this study:<br />

30-207 m<br />

Raphitoma linearis (Montagu, 1803)<br />

(Figure 231)<br />

Remarks: Uncommon. Depth range: Interti<strong>da</strong>l to<br />

200 m (P&G); this study: 38-234 m.<br />

Raphitoma cf. aequalis (Jeffreys, 1867)<br />

(Figures 232-240)<br />

Remarks: Common. Depth range: interti<strong>da</strong>l<br />

(MM&B); this study: 14-360 m; alive: 46-58 m.<br />

Raphitoma sp.<br />

(Figure 241)<br />

Remarks: Rare. Depth range, this study: 32-207 m.<br />

Pleurotomella gibbera Bouchet & Warén, 1980<br />

(Figures 242-244)<br />

Remarks: Rare. Depth range, this study: 72- 234 m.<br />

Pleurotomella cf. gibbera Bouchet & Warén, 1980<br />

(Figure 245)<br />

Remarks: Rare. Depth range, this study: 144-198m.<br />

Teretia teres (Reeve, 1844)<br />

(Figures 246-247)<br />

Remarks: Rare. Depth range: 30-1385 (MM&B);<br />

this study: 99-234 m.<br />

Family Drillii<strong>da</strong>e Olsson, 1964<br />

Crassopleura maravignae (Bivona, 1838)<br />

(Figures 248-250)<br />

Remarks: Common at deeper sandy bottoms.<br />

Ávila et al., 2000. Depth range, this study: 14-360<br />

m; alive at: 58-234 m.<br />

Family Turri<strong>da</strong>e H. & A. A<strong>da</strong>ms, 1853<br />

Haedropleura septangularis (Montagu, 1803)<br />

(Figures 251-252)<br />

Remarks: Uncommon. Ávila et al., 2000. Depth<br />

range: 7-70 m (P&G); this study: 30-207 m<br />

Subclass HETEROBRANCHIA Gray, 1840<br />

Order HETEROSTROPHA Fischer P., 1885<br />

Superfamily ARCHITECTONICOIDEA Gray,<br />

1850<br />

Family Architectonici<strong>da</strong>e Gray, 1850<br />

Philippia krebsi (Mörch, 1875)<br />

(Figure 253)<br />

Remarks: Rare. Depth range, this study: 56-207 m.<br />

Pseudotorinia architae (Costa O.G., 1841)<br />

(Figure 254)<br />

Remarks: Rare. Ávila et al., 2000. Depth range,<br />

this study: 180-234 m; alive at: 180m.<br />

Pseudomalaxis zancleus (Philippi, 1844)<br />

(Figure 255)<br />

Remarks: Rare. Depth range: 644 m (MM&B);<br />

this study: 117-234 m.<br />

Superfamily MATHILDOIDEA Dall, 1889<br />

Family Mathildi<strong>da</strong>e Semper, 1865<br />

Mathil<strong>da</strong> cochlaeformis Brugnone, 1873<br />

(Figure 256)<br />

Remarks: Rare; only one fresh, broken shell. Depth<br />

range: 1205 m (MM&B); this study: 144-198 m.<br />

Mathil<strong>da</strong> retusa (Brocchi, 1814)<br />

(Figure 257)<br />

Remarks: Rare; only one specimen collected.<br />

Depth range, this study: 117-234 m.<br />

Superfamily RISSOELLOIDEA Gray, 1850<br />

Family Rissoelli<strong>da</strong>e Gray, 1850<br />

?Rissoella sp. 1<br />

(Figure 258)<br />

Remarks: Rare. Depth range, this study: 156-360m.<br />

? Rissoella sp. 2<br />

(Figure 259)<br />

Remarks: Rare. Depth range, this study: 135 m.<br />

Superfamily OMALOGYROIDEA Sars, 1878<br />

Family Omalogyri<strong>da</strong>e Sars, 1878<br />

Omalogyra atomus (Philippi, 1841)<br />

(Figure 260)<br />

Remarks: Rare; only one specimen; however,<br />

the rarity of minute species can be seen as an<br />

artefact of sampling, for most of the fine fraction<br />

was discarded. Bullock et al. (1990) reported<br />

it to be very common on algal samples.<br />

Bullock, 1995; Knudsen, 1995; Ávila et al., 2000.<br />

Depth range: interti<strong>da</strong>l to 20 m (MM&B); this<br />

study: 117-145 m.<br />

Superfamily PYRAMIDELLOIDEA Gray, 1840<br />

Family Pyramidelli<strong>da</strong>e Gray, 1840<br />

O<strong>dos</strong>tomella doliolum (Philippi, 1844)<br />

(Figures 261-262)<br />

Remarks: Rare; one very fresh shell collected.<br />

Ávila et al., 2000. Depth range: 10-800 m<br />

(MM&B); this study: 180-234 m.


66 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

Chrysalli<strong>da</strong> cf. flexuosa (Monterosato, 1874 ex<br />

Jeffreys)<br />

(Figure 263)<br />

Remarks: Rare. Depth range, this study: 156-<br />

300 m.<br />

O<strong>dos</strong>tomia bernardi Aartsen, Gittenberger &<br />

Goud, 1998<br />

(Figure 264)<br />

Remarks: Common in fine fractions. Endemic.<br />

Depth range, this study: 30-360m.<br />

O<strong>dos</strong>tomia cf. verhoeveni Aartsen, Gittenberger<br />

& Goud, 1998<br />

(Figure 265)<br />

Remarks: Uncommon. Depth range, this study:<br />

30-207 m.<br />

O<strong>dos</strong>tomia duureni Aartsen, Gittenberger &<br />

Goud, 1998<br />

(Figure 266)<br />

Remarks: Rare. Depth range, this study: 57 m.<br />

O<strong>dos</strong>tomia cf. striolata Forbes & Hanley, 1850<br />

(Figure 267)<br />

Remarks: Rare. Depth range, this study: 72-<br />

234 m.<br />

Eulimella sp.<br />

(Figure 268)<br />

Remarks: Rare. Depth range, this study: 129-<br />

207 m.<br />

Turbonilla rufa (Philippi, 1836)<br />

(Figure 269)<br />

Remarks: Rare. Depth range, this study: 57-<br />

234 m.<br />

Turbonilla lactea (Linnaeus, 1758)<br />

(Figure 270)<br />

Remarks: Regularly present. Ávila, 2000.<br />

Depth range: Infralittoral to 80 m (MM&B); this<br />

study: 30-207 m.<br />

Turbonilla sp. 1<br />

(Figure 271)<br />

Remarks: Rare. Depth range, this study: 129-207 m.<br />

Turbonilla sp. 2<br />

(Figure 272)<br />

Remarks: Rare. Depth range, this study: 144-<br />

234 m.<br />

Turbonilla sp. 3<br />

(Figure 273)<br />

Remarks: Rare. Depth range, this study: 129-<br />

207 m.<br />

Turbonilla sp. 4<br />

(Figure 274)<br />

Remarks: Rare. Depth range, this study: 129-<br />

207 m.<br />

Family Murchisonelli<strong>da</strong>e Casey, 1905<br />

Ebala nitidissima (Montagu, 1803)<br />

(Figures 275-276)<br />

Remarks: Uncommon. Depth range, this<br />

study: 57-145 m.<br />

Subclass OPISTHOBRANCHIA Milne-<br />

Edwards, 1848<br />

Order CEPHALASPIDEA Fischer P., 1883<br />

Family Diaphani<strong>da</strong>e Odhner, 1914<br />

Colpo<strong>da</strong>spis pusilla Sars, 1870<br />

(Figure 277)<br />

Remarks: Rare. Depth range, this study: 135-<br />

189 m.<br />

Family Retusi<strong>da</strong>e Thiele, 1925<br />

Retusa truncatula (Bruguière, 1792)<br />

(Figures 278-279)<br />

Remarks: Common. Mikkelsen, 1995. Depth<br />

range: below low tide to 200 m (P&G); this<br />

study: 38-145 m.<br />

Family Haminoei<strong>da</strong>e Pilsbry, 1895<br />

Haminoea cf. orteai Talavera, Murillo &<br />

Templado, 1987<br />

(Figure 280)<br />

Remarks: Uncommon. Mikkelsen, 1995.<br />

Depth range, this study: 32-145 m.<br />

Atys macandrewi E.A. Smith, 1872<br />

(Figure 281)<br />

Remarks: Uncommon. Mikkelsen, 1995.<br />

Depth range, this study: 58-145 m.<br />

Atys sp.<br />

(Figure 282)<br />

Remarks: Rare. Depth range, this study: 46-47 m.<br />

Family Philini<strong>da</strong>e Gray, 1850<br />

Philine approximans Dautzenberg & Fisher, 1896<br />

(Figure 283)<br />

Remarks: Rare. Depth range, this study: 86-234 m.


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 67<br />

Philine sp.<br />

(Figure 284)<br />

Remarks: Rare. Depth range, this study: 72 m.<br />

Family Aglaji<strong>da</strong>e Pilsbry, 1895<br />

?Chelidonura africana Pruvot-Fol, 1953<br />

(Figure 285)<br />

Remarks: Rare. Depth range, this study: 117-<br />

234 m.<br />

Order THECOSOMATA de Blainville, 1824<br />

Family Cavolinii<strong>da</strong>e Gray, 1850<br />

Cavolinia inflexa (Lesueur, 1813)<br />

(Figures 286-287)<br />

Remarks: Common; it is a pelagic species.<br />

Cavolinia tridentata (Forskal, 1775)<br />

(Figure 288)<br />

Remarks: Common; it is a pelagic species.<br />

Diacria trispinosa (Lesueur, 1821)<br />

(Figures 289-290)<br />

Remarks: Rare; it is a pelagic species.<br />

Cuvierina atlantica (Bé, MacClintock & Currie,<br />

1972)<br />

(Figure 291)<br />

Remarks: Rare; it is a pelagic species.<br />

Clio pyrami<strong>da</strong>ta (Lesueur, 1821)<br />

(Figures 292-293)<br />

Remarks: Rare; it is a pelagic species.<br />

Family Limacini<strong>da</strong>e Gray, 1840<br />

Limacina cf. helicina (Phipps, 1774)<br />

(Figure 294)<br />

Remarks: Rare. Limacina helicina is a boreal,<br />

pelagic species; the specimens of the Azores,<br />

however, resemble those reported to this<br />

species elsewhere (Rolán, 2005).<br />

Limacina inflata (d’Orbigny, 1836)<br />

(Figure 295)<br />

Remarks: Rare; it is a pelagic species.<br />

Order NOTASPIDEA Fischer P., 1883<br />

Family Umbraculi<strong>da</strong>e Dall, 1889<br />

Umbraculum umbraculum (Lightfoot, 1786)<br />

(Figure 296)<br />

Remarks: Uncommon. Depth range, this study:<br />

52-198 m.<br />

Family Tylodini<strong>da</strong>e Gray, 1847<br />

Tylodina perversa (Gmelin, 1791)<br />

(Figure 297)<br />

Remarks: Rare. Depth range, this study: 117-<br />

145 m.<br />

Subclass PULMONATA Cuvier, 1817<br />

Superfamily SIPHONARIOIDEA Gray, 1827<br />

Family Siphonarii<strong>da</strong>e Gray, 1827<br />

Williamia gussonii (O.G. Costa, 1829)<br />

(Figure 298)<br />

Remarks: Uncommon. Ávila et al., 2000. Depth<br />

range, this study: 40-180 m.<br />

Order ARCHAEOPULMONATA<br />

Superfamily ELLOBIOIDEA Pfeiffer, 1854<br />

Family Ellobii<strong>da</strong>e Pfeiffer, 1854<br />

Ovatella vulcani (Morelet, 1860)<br />

Remarks: Only one shell; this is a suprati<strong>da</strong>l<br />

pulmonate.<br />

Pedipes pedipes Bruguière, 1789<br />

Remarks: Only one shell; this is a suprati<strong>da</strong>l<br />

pulmonate.<br />

Class BIVALVIA Linnaeus, 1758<br />

Order PTEROMORPHIA Beurlen, 1944<br />

Superfamily ARCOIDA Stoliczka, 1871<br />

Family Arci<strong>da</strong>e Lamarck, 1809<br />

Arca tetragona Poli, 1795<br />

(Figure 299)<br />

Remarks: Common. This species lives on hard<br />

substrates. Bullock, 1995; Ávila et al., 2000.<br />

Depth range: interti<strong>da</strong>l to 900 m (MM&B); low<br />

tide to 120 m (P&G); this study: 30-360 m.<br />

Asperarca nodulosa (O.F. Müller, 1776)<br />

(Figure 300)<br />

Remarks: Rare. Depth range: low tide to 1000 m<br />

(P&G); interti<strong>da</strong>l to 3300 m (MM&B); this<br />

study: 117-234 m.<br />

Family Noetii<strong>da</strong>e Stewart, 1930<br />

Bathyarca philippiana (Nyst, 1848)<br />

(Figures 301-302)<br />

Remarks: Rare. Depth range: around 150 m (P&G);<br />

60-1200 m (MM&B); this study: 117- 360 m.<br />

Family Limopsi<strong>da</strong>e Dall, 1895<br />

Limopsis minuta Philippi, 1836<br />

(Figure 303)<br />

Remarks: Rare. Depth range: 40-1400m


68 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XVIII<br />

299. Arca tetragona Poli, 1795. Loose valves (Sta8)<br />

300. Asperarca nodulosa (O.F. Müller, 1776). Loose valves (Sta37)<br />

301. Bathyarca philippiana (Nyst, 1848) (Sta41)<br />

302. Bathyarca philippiana (Nyst, 1848) (juvenile) (Sta37)<br />

303. Limopsis minuta Philippi, 1836 (Sta1)<br />

304. Gregariella semigranata (Reeve, 1858) (Sta28)<br />

305. Rhomboidella prideauxi (Leach, 1815) (Sta13)<br />

306. Pecten jacobeus (Linnaeus, 1758) (Sta26)<br />

307. Pecten jacobeus (Linnaeus, 1758) (juvenile) (Sta18)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 69


70 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XIX<br />

308. Aequipecten commutatus (Monterosato, 1875) (Sta29)<br />

309. Aequipecten commutatus (Monterosato, 1875) (Sta23)<br />

310. Aequipecten opercularis (Linnaeus, 1758) (Sta8)<br />

311. Aequipecten opercularis (Linnaeus, 1758) (Sta5)<br />

312. Bractechlamys corallinoides (d’Orbigny, 1840) (Sta26)<br />

313. Bractechlamys corallinoides (d’Orbigny, 1840) (Sta5)<br />

314. Bractechlamys corallinoides (d’Orbigny, 1840) (Sta23)<br />

315. Palliolum incomparabile (Risso, 1826) (Sta29)<br />

316. Palliolum incomparabile (Risso, 1826) (Sta29)<br />

317. Palliolum incomparabile (Risso, 1826) (Sta7)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 71


72 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XX<br />

318. Chlamys flexuosa (Poli, 1795) (Sta7)<br />

319. Talochlamys pusio (Linnaeus, 1758) (Sta26)<br />

320. Talochlamys pusio (Linnaeus, 1758) (Sta26)<br />

321. Pododesmus patelliformis (Linnaeus, 1761) (Sta56)<br />

322. Limaria hians (Gmelin, 1791) (Sta56)<br />

323. Neopycnodonte cochlear (Poli, 1795) (Sta55)<br />

324. Myrtea spinifera (Montagu, 1803) (Sta37)<br />

325. Lucinoma borealis (Linnaeus, 1767) (Sta37)<br />

326. Lucinoma borealis (Linnaeus, 1767) (Sta37)<br />

327. Thyasira flexuosa (Montagu, 1803) (Sta7)<br />

328. Diplodonta berghi (Dautzenberg & Fischer, 1897) (Sta32)<br />

329. Diplodonta berghi (Dautzenberg & Fischer, 1897) (Sta40)<br />

330. Diplodonta berghi (Dautzenberg & Fischer, 1897) (Sta46)<br />

331. Diplodonta trigona (Scacchi, 1835) (Sta56)<br />

332. Diplodonta trigona (Scacchi, 1835) (Sta29)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 73


74 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XXI<br />

333. Chama gryphoides (Linnaeus, 1758) (Sta55)<br />

334. Chama gryphoides (Linnaeus, 1758) (Sta37)<br />

335. Kurtiella pelluci<strong>da</strong> (Jeffreys, 1881) (Sta27)<br />

336. Kurtiella pelluci<strong>da</strong> (Jeffreys, 1881) (Sta7)<br />

337. Basterotia clancula von Cosel, 1995. Loose valves (juvenile) (Sta28)<br />

338. Basterotia clancula von Cosel, 1995. Loose valves (Sta12)<br />

339. Cardita calyculata (Linnaeus, 1758) (Sta24)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 75


76 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XXII<br />

340. ?Crassatina sp. (Sta46)<br />

341. Papillicardium papillosum (Poli, 1791) (Sta47)<br />

342. Papillicardium papillosum (Poli, 1791) (Sta57)<br />

343. Papillicardium papillosum (Poli, 1791) (Sta56)<br />

344. Papillicardium papillosum (Poli, 1791) (Sta15)<br />

345. Papillicardium papillosum (Poli, 1791) (Sta5)<br />

346. Papillicardium papillosum (Poli, 1791) (Sta5)<br />

347. Parvicardium vroomi van Aartsen, Menkhorst & Gittenberger, 1984. Loose<br />

valves (Sta27)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 77


78 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XXIII<br />

348. Tellina incarnata Linnaeus, 1758 (Sta57)<br />

349. Tellina pygmaea Lovén, 1846 (Sta48)<br />

350. Tellina pygmaea Lovén, 1846 (Sta12)<br />

351. Tellina pygmaea Lovén, 1846 (Sta57)<br />

352. Tellina pygmaea Lovén, 1846 (Sta5)<br />

353. Tellina pygmaea Lovén, 1846 (Sta57)<br />

354. Arcopagia balaustina (Linnaeus, 1758) (Sta43)<br />

355. Arcopagia balaustina (Linnaeus, 1758) (Sta37)<br />

356. Arcopagia balaustina (Linnaeus, 1758) (Sta7)<br />

357. ?Tellina sp. (Sta28)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 79


80 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XXIV<br />

358. Gari costulata (Turton, 1822) (Sta15)<br />

359. Gari costulata (Turton, 1822) (Sta31)<br />

360. Ervilia castanea (Montagu, 1803) (Sta26)<br />

361. Ervilia castanea (Montagu, 1803) (Sta31)<br />

362. Azorinus chamasolen (<strong>da</strong> Costa, 1778) (juvenile) (Sta44)<br />

363. Azorinus chamasolen (<strong>da</strong> Costa, 1778) (Sta40)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 81


82 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XXV<br />

364. Coralliophaga lithophagella (Lamarck, 1819) (Sta37)<br />

365. Coralliophaga lithophagella (Lamarck, 1819) (Sta37)<br />

366. Coralliophaga lithophagella (Lamarck, 1819) (juvenile) (Sta53)<br />

367. Coralliophaga lithophagella (Lamarck, 1819) (juvenile) (Sta37)<br />

368. Venus casina Linnaeus, 1758 (Sta54)<br />

369. Venus verrucosa Linnaeus, 1758 (Sta1)<br />

370. Venus verrucosa Linnaeus, 1758 (Sta26)<br />

371. Globivenus effossa (Philippi, 1836) (Sta41)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 83


84 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XXVI<br />

372. <strong>Timoclea</strong> <strong>ovata</strong> (Pennant, 1777) (Sta48)<br />

373. <strong>Timoclea</strong> <strong>ovata</strong> (Pennant, 1777) (Sta56)<br />

374. <strong>Timoclea</strong> <strong>ovata</strong> (Pennant, 1777) (Sta15)<br />

375. Gouldia minima (Montagu, 1803) (Sta5)<br />

376. Gouldia minima (Montagu, 1803) (Sta56)<br />

377. Gouldia minima (Montagu, 1803) (Sta15)<br />

378. Gouldia minima (Montagu, 1803) (Sta15)<br />

379. Gouldia minima (Montagu, 1803) (Sta27)<br />

380. Callista chione (Linnaeus, 1758) (Sta40)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 85


86 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XXVII<br />

381. Hiatella arctica (Linnaeus, 1767) (Sta32)<br />

382. Hiatella arctica (Linnaeus, 1767) (Sta18)<br />

383. Gastrochaena dubia (Pennant, 1777) (Sta32)<br />

384. Nototeredo norvagica (Spengler, 1792) (Sta12)<br />

385. Teredora malleolus (Turton, 1822) (Sta1)<br />

386. Xyloredo sp. (Sta56)<br />

387. Xyloredo sp. (Sta56)<br />

388. Thracia papyracea (Poli, 1791) (Sta13)<br />

389. Cardiomya costellata (Deshayes, 1835) (Sta23)<br />

390. Cuspi<strong>da</strong>ria atlantica Allen & Morgan, 1981 (Sta38)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 87


88 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

(MM&B); continental shelves down to 900 m<br />

(P&G); this study: 57 m.<br />

Superfamily MYTILOIDA de Férussac, 1822<br />

Family Mytili<strong>da</strong>e Rafinesque, 1815<br />

Gregariella semigranata (Reeve, 1858)<br />

(Figure 304)<br />

Remarks: Common. Morton, 1995 as Trichomusculus<br />

semigranatus. This species lives on<br />

hard substrata. Depth range, this study: 30-<br />

360m; alive: 66 m.<br />

Rhomboidella prideauxi (Leach, 1815)<br />

(Figure 305)<br />

Remarks: Rare. Depth range, this study: 73-<br />

180 m.<br />

Superfamily PTERIOIDA Newell, 1965<br />

Family Pectini<strong>da</strong>e Rafinesque, 1815<br />

Pecten jacobeus (Linnaeus, 1758)<br />

(Figures 306-307)<br />

Remarks: Uncommon. Depth range: 25-250 m<br />

(P&G); this study: 40-360 m; alive: 72 m.<br />

Aequipecten commutatus (Monterosato, 1875)<br />

(Figures 308-309)<br />

Remarks: Uncommon. Ávila et al., 2000. Depth<br />

range: 30-250 m; this study: 40-360 m; alive:<br />

180 m.<br />

Aequipecten opercularis (Linnaeus, 1758)<br />

(Figures 310-311)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: low tide to 400 m (P&G; MM&B); this<br />

study: 38-360 m; alive: 41-171 m.<br />

Bractechlamys corallinoides (d’Orbigny, 1840<br />

(Figures 312-314)<br />

Remarks: Common. Depth range: 3-100 m<br />

(P&G); this study: 38-360 m.<br />

Palliolum incomparbile (Risso, 1826)<br />

(Figures 315-317)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: 10-250 m (P&G); infralittoral to 2000 m<br />

(MM&B); this study: 30-360 m.<br />

Chlamys flexuosa (Poli, 1795)<br />

(Figure 318)<br />

Remarks: Very rare. Ávila et al., 2000. Depth<br />

range: 30-250 m (P&G); this study: 45-189 m.<br />

Talochlamys pusio (Linnaeus, 1758)<br />

(Figures 319-320)<br />

Remarks: Common. Ávila et al., 2000 as<br />

Crassadoma pusio. Depth range: from a few<br />

meters to 150 m (P&G, as Hinnites distortus<br />

(<strong>da</strong> Costa, 1778)); 100-2300 (MM&B, as Chlamys<br />

distorta (<strong>da</strong> Costa, 1778)); this study: 30-<br />

360 m. Collected alive at IVFC (Martins,<br />

2004).<br />

Family Anomii<strong>da</strong>e Rafinesque, 1815<br />

Pododesmus patelliformis (Linnaeus, 1761)<br />

(Figure 321)<br />

Remarks: Common. Depth range: interti<strong>da</strong>l to<br />

50 m (P&G); interti<strong>da</strong>l to 450 m (MM&B); this<br />

study: 14-360 m.<br />

Family Limi<strong>da</strong>e Rafinesque, 1815<br />

Limaria hians (Gmelin, 1791)<br />

(Figure 322)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: low tide to 100 m (P&G); low tide to 450<br />

m (MM&B); this study: 30-360 m. Collected<br />

alive at IVFC (Martins, 2004).<br />

Superfamily OSTREOIDA de Férussac, 1822<br />

Family Gryphaei<strong>da</strong>e Vyalov, 1936<br />

Neopycnodonte cochlear (Poli, 1795)<br />

(Figure 323)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: 45-250 m (P&G); this study: 41-360 m;<br />

alive: 66-162 m.<br />

Order HETERODONTA Neumayr, 1884<br />

Superfamily VENEROIDA H. & A. A<strong>da</strong>ms,<br />

1857<br />

Family Lucini<strong>da</strong>e Fleming, 1828<br />

Myrtea spinifera (Montagu, 1803)<br />

(Figure 324)<br />

Remarks: Rare. Depth range: 7-250 m (P&G);<br />

this study: 117-234 m.<br />

Lucinoma borealis (Linnaeus, 1767)<br />

(Figures 325-326)<br />

Remarks: Common. Bullock, 1995. Range:<br />

interti<strong>da</strong>l to 500 m (P&G); interti<strong>da</strong>l to 1500 m<br />

(MM&B); this study: 30-360 m; alive: 95-351 m.<br />

This species was collected alive at IVFC about<br />

20 cm deep into the sandy substratum (pers.<br />

obs., AMFM).


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 89<br />

Family Thyasiri<strong>da</strong>e Dall, 1900<br />

Thyasira flexuosa (Montagu, 1803)<br />

(Figure 327)<br />

Remarks: Rare. Depth range: 10-2000 m (P&G);<br />

infralittoral to 2190 m (MM&B); this study:<br />

135-360 m.<br />

Family Ungulini<strong>da</strong>e A<strong>da</strong>ms, H. & A., 1857<br />

Diplodonta berghi (Dautzenberg & Fischer,<br />

1897)<br />

(Figures 328-330)<br />

Remarks: Uncommon. Depth range: 130-1360<br />

m (MM&B); this study: 38-234 m.<br />

Diplodonta trigona (Sacchi, 1835)<br />

(Figures 331-332)<br />

Remarks: Common. Depth range, this study:<br />

30-360 m; alive: 30-198 m.<br />

Family Chami<strong>da</strong>e Lamarck, 1809<br />

Chama gryphoides (Linnaeus, 1758)<br />

(Figures 333-334)<br />

Remarks: Common. Depth range: interti<strong>da</strong>l to<br />

200 m (P&G; MM&B); this study: 41-360 m;<br />

alive: 162-234 m.<br />

Family Montacuti<strong>da</strong>e Clark, 1855<br />

Kurtiella pelluci<strong>da</strong> (Jeffreys, 1881)<br />

(Figures 335-336)<br />

Remarks: Uncommon. Depth range, this study:<br />

40-360 m; alive: 99-207 m.<br />

Family Sportelli<strong>da</strong>e Dall, 1899<br />

Basterotia clancula von Cosel, 1995<br />

(Figures 337-338)<br />

Remarks: Common. Depth range, this study:<br />

18-360 m.<br />

Family Carditi<strong>da</strong>e Fleming, 1828<br />

Cardita calyculata (Linnaeus, 1758)<br />

(Figure 339)<br />

Remarks: Common. Bullock, 1995; Ávila et al.,<br />

2000. Depth range: low tide to 200 m (MM&B;<br />

P&G); this study: 30-360 m; alive: 38-117 m.<br />

Alive at IVFC (Martins, 2004).<br />

Family Crassatelli<strong>da</strong>e Férussac, 1822<br />

?Crassatina sp.<br />

(Figure 340)<br />

Remarks: Rare. One valve, tentatively assigned<br />

to this genus. Depth range, this study:<br />

56 m.<br />

Family Cardii<strong>da</strong>e Lamarck, 1809<br />

Papillicardium papillosum (Poli, 1791)<br />

(Figures 341-346)<br />

Remarks: Very common. Ávila et al., 2000.<br />

Depth range: infralittoral to 60 m (MM&B); this<br />

study: 45-360 m; alive: 45-318 m.<br />

Parvicardium vroomi van Aartsen, Menkhorst &<br />

Gittenberger, 1984<br />

(Figure 347)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range, this study: 46-360 m.<br />

Family Tellini<strong>da</strong>e de Blainville, 1814<br />

Tellina incarnata Linnaeus, 1758<br />

(Figure 348)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: interti<strong>da</strong>l to 85 m (MM&B; P&G);<br />

this study: 18-360 m; alive: 18-72 m. This<br />

species was taken alive at IVFC about 20 cm<br />

deep into the sandy substrata (pers. obs.,<br />

AMFM).<br />

Tellina pygmaea Lovén, 1846<br />

(Figures 349-353)<br />

Remarks: Very common. Depth range: interti<strong>da</strong>l<br />

to 150 m; this study: 18-360 m. Collected<br />

alive throughout its range. Authors report T.<br />

donacina Linnaeus, 1758 as living in the Azores<br />

(Ávila et al., 2000); however, all the specimens<br />

herein collected conform to the representation<br />

of T. pygmaea instead.<br />

Arcopagia balaustina Linnaeus, 1758<br />

(Figures 354-355)<br />

Remarks: Common. Depth range: infralittoral<br />

to 750 m (MM&B; P&G); this study: 46-360 m;<br />

alive: 66-360 m.<br />

? Tellina sp.<br />

(Figure 356)<br />

Remarks: Rare; only one valve, tentatively<br />

assigned to this genus. Depth range, this<br />

study: 117-145.<br />

Family Psammobii<strong>da</strong>e Fleming, 1828<br />

Gari costulata (Turton, 1822)<br />

(Figures 357-359)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: infralittoral to 150 m, most abun<strong>da</strong>nt 35-<br />

60 m (MM&B; P&G); this study: 18-360 m;<br />

alive: 18-66 m.


90 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

Family Semeli<strong>da</strong>e Stoliczka, 1870 (1850)<br />

Ervilia castanea (Montagu, 1803)<br />

(Figures 360-361)<br />

Remarks: The commonest bivalve in the Azores<br />

(Morton, 1990). Bullock, 1995; Ávila et al., 2000.<br />

Depth range: 30-100 m (P&G); interti<strong>da</strong>l to<br />

1800 m (MM&B); this study: 18-360 m; collected<br />

alive throughout its range. Alive at IVFC<br />

(Martins, 2004).<br />

Family Solecurti<strong>da</strong>e d’Orbigny, 1846<br />

Azorinus chamasolen (<strong>da</strong> Costa, 1778)<br />

(Figures 362-363)<br />

Remarks: Rare. Depth range, this study: 38-66<br />

m; alive: 66 m.<br />

Family Trapezi<strong>da</strong>e d’Orbigny, 1846<br />

Coralliophaga lithophagella (Lamarck, 1819)<br />

(Figures 364-367)<br />

Remarks: Uncommon. Depth range: 33-200 m<br />

(MM&B; P&G); this study: 57-360 m; alive: 162-<br />

234 m.<br />

Family Veneri<strong>da</strong>e Rafinesque, 1815<br />

Venus casina Linnaeus, 1758<br />

(Figure 368)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: 5-200 m (P&G); this study: 32-360 m;<br />

alive: 32-180 m.<br />

Venus verrucosa Linnaeus, 1758<br />

(Figures 369-370)<br />

Remarks: Uncommon. Depth range: interti<strong>da</strong>l<br />

to 100 m (MM&B; P&G); this study: 46-360;<br />

alive: 32-66 m.<br />

Globivenus effossa (Philippi, 1836)<br />

(Figure 371)<br />

Remarks: Rare. Ávila et al., 2000. Depth range:<br />

50-300 m (P&G); this study: 156-360; taken<br />

alive throughout the range.<br />

<strong>Timoclea</strong> <strong>ovata</strong> (Pennant, 1777)<br />

(Figures 372-374)<br />

Remarks: Very common. Ávila et al., 2000.<br />

Depth range: 4-200 m (P&G); this study: 46-360<br />

m; alive: 30-360 m.<br />

Gouldia minima (Montagu, 1803)<br />

(Figures 375-379)<br />

Remarks: Very common. Ávila et al., 2000.<br />

Depth range: interti<strong>da</strong>l to 200 m (MM&B;<br />

P&G); this study: 18-360 m; alive: 38-<br />

360 m.<br />

Callista chione (Linnaeus, 1758)<br />

(Figure 380)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: interti<strong>da</strong>l to 180 m (MM&B; P&G); this<br />

study: 18-360 m; alive: 38-81 m.<br />

Superfamily MYOIDA Stoliczka, 1870<br />

Family Hiatelli<strong>da</strong>e Gray, 1824<br />

Hiatella arctica (Linnaeus, 1767)<br />

(Figures 381-382)<br />

Remarks: Uncommon; possibly young specimens<br />

of this species. Ávila et al., 2000. Depth<br />

range: interti<strong>da</strong>l to 1400 m (MM&B; P&G); this<br />

study: 72-207 m.<br />

Family Gastrochaeni<strong>da</strong>e Gray, 1840<br />

Gastrochaena dubia (Pennant, 1777)<br />

(Figure 383)<br />

Remarks: Rare; one valve tentatively assigned to<br />

this species. Depth range, this study: 180 m.<br />

Family Teredini<strong>da</strong>e Rafinesque, 1815<br />

Nototeredo norvagica (Spengler, 1792)<br />

(Figure 384)<br />

Remarks: Rare. This species lives in drifting<br />

wood.<br />

Teredora malleolus (Turton, 1822)<br />

(Figure 385)<br />

Remarks: Rare. This species lives in drifting<br />

wood.<br />

Family Xylophagi<strong>da</strong>e Purchon, 1941<br />

Xyloredo sp.<br />

(Figures 396-387)<br />

Remarks: Common. This species lives in<br />

sunken wood. Depth range, this study: 32-<br />

360 m.<br />

Order ANOMALODESMATA Dall, 1889<br />

Superfamily PHOLADOMYOIDA Newell,<br />

1965<br />

Family Thracii<strong>da</strong>e Stoliczka, 1870<br />

Thracia papyracea (Poli, 1791)<br />

(Figure 388)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: interti<strong>da</strong>l to 50 m (MM&B; P&G as T.<br />

phaseolina (Lamarck, 1818)); this study: 30-360<br />

m; alive: 32-198 m.


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 91<br />

Family Cuspi<strong>da</strong>rii<strong>da</strong>e Dall, 1886<br />

Cardiomya costellata (Deshayes, 1833)<br />

(Figure 389)<br />

Remarks: Common. Depth range: 18-200 m<br />

(P&G); infralittoral to 1400 m (MM&B); this<br />

study: 40-360 m; alive: 46-198 m.<br />

Cuspi<strong>da</strong>ria atlantica Allen & Morgan, 1981<br />

(Figure 390)<br />

Remarks: Rare. Depth range, this study: 129-<br />

207 m.<br />

Class CEPHALOPODA Schneider, 1784<br />

Subclass COLOIDEA Bather, 1788<br />

Order OCTOPODA Leach, 1818<br />

Suborder INCIRRATA Grimpe, 1916<br />

Family Octopodi<strong>da</strong>e d’Orbigny, 1840<br />

Octopus vulgaris Cuvier, 1797<br />

(Figure 391)<br />

Remarks: One very young specimen collected<br />

alive on a crevice of a dredged rock. Depth<br />

range, this study: 150 m.<br />

ACKNOWLEDGEMENTS<br />

We thank Serge Gofas, Henk Dijsktra,<br />

Emílio Rolán and Marco Oliverio for their<br />

kind contributions to the identities of many<br />

species. Sérgio P. Ávila was supported by<br />

grant SFRH/BPD/22913/2005 (FCT –<br />

Fun<strong>da</strong>ção para a Ciência e Tecnologia) of the<br />

Portuguese government. IMAR-DOP/UAc<br />

(UI&D #531 and ISR LA#9) is funded by<br />

FCT/MCTES– Lisbon and DRCT/Azores<br />

through pluri-annual and programmatic<br />

funding schemes (part FEDER).<br />

LITERATURE CITED<br />

ADAM, W., & J. KNUDSEN, 1969.<br />

Quelques genres de mollusques<br />

prosobranches marins inconnus ou<br />

peu connus de l’Afrique<br />

Occidentale. Bulletin de l’Institut<br />

royal des Sciences naturelles de<br />

Belgique, 44(27): 1-69.<br />

ÁVILA, S.P., 2000. The shallow-water<br />

Rissoi<strong>da</strong>e (Mollusca, Gastropo<strong>da</strong>)<br />

of the Azores and some aspects of<br />

their ecology. Iberus, 18(2): 51-76.<br />

ÁVILA, S.P., 2003. The littoral molluscs<br />

(Gastropo<strong>da</strong>, Bivalvia and<br />

Polyplacophora) of São Vicente,<br />

Capelas (São Miguel Island,<br />

Azores): ecology and biological<br />

associations to algae. Iberus, 21(1):<br />

11-33.<br />

ÁVILA, S.P., J.M.N. AZEVEDO, J.M.<br />

GONÇALVES, J. FONTES & F.<br />

CARDIGOS, 2000. Checklist of the<br />

shallow-water marine molluscs of<br />

the Azores: 2 - São Miguel island.<br />

Açoreana, 9(2): 139-173.<br />

BOUCHET, P., 1984. Les Triphori<strong>da</strong>e<br />

de Mediterranée et le proche<br />

Atlantique (Mollusca, Gastropo<strong>da</strong>).<br />

Lavori Società Italiana di<br />

Malacologia, 21: 5-58. [not seen]<br />

BOUCHET, P., & H. GUILLEMOT,<br />

1978. The Triphora perversa complex<br />

in Western Europe. Journal of<br />

Molluscan Studies, 44: 344-356.<br />

BULLOCK, R.C., 1995. The distribution<br />

of the molluscan fauna associated<br />

with the interti<strong>da</strong>l coralline<br />

algal turf of a partially submerged<br />

volcanic crater, the Ilhéu de Vila<br />

Franca, São Miguel, Azores. In:<br />

MARTINS, A.M.F. (ed.), The marine<br />

fauna and flora of the Azores.<br />

Proceedings of the Second International<br />

Workshop of Malacology and<br />

Marine Biology, Vila Franca do<br />

Campo, São Miguel, Azores.<br />

Açoreana, Supplement [4]: 9-55.<br />

BULLOCK, R.C., TURNER, R.D. &<br />

R.A. FRALICK, 1990. Species richness<br />

and diversity of algal - associated<br />

micromolluscan communities<br />

from São Miguel, <strong>Açores</strong>. In:<br />

MARTINS, A.M.F. (ed.), The marine<br />

fauna and flora of the Azores.<br />

Proceedings of the First International<br />

Workshop of Malacology São Miguel,<br />

Azores. Açoreana, Supplement [2]:<br />

39-58.


92 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

CONTRERAS, J.A., 1992. Una nuova<br />

Gibberula <strong>da</strong>lle Isole Azzorre<br />

(Gastropo<strong>da</strong>, Marginelli<strong>da</strong>e). La<br />

Conchiglia, 262: 44-45.<br />

GOFAS, S., 1990. The littoral<br />

Rissoi<strong>da</strong>e and Anabathri<strong>da</strong>e of São<br />

Miguel, Azores. In: MARTINS,<br />

A.M.F. (ed.), The marine fauna and<br />

flora of the Azores. Proceedings of the<br />

First International Workshop of<br />

Malacology São Miguel, Azores.<br />

Açoreana, Supplement [2]: 97-134.<br />

HOUBRICK, J., 1990. Anatomy,<br />

reproductive biology and systematic<br />

position of Fossarus ambiguous<br />

(Linné) (Fossarinae: Planaxi<strong>da</strong>e:<br />

Prosobranchia). In: MARTINS,<br />

A.M.F. (ed.), The marine fauna and<br />

flora of the Azores. Proceedings of the<br />

First International Workshop of<br />

Malacology São Miguel, Azores.<br />

Açoreana, Supplement [2]: 59-73.<br />

KNUDSEN, J., 1995. Observations on<br />

reproductive strategy and zoogeography<br />

of some marine<br />

Prosobranch Gastropods (Mollusca)<br />

from the Azores. In:<br />

MARTINS, A.M.F. (ed.), The marine<br />

fauna and flora of the Azores.<br />

Proceedings of the Second International<br />

Workshop of Malacology and<br />

Marine Biology, Vila Franca do<br />

Campo, São Miguel, Azores.<br />

Açoreana, Supplement [4]: 135-158.<br />

MACEDO, M.C.C., M.I.C. MACEDO<br />

& J.P. BORGES, 1999. Conchas<br />

Marinhas de Portugal, 516 pp.<br />

Editorial Verbo, Lisboa.<br />

MARTINS, A.M.F., 2004. The Princess’<br />

Ring, 99 pp. Intermezzo-Audiovisuais,<br />

L<strong>da</strong>., Lisboa.<br />

MIKKELSEN, P.M., 1995. Cephalaspids<br />

of the Azores. In:<br />

MARTINS, A.M.F. (ed.), The marine<br />

fauna and flora of the Azores.<br />

Proceedings of the Second<br />

International Workshop of Malacology<br />

and Marine Biology, Vila Franca do<br />

Campo, São Miguel, Azores.<br />

Açoreana, Supplement [4]: 193-215.<br />

MORTON, B., 1990. The biology and<br />

functional morphology of Ervilia<br />

castanea (Bivalvia: Tellinacea) from<br />

the Azores. In: MARTINS, A.M.F.<br />

(ed.), The marine fauna and flora<br />

of the Azores. Proceedings of the<br />

First International Workshop of<br />

Malacology São Miguel, Azores.<br />

Açoreana, Supplement [2]: 75-96.<br />

MORTON, B, 1995. The biology and<br />

functional morphology of Trichomusculus<br />

semigranatus (Bivalvia:<br />

Mytiloidea) from the Azores. In:<br />

MARTINS, A.M.F. (ed.), The marine<br />

fauna and flora of the Azores.<br />

Proceedings of the Second International<br />

Workshop of Malacology and<br />

Marine Biology, Vila Franca do<br />

Campo, São Miguel, Azores.<br />

Açoreana, Supplement [4]: 279-295.<br />

POPPE, G.T., & Y. GOTO, 1991-1993.<br />

European Seashells, vol. 1 [1991]<br />

(Polyplacophora, Caudofoveata,<br />

Solenogastra, Gastropo<strong>da</strong>), 352 pp;<br />

vol. 2 [1993] (Scaphopo<strong>da</strong>,<br />

Bivalvia, Cephalopo<strong>da</strong>), 221 pp.<br />

Verlag Christa Hemmen,<br />

Wiesbaden.<br />

ROLÁN, E., 2005. Malacological Fauna<br />

from the Cape Verde Archipelago, 455<br />

pp. ConchBooks, Hackenheim.


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 93<br />

FIGURE 391. Octopus vulgaris Cuvier, 1797 (Sta42)


94 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

TABLE 1. Distribution of the species dredged during the workshop. See text for station descrip-<br />

TAXA<br />

STATIONS<br />

3<br />

9<br />

2<br />

5<br />

3<br />

4<br />

1<br />

6<br />

3<br />

5<br />

1<br />

9<br />

POLYPLACOPHORA<br />

Lepidochiton cimicoides<br />

Acanthochitona fascicularis v v v v v<br />

4<br />

5<br />

5<br />

7<br />

5<br />

8<br />

3<br />

6<br />

4<br />

0<br />

0<br />

6<br />

0<br />

5<br />

1<br />

4<br />

1<br />

5<br />

2<br />

0<br />

3<br />

1<br />

4<br />

6<br />

0<br />

1<br />

5<br />

6<br />

3<br />

0<br />

4<br />

8<br />

GASTROPODA<br />

Patella candei v v v v v v<br />

Patella ulyssiponensis v v v v v v v<br />

Tectura virginea v v v v v v v v v v v v<br />

Propilidium exiguum<br />

Emarginula sp.<br />

Sinezona cingulata<br />

Haliotis coccinea v v f f v<br />

? Haliotis sp.<br />

Lepetella laterocompressa<br />

Addisonia excentrica<br />

Clelandella azorica<br />

v<br />

Clelandella sp.<br />

Jujubinus pseudogravinae v v v v v v v v v v v v v v<br />

Gibbula delgadensis v v v v<br />

Gibbula magus v + v v + + + + + + v + v v + v<br />

Margarites sp.<br />

Solariella azorensis + f f +<br />

Calliostoma lividum v f v f f<br />

Calliostoma hirondellei<br />

Cirsonella gaudryi<br />

Tricolia pullus azorica f v v v v f v v v v<br />

Bittium cf. latreillii v v v v v + v v v v v v v v v<br />

Bittium latreillii<br />

Fossarus ambiguus v f<br />

Cheirodonta pallescens v v v v v v<br />

Similiphora similior v v v v v v v v v<br />

Marshallora adversa v v v v v v<br />

Marshallora cf. adversa<br />

v<br />

Monophorus sp. v v v<br />

Monophorus erythrosoma v v v v v<br />

Monophorus thiriotae v v v v v<br />

Pogonodon pseudocanaricus<br />

f<br />

Strobiligera.brychia<br />

Metaxia cf. abrupta<br />

Cerithiopsis tubercularis v v v v<br />

Cerithiopsis tiara<br />

Cerithiopsis jeffreysi<br />

Cerithiopsis scalaris<br />

v<br />

Cerithiopsis minima v v v<br />

Cerithiopsis cf. minima<br />

v<br />

Cerithiopsis fayalensis<br />

Krachia cf. guernei<br />

Gyroscala lamellosa<br />

f<br />

Epitonium turtonis<br />

Epitonium clathrus<br />

Epitonium pulchellum<br />

v<br />

Epitonium celesti v v<br />

Punctiscala cerigottana


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 95<br />

tion. f, fragment; v, rolled shell or single valve; +, with live animal or both valves.<br />

4<br />

4<br />

5<br />

0<br />

5<br />

4<br />

1<br />

8<br />

4<br />

7<br />

4<br />

9<br />

1<br />

3<br />

2<br />

7<br />

2<br />

3<br />

2<br />

4<br />

2<br />

1<br />

1<br />

2<br />

0<br />

2<br />

2<br />

8<br />

4<br />

2<br />

2<br />

6<br />

0<br />

8<br />

3<br />

2<br />

0<br />

7<br />

2<br />

9<br />

3<br />

8<br />

3<br />

3<br />

3<br />

7<br />

4<br />

3<br />

5<br />

2<br />

5<br />

3<br />

5<br />

1<br />

4<br />

1<br />

5<br />

5<br />

v v f v v v<br />

+<br />

f v v v v v f f f<br />

f v v v v f v v v v v<br />

v v v v v v v v v v v v v v v v v v<br />

v<br />

v<br />

v<br />

v v f v v v v f v v<br />

v<br />

v v v v v<br />

v<br />

v v v v v + v v f v v<br />

f<br />

v<br />

v v v v v v f f f v v v v f v v v v v<br />

v v v v v v v v<br />

v v + v v v v v v v v v v v f f v v v f v v +<br />

v v v<br />

f v + v v v + f + + f v<br />

v v f v f v f f v v v<br />

v v v<br />

v<br />

f v f v v v v v v v v v v v<br />

v v v v v v v v v v v v v v v v v v v v v<br />

v<br />

v v v v v<br />

v v v v v<br />

v v v v v v v v v v v v<br />

v v v v v v v v v v v v v<br />

v<br />

v<br />

v<br />

v v v v v<br />

v v v v<br />

v<br />

v<br />

v v v<br />

v<br />

v<br />

v<br />

v v v v<br />

v v v<br />

v<br />

v v v v<br />

v v<br />

v<br />

v<br />

v<br />

v v v v<br />

v v v v v<br />

v


96 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

TABLE 1. Distribution of the species dredged during the workshop. See text for station descrip-<br />

STATIONS<br />

TAXA<br />

Acirsa subdecussata<br />

Opalia hellenica<br />

3<br />

9<br />

2<br />

5<br />

3<br />

4<br />

1<br />

6<br />

3<br />

5<br />

1<br />

9<br />

4<br />

5<br />

5<br />

7<br />

Opalia sp. 1<br />

Opalia sp. 2<br />

Melanella bosci<br />

Melanella cf. crosseana<br />

Melanella cf. trunca v v<br />

Parvioris microstoma<br />

Parvioris sp.<br />

Crinophteiros collinsi<br />

Sticteulima jeffreysiana<br />

Vitreolina sp.<br />

Vitreolina curva<br />

v<br />

Pelseneeria minor<br />

Littorina striata v f v<br />

Melarhaphe neritoides<br />

v<br />

Skeneopsis planorbis v v<br />

Rissoa guernei v v v<br />

Rissoa sp. 1<br />

Rissoa sp. 2<br />

Setia subvaricosa<br />

Setia cf. quisquiliarum<br />

Crisilla postrema v v v<br />

Crisilla cf. postrema<br />

Pseu<strong>dos</strong>etia azorica<br />

Cingula trifasciata v f<br />

Manzonia unifasciata v v v v<br />

Onoba moreleti<br />

Alvania angioyi v v<br />

Alvania poucheti v v<br />

Alvania mediolittoralis v v v<br />

Alvania punctura<br />

Alvania sp. (?tarsodes)<br />

v<br />

Alvania sleursi v v v v v v<br />

Alvania cancellata v v v v v v v v v v v<br />

Alvania platycephala<br />

Alvania cimicoides<br />

Alvania cf. cimicoides<br />

Caecum wayae<br />

v<br />

Talassia cf. tenuisculpta<br />

Capulus ungaricus<br />

Lamellaria perspicua<br />

v<br />

Trivia pulex v v v v v v v v f<br />

Trivia candidula v v v v v v v v v<br />

Erato sp.<br />

Aperiovula juanjosensii<br />

Notocochlis dillwynii<br />

Natica prietoi v + v + + + v v + + v v v f v<br />

Natica cf. prietoi<br />

v<br />

Phalium undulatum f f<br />

Atlanta peronii<br />

Protatlanta souleyeti<br />

Ocenebra erinaceus v v<br />

5<br />

8<br />

3<br />

6<br />

4<br />

0<br />

0<br />

6<br />

0<br />

5<br />

1<br />

4<br />

1<br />

5<br />

2<br />

0<br />

3<br />

1<br />

4<br />

6<br />

0<br />

1<br />

v<br />

5<br />

6<br />

3<br />

0<br />

4<br />

8<br />

v


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 97<br />

tion. f, fragment; v, rolled shell or single valve; +, with live animal or both valves. (cont.)<br />

4<br />

4<br />

5<br />

0<br />

5<br />

4<br />

1<br />

8<br />

4<br />

7<br />

4<br />

9<br />

1<br />

3<br />

2<br />

7<br />

2<br />

3<br />

2<br />

4<br />

2<br />

1<br />

1<br />

2<br />

0<br />

2<br />

2<br />

8<br />

4<br />

2<br />

2<br />

6<br />

0<br />

8<br />

3<br />

2<br />

0<br />

7<br />

2<br />

9<br />

3<br />

8<br />

3<br />

3<br />

3<br />

7<br />

4<br />

3<br />

5<br />

2<br />

5<br />

3<br />

5<br />

1<br />

4<br />

1<br />

5<br />

5<br />

+ + + v v v<br />

v<br />

v<br />

v v v<br />

v v v<br />

v<br />

v<br />

v<br />

v<br />

v<br />

v<br />

v v<br />

v<br />

f<br />

f<br />

v v v<br />

v v v v v v v v v v<br />

v<br />

v v v v<br />

v v<br />

v v<br />

v v v v v v<br />

v v v<br />

v<br />

v<br />

v v<br />

v v v v v v v v<br />

v v f v v<br />

v v v v v v v v v<br />

v v v v v v v<br />

v v v v v v<br />

v<br />

v v v v v v v v v<br />

v v v v v v v v v v v v v v v v<br />

v v v<br />

v v + v<br />

v<br />

v v v v v<br />

v<br />

v<br />

v v<br />

v v v<br />

v v v v v f f f f<br />

v v v v v v v v v v v f<br />

v<br />

v<br />

f<br />

+<br />

+ v v v + v + v v v f f f f + v v<br />

f f f<br />

v<br />

v<br />

v v v


98 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

TABLE 1. Distribution of the species dredged during the workshop. See text for station descrip-<br />

STATIONS<br />

TAXA<br />

Ocinebrina cf. aciculata<br />

3<br />

9<br />

2<br />

5<br />

3<br />

4<br />

1<br />

6<br />

3<br />

5<br />

1<br />

9<br />

4<br />

5<br />

5<br />

7<br />

?Ocinebrina cf. aciculata v v v v<br />

?Ocinebrina sp.<br />

v<br />

Orania fusulus + + v v +<br />

Trophonopsis barvicensis v v v v v v v<br />

Trophonopsis cf. muricatus<br />

v<br />

Coralliophila cf. meyendorffi v v v v<br />

Carolliophila panormitana<br />

Stramonita haemastoma v v v v v<br />

Gibberula vignali<br />

Gibberula cf. lazaroi<br />

Mitra cornea v v v v v<br />

Pollia dorbignyi<br />

f<br />

Nassarius incrassatus f v v v v f v v v v v v<br />

Nassarius cf. cuvierii<br />

Nassarius recidivus<br />

Columbella a<strong>da</strong>nsoni v v v v f f f v v f<br />

Mitrella pallaryi<br />

Anachis avaroides v v v v v v<br />

Brocchinia clenchi v v v v v v +<br />

Mitromorpha azorensis v v v v v v<br />

Bela nebula v v v + v v v v v v + + v<br />

Mangelia cf. costata v v v v<br />

Raphitoma purpurea v v v v<br />

Raphitoma linearis v v<br />

Raphitoma cf. aequalis v v v v v v + v v v + v f<br />

Raphitoma sp. v v v<br />

Pleurotomella gibbera<br />

Pleurotomella cf. gibbera<br />

Teretia teres<br />

Crassopleura maravignae v v v v v v v v v + v<br />

Haedropleura septangularis v v v v v v v v<br />

Philippia krebsi<br />

v<br />

Pseudotorinia architae<br />

Pseudomalaxis zanclaeus<br />

Mathil<strong>da</strong> cochlaeformis<br />

Mathil<strong>da</strong> retusa<br />

?Rissoella sp. 1<br />

?Rissoella sp. 2<br />

Omalogyra atomus<br />

O<strong>dos</strong>tomella doliolum<br />

Chrysalli<strong>da</strong> cf. flexuosa<br />

O<strong>dos</strong>tomia bernardi v v v v v<br />

O<strong>dos</strong>tomia cf. verhoeveni v v v<br />

O<strong>dos</strong>tomia duureni<br />

v<br />

O<strong>dos</strong>tomia cf. striolata<br />

Eulimella sp.<br />

Turbonilla rufa<br />

v<br />

Turbonilla lactea v v f v v<br />

Turbonilla sp. 1<br />

Turbonilla sp. 2<br />

Turbonilla sp. 3<br />

Turbonilla sp. 4<br />

5<br />

8<br />

3<br />

6<br />

4<br />

0<br />

v<br />

0<br />

6<br />

0<br />

5<br />

1<br />

4<br />

1<br />

5<br />

2<br />

0<br />

3<br />

1<br />

4<br />

6<br />

0<br />

1<br />

5<br />

6<br />

3<br />

0<br />

4<br />

8


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 99<br />

tion. f, fragment; v, rolled shell or single valve; +, with live animal or both valves. (cont.)<br />

4<br />

4<br />

5<br />

0<br />

5<br />

4<br />

1<br />

8<br />

4<br />

7<br />

4<br />

9<br />

1<br />

3<br />

2<br />

7<br />

2<br />

3<br />

2<br />

4<br />

2<br />

1<br />

1<br />

2<br />

0<br />

2<br />

2<br />

8<br />

4<br />

2<br />

2<br />

6<br />

0<br />

8<br />

3<br />

2<br />

0<br />

7<br />

2<br />

9<br />

3<br />

8<br />

3<br />

3<br />

3<br />

7<br />

4<br />

3<br />

5<br />

2<br />

5<br />

3<br />

5<br />

1<br />

4<br />

1<br />

5<br />

5<br />

v v v<br />

v v v v v<br />

f v v v v v f f v<br />

v v v v v v v v v v<br />

v<br />

v v v<br />

v<br />

v<br />

v v v v v f v f<br />

v<br />

v<br />

v v v v v<br />

v f v v f v f v v v v f v f<br />

v<br />

f f v f v<br />

v f v v v v v v v f v v f<br />

f v f<br />

v v v v v v v v v v v v v v<br />

v + v + v v v v v v v v v<br />

v v v v<br />

+ + v + + v v v + f + v v + v v v v v v<br />

+ v v v v + v v v v v<br />

v f f v<br />

v v v v v v v v f v v v v<br />

v v v v v v v v v v v v v v v v v<br />

v v v v v v v v<br />

v v v v v v<br />

v<br />

v v v<br />

v + v + v v v v v v f v v v v v v + v v v<br />

v v v v v v<br />

v<br />

+ v v v<br />

v<br />

f<br />

v<br />

v<br />

v<br />

v<br />

v f v<br />

v<br />

v v v v v v v v v<br />

v v v v v v<br />

v<br />

v v v v<br />

v<br />

v<br />

v<br />

v<br />

v<br />

v<br />

v<br />

v


100 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

TABLE 1. Distribution of the species dredged during the workshop. See text for station descrip-<br />

TAXA<br />

STATIONS<br />

3<br />

9<br />

2<br />

5<br />

3<br />

4<br />

1<br />

6<br />

3<br />

5<br />

1<br />

9<br />

4<br />

5<br />

Retusa truncatula v v<br />

Haminoea cf. orteai v v<br />

Atys macandrewi<br />

v<br />

Atys sp.<br />

v<br />

Philine approximans<br />

Philine sp.<br />

?Chelidonura africana<br />

Cavolinia inflexa v v v v v v v v v v<br />

Cavolinia tridentata<br />

Diacria trispinosa f v f<br />

Cuvierina atlantica<br />

Clio pyrami<strong>da</strong>ta v v<br />

Limacina cf. helicina<br />

Limacina inflata<br />

v<br />

Umbraculum umbraculum<br />

v<br />

Tylodina perversa<br />

Williamia gussonii<br />

v<br />

Ovatella vulcani<br />

Pedipes pedipes<br />

5<br />

7<br />

5<br />

8<br />

3<br />

6<br />

4<br />

0<br />

0<br />

6<br />

0<br />

5<br />

1<br />

4<br />

1<br />

5<br />

2<br />

0<br />

3<br />

1<br />

4<br />

6<br />

0<br />

1<br />

5<br />

6<br />

3<br />

0<br />

4<br />

8<br />

BIVALVIA<br />

Arca tetragona v f v v v v v v v v<br />

Asperarca nodulosa<br />

Bathyarca philippiana<br />

Limopsis minuta<br />

v<br />

Gregariella semigranata v v v v v v v v v v v v<br />

Rhomboidella prideauxi<br />

Pecten jacobaeus f v<br />

Aequipecten commutatus f v v v<br />

Aequipecten opercularis v v + + f + + v v f v<br />

Bractechlamys corallinoides v v v v f v v v<br />

Palliolum incomparabile f v v f<br />

Chlamys flexuosa<br />

v<br />

Talochlamys pusio v v v v v v v v v v v v<br />

Pododesmus patelliformis v v v v v v v v v<br />

Limaria hians v f v v v v v f v<br />

Neopycnodonte cochlear v v v<br />

Myrtea spinifera<br />

Lucinoma borealis v v v v v v<br />

Thyasira flexuosa<br />

Diplodonta berghi v v v<br />

Diplodonta trigona + + + v v v v + v<br />

Chama gryphoides v v<br />

Kurtiella pelluci<strong>da</strong> v v<br />

Basterotia clancula v v v v v v v<br />

Cardita calyculata v + v v v v v v v<br />

?Crassatina sp.<br />

v<br />

Papillicardium papillosum + + + v + + + v + v + + v<br />

Parvicardium vroomi v v v<br />

Tellina incarnata + + + v v v v v v v v v<br />

Tellina pygmaea + + + + + + + + + + + + + + +<br />

Arcopagia balaustina<br />

f<br />

?Tellina sp.


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 101<br />

tion. f, fragment; v, rolled shell or single valve; +, with live animal or both valves. (cont.)<br />

4<br />

4<br />

5<br />

0<br />

5<br />

4<br />

1<br />

8<br />

4<br />

7<br />

4<br />

9<br />

1<br />

3<br />

2<br />

7<br />

2<br />

3<br />

2<br />

4<br />

2<br />

1<br />

1<br />

2<br />

0<br />

2<br />

2<br />

8<br />

v v v v v<br />

v f v<br />

v v f v v v<br />

4<br />

2<br />

2<br />

6<br />

0<br />

8<br />

3<br />

2<br />

0<br />

7<br />

2<br />

9<br />

3<br />

8<br />

3<br />

3<br />

3<br />

7<br />

4<br />

3<br />

5<br />

2<br />

5<br />

3<br />

5<br />

1<br />

4<br />

1<br />

5<br />

5<br />

v v v v<br />

v<br />

v<br />

v v v v v v v v v v v v v v v v v v v v<br />

v f v v<br />

v v v v f f<br />

v v v f v v v<br />

v v v v v v v v v v v v v<br />

v v v<br />

v v v v v v v v<br />

v v v f<br />

v<br />

v v v v<br />

v<br />

v<br />

v v v v v v v v v v v v v v v v v v v v v<br />

v<br />

v v<br />

+ v v v v v v v v v v f v v v v v v<br />

v<br />

v<br />

+ v f f v f v f<br />

v v + v v f v v v v v f v<br />

+ v v + v v v v + v v v + v + v v v v v v v f<br />

v v v v v v v v v v v v v v v v f v v<br />

+ v v v v v v + + v v v v v v<br />

v<br />

v<br />

v v v v v v v v v v v v v v v v v v v v<br />

v v v v v v v v v v v v v v v<br />

v v v v v v v v v v v v f v f v v f v v<br />

+ v f v v v v v v v v v +<br />

v<br />

v v v v v v v + + v + + + v + + + + v<br />

v v v v v<br />

v v v v v v v<br />

+ v v v v v + v + v + + v v v + v v v v<br />

v v v + v v v + v v v +<br />

v + v v v + + v v v v<br />

v v v v v v v v v v v v<br />

v + v v + v + v v v v v v v v v v v<br />

+ + + + + v + + + + + + v v v + v v + v + v v<br />

v v v v v v v v v v v<br />

v v v + v v v v v v v v v v v v<br />

+ + + + + + + + + v + + + v v + v v v + v + v +<br />

+ v v + + + + + + f + + + + + v + v +<br />

v


102 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

TABLE 1. Distribution of the species dredged during the workshop. See text for station descrip-<br />

STATIONS<br />

TAXA<br />

Azorinus chamasolen<br />

Coralliophaga lithophagella<br />

3<br />

9<br />

2<br />

5<br />

3<br />

4<br />

1<br />

6<br />

3<br />

5<br />

1<br />

9<br />

4<br />

5<br />

5<br />

7<br />

Venus casina + v v v v v v + v + v<br />

Venus verrucosa + +<br />

Globivenus effossa<br />

<strong>Timoclea</strong> <strong>ovata</strong> v + + + + + + + + + + + + +<br />

Gouldia minima v + + + + + + + v + + v<br />

Callista chione v v + v v v v v v v + v v<br />

Hiatella arctica<br />

Gastrochaena dubia<br />

Nototeredo norvagica<br />

Teredora malleolus v v<br />

Xyloredo sp. v v v v v v<br />

Thracia papyracea v + v + v v v v v v v v<br />

Cardiomya costellata v v + + + v<br />

Cuspi<strong>da</strong>ria atlantica<br />

5<br />

8<br />

3<br />

6<br />

4<br />

0<br />

v<br />

0<br />

6<br />

0<br />

5<br />

1<br />

4<br />

1<br />

5<br />

2<br />

0<br />

3<br />

1<br />

4<br />

6<br />

0<br />

1<br />

v<br />

5<br />

6<br />

3<br />

0<br />

4<br />

8<br />

CEPHALOPODA<br />

Octopus vulgaris


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 103<br />

tion. f, fragment; v, rolled shell or single valve; +, with live animal or both valves. (cont.)<br />

4<br />

4<br />

5<br />

0<br />

5<br />

4<br />

1<br />

8<br />

4<br />

7<br />

4<br />

9<br />

1<br />

3<br />

2<br />

7<br />

2<br />

3<br />

2<br />

4<br />

2<br />

1<br />

1<br />

2<br />

0<br />

2<br />

2<br />

8<br />

4<br />

2<br />

+<br />

v v + v + v v v +<br />

v v + v v + v v v v + + v v v + v v v v v<br />

+ v v v v v v v v v<br />

v v f v +<br />

+ + + + + + + + + + + + + v v + + + + + + + v +<br />

v + v + v + + + + v + + + v v + v v + + v + v<br />

v + + v v + v v v v v v v v v v v v v<br />

v v v v v v<br />

v<br />

v v<br />

v<br />

v v v v v v v v v v v v v v v v v v<br />

v v v + v + v v v v v v v v v + v v v v<br />

v v + + v + + + + v + v + + v f v f<br />

v<br />

2<br />

6<br />

0<br />

8<br />

3<br />

2<br />

0<br />

7<br />

2<br />

9<br />

3<br />

8<br />

3<br />

3<br />

3<br />

7<br />

4<br />

3<br />

5<br />

2<br />

5<br />

3<br />

5<br />

1<br />

4<br />

1<br />

5<br />

5<br />

+


AÇOREANA, Suplemento 6, Setembro 2009: 105-119<br />

ASPECTS OF THE BIOLOGY AND FUNCTIONAL MORPHOLOGY OF TIMOCLEA<br />

OVATA (BIVALVIA: VENEROIDEA: VENERINAE) IN THE AÇORES, PORTUGAL,<br />

AND A COMPARISON WITH CHIONE ELEVATA (CHIONINAE)<br />

Brian Morton<br />

Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K.<br />

e-mail: prof_bmorton@hotmail.co.uk<br />

ABSTRACT<br />

<strong>Timoclea</strong> <strong>ovata</strong> occurs in the Açorean offshore seabed down to ~200 metres depth.<br />

Here, however, it only grows to half (10 mm) the shell length of conspecifics in European<br />

continental waters. In the <strong>Açores</strong> also, T. <strong>ovata</strong> is drilled by a naticid pre<strong>da</strong>tor - probably<br />

Natica prietoi. This is the first report of naticid drilling pre<strong>da</strong>tion upon T. <strong>ovata</strong>.<br />

The shell and the organs of the mantle cavity and visceral mass, and their ciliary currents,<br />

are described (for the first time) and compared specifically with representatives of<br />

the Chioninae (within which it was traditionally placed), including the Western Pacific<br />

Bassina calophylla and the Western Atlantic Chione elevata (also illustrated herein).<br />

Anatomically all three species are similar to each other, reflecting the inherent conservatism<br />

of the venerid bauplan. An interesting aspect of the complex surface architectures<br />

of the shells of T. <strong>ovata</strong>, B. calophylla and C. elevata is that they are not successful in protecting<br />

individuals from, in particular, naticid pre<strong>da</strong>tion even though one supposes that<br />

this is what they are for. That is, in the pre<strong>da</strong>tor-prey “arms race”, naticids are clearly winning.<br />

Notwithstanding, the complex shell architecture may also fulfill other functions<br />

such as stabilizing these shallow burrowers in soft sediments.<br />

In other bivalve lineages, “success” has been achieved through reproductive and/or<br />

anatomical specializations. However, the two most widely distributed and, possibly, most<br />

“successful” modern bivalve lineages are the Mytiloidea and heterodont Veneroi<strong>da</strong> that<br />

are generally but not exclusively dominant on rocky and soft marine habitats, respectively.<br />

This success has been achieved by reproductive and anatomical conservatism. Thus,<br />

one can take virtually any mytilid or any venerid and they will be, as this study demonstrates<br />

for <strong>Timoclea</strong> <strong>ovata</strong>, generally similar to other representatives of their respective families.<br />

RESUMO<br />

<strong>Timoclea</strong> <strong>ovata</strong> ocorre nos fun<strong>dos</strong> costeiros <strong>dos</strong> mares <strong>dos</strong> <strong>Açores</strong> até uma<br />

profundi<strong>da</strong>de de ~200 metros. Aqui, porém, cresce apenas até metade (10 mm) do<br />

comprimento de concha <strong>dos</strong> seus conspecíficos em águas continentais Europeias.<br />

Também nos <strong>Açores</strong> T. <strong>ovata</strong> é perfura<strong>da</strong> por um pre<strong>da</strong>dor naticídeo – provavelmente<br />

Natica prietoi. Este é o primeiro registo de pre<strong>da</strong>ção por perfuração de um naticídeo em T.<br />

<strong>ovata</strong>.<br />

Descrevem-se (pela primeira vez) a concha e os órgãos <strong>da</strong> cavi<strong>da</strong>de palial e massa<br />

visceral, e as suas correntes ciliares, e comparam-se especificamente com outros<br />

representantes <strong>dos</strong> Chioninae, incluindo Bassina calophylla do Pacífico Oeste e Chione<br />

elevata do Atlântico Oeste (também ilustra<strong>da</strong> aqui). Anatomicamente as três chioninas são<br />

muito semelhantes entre si, reflectindo o conservantismo inerente do bauplan venerídeo.<br />

Um aspecto interessante <strong>da</strong> complexa arquitectura <strong>da</strong> superfície <strong>da</strong> concha chionina,<br />

incluindo T. <strong>ovata</strong>, é não ser muito bem sucedi<strong>da</strong> em proteger os seus representantes de,<br />

em particular, pre<strong>da</strong>ção por naticídeos embora se pense ser esta a sua função. Isto é, na<br />

“corri<strong>da</strong> às armas” de pre<strong>da</strong>dor-presa, os naticídeos estão claramente a ganhar. Não


106 AÇOREANA<br />

2009, Sup. 6: 105-119<br />

(Figure 5B). Jones (1979) compared the<br />

anatomy of Chione cancellata (Linnaeus,<br />

1767) with those of other chionines.<br />

Morton & Knapp (2004) re-examined<br />

some aspects of the anatomy of the<br />

Atlantic C. elevata and compared it with<br />

the Pacific Bassina calophylla, specifically<br />

with regard to how the shell architecture,<br />

in particular, protects (or rather does not)<br />

the contained animal from drilling pre<strong>da</strong>tors<br />

of the Natici<strong>da</strong>e.<br />

<strong>Timoclea</strong> <strong>ovata</strong> has a wide distribution<br />

from northern Norway and Iceland south<br />

to Angola (West Africa). It is also recorded<br />

from the Canary Islands, the <strong>Açores</strong><br />

and the Mediterranean and Black Sea.<br />

Despite this wide distribution there is, as<br />

noted above, little known about the<br />

anatomy of T. <strong>ovata</strong> and little also about<br />

its basic biology. Labrune et al. (2007)<br />

described changes in the species composition<br />

of the macrofauna of the Bay of<br />

Banyuls-sur-Mer in the Mediterranean<br />

between 1967 and 2003 noting that the<br />

greatest changes were in the T. (as Venus)<br />

<strong>ovata</strong> community between 1967-1968 and<br />

1994. The size frequency distribution of a<br />

population of T. <strong>ovata</strong> from the Pliocene of<br />

Volpedo, Italy, was described by Benigni<br />

& Corselli (1981) and Dauvin (1985)<br />

undertook a study of the population<br />

dynamics of a Recent population of the<br />

same species from the Bay of Moraix in<br />

the Mediterranean noting there to be<br />

pluri-annual variations in recruitment,<br />

growth and production, thereby explainobstante,<br />

a arquitectura <strong>da</strong> concha chionina pode também exercer outras funções tais<br />

como estabilizar estes escavadores superficiais nos sedimentos finos.<br />

Noutras linhagens de bivalves, o “sucesso” foi conseguido mediante especializações<br />

reprodutivas e/ou anatómicas. No entanto, as duas linhagens de bivalves modernos mais<br />

largamente distribuí<strong>da</strong>s e, possivelmente, melhor sucedi<strong>da</strong>s são os Mytiloidea e os<br />

heterodontes Veneroi<strong>da</strong> que são geralmente mas não exclusivamente dominantes em<br />

habitats marinhos rochoso e mole, respectivamente. Tal sucesso foi conseguido mediante<br />

conservantismo reprodutivo e anatómico. Assim, pode tomar-se virtualmente qualquer<br />

mitilídeo ou qualquer venerídeo e eles serão, como este estudo demonstra para os<br />

Chioninae, respectivamente muito semelhantes aos seus outros representantes.<br />

INTRODUCTION<br />

<strong>Timoclea</strong> <strong>ovata</strong> (Pennant, 1777) was classified<br />

by Keen (1969) as a member of<br />

the Chioninae Frizzell, 1936 (Veneroidea,<br />

Veneri<strong>da</strong>e), representatives of which have<br />

been studied anatomically by Ansell<br />

(1961), Jones (1979), Morton (1985) and<br />

Morton & Knapp (2004). Morton (1985)<br />

compared Bassina calophylla (Philippi,<br />

1836) (Chioninae) with Irus irus<br />

(Linnaeus, 1758) (Tapetinae A<strong>da</strong>ms &<br />

A<strong>da</strong>ms, 1852). Subsequently, however,<br />

Coan et al. (1997) synonymized the<br />

Chioninae with the Venerinae<br />

Rafinesque, 1815. Kappner & Bieler<br />

(2006) have, most recently, and on the<br />

basis of a much broader gene sequencing<br />

study, argued, however, that the<br />

Chioninae, with Chione cancellata<br />

(Linnaeus, 1767) as its type species, is a<br />

distinct entity from the Venerinae as proposed<br />

by Canapa et al. (2003). Kappner &<br />

Bieler (2006), however, have also demonstrated<br />

that <strong>Timoclea</strong> Brown, 1827 should<br />

be placed within the Venerinae and not<br />

within the Chioninae.<br />

Ansell (1961) compared the anatomy<br />

of the British species of Veneracea<br />

(Veneroidea) but, surprisingly, had little<br />

to say about <strong>Timoclea</strong> (as Venus) <strong>ovata</strong> noting<br />

only that, in common with Gafrarium<br />

minimum (Montagu, 1803), the inner apertures<br />

of the siphons possessed membranes<br />

that, in the case of the inhalant,<br />

directed the incoming water dorsally


MORTON: TIMOCLEA OVATA IN THE AZORES 107<br />

ing the observations of Labrune et al.<br />

(2007). Anfossi & Brambilla (1981) noted<br />

that T. <strong>ovata</strong> has been a member of the<br />

Mediterranean’s detrital biocenosis since<br />

at least the Pleistocene. In terms of pre<strong>da</strong>tion,<br />

only Mienis (2003) has noted that<br />

the starfish Astropecten aranciacus<br />

(Linnaeus, 1758) preys upon T. <strong>ovata</strong>.<br />

This study was the first to be undertaken<br />

on <strong>Timoclea</strong> <strong>ovata</strong> in the <strong>Açores</strong>, a<br />

species initially recorded from there by<br />

Morton (1967). The study’s aims were<br />

three fold: (i), to obtain support for (or<br />

not) the proposal of Kappner & Bieler<br />

(2006) that T. <strong>ovata</strong> should be placed in the<br />

Venerinae; (ii), to document information<br />

on the biology of this species in the<br />

remote mid-Atlantic <strong>Açores</strong> and (iii), to<br />

provide a picture of its anatomy that<br />

might explain facets of its biology and<br />

give clues to the success of the venerid<br />

bauplan.<br />

MATERIALS AND METHODS<br />

Biology<br />

For ten <strong>da</strong>ys from 17-26 July 2006, the<br />

sea bed off the southern coast of the<br />

island of São Miguel, <strong>Açores</strong>, was<br />

sampled using a benthic box dredge at six<br />

stations to the east and west of Ilhéu de<br />

Vila Franca do Campo. Station details are<br />

described by Martins et al. (2009). Station<br />

depths ranged from –50 to -250 metres<br />

C.D.. All living and empty shells of<br />

<strong>Timoclea</strong> <strong>ovata</strong> (plus any living naticids)<br />

were sorted from the samples. These<br />

were analyzed in the following manner.<br />

Living individuals of <strong>Timoclea</strong> <strong>ovata</strong><br />

were measured along their greatest<br />

lengths using vernier calipers to the nearest<br />

0.5 mm. Empty shell valves were<br />

identified and both left and right ones<br />

were measured in the same manner.<br />

Empty valves were also examined for<br />

drill holes. Where these were encountered,<br />

the following records were made<br />

of: (i), which valve and (ii), the location of<br />

each drill hole was plotted on master<br />

illustrations of the left and right valves.<br />

Statistical analyses<br />

The <strong>da</strong>taset comprising the numbers<br />

of living, empty and drilled shell valves of<br />

<strong>Timoclea</strong> <strong>ovata</strong> among the six stations was<br />

tested for normality and homogeneity of<br />

variances using the Shapiro-Wilk test and<br />

Levene statistic, respectively, both at the<br />

p = 0.05 level of significance before<br />

ANOVA. One-way ANOVA’s were performed<br />

on the <strong>da</strong>taset to test the null<br />

hypothesis that there were no significant<br />

differences in these variables among locations.<br />

Where differences were detected,<br />

Student’s Newman-Keuls (SNK) tests<br />

were carried out to identify where the differences<br />

lay. The shell lengths of living T.<br />

<strong>ovata</strong> and empty and drilled valves were<br />

also compared using a one-way ANOVA<br />

and the Student’s Newman-Keuls (SNK)<br />

test.<br />

Anatomy<br />

Living individuals of <strong>Timoclea</strong> <strong>ovata</strong><br />

were observed alive in aquaria. Other living<br />

animals were dissected and drawings<br />

made of the anatomy, notably the organs<br />

of the mantle cavity. The ciliary currents<br />

in the mantle cavity were detected using a<br />

suspension of carmine in seawater.<br />

Living individuals of Chione elevata from<br />

Flori<strong>da</strong> were also examined in the same<br />

way.<br />

RESULTS<br />

Biology<br />

Living individuals of <strong>Timoclea</strong> <strong>ovata</strong><br />

were collected from all six stations and<br />

there was no significant difference in the<br />

numbers collected between them. Figure<br />

1 illustrates length frequency histograms<br />

for A, living individuals, B and C, empty<br />

left right shell valves, respectively, and D


108 AÇOREANA<br />

2009, Sup. 6: 105-119<br />

and E, drilled left and right shell valves,<br />

again respectively. Living shells ranged<br />

in shell length from 1.5 mm to 9.0 mm, as<br />

did, approximately, the empty and drilled<br />

valves. One empty right valve was 10 mm<br />

in length.<br />

shell length showed that the valves of<br />

empty and drilled individuals, irrespective<br />

of whether they were the right or left<br />

valves, did not significantly differ in<br />

terms of mean shell length (p >0.05)<br />

whereas the valves of living individuals<br />

were significantly smaller than the empty<br />

valves (except for the drilled left valves,<br />

probably due to the small sample size).<br />

Figure 2 shows outline drawings of<br />

the left and right shell valves and the<br />

numbers and the distribution pattern of<br />

naticid drill holes made in them. There<br />

were over twice as many in the right<br />

(n=33) as in the left (n=15) valves and the<br />

pattern of distribution was unusual in<br />

that they were not near the umbones (an<br />

often favoured location for drilling gastropod<br />

pre<strong>da</strong>tors, as will be discussed).<br />

Rather, they seemed to be located mostly<br />

over the position of the pallial line, that is,<br />

where the thick, recessed, mantle edge is<br />

united to the shell internally.<br />

FIGURE 1. <strong>Timoclea</strong> <strong>ovata</strong>. Five histograms<br />

showing the size distributions of A, living individuals;<br />

B, empty left and C, right shell valves;<br />

C, and D, drilled left and right shell valves,<br />

respectively.<br />

The results of the ANOVA show that<br />

there were significant differences<br />

between the collected <strong>Timoclea</strong> <strong>ovata</strong> shells<br />

of the various categories, that is, living,<br />

empty and drilled valves, in term of their<br />

mean shell lengths (F = 6.96, p


MORTON: TIMOCLEA OVATA IN THE AZORES 109<br />

posteriorly, so that the beaks are distinctly<br />

prosogyrate (Figure 3A) and result<br />

from a strong tangential pattern of<br />

growth. This gives the shell its equilateral<br />

shape that increases during ontogeny<br />

so that the juvenile is more oval, the adult<br />

more angular.<br />

FIGURE 3. <strong>Timoclea</strong> <strong>ovata</strong>. Five stylized views<br />

of the shell and illustrated from A, the right<br />

side; B, dorsally; C, ventrally; D, anteriorly and<br />

E, posteriorly. (x—-y is the approximate position<br />

of the greatest width to the shell.) For<br />

other abbreviations see page 119.<br />

In dorsal view (Figure 3B), there is a<br />

small anterior, heart-shaped, lunule (LU)<br />

(as defined by Carter, 1967) each valve<br />

here also interlocking by means of marginal<br />

denticles as in Chione elevata<br />

(Morton & Knapp, 2004). Unlike other<br />

venerids, however, the lunule is not well<br />

defined because it is sculptured like the<br />

remainder of the shell but is defined by a<br />

light indentation and is coloured slightly<br />

differently. The more oval juvenile shell<br />

(JS) is also illustrated. There is no distinct<br />

posterior escutcheon because the ligament<br />

is internal, although it can be seen<br />

as a thin, black, line extending posterior<br />

to the umbones about one quarter of the<br />

way towards the posterior margin. The<br />

ventral shell valve margins (Figure 3C)<br />

are interlocked virtually everywhere<br />

along the extent of the shell margin by the<br />

expanding radial ribs. The shell valves of<br />

T. <strong>ovata</strong> are thus very difficult to separate,<br />

again like those of C. elevata (Morton &<br />

Knapp, 2004). Figures 3B & C also show<br />

the approximate position of the greatest<br />

shell width (x-y). It lies just posterior to<br />

the umbones above the ligament.<br />

The shell is illustrated in anterior view<br />

in Figure 3D and again shows the lunule<br />

(LU) and juvenile shell (JS). The greatest<br />

width to the shell when seen from this<br />

perspective (x-y) is dorsal to the mid<br />

point of the dorso-ventral height of the<br />

shell. A similar situation is seen when the<br />

shell is illustrated from the posterior perspective<br />

(Figure 3E).<br />

The shell of <strong>Timoclea</strong> <strong>ovata</strong> is illustrated<br />

in internal view in Figure 4A. The left<br />

valve (Figure 4A) has a hinge plate with<br />

an elongate posterior cardinal tooth and<br />

two other larger teeth more centrally<br />

placed. These are here interpreted as a<br />

central cardinal and robust anterior (but<br />

more centrally located, unlike the elongate<br />

posterior cardinal tooth) cardinal<br />

tooth, all arising from the umbo (U).<br />

There are no lateral teeth. The ligament<br />

(L) is internal and opisthodetic. Also well<br />

defined are anterior (AA) and a larger<br />

posterior (PA) adductor muscle scars.<br />

These are connected by a thick pallial line<br />

(PL) that has a similarly thick, short, pallial<br />

sinus (PS). Both are deeply inset from<br />

the valve margin and this is characterized<br />

by a scalloped edge internal to which,<br />

extending virtually all the way round are<br />

marginal denticles (MD) that interlock<br />

with those of the other valve. The interi-


110 AÇOREANA<br />

2009, Sup. 6: 105-119<br />

or of the shell is polished and is typically<br />

white although in those individuals with<br />

an external coloration, the interior reflects<br />

this as an orange-lilac stain. The hinge<br />

plate of the right valve similarly also has<br />

three (a central cardinal, elongate posterior<br />

lateral and more central and robust<br />

anterior lateral) teeth (Figure 4B).<br />

FIGURE 4. <strong>Timoclea</strong> <strong>ovata</strong>. A, An interior view<br />

of the left shell valve and B, an interior view of<br />

the right hinge plate. For abbreviations see<br />

page 119.<br />

FIGURE 5. <strong>Timoclea</strong> <strong>ovata</strong>. An individual illustrated<br />

in its life position in the sediment.<br />

The external appearance of the shell is<br />

illustrated from the right side in Figure 5.<br />

Each valve has a stout sculpture of ~50<br />

ribs that radiate from the umbones and<br />

because each valve has strong commarginal<br />

lamellae too, there are nodes on the<br />

ribs giving the shell a rough, file like, feel<br />

to the touch. As noted above the shell is<br />

often uniformly coloured light brown<br />

although those of most individuals are<br />

patterned with streaks and blotches of<br />

pink, red or brown. And some individuals<br />

have two radiating (antero- and postero-ventrally)<br />

bands of pigmentation, as<br />

illustrated in Figure 5.<br />

Tebble (1966) records that <strong>Timoclea</strong><br />

<strong>ovata</strong> has a maximum shell length of 19<br />

mm while Dauvin (1985) identified a figure<br />

of 15.1 mm for this species in the<br />

Mediterranean. As noted above, however,<br />

the largest Açorean individual<br />

collected had a shell length of but 10 mm.<br />

The siphons<br />

living individual of <strong>Timoclea</strong> <strong>ovata</strong> is<br />

illustrated in Figure 5 from the right side.<br />

Anteriorly, there is a large digging foot.<br />

Posteriorly, there is a pair of separated<br />

siphons. The exhalant siphon is conical<br />

and a ring of 12 short tentacles sub-apically<br />

surrounds its transparent coneshaped<br />

aperture. About 12 yellow-brown<br />

stripes arise from between each tentacle<br />

and extend inwards. The inhalant siphon<br />

is much larger in diameter and is fringed<br />

apically by a circlet of ~24 long siphonal<br />

tentacles. As with the exhalant about 24<br />

yellow-brown stripes extend inwards.<br />

Where each stripe unites with the tentacular<br />

rings, there is a <strong>da</strong>rker brown spot.


MORTON: TIMOCLEA OVATA IN THE AZORES 111<br />

Mid-ventrally, the mantle possesses a line<br />

of papillae and pallial fusions, where they<br />

occur, are of the inner folds only, that is,<br />

type A (Yonge, 1982). The siphons are<br />

illustrated in greater detail in Figure 6.<br />

FIGURE 7. <strong>Timoclea</strong> <strong>ovata</strong>. The ciliary currents<br />

of the left mantle lobe after after removal of the<br />

left shell valve and mantle and the body. For<br />

abbreviations see page 119.<br />

FIGURE 6. <strong>Timoclea</strong> <strong>ovata</strong>. A detail of the<br />

siphons.<br />

The ciliary currents of the organs of the mantle<br />

cavity<br />

The ciliary currents of the left mantle<br />

lobe of <strong>Timoclea</strong> <strong>ovata</strong> are illustrated in<br />

Figure 7. The pallial currents sweep particles<br />

of material in a clockwise direction<br />

towards the antero-dorsal regions of the<br />

mantle cavity and then downwards, so<br />

that particles end up in a ventral marginal<br />

rejection tract that transports such<br />

unwanted material towards the base of<br />

the inhalant siphon (IS) where it accumulates<br />

as balls of pseudofaecal matter (PM).<br />

These little balls are periodically ejected<br />

from the mantle cavity, via the inhalant<br />

siphon, by sharp contractions of the<br />

adductor muscles that create the pallial<br />

pressure necessary to do so.<br />

The right ctenidium of <strong>Timoclea</strong> <strong>ovata</strong><br />

is illustrated in Figure 8A. Each ctenidium<br />

is homorhabdic, eulamellibranchiate<br />

and comprises two unequal demibranchs.<br />

The inner demibranch (ID) is large and<br />

extends anteriorly from beneath the posterior<br />

adductor muscle (PA) up into the<br />

sub-umbonal cavity and ends on the postero-ventral<br />

face of the anterior adductor<br />

muscle (AA). The outer demibranch<br />

(OD) is dorso-ventrally short and and, as<br />

with the inner, extends anteriorly from<br />

beneath the posterior adductor muscle to<br />

a position just posterior of the hinge plate,<br />

beneath the ligament (L). This demibranch<br />

is thus foreshortened anteriorly.<br />

The ciliary currents of the right ctenidium<br />

are illustrated in transverse section<br />

in Figure 8B. The ciliary currents are of<br />

Type C (1) (Atkins, 1937), typical of many<br />

eulamellibranchs and, specifically, Venus<br />

fasciata (<strong>da</strong> Costa, 1778), Dosinia lupinus<br />

(Linnaeus, 1758), Venerupis aurea (Gmelin,<br />

1791) and Venerupis rhomboides (Pennant,<br />

1777) (Ansell, 1961). Ctenidia with a ciliation<br />

of type C (1) have oralward acceptance<br />

tracts located in the ctenidial axis<br />

and in the ventral marginal food groove<br />

of the inner demibranch (ID) only. Hence,<br />

particles filtered by the ascending lamella<br />

of the outer demibranch (OD) pass downward<br />

(although some may dorsally be<br />

carried anteriorly) (Figure 8A) and on<br />

reaching the ventral margin of this demi-


112 AÇOREANA<br />

2009, Sup. 6: 105-119<br />

FIGURE 8. <strong>Timoclea</strong> <strong>ovata</strong>. A, The ciliary currents<br />

of the ctenidium as seen from the right<br />

side after removal of the right shell valve<br />

and mantle. B, A diagrammatic transverse<br />

section through the right ctenidium showing<br />

the ciliary currents. For abbreviations see<br />

page 119.<br />

branch, turn, and pass upwards on the<br />

descending lamella towards the ctenidial<br />

axis. In the food groove of the ctenidial<br />

axis they pass anteriorly. Ciliary currents<br />

on the inner demibranch are largely<br />

downward towards the ventral margin<br />

that has an anteriorly directed food<br />

groove. Because the outer demibranch is<br />

anteriorly foreshortened, at its anterior<br />

terminus, particles arriving here in the<br />

ctenidial axis pass on to the descending<br />

lamella of the inner demibranch. Thus,<br />

particles arrive at the ctenidial labial palp<br />

junction in (i), the ventral marginal food<br />

groove of the inner demibranch and (ii),<br />

in the ctenidial axis tract, also of the inner<br />

demibranch.<br />

The ctenidial-labial palp junction is of<br />

Category II (Stasek, 1964) and the palps<br />

(LP) are small, each possessing no more<br />

than five pleats that would, in the typical<br />

bivalve, have a sorting function, either<br />

accepting or rejecting particles of possible<br />

food according to size. Only those particles<br />

passing directly into the oral grooves<br />

of the palps from the acceptance tracts in<br />

the ctenidial axes, an arrangement that<br />

characterizes bivalves with a<br />

ctenidial/labial palp junction of Category<br />

II (Stasek, 1964), are forwarded directly to<br />

the mouth. The reduced size and sorting<br />

ability of the labial palps may be a reflection<br />

of the low numbers and narrow size<br />

limits of particles in the Açorean waters of<br />

the mid-Atlantic. Similarly, small labial<br />

palps have been recorded for Fragum erugatum<br />

(Tate, 1889), an inhabitant of oligotrophic,<br />

high salinity waters in Australia<br />

(Morton, 2000). Throughout its wide geographical<br />

range, however, T. <strong>ovata</strong> may<br />

occur in a variety of sediment types<br />

although it seems to prefer well-sorted<br />

gravels, as in the <strong>Açores</strong>, in which case<br />

the small labial palps are an a<strong>da</strong>ptation to<br />

sediments and overlying waters low in<br />

particulates.<br />

The ciliary currents of the right side of<br />

the visceral mass of <strong>Timoclea</strong> <strong>ovata</strong> are<br />

illustrated in Figure 9. On the surface of<br />

the right side of the visceral mass, the ciliary<br />

currents move material in a clockwise<br />

direction, anteriorly above and posteriorly<br />

below. Eventually, all such<br />

currents become directed downwards<br />

and feed into a rejection tract that passes<br />

accumulated material posteriorly where<br />

it falls off the posterior edge of the visceral<br />

mass onto the mantle. Ciliary currents<br />

on the foot (F) also pass material into this<br />

rejection tract. Particles that fall off the<br />

visceral mass are subjected to the ciliary<br />

currents of the mantle (Figure 7).<br />

Also illustrated in Figure 9 are some<br />

details of the structure of the visceral<br />

mass. Below and just posterior to the<br />

hinge plate, below the ligament (L), there<br />

is a heart (H) and posterior to this the<br />

brown, paired, kidneys (K). Anterior to<br />

the hinge plate is the <strong>da</strong>rk brown digestive<br />

diverticula (DD). The gut has not


MORTON: TIMOCLEA OVATA IN THE AZORES 113<br />

FIGURE 9. <strong>Timoclea</strong> <strong>ovata</strong>. The ciliary currents of the right side of the visceral mass after removal<br />

of the right shell valve, mantle and ctenidium. Also illustrated are some details of the structure of<br />

the visceral mass. For abbreviations see page 119.<br />

been examined in detail, but a conjoined<br />

style sac and mid gut (CSS/MG) leaves<br />

the postero-ventral edge of the stomach<br />

and passes postero-ventrally into the visceral<br />

mass. Eventually, the extremely thin<br />

mid gut (MG) separates from this and<br />

makes a single, simple loop upwards<br />

back towards the stomach but then passes<br />

posteriorly, penetrating the ventricle of<br />

the heart as the rectum (R) which passes<br />

over the posterior adductor muscle (PA)<br />

to terminate on its posterior surface as an<br />

anus.<br />

A final anatomical point is that, surprisingly,<br />

the pe<strong>da</strong>l retractor muscles are<br />

minute. The posterior pe<strong>da</strong>l retractor<br />

muscle (Figure 9, PPR) is located next to<br />

the antero-dorsal edge of the posterior<br />

adductor (PA) while the anterior pe<strong>da</strong>l<br />

retractor muscle (APR) is even smaller<br />

and located on the postero-dorsal edge of<br />

the anterior adductor muscle (AA). I use<br />

the word ‘surprisingly’ above, because,<br />

despite these tiny muscles, the foot is further<br />

surprisingly, very active. Hence, its<br />

movements must be largely related to<br />

hydrostatically induced pressure<br />

changes, as will be discussed.<br />

Comparison with Chione elevata<br />

Aspects of the anatomy and the ciliary<br />

currents of the ctenidium of Chione elevata<br />

are illustrated in Figure 10 and as seen<br />

from the right side after removal of the<br />

right shell valve and mantle. This drawing<br />

should be compared with the corresponding<br />

one for <strong>Timoclea</strong> <strong>ovata</strong> (Figure 8).<br />

In C. elevata, the shell has a lunule (L)<br />

beneath which are located interlocking<br />

denticles. The shell also has interlocking


114 AÇOREANA<br />

2009, Sup. 6: 105-119<br />

valve margins and there are three hinge<br />

teeth in each valve, that is, what is here<br />

interpreted as anterior (ALT) and posterior<br />

lateral (PLT) and a large central cardinal<br />

teeth (CT). Jones (1979) also identifies<br />

three teeth in each valve of Chione cancellata<br />

(Linnaeus, 1767), C. paphia (Linnaeus,<br />

1767) and C. un<strong>da</strong>tella (Sowerby, 1835) but<br />

refers to them as anterior, central and posterior<br />

cardinal teeth, as decribed above<br />

for <strong>Timoclea</strong> <strong>ovata</strong>.<br />

Internally, Chione elevata has anterior<br />

(AA) and posterior (PA) adductor muscles<br />

and anterior (APR) and posterior<br />

(PPR) pe<strong>da</strong>l retractor muscles that are<br />

larger than those of <strong>Timoclea</strong> <strong>ovata</strong>. There<br />

is an extensive pe<strong>da</strong>l gape (PG) as in T.<br />

<strong>ovata</strong>, a large digging foot (F) and a mantle<br />

margin (MM) lined with mantle papillae<br />

(MP), all, again, as in T. <strong>ovata</strong>. The<br />

inhalant (IS) and exhalant (ES) siphons of<br />

C. elevata are very similar in structure to<br />

those of T. <strong>ovata</strong> and both have similarly<br />

organized ctenidia with ciliary currents of<br />

Type C (1) (Atkins, 1937). Both, therefore,<br />

have ctenidial-labial palp junction of<br />

Category II (Stasek, 1964). The labial<br />

palps of C. elevata are relatively larger<br />

than those of T. <strong>ovata</strong>, possibly because it<br />

inhabits shallow coastal waters off<br />

Flori<strong>da</strong>, U.S.A..<br />

In conclusion therefore Chione elevata<br />

and <strong>Timoclea</strong> <strong>ovata</strong> are similar anatomically,<br />

even though gene sequencing places<br />

FIGURE 10. Chione elevata. The ciliary currents of the ctenidium as seen from the right side after<br />

removal of the right shell valve and mantle. For abbreviations see page 119.


MORTON: TIMOCLEA OVATA IN THE AZORES 115<br />

them in two different sub-families, that is,<br />

the Chioninae and Venerinae, respectively<br />

(Kappner & Bieler, 2006). Importantly,<br />

such similarities now suggest convergence<br />

between the two thick-shelled and<br />

surface ornamented genera demonstrating<br />

the success, at least in part, of the veneroidean<br />

body plan as a whole and which<br />

seems to be based around anatomical<br />

conservatism.<br />

DISCUSSION<br />

Poppe & Gotto (1993) record a depth<br />

distribution of between 4 m to 200 m for<br />

<strong>Timoclea</strong> <strong>ovata</strong>, as does Tebble (1966),<br />

approximately. It is thus unsurprising that<br />

no differences in population numbers<br />

were recorded with depth from the<br />

Açorean dredge samples (50-200 m).<br />

Poppe & Gotto (1993) similarly note that T.<br />

<strong>ovata</strong> individuals from the northern part of<br />

the species’ range are larger than southern<br />

conspecifics. This may explain why the T.<br />

<strong>ovata</strong> individuals from Açorean waters are<br />

small (half the length of northern conspecifics),<br />

but it may also be because of the<br />

low levels of nutrients available to this<br />

species in the depauperate waters of the<br />

central Atlantic.<br />

Very little is known about the pre<strong>da</strong>tor-prey<br />

relationships of the Açorean<br />

marine fauna (Morton et al., 1998). In<br />

terms of the pre<strong>da</strong>tory gastropods, on<br />

rocky shores in the <strong>Açores</strong>, Thais haemastoma<br />

(Linnaeus, 1767) drills the interti<strong>da</strong>l<br />

mussel Gregariella semigranata (Reeve,<br />

1858) at the posterior margin (Morton,<br />

1995a). In Europe, Ansell (1960, 1982)<br />

demonstrated that Polinices alderi (Forbes,<br />

1838) drilled the bivalves Venus striatula <strong>da</strong><br />

Costa, 1778 and Tellina tenuis (<strong>da</strong> Costa,<br />

1778) whereas in the <strong>Açores</strong>, P. alderi<br />

attacked the commonest shallow subti<strong>da</strong>l<br />

bivalve, Ervilia castanea (Montagu, 1803),<br />

by drilling in a stereotypical, posterior,<br />

position (Morton, 1990a).<br />

Morton & Harper (2009) have studied<br />

the drill holes made in the tubes of the<br />

serpulid polychaete Ditrupa arietina (O.F.<br />

Müller, 1776) from depths of 50-200<br />

metres in the <strong>Açores</strong> and concluded that<br />

the only pre<strong>da</strong>tor present in the samples<br />

from which the tubes were collected was<br />

Natica prietoi Hi<strong>da</strong>lgo, 1873, formerly<br />

identified as Natica a<strong>da</strong>nsoni de Blainville,<br />

1825. Since the specimens of <strong>Timoclea</strong><br />

<strong>ovata</strong> reported upon here came from the<br />

same dredge samples it seems possible<br />

(likely) that N. prietoi made the holes in<br />

the shell of this species too. Confirmation<br />

of this is, however, required.<br />

Notwithstanding, Kabat (1990) has<br />

reviewed the literature on naticid pre<strong>da</strong>tion<br />

and there are no records of <strong>Timoclea</strong><br />

<strong>ovata</strong> as prey. This is thus the first record<br />

of naticid pre<strong>da</strong>tion, possibly by N. prietoi<br />

on T. <strong>ovata</strong>, although Vermeij (1980)<br />

reports that <strong>Timoclea</strong> marica (Linnaeus,<br />

1758) is drilled (laterally, as with T. <strong>ovata</strong>)<br />

by an unknown gastropod in Guam.<br />

Morton & Knapp (2004) identified an<br />

almost equal distribution of drill holes<br />

(and attempts) between the two valves of<br />

Chione elevata. Most of the drill holes<br />

were distributed around the postero-dorsal<br />

region of the shell and there were few<br />

failed drill holes. Finally, only a very few<br />

of the drill holes were over the shell<br />

lamellae and were at inter-lamellar<br />

spaces. That is, if the lamellae have<br />

evolved as anti-pre<strong>da</strong>tion devices, they<br />

are not very successful, in this case from<br />

the naticid Naticarius canrena (Linnaeus,<br />

1758). This is not the case with the also<br />

heavily sculptured Bassina calophylla<br />

(Chioninae) in the Indo-West Pacific<br />

(Ansell & Morton, 1985; 1987), where the<br />

shell lamellae do protect the bivalve<br />

inhabitant, except from species of edge<br />

drilling naticids, that is, Polinices tumidus<br />

(Swainson, 1844) and Polinices melanostomus<br />

(Gmelin, 1791).<br />

<strong>Timoclea</strong> <strong>ovata</strong> has a shell that, superfi-


116 AÇOREANA<br />

2009, Sup. 6: 105-119<br />

cially, would appear to offer much protection<br />

against drilling pre<strong>da</strong>tors. Protective<br />

characteristics include a relatively stout<br />

shell with tightly fitting valve margins,<br />

ventrally interlocking ribs, similarly interlocking<br />

denticles that occur all around the<br />

valve margins and large hinge teeth.<br />

Each adductor muscle is also large, facilitating<br />

sustained adduction and the pallial<br />

line is deeply inset within the shell margin.<br />

A thick shell characteristically protects<br />

bivalves from drilling pre<strong>da</strong>tors, for<br />

example, Corbula crassa Hinds, 1843 in<br />

Hong Kong (Morton, 1990b), although<br />

Borzone (1988) showed that a species of<br />

Polinices, as demonstrated here for N. prietoi<br />

Hi<strong>da</strong>lgo, 1873 and T. <strong>ovata</strong>, selectively<br />

drilled its prey, Venus antiqua King &<br />

Broderip, 1831, in the thickest region of<br />

the shell, that is, umbonally. Natica catena<br />

(<strong>da</strong> Costa, 1778) similarly bores its prey,<br />

the subti<strong>da</strong>l Donax vittatus (<strong>da</strong> Costa,<br />

1778) around the umbones (Negus, 1975).<br />

The anatomies of various representatives<br />

of the Chioninae have been<br />

described. These include Bassina calophylla<br />

(Morton, 1985) and Chione elevata (formerly<br />

identified as C. cancellata) (Jones,<br />

1979; Morton & Knapp, 2004) while<br />

Ansell (1961) has described the anatomies<br />

of the representatives of the Veneri<strong>da</strong>e<br />

(including a little about <strong>Timoclea</strong> <strong>ovata</strong>)<br />

that occur in British waters. The most<br />

obvious feature of the studied representatives<br />

of the Veneri<strong>da</strong>e is their anatomical<br />

conservatism. Hence, illustrations of the<br />

ctenidia within the mantle cavity of T.<br />

<strong>ovata</strong> (Venerinae), and C. elevata (illustrated<br />

herein: Figs 8 & 10, respectively) and B.<br />

calophylla (Morton, 1985, fig. 10)<br />

(Chioninae) are virtually identical, differing<br />

only in labial palp size. It is well<br />

known that palp size in the Bivalvia is<br />

related to the degree of sorting necessary<br />

for the particle load in the inhalant<br />

stream. Thus, the Hong Kong continental<br />

shelf species B. calophylla has large palps,<br />

the Floridian C. elevata has intermediate<br />

sized palps (Figure 10) while T. <strong>ovata</strong> has<br />

tiny palps (Figure 8). That is, because of<br />

high nutrient loading in continental shelf<br />

waters, B. calophylla needs big palps to<br />

reject a surfeit of unwanted particles<br />

whereas, oppositely, T. <strong>ovata</strong> in mid-<br />

Atlantic waters has little need to reject<br />

anything and has tiny palps. <strong>Timoclea</strong><br />

<strong>ovata</strong> has also, for the same reason, a<br />

short, narrow, mid-gut.<br />

Morton (1995b) pointed out that the<br />

two most widely distributed and, possibly,<br />

most “successful” modern bivalve<br />

lineages are the Mytiloidea and heterodont<br />

Veneroi<strong>da</strong> that are generally but<br />

not exclusively dominant on rocky and<br />

soft marine habitats, respectively. This<br />

has been achieved by reproductive (virtually<br />

all representatives being broadcast<br />

spawners) and anatomical conservatism.<br />

Thus, one can take virtually any mytilid<br />

or any venerid and they will be, as this<br />

study demonstrates for <strong>Timoclea</strong> <strong>ovata</strong>,<br />

similar to the other representatives of<br />

each order. In other bivalve lineages,<br />

more limited “success” has been achieved<br />

through reproductive and/or anatomical<br />

specialisms (Morton, 1995b). But the true<br />

inheritors of the bivalve bauplan are the<br />

modern Mytiloidea and Veneroidea.<br />

One interesting aspect of this “success”,<br />

however, is that, as discussed here,<br />

the complex surface architectures of the<br />

shell of the chionine Chione elevata and the<br />

venerine <strong>Timoclea</strong> <strong>ovata</strong> have not been successful<br />

in protecting representatives from,<br />

in particular, naticid pre<strong>da</strong>tion even<br />

though one instinctively supposes that<br />

that is what it is for. That is, in the pre<strong>da</strong>tor-prey<br />

“arms race”, naticids are clearly<br />

winning but the chionine shell architecture<br />

may also fulfill other functions such<br />

as the stability of the shallow burrowing<br />

<strong>Timoclea</strong> <strong>ovata</strong>, and other chionines, in soft<br />

sediments – a habitat that their shell<br />

architectures suit them ideally to.


MORTON: TIMOCLEA OVATA IN THE AZORES 117<br />

ACKNOWLEDGEMENTS<br />

I am grateful to Prof. A.M. Frias Martins<br />

(University of the <strong>Açores</strong>) for funding this<br />

research and for much practical help and<br />

warm hospitality during my stay on São<br />

Miguel. I also thank a number of University<br />

of the <strong>Açores</strong> students who helped with<br />

sample sorting and Dr. K.F. Leung (Hong<br />

Kong) for statistical advice.<br />

LITERATURE CITED<br />

ANFOSSI, G., & G. BRAMBILLA, 1981.<br />

Pleistocene faunal assemblages from<br />

the San-Colombo-al-Lambro Hill,<br />

Lombardy, Italy. 1. Pelecypods. Atti<br />

dell’Istituto Geologica della Universita di<br />

Pavia, 29: 49-68.<br />

ANSELL, A.D., 1960. Observations on pre<strong>da</strong>tion<br />

of Venus striatula (<strong>da</strong> Costa) by<br />

Natica alderi (Forbes). Proceedings of the<br />

Malacological Society of London, 34: 157-<br />

164.<br />

ANSELL, A.D., 1961. The functional morphology<br />

of the British species of<br />

Veneracea (Eulamellibranchia). Journal<br />

of the Marine Biological Association of the<br />

United Kingdom, 41: 489-517.<br />

ANSELL, A.D., 1982. Experimental studies<br />

of a benthic pre<strong>da</strong>tor-prey relationship.<br />

I. Feeding, growth, and egg collar production<br />

in long-term cultures of the<br />

gastropod drill Polinices alderi (Forbes)<br />

feeding on the bivalve Tellina tenuis <strong>da</strong><br />

Costa. Journal of Experimental Marine<br />

Biology and Ecology, 56: 235-255.<br />

ANSELL, A.D., & B. MORTON, 1985.<br />

Aspects of naticid pre<strong>da</strong>tion in Hong<br />

Kong with special reference to the defensive<br />

a<strong>da</strong>ptations of Bassina (Callanaitis)<br />

calophylla. In: MORTON, B., & D. DUD-<br />

GEON (eds.), Proceedings of the Second<br />

International Workshop on the Malacofauna<br />

of Hong Kong and southern China, Hong<br />

Kong, 1983, pp. 635-660. Hong Kong<br />

University Press, Hong Kong.<br />

ANSELL, A.D., & B. MORTON, 1987.<br />

Alternative pre<strong>da</strong>tion tactics of a tropical<br />

naticid gastropod. Journal of<br />

Experimental Marine Biology and Ecology,<br />

111: 109-119.<br />

ATKINS, D., 1937. On the ciliary mechanisms<br />

and interrelationships of lamellibranchs.<br />

Part 3. Types of lamellibranch<br />

gills and their food currents. Quarterly<br />

Journal of Microscopical Science, 79: 375-<br />

421.<br />

BENIGNI, C., & C. CORSELLI, 1981.<br />

Paleocommunity of benthic mollscs of<br />

the Pliocene of Volpedo, Alexandia,<br />

Italy. Rivista Italiana di Paleontologia e<br />

Stratigrafia, 87: 637-702.<br />

BORZONE, C.A., 1988. Sobre la pre<strong>da</strong>ción<br />

de Venus antiqua King & Broderip, 1835<br />

(Bivalvia, Veneri<strong>da</strong>e) por Polinices sp.<br />

(Gastropo<strong>da</strong>, Natici<strong>da</strong>e). Revista<br />

Atlântica, Brasil, 10: 75-84,<br />

CANAPA, A., S. SCHIAPARELLI, L.<br />

MAROTA & M. BARUCCA, 2003.<br />

Molecular <strong>da</strong>ta from the 16S rRNA<br />

gene for the phylogeny of Veneri<strong>da</strong>e<br />

(Mollusca: Bivalvia). Marine Biology,<br />

142: 1125-1130.<br />

CARTER, R.M., 1967. On the nature and<br />

definition of the lunule, escutcheon and<br />

corcelet in the Bivalvia. Proceedings of<br />

the Malacological Society of London, 37:<br />

243-263.<br />

COAN, E.V., P.V. SCOTT & F.R.<br />

BERNARD, 1997. Bivalve Seashells of<br />

Western North America. Santa Barbara<br />

Museum of Natural History<br />

Monographs 2. pp. i-vii + 764.<br />

DAUVIN, J.-C., 1985. Dynamique et production<br />

d’une population de Venus<br />

<strong>ovata</strong> Pennant (Mollusque-Bivalve) de<br />

la Baie de Moriax (Manche occidentale).<br />

Journal of Experimental Marine<br />

Biology and Ecology, 91: 109-123.<br />

JONES, C.C., 1979. Anatomy of Chione<br />

cancellata and some other chionines<br />

(Bivalvia: Veneri<strong>da</strong>e). Malacologia, 19:<br />

157-199.


118 AÇOREANA<br />

2009, Sup. 6: 105-119<br />

KABAT, A.R., 1990. Pre<strong>da</strong>tory ecology of<br />

naticid gastropods with a review of shell<br />

boring pre<strong>da</strong>tion. Malacologia, 32: 155-<br />

193.<br />

KAPPNER, I., & R. BIELER, 2006.<br />

Phylogeny of venus clams (Bivalvia:<br />

Venerinae) as inferred from nuclear and<br />

mitochondrial gene sequences.<br />

Molecular Phylogenetics and Evolution, 40:<br />

317-331.<br />

KEEN, M., 1969. Superfamily Veneracea<br />

Rafinesque, 1815. In: MOORE. R.C. (ed.),<br />

Treatise on Invertebrate Palaeontology. Part<br />

N. Mollusca 6. Volume 2, pp. N670-<br />

N690. Lawrence, Kansas: Geological<br />

Society of America and University of<br />

Kansas Press.<br />

LABRUNE, C., A. GRÉMAREA, K.<br />

GUIZIENA & J.M. AMAROUX, 2007.<br />

Long-term comparison of soft bottom<br />

macrobenthos in the Bay Banyuls-sur-<br />

Mer (north-western Mediterranean Sea):<br />

a reappraisal. Journal of Sea Research, 58:<br />

125-143.<br />

MARTINS, A.M.F, J.P. BORGES, S.P.<br />

ÁVILA, A.C. COSTA, P. MADEIRA & B.<br />

MORTON, 2009. Illustrated checklist of<br />

the infralittoral molluscs off Vila Franca<br />

do Campo. In: MARTINS, A.M.F. (ed.),<br />

The Marine Fauna and Flora of the Azores<br />

(Proceedings of the Third International<br />

Workshop of Malacology and Marine<br />

Biology, São Miguel 2006). Açoreana,<br />

Supplement 6: 15-103.<br />

MIENIS, H.K., 2003. <strong>Timoclea</strong> <strong>ovata</strong> in de<br />

maag van Astropecten aranciacus. Spirula,<br />

331: 26.<br />

MORTON, B., 1967. Malacological Report.<br />

In: Final Report, Chelsea College Azores<br />

Expedition, 1965. pp. 30-39. University of<br />

London, London<br />

MORTON, B., 1985. Aspects of the biology<br />

and functional morphology of Irus irus<br />

(Bivalvia: Veneri<strong>da</strong>e: Tapetinae) with a<br />

comparison of Bassina calophylla<br />

(Chioninae). In: MORTON, B., & D.<br />

DUDGEON (eds.), Proceedings of the<br />

Second International Workshop on the<br />

Malacofauna of Hong Kong and southern<br />

China, Hong Kong 1983, pp. 321-336.<br />

Hong Kong University Press, Hong<br />

Kong.<br />

MORTON, B., 1990a. The biology and<br />

functional morphology of Ervilia<br />

castanea (Bivalvia: Tellinacea) from the<br />

Azores. In: MARTINS, A.M.F. (ed.),<br />

Proceedings of the First International<br />

Workshop of Malacology, São Miguel,<br />

Azores, 1988. Açoreana, Supplement [2]:<br />

75-96.<br />

MORTON, B., 1990b. The functional morphology<br />

of Corbula crassa (Bivalvia:<br />

Corbuli<strong>da</strong>e) with special reference to<br />

shell structure and formation. In: MOR-<br />

TON, B. (ed.), Proceedings of the Second<br />

International Marine Biological Workshop:<br />

The Marine Flora and Fauna of Hong Kong<br />

and southern China (II), Hong Kong, 1986,<br />

pp. 1055-1073. Hong Kong University<br />

Press, Hong Kong.<br />

MORTON, B., 1995a. The biology and<br />

functional morphology of Trichomusculus<br />

semigranatus (Bivalvia:<br />

Mytiloidea) from the Azores. In:<br />

MARTINS, A.M.F. (ed.), The Marine<br />

Fauna and Flora of the Azores. Proceedings<br />

of the Second International Workshop of<br />

Malacology and Marine Biology, São<br />

Miguel, Azores, 1991. Açoreana,<br />

Supplement [4]: 279-295.<br />

MORTON, B. 1995b. Chapter 29. The evolutionary<br />

history of the Bivalvia. In: TAY-<br />

LOR, J.D (ed.). The Origin and<br />

Evolutionary Radiation of the Mollusca, pp.<br />

337-359. Oxford: Oxford University<br />

Press.<br />

MORTON, B., 2000. The biology and functional<br />

morphology of Fragum erugatum<br />

(Bivalvia: Cardii<strong>da</strong>e) from Shark Bay,<br />

Western Australia: the significance of its<br />

relationship with entrained zooxanthellae.<br />

Journal of Zoology, London, 251: 39-52.<br />

MORTON, B., & E.M. HARPER, 2009.<br />

Drilling pre<strong>da</strong>tion upon Ditrupa arietina


MORTON: TIMOCLEA OVATA IN THE AZORES 119<br />

(Polychaeta: Serpuli<strong>da</strong>e) from the mid-<br />

Atlantic <strong>Açores</strong>, Portugal. In: MARTINS,<br />

A.M. (ed.), The Marine Fauna and Flora of<br />

the Azores. (Proceedings of the Third<br />

International Workshop of Malacology and<br />

Marine Biology, São Miguel, Azores, 2006.<br />

Açoreana, Supplement 6: 157-165.<br />

MORTON, B., & KNAPP, M., 2004.<br />

Pre<strong>da</strong>tor-prey interactions between<br />

Chione elevata (Bivalvia: Chioninae) and<br />

Naticarius canrena (Gastropo<strong>da</strong>:<br />

Natici<strong>da</strong>e) in the Flori<strong>da</strong> Keys, U.S.A.<br />

Malacologia, 46: 295-308.<br />

MORTON, B., J.C. BRITTON, & A.M. de<br />

FRIAS MARTINS, 1998. Coastal Ecology<br />

of the <strong>Açores</strong>, pp. i-x + 249. Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal:<br />

Socie<strong>da</strong>de Afonso Chaves.<br />

NEGUS, M., 1975. An analysis of boreholes<br />

drilled by Natica catena (Da Costa) in the<br />

valves of Donax vittatus (Da Costa).<br />

Proceedings of the Malacological Society of<br />

London, 41: 353-356.<br />

POPPE, G.T., & Y. GOTO, 1993. European Sea<br />

Shells. Volume II. (Scaphopo<strong>da</strong>, Bivalvia,<br />

Cephalopo<strong>da</strong>), 221 pp. Wiesbaden:<br />

Hemmen.<br />

STASEK, C.R., 1964. Synopsis and discussion<br />

of the association of ctenidia and<br />

labial palps in the bivalved Mollusca.<br />

The Veliger, 6: 91-97.<br />

TEBBLE, N., 1966. British Bivalve Seashells,<br />

212 pp. London: Trustees of the British<br />

Museum (Natural History).<br />

VERMEIJ, G.J., 1980. Drilling pre<strong>da</strong>tion of<br />

bivalves in Guam: some paleoecological<br />

implications. Malacologia, 19: 329-334<br />

YONGE, C.M., 1982. Mantle margins with a<br />

revision of siphonal types in the<br />

Bivalvia. Journal of Molluscan Studies, 48:<br />

102-103.<br />

ABBREVIATIONS USED IN THE<br />

FIGURES<br />

AA Anterior adductor muscle or<br />

scar<br />

ALT Anterior lateral tooth<br />

APR Anterior pe<strong>da</strong>l retractor muscle<br />

AU Auricle (of heart)<br />

CSS/MG Conjoined style sac and mid<br />

gut<br />

CT Cardinal tooth<br />

DD Digestive diverticula<br />

ES Exhalant siphon<br />

F Foot<br />

H Heart<br />

ID Inner demibranch<br />

ILP Inner labial palp<br />

IS Inhalant siphon<br />

JS Juvenile shell<br />

K Kidney<br />

L Ligament<br />

LP Labial palp<br />

LU Lunule<br />

MD Marginal denticles<br />

MG Mid gut<br />

MM Mantle margin<br />

MP Mantle papillae<br />

OD Outer demibranch<br />

OLP Outer labial palp<br />

PA Posterior adductor muscle or<br />

scar<br />

PG Pe<strong>da</strong>l gape<br />

PL Pallial line<br />

PLT Posterior lateral tooth<br />

PM Pseudofaecal mass<br />

PPR Posterior pe<strong>da</strong>l retractor<br />

muscle<br />

PS Pallial sinus<br />

R Rectum<br />

U Umbo<br />

V Ventricle (of heart)


AÇOREANA, Suplemento 6, Setembro 2009: 121-135<br />

ANATOMY AND BIOLOGY OF MITRA CORNEA LAMARCK, 1811 (MOLLUSCA,<br />

CAENOGASTROPODA, MITRIDAE) FROM THE AZORES<br />

M. G. Harasewych<br />

Dept. of Invertebrate Zoology, MRC-163, National Museum of Natural History,<br />

Smithsonian Institution, PO Box 37012, Washington, D.C. 20013-7012. USA.<br />

e-mail: Harasewych@si.edu<br />

ABSTRACT<br />

Mitra cornea Lamarck, 1811, a member of the taxonomically complex group of small<br />

brown miters, is described anatomically, including observations on shell ultrastructure<br />

and diet. Morphological features confirm its taxonomic placement within the genus Mitra,<br />

and indicate a closer relationship with the western African Mitra nigra than with the<br />

Mediterranean Mitra cornicula. Mitra cornea shares the morphological a<strong>da</strong>ptations of the<br />

anterior alimentary system that have evolved in conjunction with a specialized sipunculan<br />

diet, and that appear to be fairly uniform within the Mitrinae. Studies on the composition<br />

and pharmacological effects of the secretions of the salivary glands and hypobranchial<br />

gland are needed to better interpret the origin and evolutionary pathways that gave rise<br />

to the extreme trophic specialization of the Mitri<strong>da</strong>e.<br />

RESUMO<br />

Descreve-se anatomicamente Mitra cornea Lamarck, 1811, um membro do grupo<br />

taxonomicamente complexo de pequenas mitras castanhas, incluindo-se observações<br />

sobre a estrutura <strong>da</strong> concha e sobre a dieta. As características morfológicas confirmam a<br />

sua localização taxonómica no género Mitra e indicam um relacionamento mais chegado<br />

com Mitra nigra, <strong>da</strong> África ocidental, do que com a mediterrânea Mitra cornicula. Mitra<br />

cornea possui as a<strong>da</strong>ptações morfológicas <strong>da</strong> porção anterior do sistema alimentar que<br />

evoluíram juntamente com uma dieta especializa<strong>da</strong> de sipúnculos, e que parece ser<br />

bastante uniforme dentro <strong>dos</strong> Mitrinae. São necessários estu<strong>dos</strong> sobre a composição e<br />

efeitos farmacológicos <strong>da</strong>s secreções <strong>da</strong>s glândulas salivares e <strong>da</strong> glândula hipobranquial<br />

para melhor se interpretar a origem e os percursos evolutivos que fizeram aparecer a<br />

especialização trófica extrema <strong>dos</strong> Mitri<strong>da</strong>e.<br />

INTRODUCTION<br />

The Mitri<strong>da</strong>e comprise a diverse and<br />

cosmopolitan family of pre<strong>da</strong>tory<br />

neogastropods that are common in the<br />

tropics, but are also present in temperate<br />

seas. Mitrids usually occur at interti<strong>da</strong>l<br />

to subti<strong>da</strong>l depths, but extend into the<br />

bathyal zone (Cernohorsky, 1976;<br />

Ponder, 1998). Taylor (1993) noted that<br />

Mitri<strong>da</strong>e are perhaps the most trophically<br />

specialized family of Neogastropo<strong>da</strong>,<br />

as all species studied to <strong>da</strong>te have been<br />

found to feed exclusively on Sipuncula<br />

(e.g., Kohn, 1970; Fukuyama &<br />

Nybakken, 1983; Loch, 1987; Taylor,<br />

1989; 1993).<br />

The mitrid fauna of the Azores is not<br />

diverse, with the family represented by<br />

two Recent species. Mitra zonata Marryat,<br />

1818, is easily distinguished by its large<br />

size and two-toned periostracum that is<br />

lighter in color along the apical portion of<br />

the shell above the suture. Cernohorsky<br />

(1976:367) regarded this Recent taxon to<br />

be a subspecies of the Pliocene Mitra<br />

(Mitra) fusiformis (Brocchi, 1814). He<br />

reported it to be limited to the western<br />

Mediterranean and northwestern Africa,<br />

but it has since been documented to occur


122 AÇOREANA<br />

2009, Sup. 6:121-135<br />

in the Azores by Burnay & Martins (1988).<br />

Martins (2004:94) noted that this species<br />

lives on offshore, sandy bottoms.<br />

A smaller species that inhabits the<br />

interti<strong>da</strong>l and subti<strong>da</strong>l rocky substrates of<br />

the Azores has a long and complicated<br />

taxonomic history. Multiple names have<br />

been applied to various phenotypes of<br />

small, smooth, <strong>da</strong>rk brown mitrids that<br />

inhabit the Mediterranean and eastern<br />

Atlantic. Rolán et al. (1997) reviewed the<br />

systematics of the “<strong>da</strong>rk brown<br />

Mitri<strong>da</strong>e”, concluded that three morphologically<br />

similar species are involved, and<br />

apportioned the multiple available names<br />

among them. According to these authors,<br />

Mitra cornicula (Linnaeus, 1758) is endemic<br />

to the Mediterranean Sea, Mitra<br />

nigra (Gmelin, 1791) ranges from the Cape<br />

Verde Islands to Angola, while the broad<br />

ranging Mitra cornea Lamarck, 1811, overlaps<br />

the range of the other two, occurring<br />

in the western Mediterranean Sea, the<br />

Macaronesian Archipelagos (Azores,<br />

Canaries, and Cape Verde Islands) and<br />

along the west coast of Africa as far south<br />

as Angola. The Mediterranean M. cornicula<br />

can be easily distinguished by its<br />

smaller shell size (to 25 mm), brown shell<br />

and brown periostracum, larger protoconch<br />

(320 µm) with fewer whorls ( 1¼),<br />

an animal that is entirely white, and a distinctive<br />

radula with lateral teeth that<br />

retain prominent dentition along their<br />

entire width (Rolan et al., 1997:fig. 16D).<br />

Mitra nigra and M. cornea are more similar<br />

in protoconch size, radular morphology,<br />

and periostracal color. Mitra nigra reaches<br />

a larger shell size (to 70 mm, compared<br />

to 40 mm for M. cornea) and has a black<br />

shell and brown to reddish-violet animal,<br />

while M. cornea has a light brown to pale<br />

grey shell and a distinctive white animal<br />

with yellow stripes along the tentacles<br />

and lateral margins of the foot (see<br />

Martins, 2004:65, fig. M). It should be<br />

noted, however, that this distinctive coloration<br />

is evident in living animals, but<br />

alcohol preserved specimens are brownish,<br />

becoming stained as the hypobranchial<br />

gland exu<strong>da</strong>te oxidizes to a<br />

purplish brown.<br />

Thus, the small brown mitrids of the<br />

Azores are Mitra cornea Lamarck, 1811.<br />

Earlier literature (e.g. Dautzenberg, 1889)<br />

may refer to this species as Mitra fusca<br />

Reeve, 1844, which, however, is a junior<br />

synonym of M. cornea and is preoccupied<br />

by Mitra fusca Swainson, 1831, an Indo-<br />

Pacific species. Cernohorsky (1969:972,<br />

fig. 28) designated as lectotype for Mitra<br />

cornea Lamarck, 1811, a specimen from<br />

the west coast of Africa, thus fixing its<br />

type locality. He regarded this taxon to be<br />

a synonym of M. cornicula, a species that<br />

is endemic to the Mediterranean and<br />

readily distinguished from M. cornea on<br />

the basis of shell and radular morphology.<br />

Mitra aquitanica Locard, 1892, is an<br />

unnecessary replacement name for Mitra<br />

fusca Reeve, 1844 non Swainson, 1831.<br />

Azorean records of Mitra cornea were,<br />

until recently, reported as Mitra nigra<br />

(e.g., Cernohorsky, 1976:371; Knudsen,<br />

1995:152; Morton et al., 1998:57, 65, 76).<br />

The present study documents the<br />

anatomy, shell morphology and biology<br />

of Mitra cornea from São Miguel, Azores,<br />

in order to provide a basis for more comprehensive<br />

studies of the systematics and<br />

relationships of the three small, smooth<br />

mitrids of the eastern Atlantic and<br />

Mediterranean Sea.<br />

MATERIALS AND METHODS<br />

Numerous specimens were collected<br />

from algae covered interti<strong>da</strong>l rocks along<br />

the SW wall of the fishing pier in Vila<br />

Franca do Campo, São Miguel, Azores<br />

[N37° 42’ 49.75”, W25 25’ 52.10”] (USNM<br />

1114338). Additional specimens were collected<br />

on shallow (< 1 m) subti<strong>da</strong>l rocky<br />

ledges along the southern rim of the


HARASEWYCH: ANATOMY AND BIOLOGY OF MITRA CORNEA 123<br />

crater of Ilhéu de Vila Franca, São Miguel,<br />

Azores [N37° 42’ 18.75”, W25° 26’ 35.33”]<br />

(USNM 1114340).<br />

Specimens were maintained and<br />

observed in seawater. The shells of a subset<br />

of specimens were cracked in a vice,<br />

and the animals irritated with forceps until<br />

they everted their proboscis. These animals<br />

were then preserved in 70% ethanol<br />

and transferred to 95% ethanol for storage.<br />

Animals were dissected, portions critical<br />

point dried and examined with a scanning<br />

electron microscope.<br />

SYSTEMATICS<br />

Class GASTROPODA<br />

Order Neogastropo<strong>da</strong> Wenz, 1943<br />

Family Mitri<strong>da</strong>e Swainson, 1831<br />

Genus Mitra Lamarck, 1798<br />

Mitra cornea Lamarck, 1811<br />

Synonymy<br />

Mitra cornea Lamarck, 1811<br />

Mitra fusca Reeve, 1844 non Mitra<br />

fusca Swainson, 1831<br />

Mitra aquitanica Locard, 1892<br />

Description<br />

Shell morphology: Shell (Figures 1, 2) small<br />

for genus (to 34 mm), thick, biconic,<br />

fusiform, with elongate aperture and 4<br />

heavy columellar folds. Protoconch<br />

increasing from ≈ 110 µm to ≈ 1.2 mm in 4<br />

¼ evenly rounded, conical whorls, badly<br />

eroded or missing on most specimens.<br />

Transition to teleoconch indistinct, marked<br />

by change in surface from glossy to matte,<br />

and onset of spiral sculpture consisting of<br />

narrow, pitted furrows separating adjacent<br />

broad, low, spiral cords. Teleoconch of up<br />

to 7+ smooth, evenly convex whorls.<br />

Suture adpressed, irregular, showing evidence<br />

of axial lamellae. Spiral sculpture of<br />

low, abutting spiral cords separated by a<br />

series of closely spaced pits in early<br />

whorls, that become sharply incised furrows<br />

in later whorls, and largely obscure<br />

except along the anterior third of the final<br />

whorl. Axial sculpture consists of low,<br />

nearly obscure lamellae that are most evident<br />

at the suture of smaller specimens<br />

(Figure 2) from which the periostracum<br />

has been removed. Pitting, periostracum,<br />

and repaired breaks (Figure 2, rb) obscure<br />

the sculpture of larger specimens.<br />

Aperture elongated, tapering posteriorly<br />

beneath suture to form anal sulcus. Outer<br />

lip smooth, thickened, nearly straight<br />

along middle portion, rounded and dorsally<br />

reflected anteriorly to form siphonal<br />

notch. Inner lip with narrow, glazed<br />

inductura, four broad columellar folds<br />

(Figure 3, cf), decreasing in prominence<br />

from posterior to anterior, and a siphonal<br />

fold (Figure 3, sf). Siphonal notch broad,<br />

siphonal fasciole usually absent, but may<br />

be weak and short in larger specimens.<br />

External shell color ranges from <strong>da</strong>rk<br />

chestnut brown to purplish gray and may<br />

be solid or banded. Aperture is white,<br />

especially the columellar folds, but brown<br />

color is visible through the white glaze<br />

near the anterior and posterior margins of<br />

the aperture. Periostracum thin, chestnut<br />

brown. Operculum absent.<br />

Shell ultrastructure: (Figure 4) Shell composed<br />

of four distinct crystal layers. The<br />

innermost layer (Figure 4, in) (≈ 90 µm)<br />

comprising the glaze is whitish, while the<br />

remaining layers are golden brown. The<br />

crystal faces of the next layer (Figure 4,<br />

per) (≈ 275 µm) are crossed-lamellar, and<br />

oriented perpendicular to the growing<br />

edge of the shell. They are also perpendicular<br />

to the crystal faces of the adjacent<br />

crossed lamellar layer (Figure 4, par) (≈ 435<br />

µm), which are parallel to the growing<br />

edge. A prismatic layer (Figure 4, ou)<br />

(≈ 120 µm) is outermost.<br />

External anatomy: (Figure 5) The soft tissues<br />

comprise 2½ whorls, of which the


124 AÇOREANA<br />

2009, Sup. 6:121-135<br />

FIGURES 1-4. Mitra cornea Lamarck, 1811. 1. USNM 1114338, interti<strong>da</strong>l rocks along the SW wall of the<br />

fishing pier in Vila Franca do Campo , São Miguel, Azores. 2. USNM 1114340, subti<strong>da</strong>l (< 1 m) rocky<br />

ledges along the southern rim of the crater of Ilhéu de Vila Franca, São Miguel, Azores. 3. Shell fractured<br />

to reveal columella. 4. shell ultrastructure. Surface parallel to growing edge of shell, ¼ whorl behind<br />

the lip. cf, columellar fold; in, innermost shell layer; ou, outer, prismatic shell layer; par, crossed-lamellar<br />

aragonite, crystal faces parallel to growing edge; per, crossed-lamellar aragonite, crystal faces perpendicular<br />

to crowing edge; rb, repaired break; sf, siphonal fold.


HARASEWYCH: ANATOMY AND BIOLOGY OF MITRA CORNEA 125<br />

FIGURES 5-10. Anatomical features of Mitra cornea Lamarck, 1811. 5. Male specimen, lateral view. 6.<br />

Roof of mantle cavity. 7. Alimentary system, semi-diagramatic. 8. Lateral view of anterior proboscis,<br />

opened from right side. 9. Female reproductive system. 10. Male reproductive system. a, anus; ag, albumen<br />

gland; ae, anterior esophagus; bc, bursa copulatrix; cg, capsule gland; cm, columellar muscle; ct,<br />

ctenidium; dg, digestive gland; dsg, duct of salivary gland; ep, epiproboscis; fo, female opening; hg,<br />

hypobranchial gland; ig, ingesting gland; k, kidney; m, mouth; me, mantle edge; ng, nephridial gland;<br />

nr, nerve ring; os, osphradium; p, penis; pb, proboscis; pc, pericardium; pp, peristomal papillae; pro,<br />

prostate gland; r, rectum; rg, rectal gland; rmc, rear of mantle cavity; rr, radular ribbon; s, siphon; sg, salivary<br />

gland; sto, stomach; sv, seminal vesicle; t, testis; td, testicular duct; vd, vas deferens; vor, ventral<br />

odontophoral retractor muscle.


126 AÇOREANA<br />

2009, Sup. 6:121-135<br />

mantle cavity spans ¾ whorl, the kidney<br />

¼ whorl, and the digestive gland and<br />

gonad 1½ whorls. The columellar muscle<br />

is long, narrow, attaching to the shell 1 ¼<br />

whorl behind the mantle edge. The foot is<br />

long, narrow, rectangular (L/W ≈ 2.0),<br />

with a deep propodial groove along the<br />

anterior edge. In living specimens, the<br />

foot is bright white with a narrow, bright<br />

yellow band along the lateral edges of the<br />

foot and outer edges of the tentacles as far<br />

as the eyes. The color is rapidly lost in<br />

alcohol preserved specimens, which<br />

become progressively <strong>da</strong>rker brown over<br />

time. The siphon is long and muscular.<br />

Mantle cavity: (Figure 6) The arrangement<br />

of mantle cavity organs is similar to that<br />

of most neogastropods. The mantle edge<br />

is thin and smooth, somewhat thickened<br />

at the right margin. The osphradium<br />

(Figure 6, os) is bipectinate, large, brownish,<br />

with 64-73 filaments above the ganglion<br />

and 52-60 below. The ctenidium<br />

(Figure 6, ct) is twice a broad and twice as<br />

long as the osphradium. A large renal<br />

organ (Figure 5, k), in which the primary<br />

and secon<strong>da</strong>ry lamellae do not interdgitate<br />

[termed Meronephridiens by Perrier<br />

(1889)] forms the right, rear wall of mantle<br />

cavity. The short, broad pericardium<br />

(Figure 5, pc), with a narrow nephridial<br />

gland (Figure 5, ng) lies to the left of the<br />

kidney. The hypobranchial gland (Figure<br />

6, hg) is broad and thick, occupying much<br />

of the dorsal roof of the mantle cavity<br />

between the osphradium and gonoduct.<br />

It produces a copious viscous secretion<br />

that is clear at first, but becomes yellowish<br />

then purple, and finally <strong>da</strong>rk brown.<br />

The color is alcohol soluble and stains the<br />

tissues of preserved specimens.<br />

Alimentary system: (Figure 7) The pleurombolic<br />

proboscis (Figures 5, 7 pb) is<br />

moderately long (extends to ≈ 1.5 x Shell<br />

length), broad, especially distally, enclosing<br />

a large, compact buccal mass and<br />

epiproboscis (Figures 5, 7, 8, 13-22, ep), an<br />

extensible muscular introvert unique to<br />

mitrids. When retracted, the proboscis is<br />

slightly folded within proboscis sheath<br />

and fills nearly the entire cephalic hemocoel.<br />

The buccal mass is broad, with a<br />

short, muscular, peristomal rim lined<br />

with evertable papillae surrounding the<br />

mouth. The odontophore and radular<br />

ribbon are large, with strong protractor<br />

and retractor muscles.<br />

The radular ribbon (Figures 11, 12) is<br />

short and broad (L/W ≈ 3.8; L = 1.9 mm, W<br />

= 500 µm), consisting of 45-57 rows of<br />

teeth, and may be slightly asymmetrical,<br />

with left lateral teeth 5-14% wider than<br />

right in some specimens. The rachidian<br />

teeth (Figure 11, rt) have five strong,<br />

curved cusps emerging from a weakly<br />

trapezoi<strong>da</strong>l basal plate that is broader at<br />

the posterior end. Each of the five cusps<br />

has a broad, thick dorsal surface continuous<br />

with the anterior end of the basal<br />

plate, and a sharply tapering, knife-like<br />

posterior-ventral edge that descends to<br />

the posterior end of the basal plate. The<br />

central cusp is longest, lateral cusps are<br />

shortest. The lateral teeth (Figure 11, lat)<br />

have a complex, semi-recurved basal<br />

plate that it broad, thin and flat along its<br />

outer edge, becoming narrower, thicker,<br />

with its anterior edge raised by up to 35º<br />

along the inner 1/3 of its length. Each<br />

tooth has 14-18 cusps. The 2 nd → 4 th from<br />

the inner edge are strongest, with the<br />

same knife-like structure as the cusps on<br />

the rachidian teeth. The remaining teeth<br />

become more conical and diminish in<br />

length and size toward the lateral edge,<br />

with the outermost 0.18 of the basal plate<br />

lacking discernible cusps.<br />

The epiproboscis is a long, anteriorly<br />

tapering, muscular rod, consisting of a<br />

central core of longitudinal muscles, surrounded<br />

by circular muscles and encased<br />

in an inner and outer sheath. From its


HARASEWYCH: ANATOMY AND BIOLOGY OF MITRA CORNEA 127<br />

FIGURES 11-12. Radula of Mitra cornea Lamarck, 1811. 11. Dorsal view of half row of radular<br />

teeth. 12. Oblique view of radular teeth. lat, lateral tooth; rt, rachidian tooth.<br />

opening just below the mouth (Figures 8,<br />

22, m), the epiproboscis runs mid-ventrally<br />

beneath the buccal mass, recurving<br />

dorsally to form a U-shaped bend behind<br />

the buccal mass to become attached to the<br />

odontophore by a short, broad retractor<br />

muscle. The large, ascinous salivary<br />

glands (Figure 7, sg) are situated above<br />

the nerve ring (Figure 7, nr) in the anterior<br />

portion of the cephalic hemocoel,<br />

generally to the right of the retracted proboscis.<br />

The ducts from these glands run<br />

anteriorly alongside the esophagus, joining<br />

the epiproboscis at the bend, running<br />

at first ventrally, then medially within the<br />

epiproboscis, merging into a single opening<br />

at its tip (Figures 13, 22, sd).<br />

The anterior esophagus is broad, and<br />

flat above the buccal mass (Figure 19, ae),<br />

with low longitudinal ridges, but<br />

becomes narrower and more circular posterior<br />

(Figure 21, ae) to the bend in the<br />

epiproboscis. The esophagus passes<br />

through the nerve ring without forming a<br />

distinctive valve of Leiblein, broadens to<br />

form a crop-like structure, and runs posteriorly<br />

to join a broad, muscular stomach.<br />

Neither a gland of Leiblein nor<br />

accessory salivary glands are present.<br />

The stomach (Figure 7, sto) has a muscular<br />

gizzard between the esophagus and<br />

the closely spaced ducts of the digestive<br />

glands. The intestinal region has low longitudinal<br />

ridges that lead to the long<br />

intestine, which runs along the kidney<br />

and pericardium before entering the rear<br />

of the mantle cavity. The rectum (Figure<br />

7, r) runs alongside the pallial gonoduct,<br />

forming the anus (Figures 7, 9, a) anterior<br />

to the gonoduct, but some distance from<br />

the mantle edge. A long, narrow rectal<br />

gland (Figure 7, rg) runs along the roof of<br />

the mantle cavity nearly its entire length,<br />

before joining the rectum near its anterior<br />

margin.<br />

Of the 20 specimens of Mitra cornea<br />

dissected, 7 were found to have essentially<br />

intact sipunculans (Golfingia sp. = G.<br />

margaritaceum fide Morton et al. 1998:76)<br />

within their gut, usually in the crop or<br />

stomach. No other recognizable prey was<br />

found within any of the specimens.<br />

Male reproductive system: The testis<br />

(Figure 10, t) is yellowish, lining the<br />

right ventral side of the digestive gland.<br />

A duct leading anteriorly expands to<br />

form the broad, highly convoluted seminal<br />

vesicle (Figure 10, sv) near the anterior<br />

margin of the digestive gland. From


128 AÇOREANA<br />

2009, Sup. 6:121-135<br />

FIGURES 13-16. Proboscis tip of Mitra cornea Lamarck, 1811, showing extension of the epiproboscis.<br />

13. Lateral and 14. frontal views of proboscis tip in early stage of extension of epiproboscis.<br />

15. lateral and 16. frontal views of proboscis tip with epiproboscis extended. Arrows in figure 15<br />

indicate planes of section for figures 17-21. ep, epiproboscis; m, mouth; pb, proboscis; pp, peristomal<br />

papillae; s, siphon; sd, salivary duct opening; t, cephalic tentacle.<br />

there, the renal vas deferens runs along<br />

the surface of the nephridium without<br />

giving rise to a gonopericardial duct,<br />

entering the pallial cavity where it<br />

expands to form the prostate gland<br />

(Figure 10, pro). The prostate gland is<br />

open to the pallial cavity along its broad<br />

posterior portion, but forms a closed<br />

duct anteriorly that descends to the floor<br />

of the mantle cavity (Figure 10, vd) and<br />

runs to the base of the penis (Figures 5,<br />

10, p), situated behind the right cephalic<br />

tentacle. The penis is broad basally,<br />

strongly recurved, with a flagellate<br />

pseudo-papilla, with the duct opening<br />

at its tip.


HARASEWYCH: ANATOMY AND BIOLOGY OF MITRA CORNEA 129<br />

FIGURES 17-22. Proboscis tip of Mitra cornea Lamarck, 1811. 17-21. Transverse sections through proboscis<br />

tip shown in figure 15. 22. Saggital section through proboscis tip in figure 13. ae, anterior esophagus;<br />

bv, blood vessel; dop, dorsal odontophoral protractor muscle; ep, epiproboscis; eps, epiproboscis<br />

sheath; es, epiproboscis sheath; lm, longitudinal muscle; m, mouth; odc, odontophoral cartilage; pp,<br />

peristomal papillae; pr, peristomal rim; rs, radular sac; rt, radular teeth; sd, salivary duct; vor, ventral<br />

odontophoral retractor muscle.


130 AÇOREANA<br />

2009, Sup. 6:121-135<br />

Female reproductive system: The ovary lies<br />

along the right side of the digestive gland<br />

and dominates the uppermost visceral<br />

whorls. The oviduct runs anteriorly from<br />

the ovary, along the kidney and pericardium<br />

without giving rise to a gonopericardial<br />

duct, before entering the rear of the<br />

mantle cavity. The pallial gonoduct<br />

(Figure 9) consists of an albumen gland,<br />

ingesting gland, capsule gland and bursa<br />

copulatrix. The albumen gland (Figure<br />

9, ag) is tall, narrow, and glandular, with<br />

ventral channel. The ingesting gland<br />

(Figure 9, ig) is situated between the<br />

albumen gland and long capsule gland<br />

(Figure 9, cg). The large, muscular bursa<br />

copulatrix (Figure 9, bc) is situated above<br />

the female opening (Figure 9, fo) and<br />

above and anterior to the capsule gland.<br />

A prominent ventral pe<strong>da</strong>l gland is situated<br />

along the ventral mid-line of the<br />

foot, just anterior to the bursa copulatrix.<br />

Reproductive Biology: Knudsen (1995:153,<br />

fig. 13) illustrated the egg capsule and<br />

pre-hatching larva of this species [as<br />

Mitra nigra], noting that development<br />

was pelagic in this species. It was not<br />

known whether the larva develops into a<br />

sinusigera larva during the pelagic<br />

phase.<br />

DISCUSSION<br />

As the number of mitrids species that<br />

have been studied anatomically increases,<br />

all have been found to have a highly<br />

specialized anterior alimentary system<br />

with a broad, extensible, muscular proboscis<br />

and a uniquely evolved muscular<br />

epiproboscis that is extended through<br />

the mouth (Figures 13, 14, pp), and<br />

through which pass the ducts of the salivary<br />

glands, joining into a single duct<br />

before emptying at its tip (Figures 13, 14,<br />

sd). In mitrids, the accessory salivary<br />

glands and gland of Leiblein are absent<br />

and the valve of Leiblein is greatly<br />

reduced or absent. These anatomical<br />

structures are a<strong>da</strong>ptations to a specialized<br />

diet consisting nearly exclusively of<br />

sipunculans (see Taylor, 1993 and references<br />

therein). The diet of more than 30<br />

species of mitrids has been studied, yet<br />

there is but a single report of one individual<br />

of one species, feeding on a<br />

nemertean (Fukuyuma and Nybakken,<br />

1983).<br />

The earliest fossil record for family<br />

Mitri<strong>da</strong>e <strong>da</strong>tes to the basal Late<br />

Cretaceous [Cenomanian / Turonian]<br />

(Tracey et al. 1993:152), with most modern<br />

genera diverging during the Miocene<br />

(Cernohorsky, 1970:fig. 180). Yet all surviving<br />

lineages have a well developed<br />

epiproboscis, and lack accessory salivary<br />

glands and a gland of Leiblein, suggesting<br />

an early common origin of this specialized<br />

body plan, a<strong>da</strong>pted for preying<br />

on sipunculans. Relatively few neogastropods<br />

prey occasionally on sipunculans<br />

[eg., Vasum, Drupa, Bursa] and, other<br />

than Mitri<strong>da</strong>e, only a few species of<br />

Drupina feed exclusively on them (Taylor<br />

1989:271).<br />

Sipuncula is a small phylum with<br />

only about 150 species worldwide<br />

(Cutler, 1994:3). Sipunculans live in a<br />

variety of habitats, burrowing in rock,<br />

sand or rubble bottoms at all depths.<br />

The diversity of Mitri<strong>da</strong>e is somewhat<br />

greater, at 377 living species<br />

(Cernohorsky, 1970:Table 1).<br />

In the tropics, mitrid diversity is high<br />

and species partition their habitat by<br />

substrate type (e.g., Taylor, 1989:fig. 7),<br />

although multiple species can co-occur<br />

in the same general habitat (e.g. thick<br />

sand). In the Azores, the two mitrid<br />

species appear to partition their habitat,<br />

with M. cornea inhabiting interti<strong>da</strong>l to<br />

subti<strong>da</strong>l reef platforms and boulder rubble,<br />

while M. zonata occurs in offshore<br />

sandy substrates. Sipunculan diversity


HARASEWYCH: ANATOMY AND BIOLOGY OF MITRA CORNEA 131<br />

in the Azores somewhat exceeds mitrid<br />

diversity.<br />

Interpretation of the function of the<br />

epiproboscis has varied over the years.<br />

Several authors have proposed that the<br />

epiproboscis serves as a venomous organ<br />

(Vayssiere, 1901; Cernohorsky, 1970), is<br />

used for both offense and defense<br />

(Vayssiere, 1901), or applies the products<br />

of the salivary glands to the sipunculan<br />

prey (Risbec, 1928; Ponder, 1972, 1998).<br />

There has also been some question as to<br />

whether the salivary gland secretion<br />

weakens the prey integument, serves as<br />

a relaxant to prevent prey contraction, or<br />

acts as an adhesive substance to facilitate<br />

the removal of sipunculans from their<br />

burrows (West, 1990:774).<br />

Several authors have reported on the<br />

feeding behavior of mitrids with varying<br />

levels of detail. Loch (1987) reported that<br />

the epiproboscis is extended during<br />

feeding and inserted into its prey, and is<br />

thought to deliver salivary secretions.<br />

Taylor (1989:262) suggested that the peristomal<br />

papillae [“circum-oral, brush like<br />

structure”] can be everted during feeding<br />

and may function to grip prey, noting<br />

that, while mitrids have a large radula<br />

with long, multicuspate lateral teeth,<br />

these teeth may be used to assist with<br />

swallowing the prey, as the sipunculans<br />

and not shredded.<br />

The most detailed observations of<br />

feeding behavior were those of West<br />

(1990), who reported that Mitra i<strong>da</strong>e<br />

located its prey with its siphon, first<br />

touching it with the siphon edge and<br />

cephalic tentacles before extending its<br />

proboscis. The peristomal rim then<br />

grasps the prey in a series of rapid eversions<br />

and contractions and the snail<br />

retracts its proboscis in attempts to pull<br />

the sipunculan from the substratum. If<br />

the prey cannot be extracted and swallowed<br />

whole, secretions from the salivary<br />

gland are applied and the radula<br />

used to rasp a hole in the integument.<br />

The epiproboscis is then inserted into the<br />

hole, entangling the sipunculan viscera<br />

and pulling them into the mitrid buccal<br />

mass. This alternating extension and<br />

retraction of the epiproboscis is repeated<br />

multiple times. The proboscis periodically<br />

further envelopes the sipunculan<br />

and eventually frees the sipunculan from<br />

the substratum, by grasping the integument<br />

with the radula and retracting the<br />

odontophore. This behavior is characteristic<br />

of members of the subfamily<br />

Mitrinae, which includes Mitra cornea.<br />

Later, West (1991:710) reported on<br />

the feeding in Mitra catalinae, a member<br />

of the subfamily Cylindromitrinae. As in<br />

Mitrinae, the proboscis was extended,<br />

the peristome flared to grasp the prey<br />

and the radula was used to rasp a small<br />

hole in the integument through which<br />

the epiproboscis was inserted. However,<br />

in this species, the epiproboscis was<br />

“rhythmically passed in and out of the<br />

hole” pumping sipunculan coelomic fluids<br />

and eggs into the buccal cavity and<br />

down the esophagus of the mitrid, without<br />

ingesting either viscera or the entire<br />

sipunculan. West (1991:710) noted that<br />

the sipunculans “survived the feeding<br />

session,” suggesting parasitism rather<br />

than pre<strong>da</strong>tion in this mitrid species.<br />

Ponder (1972:335) raised the question<br />

of how the epiproboscis might have<br />

evolved. He suggested that the ducts of<br />

the salivary glands migrated ventrally,<br />

and that their openings moved from lateral<br />

positions on the buccal mass to a<br />

ventral anterior position at the edge of<br />

the mouth. The next hypothesized stage<br />

was their placement on a papilla that<br />

eventually became invaginated and elongated.<br />

Ponder noted that the salivary<br />

glands of mitrids have a second type of<br />

secretory cell not present in related families,<br />

and that these cells may produce a<br />

toxin. It is interesting to note, that


132 AÇOREANA<br />

2009, Sup. 6:121-135<br />

although the salivary glands are ascinous<br />

and typical of salivary glands of other<br />

neogastropods, the position of the ducts,<br />

including their becoming fused into a single<br />

duct before emerging medially at the<br />

ventral anterior edge of the buccal mass is<br />

typical of the ducts of accessory salivary<br />

glands, which are absent in Mitri<strong>da</strong>e.<br />

West (1991) noted that the epiproboscis<br />

shows structural and functional affinities<br />

with other molluscan subradular organs,<br />

and hypothesized that it developed from<br />

the musculature of the buccal mass, while<br />

the sheaths were derived from the walls<br />

of the buccal cavity. According to the<br />

Ponder model, the primary function of<br />

the epiproboscis is the targeted application<br />

of salivary gland secretions. The<br />

West model is based on a primarily<br />

mechanical function of the epiproboscis.<br />

West (1991:716) commented that the ventral<br />

migration of the salivary gland ducts<br />

“to connect with the formative epiproboscis”<br />

might have changed, or enhanced<br />

its function, but that it is difficult to assess<br />

the evolutionary importance of this event<br />

without knowledge of the function of salivary<br />

gland secretions”.<br />

While the morphological a<strong>da</strong>ptations<br />

of the anterior alimentary system that<br />

have evolved in conjunction with a specialized<br />

sipunculan diet are now well<br />

documented within the Mitri<strong>da</strong>e, nothing<br />

is known of the chemical a<strong>da</strong>ptations,<br />

including the composition and physiological<br />

effects of the secretions of the salivary<br />

glands, which are delivered to the prey<br />

through the epiproboscis. The salivary<br />

glands of related gastropods have been<br />

shown to produce neurotoxins with<br />

acetylcholine-like effects that are used to<br />

overcome prey with a paralytic secretion<br />

(West et al., 1998). Still others contain proteinaceous<br />

toxins that are hemolytic and<br />

lethal (Shiomi et al., 2002). Given that the<br />

Mitri<strong>da</strong>e represent an a<strong>da</strong>ptive radiation<br />

following an early [Upper Cretaceous]<br />

a<strong>da</strong>ptation to a highly specialized diet,<br />

the structure, specificity and toxicology of<br />

salivary gland secretions represent a fertile<br />

area for the study of chemical evolution<br />

within Mollusca, and interactions of<br />

pre<strong>da</strong>tor and prey.<br />

Similarly, the hypobranchial gland of<br />

mitrids is voluminous, and noted for producing<br />

substantial quantities of a<br />

secretion that oxidizes to form a purple<br />

pigment. Numerous authors since<br />

Dubois (1909) have documented that, in<br />

addition to chromogens, hypobranchial<br />

gland secretions from various<br />

neogastropods contain numerous toxic<br />

and paralytic compounds, including<br />

choline esters, serotonin and various<br />

biogenic amines (eg., Shiomi et al., 1998).<br />

The hypobranchial gland of the neogastropod<br />

Thais haemastoma (which co-occurs<br />

with Mitra cornea) contains multiple<br />

active components, including one that<br />

produces a stimulatory effect on blood<br />

pressure, and another that acts as a neuromuscular<br />

blocking agent of the depolarizing<br />

type (Hyang & Mir, 1971). Some<br />

muricids have been observed to use<br />

hypobranchial gland secretions to<br />

immobilize prey (Naegel & Alvarez,<br />

2005:426). Other taxa, including trochids<br />

(Kelley et al., 2003) and pleurotomariids<br />

(Harasewych, 2002) have been shown to<br />

use hypobranchial gland secretions to<br />

repel pre<strong>da</strong>tors.<br />

Despite the exceptionally thick shells,<br />

periostracum and overgrowth of calcified<br />

encrusting organisms, cleaned shells of<br />

many Mitra cornea show evidence of multiple<br />

repaired breaks (Figure 2, rb). This<br />

high incidence of unsuccessful pre<strong>da</strong>tion<br />

(measured as frequency of shell repair) is<br />

an indication of high exposure to crushing<br />

pre<strong>da</strong>tion as well as of the ability to<br />

survive such attacks by pre<strong>da</strong>tors.<br />

Among shallow water gastropods,<br />

Vermeij (1989) reported that the incidence<br />

of unsuccessful pre<strong>da</strong>tion was greatest in


HARASEWYCH: ANATOMY AND BIOLOGY OF MITRA CORNEA 133<br />

the Indo-West Pacific and lowest in the<br />

Atlantic. Frequencies of unsuccessful<br />

pre<strong>da</strong>tion of 0.5 breaks per individual<br />

were uncommon, and never averaged<br />

more than 1 break per individual for the<br />

most prey-resistent taxa. Repaired breaks<br />

on just the last whorl of the shell of Mitra<br />

cornea range from 0-5 [mean = 1.95, n =<br />

20], suggesting both an exceptionally<br />

high rate of attack, and ability to survive<br />

attack. While this points to the possible<br />

use of hypobranchial gland secretions as<br />

a chemical defense against pre<strong>da</strong>tors, it<br />

does not preclude the presence of other<br />

compounds or other uses for the secretory<br />

products of the hypobranchial gland.<br />

ACKNOWLEDGEMENTS<br />

I am grateful to Prof. António Frias<br />

Martins and to his staff and students for<br />

organizing the Third International<br />

Workshop of Malacology in Vila Franca<br />

do Campo, São Miguel, Azores. This<br />

Workshop was a joint organization of<br />

Socie<strong>da</strong>de Afonso Chaves and the<br />

Department of Biology of the University<br />

of the Azores. Support from FLAD<br />

(Portuguese-American Foun<strong>da</strong>tion for<br />

Development) is gratefully acknowledged.<br />

Thanks to Marilyn Schotte for<br />

assistance with histology and to Yolan<strong>da</strong><br />

Villacampa for Scanning Electron<br />

Micrographs.<br />

REFERENCES<br />

BURNAY, L.P., & A.F. MARTINS, 1988.<br />

Acerca <strong>da</strong> presença de Mitra zonata<br />

Marryat, 1818 (Gastropo<strong>da</strong>: Mitri<strong>da</strong>e)<br />

na costa Algarve (Portugal) e nos<br />

<strong>Açores</strong>. Publicações Ocasionais <strong>da</strong><br />

Socie<strong>da</strong>de Portuguesa de Malacologia, 10:<br />

23-26.<br />

CERNOHORSKY, W.O., 1969. The types<br />

of the Lamarck collection in the<br />

Museum d’Histoire Naturelle in<br />

Geneva. Recent Mollusca of the genera<br />

Mitra, Columbella (in part) and<br />

Cancellaria (in part). Revue Suisse de<br />

Zoologie, 76(49): 953-994, 9 pls.<br />

CERNOHORSKY, W.O., 1970.<br />

Systematics of the Families Mitri<strong>da</strong>e<br />

and Volutomitri<strong>da</strong>e (Mollusca:<br />

Gastropo<strong>da</strong>). Bulletin of the Auckland<br />

Institute and Museum, Auckland,<br />

iv+190 pp.<br />

CERNOHORSKY, W.O., 1976. The<br />

Mitri<strong>da</strong>e of the World. Part I. The subfamily<br />

Mitrinae. Indo-Pacific Mollusca,<br />

3(17): 273-528.<br />

CUTLER, E.B., 1994. The Sipuncula, Their<br />

Systematics, Biology and Evolution, 453<br />

pp. Cornell University Press, Ithaca,<br />

NY.<br />

DAUTZENBERG, P., 1889. Contribution à<br />

la fauna malacologique des îles <strong>Açores</strong>.<br />

Résultats des Campagnes Scientifique du<br />

Prince de Monaco, 1:1-112.<br />

DUBOIS, R., 1909. Recherches sur la<br />

pourpre et sur quelques autres pigments<br />

animaux. Archives de Zoologie<br />

Expérimentale et Générale, 5(2):471–590.<br />

FUKUYAMA, A., & J. NYBAKKEN, 1983.<br />

Specialized feeding in mitrid<br />

gastropods: evidence from a<br />

temperate species Mitra i<strong>da</strong>e Melvill.<br />

The Veliger, 26: 96-100.<br />

HARASEWYCH, M.G., 2002. Pleurotomarioidean<br />

Gastropods. Advances<br />

in Marine Biology, 42: 235-292, color<br />

plates 5, 6.<br />

HUANG, C.L., & G.N. MIR, 1971.<br />

Pharmacological properties of hypobranchial<br />

gland of Thais haemastoma<br />

(Clench). Journal of Pharmaceutical<br />

Sciences, 60(12): 1842-1846.<br />

KELLEY, W.P., A.M. WOLTERS, J.T.<br />

SACK, R.A. JOCKUSCH, J.C.<br />

JURCHEN, E.R. WILLIAMS, J.V.<br />

SWEEDLER & W.F. GILLY, 2003.<br />

Characterization of a novel gastropod<br />

toxin (6-bromo-2-mercaptotryptamine)<br />

that inhibits shaker K channel


134 AÇOREANA<br />

2009, Sup. 6:121-135<br />

activity. The Journal of Biological<br />

Chemistry, 278(37): 34934-34942.<br />

KNUDSEN, J., 1995. Observations on<br />

reproductive strategy and zoogeography<br />

of some marine<br />

prosobranch gastropods (Mollusca)<br />

from the Azores. In: MARTINS,<br />

A.M.F. (ed.), The Marine Fauna and<br />

Flora of the Azores. Proceedings of the<br />

Second International Workshop of<br />

Malacology and Marine Biology, São<br />

Miguel, Azores, 1991. Açoreana,<br />

Supplement [4]: 135-158.<br />

KOHN, A.J., 1970. Food habits of the gastropod<br />

Mitra litterata Lamarck: relation<br />

to trophic structure of interti<strong>da</strong>l<br />

marine bench community in Hawaii.<br />

Pacific Science, 24: 483-486.<br />

LOCH, I., 1987. Peanuts for breakfast.<br />

Australian Shell News, 58: 6-8.<br />

MARTINS, A.M.F., 2004. O Anel <strong>da</strong><br />

Princesa, 99 pp. Intermezzo-Audiovisuais,<br />

Lisbon.<br />

MORTON, B., J.C. BRITTON & A.M.F.<br />

MARTINS, 1998. Costal Ecology of the<br />

<strong>Açores</strong>, 249 pp. Socie<strong>da</strong>de Afonso<br />

Chaves, Ponta Delga<strong>da</strong>.<br />

NAEGEL, L.C.A., & J.I.M. ALVAREZ,<br />

2005. Biological and chemical properties<br />

of the secretion from the hypobranchial<br />

gland of the purple snail<br />

Plicopurpura pansa (Gould, 1853).<br />

Journal of Shellfish Research, 24(2):<br />

421–428.<br />

PERRIER, R., 1889. Recherches sur l’anatomie<br />

et l’histologie du rein des gastéropodes<br />

Prosobranches. Annales des<br />

Sciences Naturelles (Zool.), 7,8: 61-315.<br />

PONDER, W.F., 1972. The morphology of<br />

some mitriform gastropods with special<br />

reference to their alimentary and<br />

reproductive systems (Neogastropo<strong>da</strong>).<br />

Malacologia, 11: 295-342.<br />

PONDER, W.F., 1998. Family Mitri<strong>da</strong>e.<br />

In: BEESLEY, P.L., G.J.B. ROSS & A.<br />

WELLS (eds.), Mollusca: The Southern<br />

Synthesis. Fauna of Australia, Vol. 5.,<br />

pp. 841-842. CSIRO Publishing:<br />

Melbourne.<br />

RISBEC, J., 1928. Contribution à l’étude<br />

anatomique de quelques espèces de<br />

Mitres de la presqu’île de Nouméa.<br />

Bulletin du Muséum national d’Histoire<br />

naturelle, Paris, 34: 105-112, 173-180,<br />

225-227.<br />

ROLÁN, E., L. DANTART & F. FERNAN-<br />

DES, 1997. On some <strong>da</strong>rk species<br />

of Mitra from the Mediterranean and<br />

the Atlantic. La Conchiglia, 29(285):<br />

11-23.<br />

SHIOMI K., M. ISHII, K. SHIMAKURA,<br />

Y. NAGASHIMA & M. CHINO, 1998.<br />

Tigloylcholine: a new choline ester<br />

toxin from the hypobranchial gland of<br />

two species of muricid gastropods<br />

(Thais Clavigera and Thais Bronni).<br />

Toxicon, 36(5): 795-798.<br />

SHIOMI, K., Y. KAWASHIMA, M.<br />

MIZUKAMI & Y. NAGASHIMA,<br />

2002. Properties of proteinaceous toxins<br />

in the salivary gland of the marine<br />

gastropod (Monoplex echo). Toxicon,<br />

40(5): 563-571.<br />

TAYLOR, J.D., 1989. The diet of coral-reef<br />

Mitri<strong>da</strong>e (Gastropo<strong>da</strong>) from Guam;<br />

with a review of other species of the<br />

family. Journal of Natural History, 23:<br />

261-278.<br />

TAYLOR, J.D., 1993. Dietary and<br />

anatomical specialization of mitrid<br />

gastropods (Mitri<strong>da</strong>e) at Rottnest<br />

Island, Western Australia. In: WELLS,<br />

F.E., D.I. WALKER, H. KIRKMAN &<br />

R. LETHBRIDGE (eds.), Proceedings of<br />

the Fifth International Marine Biological<br />

Workshop: The Marine Flora and Fauna<br />

of Rottnest Island, Western Australia pp.<br />

583-599. Western Australian<br />

Museum, Perth.<br />

TRACEY, S., J.A. TODD & D.H. ERWIN,<br />

1993. Mollusca: Gastropo<strong>da</strong>. In:<br />

BENTON, M.J. (ed.), The Fossil Record<br />

2, pp. 137-167. Chapman and Hall,<br />

London.


HARASEWYCH: ANATOMY AND BIOLOGY OF MITRA CORNEA 135<br />

VAYSSIÈRE, A., 1901. Étude zoologique<br />

et anatomique de la Mitra zonata,<br />

Marryatt. Journal de Conchyliologie, 49:<br />

77-95.<br />

WEST, D., E.B. ANDREWS, A.R.<br />

McVEAN, M.C. THORNDYKE & J.D.<br />

TAYLOR, 1998. Presence of a toxin in<br />

the salivary glands of the marine snail<br />

Cymatium intermedius that targets<br />

nicotinic acetylcholine receptors.<br />

Toxicon, 36(1): 25-29.<br />

WEST, T.L., 1990. Feeding behaviour and<br />

functional morphology of the epiproboscis<br />

of Mitra i<strong>da</strong>e (Mollusca:<br />

Gastropo<strong>da</strong>: Mitri<strong>da</strong>e). Bulletin of<br />

Marine Science, 46: 761-779.<br />

WEST, T.L., 1991. Functional morphology<br />

of the proboscis of Mitra catalinae Dall,<br />

1920 (Mollusca: Gastropo<strong>da</strong>:<br />

Mitri<strong>da</strong>e) and the evolution of the<br />

mitrid proboscis. Bulletin of Marine<br />

Science, 48: 702-718.


AÇOREANA, Suplemento 6, Setembro 2009: 137-143<br />

COMPARATIVE STUDY OF CHEMICAL DEFENCES FROM TWO ALLOPATRIC<br />

NORTH ATLANTIC SUBSPECIES OF HYPSELODORIS PICTA (MOLLUSCA:<br />

OPISTHOBRANCHIA)<br />

Helena Gaspar 1 , Ana Isabel Rodrigues 1 & Gonçalo Calado 2<br />

1 Instituto Nacional de Engenharia, Tecnologia e Inovação, I.P. (INETI), Est. Paço do Lumiar, Ef. F, 1649-038<br />

Lisboa, Portugal. e-mail helena.gaspar@ineti.pt<br />

2 Facul<strong>da</strong>de de Engenharias e Ciências Naturais, Universi<strong>da</strong>de Lusófona de Humani<strong>da</strong>des e Tecnologias.<br />

Av. do Campo Grande, 376 1749 - 024 Lisboa PORTUGAL<br />

ABSTRACT<br />

Different mixtures of furanosesquiterpenes characterized the defensive metabolites of<br />

the two populations of the nudibranchs Hypselodoris picta azorica and Hypselodoris picta<br />

webbi from the NW Atlantic, studied here for the first time. The known furonosesquiterpenes<br />

tavacfuran and longifolin were found in both subspecies, whereas micorcionin-1<br />

was only present in Hypselodoris picta azorica.<br />

RESUMO<br />

O estudo de duas populações de nudibrânquios Hypselodoris picta azorica e Hypselodoris<br />

picta webbi do Atlântico NW, descrito pela primeira vez neste artigo, mostrou que os seus<br />

metabolitos de defesa são misturas diferentes de furanosesquiterpenos. Em ambas as<br />

populações foram encontra<strong>dos</strong> os metabolitos tavacfurano e longifolina, tendo a<br />

microcionina-1 sido identifica<strong>da</strong> apenas na subespécie Hypselodoris picta azorica.<br />

INTRODUCTION<br />

Nudibranchs are shell-less opisthobranch<br />

molluscs that, in the course<br />

of evolution have developed several<br />

defensive strategies which include the<br />

use of secon<strong>da</strong>ry metabolites to avoid<br />

pre<strong>da</strong>tion (Wägele, 2006). These compounds<br />

can be accumulated from<br />

dietary sources, biosynthesised de novo<br />

or bio-transformed from dietary<br />

metabolites in order to provide the<br />

nudibranchs with more effective defensive<br />

allomones or non toxic compounds<br />

(Cimino, 1993, 1999). Most species of<br />

the genus Hypselodoris (Family<br />

Chromodori<strong>da</strong>e) store their allomones<br />

in high levels of concentrations, on special<br />

mantle glands denominated MDFs<br />

(Mantle Dermal Formations). These<br />

glands are strategically located near the<br />

vital organs, gills and rhinophores, or<br />

even ventrally along the mantle margin.<br />

They are regarded as the development<br />

of a chemical defensive mechanism in<br />

the course of opisthobranchs’ evolution<br />

(Wägele, 2006; García-Gómez, 1990;<br />

Fontana, 1993).<br />

Previous chemo-ecological studies of<br />

Hypselodoris picta (previously known as<br />

H. webbi or Glossodoris valenciennesi)<br />

showed that this species, like other<br />

Hypselodoris, accumulates in the mantle<br />

(especially in MDFs) furanosesquiterpenes,<br />

longifolin (1) being usually the<br />

main metabolite (Figure 1; Table 1). This<br />

compound, initially isolated from the<br />

terrestrial Japanese plant Actino<strong>da</strong>phne<br />

longifolia (Hayashi, 1972 fide Guella,<br />

1985), was the major metabolite found in<br />

a Mediterranean population of the<br />

marine sponge Dysidea fragilis (Avila,<br />

1991) and has antifee<strong>da</strong>nt and ichthyodeterrent<br />

activities (Fontana, 1993).<br />

Ecological experiments performed with<br />

Mediterranean populations of H. picta<br />

showed the transference of sponge<br />

metabolites into the MDFs and supported<br />

the dietary origin of Hypselodoris’<br />

allomones (Fontana, 1994b).


138 AÇOREANA<br />

2009, Sup. 6: 137-143<br />

FIGURE 1. Chemical structures of furanosesquiterpenes present in different populations of<br />

Hypselodoris picta.<br />

TABLE 1 – Furanosesquiterpenes present in different Mediterranean populations of Hypselodoris picta.


GASPAR ET AL: CHEMICAL DEFENCES OF HYPSELODORIS PICTA 139<br />

Hypselodoris picta (Schultz, 1836)<br />

seems to be widespread in the Atlantic<br />

Ocean. So far, five geographic subspecies<br />

are assigned, H. picta azorica being<br />

restricted to the Azorean Archipelago,<br />

whereas H. picta webbi spreads from the<br />

Caribbean to the Canary Islands and the<br />

Iberian Peninsula (Ortea et al., 1996). The<br />

colour pattern varies consistently (Figure<br />

2), but their internal anatomy is still very<br />

similar (Alejandrino & Valdés, 2006). No<br />

genetic <strong>da</strong>ta are available to <strong>da</strong>te. In this<br />

paper, we report a comparative study of<br />

chemical defences of these two allopatric<br />

subspecies of Hypselodoris picta from the<br />

North Atlantic, H. picta webbi from the<br />

Algarve (SW coast of Europe) and H. picta<br />

azorica from Azores, with the aim to clarify:<br />

(1) what are the defensive metabolites<br />

of H. picta azorica; (2) and if the two subspecies<br />

have the same chemical profile.<br />

MATERIALS AND METHODS<br />

Biological material. The molluscs were collected<br />

by SCUBA in two stations:<br />

Hypselodoris picta azorica (6 specimens July<br />

2006, 2 specimens September 2008) at<br />

Ilhéu de Vila Franca do Campo, S. Miguel<br />

Island, Azores, Portugal, and Hypselodoris<br />

picta webbi (2 specimens July 2006, 2 specimens<br />

August 2008) at Portimão, Algarve,<br />

Portugal. The taxonomic identification of<br />

H. picta was made by one of us (G.C.).<br />

Voucher specimens (preserved in<br />

absolute ethanol) are deposited at<br />

“Instituto Português de Malacologia”,<br />

Portugal, reference numbers IPM.MO.005<br />

and IPM.MO.006, respectively.<br />

Chemical analysis. Silica-gel chromatography<br />

was performed using precoated<br />

Merck F 254<br />

plates and Silica gel Merck<br />

Kieselgel 60. 1 H NMR spectra were<br />

acquired in CDCl 3<br />

or C 6<br />

D 6<br />

on a Bruker<br />

AMX-300 operating at 300 MHz.<br />

Two frozen nudibranchs of each subspecies,<br />

collected in 2006, were dissected<br />

and differentiated in mantle dermal formations<br />

(MDFs), the remaining of mantle<br />

and digestive glands. All the dissected<br />

sections were separately extracted three<br />

times with acetone by sonication. The<br />

concentrated extracts were partitioned<br />

between diethyl ether and water. The<br />

resulting diethyl ether extracts were compared<br />

by TLC (Thin Layer Chromatography).<br />

The Erlich positive metabolite,<br />

with R f<br />

= 0.2 in n-hexane, present in<br />

both subspecies, was isolated from the<br />

mantle extract (4 mg) of one specimen of<br />

H. picta webbi (fresh weight 8.3 g). The<br />

mantle extract was chromatographed<br />

on a silica-gel column packed with<br />

n-hexane and eluted with a gradient of<br />

n-hexane/diethyl ether. Fractions eluted<br />

with n-hexane were concentrated to give<br />

2 mg of compound 1 (Figure 1).<br />

FIGURE 2. Live specimens of the Hypselodoris picta studied herein: A - H. p. azorica (photo Peter<br />

Wirtz); B - H p. webbi (photo Rita Coelho).


140 AÇOREANA<br />

2009, Sup. 6: 137-143<br />

We were unable to isolate the main<br />

furanosesquiterpene presented in H. picta<br />

azorica collected in 2006 because, due to<br />

its high instability, it had suffered degra<strong>da</strong>tion<br />

during the isolation procedure.<br />

Each frozen mollusc (4 specimens)<br />

collected in 2008 was separately<br />

immersed in acetone and extracted by<br />

sonication (3 times, 2 min). The concentrated<br />

extracts were partitioned between<br />

diethyl ether and water. The resulting<br />

mantle extracts were compared by TLC<br />

and 1 H NMR analysis.<br />

RESULTS<br />

We have chemically investigated for<br />

the first time the nudibranch Hypselodoris<br />

picta azorica and a population of the nudibranch<br />

Hypselodoris picta webbi from the<br />

NW Atlantic. The TLC analysis of diethyl<br />

ether extracts revealed the presence of at<br />

least two Erlich positive compounds in<br />

both subspecies. H. picta webbi showed<br />

two main Erlich positive metabolites (R f<br />

=<br />

0.2 and 0.3 in n-hexane) and H. picta azorica<br />

additionally showed the presence of<br />

one or two less polar compounds (R f<br />

= 0.7<br />

and 0.8 in n-hexane). Each analysed specimen<br />

showed the same metabolite pattern<br />

in the extracts obtained from the different<br />

anatomic parts. The less polar metabolite<br />

was identified as microcionin-1 (7) by<br />

TLC comparison with an authentic sample<br />

(Figure 1). We were unable to isolate<br />

the furanosesquiterpene with R f<br />

= 0.7, the<br />

main metabolite of H. picta azorica collected<br />

in 2006, due to its instability. The component<br />

with R f<br />

= 0.2, isolated from one<br />

specimen of H. picta webbi collected in<br />

2008, was identified as longifolin (1). The<br />

1<br />

H NMR signals (either in CDCl 3<br />

or C 6<br />

D 6<br />

)<br />

of this metabolite were identical to those<br />

reported in the literature (Guella, 1985).<br />

Longifolin was also identified by NMR as<br />

the main furanosesquiterpene in the mantle<br />

extract obtained from H. picta azorica<br />

collected in 2008 (Figure 3a). The analysis<br />

of 1 H NMR spectrum (Figure 3b) of the<br />

mantle extract from H. picta webbi, collected<br />

in 2008, allowed the identification of<br />

tavacfuran (11), the compound with R f<br />

=<br />

0.3, as the main furanosesquiterpene<br />

(Figure 1). The 1 H NMR signals attributed<br />

to both compounds in the NMR<br />

spectra of mantle extracts (Figure 3) are<br />

similar to those previous reported <strong>da</strong>ta<br />

(Guella, 1985). The results concerning the<br />

furanosesquiterpenes are summarized in<br />

Table 2.<br />

TABLE 2 – Furanosesquiterpenes found in Hypselodoris picta in this study.


GASPAR ET AL: CHEMICAL DEFENCES OF HYPSELODORIS PICTA 141<br />

FIGURE 3. 1 H NMR (300MHz, CDCl 3<br />

) from diethyl ether extracts of Hypselodoris mantle: a)<br />

Hypselodoris picta azorica; b) Hypselodoris picta webbi.<br />

DISCUSSION<br />

In the mantle of Hypselodoris picta azorica<br />

and Hypselodoris picta webbi the<br />

furosesquiterpenes longifolin (1) and<br />

tavacfuran (11) were identified by 1 H<br />

NMR (Figure 3). TLC comparison of the<br />

mantle extracts showed that these typical<br />

sponge metabolites were found in all<br />

analysed specimens but in different relative<br />

proportions (Table 2). Longifolin (1)<br />

has usually been found as the main<br />

metabolite of H. picta from Mediterranean<br />

(Table 1). Tavacfuran (11), a compound<br />

first reported on a mixture of<br />

Mediterranean sponges (Guella, 1985)


142 AÇOREANA<br />

2009, Sup. 6: 137-143<br />

and already isolated from other<br />

Hypselodoris species (Fontana, 1993), was<br />

now found for the first time in H. picta.<br />

The TLC analysis allowed the identification<br />

of microcionin-1 (7) in all the specimens<br />

of H. picta azorica. It is worth noting<br />

that a Mediterranean population of<br />

H. picta is able to transfer microcionin-1<br />

(7) and other sponge metabolites into<br />

MDFs (Fontana, 1994b).<br />

The high concentration of furanosesquiterpenes,<br />

such as longifolin (1)<br />

and tavacpallescencin (11) in the mantle<br />

(including MDFs), suggests that, as in<br />

other Hypselodoris, they play an important<br />

role as defensive metabolites. This<br />

study showed that the chemical profiles<br />

of H. picta azorica and H. picta webbi are<br />

different, as expected, since previous<br />

studies support the idea that most of<br />

these furanosesquiterpene compounds<br />

are accumulated from dietary sources<br />

(Avila, 1991; Fontana, 1994b). However,<br />

the presence of longifolin (1) in H. picta<br />

subspecies living at distant geographical<br />

areas could suggest two different scenaria:<br />

(a) the ability to biosynthesized de<br />

novo this allomone or (b) the ability to<br />

select sponges rich in longifolin (1)<br />

(Avila, 1991; Cimino 1993). Therefore,<br />

the origin of longifolin in H. picta still<br />

remains to be clarified.<br />

ACKNOWLEDGEMENTS<br />

We thank Professor António Frias<br />

Martins for the invitation to participate<br />

in the 3 rd Workshop of Marine Biology,<br />

held in Vila Franca do Campo, where<br />

some of the specimens were collected.<br />

We thank Rita Coelho (IPM) and Lucas<br />

Cervera (University of Cadiz) for collecting<br />

the other specimens. We are<br />

deeply grateful to FCT (VERMEJJ –<br />

PTDC/MAR/65854/2006) for financial<br />

support.<br />

LITERATURE CITED<br />

ALEJANDRINO, A., & Á. VALDÉS, 2006.<br />

Phylogeny and biogeography of the<br />

Atlantic and Eastern Pacific Hypselodoris<br />

Stimpson, 1855 (Nudibranchia,<br />

Chromodoridi<strong>da</strong>e) with the description<br />

of a new species from the<br />

Caribbean Sea. Journal of Molluscan<br />

Studies, 72: 189-198.<br />

AVILA, C., G. CIMINO, A. FONTANA,<br />

M. GAVAGNIN, J. ORTEA & E.<br />

TRIVELLONE, 1991. Defensive Strategy<br />

of two Hypselodoris Nudibranchs<br />

from Italian and Spanish Coasts.<br />

Journal of Chemistry Ecology, 17: 625-<br />

636.<br />

CIMINO, G., S. DE ROSA, S. DE<br />

STEFANO & G. SODANO, 1982. The<br />

Chemical Defense of Four Mediterranean<br />

Nudibranchs. Comparative<br />

Biochemistry and Physiology, 73B: 471-<br />

474.<br />

CIMINO, G., & G. SODANO, 1993.<br />

Biosynthesis of Secon<strong>da</strong>ry Metabolites<br />

in Marine Molluscs. In:<br />

SCHEUER P.J. (ed.), Marine natural<br />

products – diversity and biosynthesis.<br />

Topics in current chemistry vol. 167: 78-<br />

115. Spring-Verlag; Berlin.<br />

CIMINO, G., & M.T. GHISELIN, 1999.<br />

Chemical defense and evolutionary<br />

trends in biosynthetic capacity among<br />

dorid nudibranchs (Mollusca: Gastropo<strong>da</strong>:<br />

Opistobranchia). Chemoecology,<br />

9: 187-307.<br />

FONTANA, A., A. AVILA, E. MARTI-<br />

NEZ, J. ORTEA, E. TRIVELLONE &<br />

G. CIMINO, 1993. Defensive<br />

allomones in three species of<br />

Hypselodoris (Gastropo<strong>da</strong>: Nudibranchia)<br />

from the Cantabrian Sea.<br />

Journal of Chemistry and Ecology, 19:<br />

339-356.<br />

FONTANA, A., E. TRIVELLONE, E.<br />

MOLLO, C. CIMINO, C. AVILA, E.<br />

MARTINEZ & J. ORTEGA, 1994a.


GASPAR ET AL: CHEMICAL DEFENCES OF HYPSELODORIS PICTA 143<br />

Further chemical Studies of Mediterranean<br />

and Atlantic Hypselodoris<br />

nudibranchs: A new furnosesquiterpenoid<br />

from Hypselodoris webbi.<br />

Journal of Naural Products, 57(4): 510-<br />

513.<br />

FONTANA, A., F. GIMÉNEZ, A. MARIN,<br />

E. MOLLO & G. CIMINO, 1994b.<br />

Transfer of secon<strong>da</strong>ry metabolites<br />

from the sponges Dysidea fragilis and<br />

Pleraplysilla spinifera to the mantle dermal<br />

formations (MDFs) of the nudibranch<br />

Hypselodoris webbi. Experientia,<br />

50: 510-516.<br />

GARCÍA-GÓMEZ, J.C., G. CIMINO & A.<br />

MEDINA, 1990. Studies on the defensive<br />

behaviour of Hypselodoris species<br />

(Gastropo<strong>da</strong>: Nudibranchia): ultrastructure<br />

and chemical analysis of<br />

mantle dermal formations (MDFs).<br />

Marine Biology, 106: 245-250.<br />

GUELLA, G., I. MANCINI, A. GUER-<br />

RIERO & F. PIETRA, 1985. New<br />

Furano-sesquiterpenoids from<br />

Meditterranean Sponges. Helv. Chem.<br />

Acta, 68, 1276-1282.<br />

ORTEA, J., A. VALDÉS & J.C. GARCÍA-<br />

GÓMEZ, 1996. Revisión de las<br />

especies atlánticas de la familia<br />

Chromodoridi<strong>da</strong>e (Mollusca: Nudibranchia)<br />

de grupo cromático azul<br />

[Review of the Atlantic species<br />

of the family Chromodoridi<strong>da</strong>e<br />

(Mollusca: Nudibranchia) of the blue<br />

chromatic group]. Avicennia Suppl. 1:<br />

1-165.<br />

WÄGELE, H., M. BALLESTEROS & C.<br />

AVILA, 2006. Defensive Gandular<br />

Structure in opisthobranchs Molluscs<br />

– from histology to ecology. Oceanography<br />

and Marine Biology: An Annual<br />

Review, 44: 197-276.


AÇOREANA, Suplemento 6, Setembro 2009: 145-156<br />

THE BIOLOGY OF THE ZONING SUBTIDAL POLYCHAETE DITRUPA ARIETINA<br />

(SERPULIDAE) IN THE AÇORES, PORTUGAL, WITH A DESCRIPTION OF THE<br />

LIFE HISTORY OF ITS TUBE<br />

Brian Morton & Andreia Salvador<br />

Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K.<br />

e-mail addresses: prof_bmorton@hotmail.co.uk; a.salvador@nhm.ac.uk<br />

ABSTRACT<br />

In the <strong>Açores</strong>, Portugal, the steeply descending continental shelf is characterized at different<br />

depths by two endobenthic suspension feeding species: the shallower-living (0-~100<br />

metres) bivalve Ervilia castanea and the deeper-residing serpulid (~100–250 metres) Ditrupa<br />

arietina. As a dominant member of the continental shelf fauna, D. arietina provides a habitat<br />

for a number of epibiont species that attach to its tubes anteriorly. These include the<br />

cemented, introduced, serpulid Hydroides elegans, three species of foraminiferans and a<br />

number of species of, mostly unidentifiable, bryozoans. Tubes of D. arietina are also drilled<br />

and, hence, pre<strong>da</strong>ted by a prosobranch naticid gastropod, possibly Natica prietoi. Ditrupa<br />

arietina lives for ~2 years with most growth occurring during the first year and with sexual<br />

maturity also occurring in the first year of life so that, post reproduction and death, its<br />

tube becomes available for secon<strong>da</strong>ry colonization by Aspi<strong>dos</strong>iphon muelleri (Sipuncula). At<br />

this time, anterior epibionts die, because the sipunculan orientates the tube anterior end<br />

down, but further epibionts can now colonize the posterior end of the tube. With time and<br />

wear, the tube slowly degenerates. Throughout its life history, therefore, the tube of D. arietina<br />

functions as an inhabitable substratum and is thus a locally important Açorean habitat<br />

for a suite of other epibenthic species.<br />

Ditrupa arietina is herein recognized as a significant component of the continental shelf<br />

endobenthos at depths of ~200 metres, mirroring the significance of the bivalve Ervilia castanea<br />

at generally shallower depths. The ecological importance of these two species is<br />

hence in urgent need of further detailed study, especially with regard to the productivity<br />

of the Açorean seabed.<br />

RESUMO<br />

Nos <strong>Açores</strong>, a plataforma continental que desce abruptamente caracteriza-se, a<br />

diferentes profundi<strong>da</strong>des, por duas espécies endobênticas filtradoras de matérias em<br />

suspensão: o bivalve de pouca profundi<strong>da</strong>de (0-~100 metros) Ervilia castanea e o serpulídeo<br />

de maiores profundi<strong>da</strong>des (~100-250 metros) Ditrupa arietina. Elemento dominante <strong>da</strong><br />

fauna <strong>da</strong> plataforma continental, D. arietina proporciona habitat para uma quanti<strong>da</strong>de de<br />

espécies epibiontes que se fixam ao seu tubo anteriormente. Incluem-se nestes o<br />

serpulídeo fixo Hydroides elegans, três espécies de foraminíferos e uma série de briozoários<br />

na maioria não identificáveis. Os tubos de D. arietina são também perfura<strong>dos</strong> e, por isso,<br />

pre<strong>da</strong><strong>dos</strong> por um gastrópode prosobrânquio naticídeo, provavelmente Natica prietoi.<br />

Ditrupa arietina vive por ~2 anos ocorrendo a maior parte do crescimento durante o<br />

primeiro ano e a maturi<strong>da</strong>de sexual ocorrendo o primeiro ano de vi<strong>da</strong> pelo eu, após a<br />

reprodução e a morte, o seu tubo fica acessível para colonização secundária por<br />

Aspi<strong>dos</strong>iphon muelleri (Sipuncula). Por essa altura, os epibiontes anteriores morrem porque<br />

o sipúnculo orienta para baixo a extremi<strong>da</strong>de anterior do tubo, mas outros epibiontes<br />

podem agora colonizar a extremi<strong>da</strong>de posterior do tubo. Com o tempo e uso, o tubo<br />

degenera lentamente. Durante a sua história de via, assim, o tubo de D. arietina funciona<br />

como substrato habitável e é, por isso, um habitat Açoriano localmente importante para<br />

uma série de outras espécies.


146 AÇOREANA<br />

2009, Sup. 6: 145-156<br />

Como componente significativo do endobentos <strong>da</strong> plataforma continental a<br />

profundi<strong>da</strong>des abaixo de ~200 metros, espelhando o significado do bivalve Ervilia castanea<br />

em profundi<strong>da</strong>des geralmente menores, a importância ecológica destas duas espécies<br />

necessita estudo ulterior pormenorizado, especialmente no que respeita a produtivi<strong>da</strong>de<br />

do fundo marinho Açoriano.<br />

INTRODUCTION<br />

Morton & Britton (1995, table 1)<br />

showed that offshore from Vila<br />

Franca do Campo, São Miguel, <strong>Açores</strong>,<br />

the abun<strong>da</strong>nces of members of the<br />

benthic community were consistent, save<br />

for Ditrupa arietina (O.F. Müller, 1776)<br />

whose numbers differed significantly<br />

between stations. These authors also<br />

noted that empty tubes of D. arietina were<br />

occupied by the sipunculan Aspi<strong>dos</strong>iphon<br />

muelleri Diesing, 1851, but not by the<br />

hermit crab Anapagurus laevis (Bell, 1845).<br />

It is known that many species of tubebuilding<br />

polychaetes form dense aggregations<br />

or “patches” within marine softbottom<br />

habitats (Bolam & Fernandes,<br />

2002) although in the Bay of Blanes<br />

(northwest Mediterranean), Ditrupa arietina<br />

showed seasonal peaks of abun<strong>da</strong>nce<br />

in May and June of 1993, 1994 and 1995<br />

(Sardá et al., 1999). Similarly, since the<br />

late 1980’s, D. arietina has increased in<br />

abun<strong>da</strong>nce all along the northwest coast<br />

of the Mediterranean, numbers reaching<br />

up to 3,000 individuals·m² and adversely<br />

affecting the functioning of the coastal<br />

benthic ecosystem in the region (Gremare<br />

et al., 1998a, b).<br />

The strictly dioecious serpulid Ditrupa<br />

arietina has a reproductive period lasting<br />

from November to May in the bay of<br />

Banyuls-sur-Mer in the northwestern<br />

Mediterranean, with recruitment beginning<br />

as early as January and ending in<br />

July but with a peak in April-May<br />

(Charles et al., 2003) explaining the observation<br />

by Sardá et al. (1999) of a peak in<br />

seasonal abun<strong>da</strong>nce between May-June in<br />

the same region. The planktonic life is ~3<br />

weeks long with metamorphosis being<br />

completed quickly post-settlement<br />

(Charles et al., 2003). Ditrupa arietina lives<br />

for ~2 years, with most growth and sexual<br />

maturity being achieved during the<br />

first year (Medernach et al., 2000).<br />

Hence, although much is known<br />

about the biology of Ditrupa arietina in the<br />

Mediterranean, there is nothing known<br />

about it in the <strong>Açores</strong>, Portugal, save for<br />

the paper by Morton & Britton (1995)<br />

mentioned above. Morton & Britton<br />

(2000) also showed that the marine flora<br />

and fauna of the <strong>Açores</strong> have the<br />

strongest biogeographic links with the<br />

Mediterranean. The aim of the present<br />

paper was thus to determine if, as in the<br />

Mediterranean, D. arietina occupied a particular<br />

and similar depth zone. We also<br />

wished to investigate if there were any<br />

depth distributions in the <strong>Açores</strong> between<br />

living individuals of D. arietina and the<br />

empty tubes occupied by Aspi<strong>dos</strong>iphon<br />

muelleri. Finally, it is known that in the<br />

Mediterranean, tubes of D. arietina, both<br />

occupied and unoccupied, are colonized<br />

by an encrusting fauna the major components<br />

of which are bryozoans (Gambi &<br />

Jerace, 1997). We wanted to see if this<br />

associated fauna was replicated in the<br />

<strong>Açores</strong>, or would it be, as with other taxa,<br />

much reduced (Morton & Britton, 2000).<br />

Finally, we wanted to determine if the<br />

tube of D. arietina had a life history, once<br />

the animal that had secreted it died. That<br />

is, it is known that the tube becomes occupied<br />

by Aspi<strong>dos</strong>iphon muelleri (Morton &<br />

Britton, 2000), but what is the complete<br />

life history of the tube?


MORTON & SALVADOR: THE BIOLOGY OF DITRUPA ARIETINA 147<br />

TAXONOMIC NOTE<br />

Most authors, for example, Nelson-<br />

Smith & Gee (1966), follow Fauvel (1953)<br />

and recognize a single, worldwide,<br />

species of Ditrupa, that is, D. arietina (O.F.<br />

Müller, 1776). ten Hove & Smith (1990),<br />

however, justified the recognition of a<br />

separate species, D. gracillima Grube,<br />

1878, from the Indo-Pacific and deep<br />

water ecophenotypes of which had previously<br />

been identified as D. arietina var.<br />

monilifera.<br />

MATERIALS AND METHODS<br />

For eleven <strong>da</strong>ys from 17 - 28 July 2006,<br />

the sea bed on the southern coast of the<br />

island of São Miguel, <strong>Açores</strong>, was sampled<br />

using a benthic box dredge at six stations<br />

to the east and west of the islet of<br />

Ilhéu de Vila Franca do Campo. The stations<br />

were designated E1, E2, E3 and W1,<br />

W2 and W3 and located at approximate<br />

depths of 100 (E1 and W1), 200 (E2 and<br />

W2) and 250 metres (E3 and W3) (Figure<br />

1). The reader is referred to Martins et al.<br />

FIGURE 1. A map of the southern coast of São Miguel Island, showing the six sampling sites to<br />

the east (E1- E3) and west (W1 - W3) of Ilhéu de Vila Franca do Campo.


148 AÇOREANA<br />

2009, Sup. 6: 145-156<br />

(2009) for a full description of the stations<br />

and their accurate locations. Dredges<br />

were towed at a stan<strong>da</strong>rd speed (5 knots)<br />

for ten minutes and on reaching the surface<br />

sieved using seawater through a 1<br />

mm mesh sieve.<br />

Two 500 ml sub-samples of sediment<br />

were removed from each dredge sample<br />

and sorted using dissecting binocular<br />

microscopes. All living individuals of<br />

Ditrupa arietina were collected from the<br />

first sample and the lengths of their tubes<br />

measured to the nearest 1 mm using a dissecting<br />

microscope (x10) with a 1 mm<br />

graduated scale. From these <strong>da</strong>ta, it has<br />

been possible to construct histograms of<br />

the population structure of D. arietina at<br />

the six sampling locations (Figure 2). The<br />

living individuals were also used in simple<br />

studies of burrowing behaviour.<br />

All empty tubes and fragments of<br />

Ditrupa arietina were removed from the<br />

second sample and measured along their<br />

greatest lengths to the nearest 1 mm using<br />

a dissecting microscope (x10) with a graduated<br />

scale. Each tube and fragment was<br />

then examined and divided into categories.<br />

These were: (i), those individuals<br />

occupied by Aspi<strong>dos</strong>iphon muelleri; (ii),<br />

those with either anterior or posterior<br />

encrustations of attached biota and (iii),<br />

those with a drill hole. Some D. arietina<br />

tubes that had drill holes were also occupied<br />

by A. muelleri and had epibiont<br />

encrustations. Such individuals were<br />

placed in their own sub-categories.<br />

Data analysis<br />

One-factor analysis of variance<br />

(ANOVA) on untransformed <strong>da</strong>ta with a<br />

statistical significance criterion set at p =<br />

0.05 was conducted as the statistical technique<br />

used to examine for any differences<br />

in the <strong>da</strong>tasets between the six sampling<br />

stations and hence depth. Any significant<br />

results obtained by the ANOVA were dif-<br />

FIGURE 2. Histograms showing the length frequency distribution of living Ditrupa arietina individuals<br />

at the six stations to the east (E1 - E3) and west (W1 - W3) of Ilhéu de Vila Franca do<br />

Campo, São Miguel, <strong>Açores</strong>.


MORTON & SALVADOR: THE BIOLOGY OF DITRUPA ARIETINA 149<br />

ferentiated using a post-hoc Student’s<br />

Newman-Kuels (SNK) test to identify<br />

where the detected differences lay (Zar,<br />

1984). The <strong>da</strong>ta were analyzed using SAS<br />

(Version 9.1.3).<br />

RESULTS<br />

Statistical analyses<br />

Figure 2 are histograms showing the<br />

length frequency distribution of living<br />

Ditrupa arietina individuals at the six stations<br />

to the east (E1 - E3) and west (W1 -<br />

W3) of Ilhéu de Vila Franca do Campo,<br />

São Miguel, <strong>Açores</strong>. The results of a oneway<br />

ANOVA on these living individuals<br />

of D. arietina collected from the three sampling<br />

depths were significantly different<br />

(F=68.55; p=0.0031). The results of a posthoc<br />

Student’s Newman-Keuls test further<br />

indicated that the numbers of living individuals<br />

were significantly higher (p>0.05)<br />

at both the east (E2) and west (W2) ~200<br />

metre depth stations.<br />

Figure 3 are histograms showing the<br />

length frequency distributions of all tubes<br />

no longer occupied by Ditrupa arietina<br />

and, at the six stations to the east (E1 - E3)<br />

and west (W1 - W3) of Ilhéu de Vila<br />

Franca do Campo, São Miguel, <strong>Açores</strong>.<br />

The results of a second one-way ANOVA<br />

on the <strong>da</strong>taset indicated that there was no<br />

significant difference in the total numbers<br />

of Ditrupa arietina tubes collected at the<br />

sample depths of ~100, ~200 and ~250<br />

metres (F=0.36; p=0.7250). Similarly, there<br />

were no significant differences between<br />

stations and depths in the incidences of<br />

tubes that (i), were occupied by<br />

Aspi<strong>dos</strong>iphon muelleri; (ii), possessed<br />

encrusting bryozoans and other attached<br />

organisms either anteriorly or posteriorly,<br />

nor (iii), in the incidences of pre<strong>da</strong>ted,<br />

that is, drilled tubes. A more detailed<br />

study of the drill holes in the tubes D.<br />

arietina is reported upon by Morton &<br />

Harper (2009).<br />

Behaviour<br />

When living individuals of Ditrupa<br />

arietina and tubes occupied by<br />

Aspi<strong>dos</strong>iphon muelleri were placed on the<br />

surface of samples of natural sediment<br />

obtained in the dredges, they both<br />

FIGURE 3. Histograms showing the length frequency distributions of all Ditrupa arietina tubes<br />

either empty or occupied by Aspi<strong>dos</strong>iphon muelleri (plus tube fragments) at the six stations to the<br />

east (E1 - E3) and west (W1 - W3) of Ilhéu de Vila Franca do Campo, São Miguel, <strong>Açores</strong>.


150 AÇOREANA<br />

2009, Sup. 6: 145-156<br />

attempted to re-burrow. Ditrupa arietina<br />

burrowed with the posterior end of the<br />

tube down, so that the serpulid’s crown of<br />

tentacles projected above the sediment<br />

surface. Conversely, A. muelleri burrowed<br />

anterior end down so that its head was<br />

within the sediment.<br />

Epibionts<br />

Table 1 gives a list of the epibionts collected<br />

and identified from the tubes of<br />

Ditrupa arietina. The most obvious<br />

epibiont was the cemented serpulid<br />

Hydroides elegans (Haswell, 1883) that has<br />

probably been introduced into Açorean<br />

waters in historical times, possibly<br />

attached to boats or in ballast waters<br />

(Morton & Britton, 2000). Other epibionts<br />

included three species of foraminiferans,<br />

that is, the bright red Miniacina miniacea<br />

Pallas, 1776, Cassidulina obtusa<br />

Williamson, 1858 and Elphidium crispum<br />

(Linnaeus, 1767), and a number of<br />

species, mostly unidentifiable, of bryozoans.<br />

Also present were the egg capsules<br />

of gastropods (all unidentifiable).<br />

All the species identified in Table 1 have a<br />

north-eastern Atlantic/Mediterranean distribution,<br />

except for M. miniacea which<br />

occurs in the warmer central Atlantic<br />

from the Mediterranean to the Caribbean.<br />

Life history of the Ditrupa arietina tube<br />

The suggested life history of the tube<br />

of Ditrupa arietina is illustrated in Figure<br />

4. A living individual of D. arietina is<br />

illustrated in Figure 4A. The tube is cylindrical,<br />

slightly curved and resembles an<br />

elephant’s tusk or, more appropriately, a<br />

scaphopod, and anteriorly swollen<br />

although the mouth typically narrows<br />

again at its anterior extremity. There are<br />

numerous constrictions, or flanges, to the<br />

shell that is also variably patterned with<br />

circlets of orange-brown pigmentation.<br />

Because the contained worm is bright red,<br />

the tubes of living individuals are also<br />

redder than their empty counterparts.<br />

The 19 branchial filaments are also bright<br />

red (sometimes red banded) and the operculum<br />

is a membranous cup or funnel<br />

closed distally by a flat, brownish, chiti-<br />

TABLE 1. A list of encrusting species herein recorded as attached to the tubes of Ditrupa arietina<br />

from the six stations to the east (E1 - E3) and west (W1 - W3) of Ilhéu de Vila Franca do Campo.<br />

São Miguel, <strong>Açores</strong>.<br />

Phylum Species Notes<br />

Foraminifera Miniacina miniacea Pallas, 1776 Mediterranean, Caribbean (down to 2000 metres)<br />

Cassidulina obtusa Williamson, Northern Europe, Mediterranean, Canaries<br />

1858<br />

Elphidium crispum (Linnaeus, Mediterranean, Gulf of Cadiz, West Africa<br />

1767)<br />

Gymnolaemata: Celleporina hassalli (Johnston, British Isles<br />

Cheilostomata 1847)<br />

Cheilostoma 1<br />

Cheilostoma 2<br />

Stenolaemata: Crisia cf. eburnea (Linnaeus, Northern Europe, British Isles<br />

Cyclostomata 1758)<br />

Tervia irregularis (Meneghini, Northern Europe, Mediterranean<br />

1844)<br />

Disporella spp.<br />

Cyclostome 1<br />

Cyclostome 2<br />

Cyclostome 3<br />

Polychaeta: Hydroides elegans (Haswell, Near cosmopolitan; unintentionally introduced (Morton<br />

Serpuli<strong>da</strong>e 1883)<br />

& Britton, 2000)


MORTON & SALVADOR: THE BIOLOGY OF DITRUPA ARIETINA 151<br />

FIGURE 4. Ditrupa arietina. A, A living individual in its tube and (A¹) in its life position in the sediment;<br />

B, the anterior end of a tube with encrusting organisms; C, a drill hole (probably) made by<br />

the naticid Natica prietoi; D, an empty, drilled and anteriorly encrusted, tube occupied by<br />

Aspi<strong>dos</strong>iphon muelleri and (D¹) in its life position in the sediment; E, an anteriorly encrusted tube<br />

occupied by A. muelleri; F, a fragment of unoccupied tube colonized by encrusting organisms and<br />

F, a fragment of tube.


152 AÇOREANA<br />

2009, Sup. 6: 145-156<br />

nous plate thickened in the centre to form<br />

a boss. Living individuals of D. arietina<br />

(Figure 4, A¹) live in the sediment, posterior<br />

end down and with the swollen anterior<br />

end situated above the surface. The<br />

anterior end of the tube is often encrusted<br />

with epibionts (Figure 4, B). Figure 4C<br />

illustrates a drill hole probably made by<br />

the naticid Natica prietoi Hi<strong>da</strong>lgo, 1873<br />

(see Morton & Harper, 2009). Following<br />

death, the tube of D. arietina is occupied<br />

by Aspi<strong>dos</strong>iphon muelleri (Figure 4D) at<br />

which time the anterior epibionts also die<br />

because the sipunculan lives head down<br />

in the sediment (illustrated in Figure 4<br />

[D¹]). With the posterior end of the tube<br />

now projecting above the sediment surface,<br />

it becomes encrusted by epibionts<br />

(Figure 4E), such that the tube becomes<br />

more eroded with age (Figure 4F) until<br />

only fragments remain (Figure 4G). As<br />

noted above we could obtain no statistically<br />

different station and hence depth<br />

distributions in the various categories of<br />

D. arietina tubes either occupied by A<br />

muelleri or encrusted either anteriorly or<br />

posteriorly. It thus seems that upon the<br />

death of D. arietina, its tube becomes<br />

widely distributed throughout the<br />

Açorean offshore seabed, probably by<br />

water movements acting upon it.<br />

DISCUSSION<br />

Labrune et al. (2007) analyzed the softbottom<br />

polychaete assemblages of the<br />

Gulf of Lions in the northwest<br />

Mediterranean and showed that at virtually<br />

stations associated with “littoral” fine<br />

muds and with depths of between 10–20<br />

metres the fauna was characterized by<br />

high abun<strong>da</strong>nces and high biomasses due<br />

to the presence of large numbers of<br />

Ditrupa arietina. Similarly, Cosentino &<br />

Giacobbe (2006) showed that, also in the<br />

Mediterranean, maximum mollusc/polychaete<br />

diversities (H’) occurred at depths<br />

of between 10–20 metres but that this<br />

decreased beyond this corresponding to<br />

the peak in the core population of D. arietina<br />

at depths of between 30-40 metres<br />

and abun<strong>da</strong>nces of >500 individuals·250·cm².<br />

Sardá et al. (2000) demonstrated<br />

that following sand extraction at<br />

depths of between 10–30 metres in the<br />

Tordera River, Bay of Blanes in the northwest<br />

Mediterranean, numbers of D. arietina<br />

initially remained stable, but numbers<br />

rose sharply during the following spring<br />

and autumn possibly due to re-colonization<br />

of the dredged sea bed.<br />

In May, that is, spring, coinciding with<br />

the periods of greatest abun<strong>da</strong>nces,<br />

growth and reproductive period in<br />

Ditrupa arietina, individuals spent only<br />

25% of the time feeding compared with<br />

50% of the time during the rest of the year<br />

(Jor<strong>da</strong>na et al., 2000). The size spectrum<br />

of particles filtered by D. arietina was<br />

rather large and ranged between 1µm-<br />

50µm with planktonic and benthic<br />

diatoms, haptophytes, bacteria and<br />

cyanobacteria being collected and<br />

absorbed at efficiencies of 84.7, 70.9, 72.3<br />

and 63.7%, respectively (Jor<strong>da</strong>na et al.,<br />

2001a). Ditrupa arietina selectively filters<br />

picoplankton this accounting for, on a<br />

yearly basis, 15% of ingested chlorophylla<br />

with 95% of this figure being accounted<br />

for by picoeukaryotes (Jor<strong>da</strong>na et al.,<br />

2001b). The maximum weight specific<br />

clearance rate for D. arietina was 15.7<br />

ml.hour¯¹·mg·¯¹, about seven times less<br />

than for the polychaete Euchone papillosa<br />

(M. Sars, 1851), because of the latter’s relatively<br />

larger tentacle crown (Riisgård et<br />

al. 2002).<br />

From the above research in the<br />

Mediterranean, two important facts<br />

emerge that have relevance to Ditrupa arietina<br />

in the <strong>Açores</strong>. First, that D. arietina<br />

occurs at a relatively shallow depth of<br />

between 10-30 metres and, second, being<br />

a benthic suspension feeder it assists in


MORTON & SALVADOR: THE BIOLOGY OF DITRUPA ARIETINA 153<br />

the clarification of the water column especially<br />

when the species occurs in large<br />

numbers. This study demonstrates that<br />

in the <strong>Açores</strong>, D. arietina occurs at a depth<br />

of ~ 200 metres. This distinctive difference<br />

in depths may be related to light,<br />

that is, in the <strong>Açores</strong>, oceanic waters allow<br />

colonization to a greater depth than in the<br />

(recently) more turbid Mediterranean.<br />

Or, such a difference may be related to<br />

food availability in the form of picoplankton<br />

that D. arietina feeds on, since this is<br />

likely to be less abun<strong>da</strong>nt in the <strong>Açores</strong>,<br />

thereby, somehow, influencing depth<br />

preference. It is also possible that the two<br />

factors may be acting synergistically in<br />

the <strong>Açores</strong> and/or in concert with other<br />

factors such as sediment grain size and<br />

disturbance.<br />

Morton (1990) studied the bivalve<br />

Ervilia castanea (Montagu, 1803) collected<br />

offshore from Vila Franca do Campo, São<br />

Miguel, and recorded it from depths of<br />

between 0-40 metres although the species<br />

is known to occur from ~800-1800 metres<br />

in the <strong>Açores</strong> and 130 metres in the<br />

Canary Islands (Smith, 1885), but possibly<br />

only as empty shells. This study of<br />

Ditrupa arietina collected few living E. castanea<br />

from the depths sampled, but many<br />

empty valves. Hence, in the <strong>Açores</strong>, the<br />

deeply shelving continental shelf (Figure<br />

1), appears to be characterized at two<br />

depths by two endobenthic suspension<br />

feeding species: the shallower living (0-<br />

~100 metres) bivalve Ervilia castanea and<br />

the deeper residing serpulid (~100 –250<br />

metres) D. arietina.<br />

Gambi et al. (1996) analyzed polychaete<br />

community structure at 32 stations<br />

distributed from 2–105 metres depth in<br />

the southern Tyrrhenian Sea (Italy) and<br />

showed that Ditrupa arietina was dominant<br />

at depths of between 26-30 metres<br />

and enhanced the spatial complexity,<br />

species composition and diversity and<br />

community structure of the habitat by<br />

virtue of the range of diversity of<br />

epibionts attached to its tube. Gambi &<br />

Jerace (1997) analyzed the epibionts on D.<br />

arietina tubes from three bays in the<br />

southern Tyrrhenian Sea and identified a<br />

wide range of species, including<br />

foraminiferans, sponges, hydroids, bryozoans<br />

and tubiculous polychaetes.<br />

Epibiosis percentages varied from site to<br />

site and between years. This study of the<br />

epibionts attached to the tubes of D. arietina<br />

identified a number of species<br />

including, most dominantly, the cemented<br />

serpulid Hydroides elegans (Haswell,<br />

1883). Other epibionts included three<br />

species of foraminiferans and a number of<br />

species of bryozoans.<br />

The only pre<strong>da</strong>ted tubes of Ditrupa<br />

arietina that could be identified in this<br />

study appeared to have been drilled by<br />

the prosobranch naticid gastropod Natica<br />

prietoi (see Morton & Harper, 2009).<br />

Ditrupa arietina lives for ~2 years<br />

(Medernach et al., 2000), with most<br />

growth occurring during the first year.<br />

As Morton & Harper (2009) show, tubes<br />

of many sizes are attacked by the naticid<br />

although, generally, larger ones were<br />

favoured. Such a generalization is probably<br />

related to the relationship between<br />

pre<strong>da</strong>tor and prey sizes, but if it is true<br />

that larger individuals are generally preferred<br />

by N. prietoi, then clearly, these are<br />

adults, sexual maturity also occurring in<br />

the first year of life (Medernach et al.,<br />

2000), so that post reproduction the tube<br />

becomes available for colonization by<br />

Aspi<strong>dos</strong>iphon muelleri, anterior epibionts<br />

then die, but further epibiotic organisms<br />

can now colonize the posterior end of the<br />

tube and slowly the tube degenerates.<br />

Subsequent to the death of the original<br />

inhabitant, the tube of Ditrupa arietina<br />

provides secon<strong>da</strong>ry accommo<strong>da</strong>tion for<br />

Aspi<strong>dos</strong>iphon muelleri and throughout its<br />

life history it functions as an inhabitable<br />

substratum and hence a locally important


154 AÇOREANA<br />

2009, Sup. 6: 145-156<br />

Açorean habitat for a suite of epibionts. It<br />

is also apparent that D. arietina is an overwhelmingly<br />

dominant and therefore highly<br />

significant component of the Açorean<br />

endobenthos at depths of ~200 metres,<br />

mirroring the significance of the bivalve<br />

Ervilia castanea at generally shallower<br />

depths (Morton, 1990). It is finally clear, as<br />

this study now suggests, that the ecological<br />

significance of these two species is in<br />

urgent need of further, much more<br />

detailed study, especially with regard to<br />

their role in the productivity of the inshore<br />

Açorean continental shelf seabed.<br />

ACKNOWLEDGEMENTS<br />

The authors are grateful to Prof. A.M.<br />

Frias Martins (University of the <strong>Açores</strong>) for<br />

funding this research and for much practical<br />

help and warm hospitality during their<br />

stay on São Miguel. We are also grateful to<br />

a number of University of the <strong>Açores</strong> students<br />

who helped with sample sorting and<br />

to Dr. K.F. Leung (Environmental<br />

Protection Department, Hong Kong SAR<br />

Government, China) for statistical advice<br />

and help. Mary Spencer Jones (Natural<br />

History Museum, London) is thanked for<br />

identifying the bryozoans.<br />

LITERATURE CITED<br />

BOLAM, S.G., & T.F. FERNANDES, 2002.<br />

Dense aggregations of tube-building<br />

polychaetes: response to small-scale<br />

disturbances. Journal of Experimental<br />

Marine Biology and Ecology, 269: 197-<br />

222.<br />

CHARLES, F., E. JORDANA, J-M. AMOU-<br />

ROUX, A. GRÉMARE, M DESMALA-<br />

DES & L. ZUDAIRE, 2003.<br />

Reproduction, recruitment and larval<br />

metamorphosis in the serpulid polychaete<br />

Ditrupa arietina (O.F. Müller).<br />

Estuarine, Coastal and Shelf Science, 57:<br />

435-443.<br />

COSENTINO, A., & S. GIACOBBE, 2006.<br />

A case study of mollusc and polychaete<br />

soft-bottom assemblages submitted<br />

to sedimentary instability in<br />

the Mediterranean Sea. Marine<br />

Ecology, 27: 170-183.<br />

FAUVEL, P. 1953. Anneli<strong>da</strong> Polychaeta.<br />

Fauna of India, Pakistan, Ceylon,<br />

Burma and Malaya. 507 pp, 250 figs, 1<br />

map.<br />

GAMBI, M.C., & S. JERACE, 1997.<br />

Epibiosis on the tubes of the polychaete<br />

Ditrupa arietina (Serpuli<strong>da</strong>e) in<br />

some populations of the soft bottoms<br />

off the southern Tyrrhenian Sea. Biol.<br />

Mar. Mediterranean, 4: 380-383.<br />

GAMBI, M.C., A. GIANGRANDE & S.<br />

FRASCHETTI, 1996. Polychaetes of<br />

the soft bottoms off the Gulf of<br />

Policastro (Southern Tyrrhenian Sea):<br />

distribution and role of some species.<br />

In: VIRZO de SANTO, A., A. ALFANI,<br />

G.C. CARRADA & F.A. RUTIGLIA-<br />

NO (eds.), Atti del VII Congresso<br />

Nazionale della Società Italiana di<br />

Ecologia (S. It. E.), Napoli, September<br />

1996, 17: 349-353.<br />

GRÉMARE, A., J.-M. AMOUROUX & G.<br />

VÉTION, 1984a. Long term comparison<br />

of macrobenthos within the soft<br />

bottoms of the bay of Banyuls-sur-<br />

Mer (North-west Mediterranean Sea).<br />

Netherlands Journal of Sea Research, 40:<br />

281-302.<br />

GRÉMARE, A., R. SARDÁ, L. MEDER-<br />

NACH, E. JORDANA, S. PINEDO, J.-<br />

M. AMOUROUX, D. MARTIN, C.<br />

NOZAIS & F. CHARLES, 1984b. On<br />

the dramatic increase of Ditrupa arietina<br />

(O.F. Müller) (Anneli<strong>da</strong>: Polychaeta)<br />

along both the French and<br />

Spanish Catalan coasts. Estuarine,<br />

Coastal and Shelf Science, 47: 447-457.<br />

JORDANA, E., J-C. DUCHÊNE & F.<br />

CHARLES, 2000. Experimental study<br />

of suspension-feeding activity in the<br />

serpulid polychaete Ditrupa arietina


MORTON & SALVADOR: THE BIOLOGY OF DITRUPA ARIETINA 155<br />

(O.F. Müller). Journal of Experimental<br />

Marine Biology and Ecology, 252: 57-74.<br />

JORDANA, E., F. CHARLES, A.<br />

GRÉMARE, J.-M. AMOUROUX & M-J.<br />

CHRÉTIENNOT-DINET, 2001a. Food<br />

sources, ingestion and absorption in<br />

the suspension-feeding polychaete,<br />

Ditrupa arietina (O.F. Müller). Journal of<br />

Experimental Marine Biology and<br />

Ecology, 266: 219-236.<br />

JORDANA, E., A. GRÉMARE, F. LANTOI-<br />

NE, C. COURTIES, F. CHARLES, J. M.<br />

AMOUROUX & G. VÉTION, 2001b.<br />

Seasonal changes in the grazing of<br />

coastal picoplankton by the suspension-feeding<br />

polychaete Ditrupa arietina<br />

(O. F. Müller). Journal of Sea<br />

Research, 46: 245-259.<br />

LABRUNE, C., A. GRÉMARE, J-M.<br />

AMOUROUX, R. SARDÁ, J. GIL & S.<br />

TABOADA, 2007. Assessment of softbottom<br />

polychaete assemblages in the<br />

Gulf of Lions (NW Mediterranean)<br />

based on a mesoscale survey. Estuarine,<br />

Coastal and Shelf Science 71: 133-147.<br />

MEDERNACH, L., E. JORDANA, A.<br />

GRÉMARE, C. NOZAIS, F. CHARLES<br />

& J.M. AMOUROUX, 2000. Population<br />

dynamics, secon<strong>da</strong>ry production and<br />

calcification in a Mediterranean population<br />

of Ditrupa arietina (Anneli<strong>da</strong>:<br />

Polychaeta). Marine Ecology Progress<br />

Series, 199: 171-184.<br />

MARTINS, A.M.F, J.P. BORGES, S.P.<br />

ÁVILA, A.C. COSTA, P. MADEIRA &<br />

B. MORTON, 2009. Illustrated checklist<br />

of the infralittoral molluscs off Vila<br />

Franca do Campo. In: MARTINS,<br />

A.M.F. (ed.), The Marine Fauna and Flora<br />

of the Azores (Proceedings of the Third<br />

International Workshop of Malacology and<br />

Marine Biology, São Miguel, Azores,<br />

2006). Açoreana, Supplement 6: 15-103.<br />

MORTON, B., 1990. The biology and<br />

functional morphology of Ervilia<br />

castanea (Bivalvia: Tellinacea) from the<br />

Azores. In: MARTINS, A.M.F. (ed.),<br />

Proceedings of the First International<br />

Workshop of Malacology, São Miguel,<br />

Azores, 1988. Açoreana, Supplement [2]:<br />

75- 96.<br />

MORTON, B., & J.C. BRITTON, 1995.<br />

Partitioning of shell resources by<br />

Aspi<strong>dos</strong>iphon muelleri (Sipuncula) and<br />

Anapagurus laevis (Crustacea) in the<br />

Azores. In: MARTINS, A.M.F. (ed.),<br />

The Marine Flora and Fauna of the Azores.<br />

(Proceedings of the Second International<br />

Workshop of Malacology and<br />

Marine Biology, São Miguel, Azores,<br />

1991). Açoreana, Supplement [4]: 66-67.<br />

MORTON, B., & J.C. BRITTON, 2000.<br />

Origins of the Azorean interti<strong>da</strong>l biota:<br />

the significance of introduced species,<br />

survivors of chance events. Arquipelago<br />

(Life and Marine Science). Supplement<br />

2 (Part A): 29-51.<br />

MORTON, B., & J.C. BRITTON, 2000. The<br />

origins of the coastal and marine flora<br />

and fauna of the Azores. Oceanography<br />

and Marine Biology: an Annual Review.<br />

38: 13-84.<br />

MORTON, B., & E.M. HARPER, 2009.<br />

First record of pre<strong>da</strong>tion by a naticid<br />

gastropod upon Ditrupa arietina<br />

(Polychaeta: Serpuli<strong>da</strong>e) from the mid-<br />

Atlantic <strong>Açores</strong>, Portugal. In: MAR-<br />

TINS, A.M.F. (ed.), The Marine Fauna<br />

and Flora of the Azores (Proceedings of the<br />

Third International Workshop of<br />

Malacology and Marine Biology, São<br />

Miguel, Azores, 2006). Açoreana,<br />

Supplement 6: 157-165.<br />

NELSON-SMITH, A., & J.M. GEE, 1966.<br />

Serpulid tubeworms (Polychaeta Serpuli<strong>da</strong>e)<br />

around Dale, Pembrokeshire.<br />

Field Studies, 2(3): 331-357.<br />

RIISGÅRD, H.U., A. GRÉMARE, J.M.<br />

AMOUROUX, F. CHARLES, G.<br />

VÉTION, R. ROSENBERG & C.<br />

NIELSEN, 2002. Comparative study<br />

of water-processing in two ciliary filter-feeding<br />

polychaetes (Ditrupa arietina<br />

and Euchone papillosa) from two dif-


156 AÇOREANA<br />

2009, Sup. 6: 145-156<br />

ferent habitats. Marine Ecology<br />

Progress Series, 229: 113-126.<br />

SARDÁ, R., S. PINEDO & D. MARTIN,<br />

1999. Seasonal dynamics of macroinfaunal<br />

key species inhabiting shallow<br />

soft-bottoms in the Bay of Blanes (NW<br />

Mediterranean). Acta Oecologica, 20:<br />

315-326.<br />

SARDÁ, R., S. PINEDO, A. GREMARE, &<br />

S. TABOADA, 2000. Changes in the<br />

dynamics of shallow sandy-bottom<br />

assemblages due to sand extraction in<br />

the Catalan Western Mediterranean<br />

Sea. ICES Journal of Marine Science, 57:<br />

1446-1453.<br />

SMITH, E.A., 1885. Report on the<br />

Lamellibranchia collected by HMS<br />

Challenger during the years 1873-76.<br />

Report on the Scientific Results of H.M.S<br />

Challenger. Zoology XIII, 341 pp., 25<br />

plates.<br />

ten HOVE, H.A., & R.S. SMITH, 1990. A<br />

re-description of Ditrupa gracillima<br />

Grube, 1878 (Polychaeta, Serpuli<strong>da</strong>e)<br />

from the Indo-Pacific, with a discussion<br />

of the genus. Records of the<br />

Australian Museum, 42: 101-118.<br />

ZAR, J.H., 1984. Biostatistical Analysis.<br />

Prentice Hall, London.


AÇOREANA, Suplemento 6, Setembro 2009: 157-165<br />

DRILLING PREDATION UPON DITRUPA ARIETINA (POLYCHAETA:<br />

SERPULIDAE) FROM THE MID-ATLANTIC AÇORES, PORTUGAL<br />

Brian Morton & E.M. Harper<br />

Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. E-mail:<br />

prof_bmorton@hotmail.co.uk<br />

Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK. E-mail:<br />

emh21@cam.ac.uk<br />

ABSTRACT<br />

A small, but significant proportion of the empty tubes of the free-living serpulid<br />

Ditrupa arietina dredged from the seabed off São Miguel, <strong>Açores</strong>, were punctured by small<br />

round holes. Analysis of these holes shows that they are typically single, made from the<br />

outside of the tube and located preferentially, suggesting that they represent the work of<br />

a pre<strong>da</strong>tor. The likely identity of the pre<strong>da</strong>tor is discussed but based on the co-occurrence<br />

in the dredges and the fact that most of the holes have a distinctive countersunk morphology,<br />

it is suggested that they were made by the small naticid Natica prietoi. If so, this<br />

study is the first record of such a pre<strong>da</strong>tor/prey relationship.<br />

RESUMO<br />

Uma pequena mas significativa porção de tubos do serpulídeo livre Ditrupa arietina<br />

draga<strong>dos</strong> do fundo marinho ao largo de São Miguel, <strong>Açores</strong>, estavam perfura<strong>dos</strong> por<br />

pequenos orifícios redon<strong>dos</strong>. Análise desses orifícios mostra que eles são tipicamente<br />

singulares, feito a partir do exterior do tubo e localiza<strong>dos</strong> preferencialmente, sugerindo<br />

que representam o trabalho de um pre<strong>da</strong>dor. Discute-se a identi<strong>da</strong>de provável do<br />

pre<strong>da</strong>dor mas, com base na co-ocorrência nas dragagens e no facto de que a maioria <strong>dos</strong><br />

orifícios possui uma distinta morfologia chanfra<strong>da</strong>, sugere-se que foram feitos pelo<br />

pequeno naticídeo Natica prietoi. Assim sendo, este estudo é o primeiro registo de tal<br />

relação pre<strong>da</strong>dor/presa.<br />

INTRODUCTION<br />

Although polychaete worms are a<br />

major source of food for a number of<br />

pre<strong>da</strong>tory taxa including fish, gastropods<br />

and birds, most of our knowledge is<br />

focused on pre<strong>da</strong>tion of the larger errant<br />

taxa. For example, amongst the pre<strong>da</strong>tory<br />

gastropods, representatives of the<br />

Murici<strong>da</strong>e, Columbelli<strong>da</strong>e, Fasciolarii<strong>da</strong>e,<br />

Vasi<strong>da</strong>e and Buccini<strong>da</strong>e as well as many<br />

conoideans are specialist worm pre<strong>da</strong>tors<br />

(Pearce & Thorson, 1967; Taylor, 1978a, b,<br />

1980; Taylor et al., 1980; Shimek, 1984;<br />

Taylor & Lewis, 1995). Similarly, many<br />

wading birds are specialist pre<strong>da</strong>tors<br />

upon interti<strong>da</strong>l endobenthic polychaetes<br />

(Goss-Custard, 1975).<br />

In contrast, little appears to be known<br />

about pre<strong>da</strong>tory activities upon the tubedwelling<br />

Serpuli<strong>da</strong>e (Polychaeta) despite<br />

their cosmopolitan occurrence and frequently<br />

high abun<strong>da</strong>nce. There is, however,<br />

observational evidence that gastropods<br />

(Taylor & Morton, 1996; Tan &<br />

Morton, 1998), fish (Bosence, 1979;<br />

Witman & Cooper, 1983) and crustaceans<br />

(Bosence, 1979) feed on serpulids and, in<br />

the case of the buccinid gastropod Engina<br />

armillata (Reeve, 1846) in Hong Kong,<br />

they are its prey of choice (Tan & Morton,<br />

1998). Additionally, the development of<br />

calcareous tubes, a well-developed<br />

“fright response” (Poloczanska et al.,<br />

2004) and, in the case of encrusting<br />

species, an often cryptic habit suggest


158 AÇOREANA<br />

2009, Sup. 6: 157-165<br />

that the evolution of the Serpuli<strong>da</strong>e may<br />

have been influenced by pre<strong>da</strong>tion pressure.<br />

Part of the problem in recognising<br />

pre<strong>da</strong>tory activity on serpulid worms<br />

undoubtedly results from their typically<br />

cryptic lifestyles that make direct observations<br />

difficult. Indirect methods to<br />

detect pre<strong>da</strong>tory activity on serpulids<br />

must rely on analyses of the pre<strong>da</strong>tor’s<br />

gut contents to recognise setae (Taylor &<br />

Morton, 1996) or the identification of any<br />

characteristic <strong>da</strong>mage to the tube caused<br />

by a pre<strong>da</strong>tor, although for many pre<strong>da</strong>tors,<br />

for example E. armillata, which was<br />

recorded feeding via the prey’s aperture<br />

(Tan & Morton, 1998), no such characteristic<br />

<strong>da</strong>mage results.<br />

In this paper we describe drill holes<br />

made in the tube of the endobenthic serpulid<br />

Ditrupa arietina (Müller, 1776) from<br />

the subti<strong>da</strong>l seabed off the island of São<br />

Miguel in the <strong>Açores</strong> (Portugal). We present<br />

evidence that these are the result of<br />

pre<strong>da</strong>tion and further discuss evidence<br />

as to the likely culprit(s).<br />

Ditrupa arietina (Müller, 1776)<br />

Ditrupa arietina is a widespread<br />

endobenthic serpulid worm, common in<br />

the Mediterranean where it achieves<br />

high densities and there is evidence in<br />

some areas that its abun<strong>da</strong>nce is increasing<br />

(Gremare et al., 1998a, b; Bolam &<br />

Fernandes, 2002; Labrune et al., 2007).<br />

The worm secretes a curved, tuskshaped,<br />

calcareous tube up to 23 mm<br />

long and about 3 mm across at its widest<br />

point. It lives within the sediment, the<br />

narrowest posterior end down, with an<br />

anterior bulge (about 10% of the tube)<br />

exposed above the substratum. This<br />

anterior bulge houses the circlet of twenty<br />

feeding tentacles when they are<br />

retracted and the anterior aperture is<br />

sealed by a further tentacle bearing an<br />

operculum. Morton & Salvador (2009,<br />

figure 4) illustrate a living D. arietina in<br />

its life position in the sediment.<br />

The species has been recorded as a<br />

dominant member of soft-bottom communities<br />

at depths of 100–250 metres in<br />

the <strong>Açores</strong> where the tubes of dead individuals<br />

also provide domiciles for the<br />

sipunculan worm Aspidopsiphon muelleri<br />

Diesing, 1851 (Morton & Britton, 1995;<br />

Morton & Salvador, 2009).<br />

MATERIALS AND METHODS<br />

During July 2006, large numbers of<br />

the serpulid polychaete Ditrupa arietina<br />

were collected from depths of between<br />

50-200 metres off Vila Franca do Campo,<br />

São Miguel, <strong>Açores</strong>. The samples were<br />

collected and processed as reported in<br />

Morton & Salvador (2009). Following initial<br />

observations that some tubes were<br />

perforated by drill holes, the tubes of<br />

dead individuals were separated and<br />

inspected for evidence of such drilling.<br />

For each holed tube, the following <strong>da</strong>ta<br />

were collected: tube length to the nearest<br />

1 mm using vernier callipers, number of<br />

drillholes per tube and the morphology of<br />

the drillhole. Further observations were<br />

made on the morphology of the drillholes<br />

of a small number of specimens by scanning<br />

electron microscopy (SEM). These<br />

specimens were prepared by cleaning in<br />

an ultrasonic bath prior to mounting<br />

them, coated in gold, for SEM (JEOL 820 –<br />

University of Cambridge).<br />

Finally, the mean tube lengths plus<br />

stan<strong>da</strong>rd deviations of intact living individuals<br />

of Ditrupa arientina and those<br />

with drill holes were compared using a<br />

t-test.<br />

RESULTS<br />

Holed individuals of Ditrupa arietina<br />

were identified from each of the six sampling<br />

stations, described by Martins et al.


MORTON & HARPER: DRILLING PREDATION UPON DITRUPA ARIETINA 159<br />

(2009), but no significant differences in<br />

numbers were obtained between them<br />

with regard to the incidence of drilled<br />

tubes (see Morton & Salvador, 2009 for<br />

details). In total 5,453 tubes of D. arietina<br />

were retrieved and examined and from<br />

which we identified 104 fragments and<br />

intact empty tubes with holes in them,<br />

that is, approximately 1.9% of all empty<br />

tubes examined. The vast majority of the<br />

tubes were perforated by a single drillhole<br />

but a few had two or even three complete<br />

holes. No incomplete holes were<br />

observed nor any that showed signs of<br />

repair or healing by the occupant. All<br />

were drilled perpendicular to the surface<br />

of the tube and were clearly produced<br />

from the outside, as evidenced by a wider<br />

outer diameter.<br />

All holes in the tubes of Ditrupa arietina<br />

were small, with an outer diameter of<br />

less than 700 µm. In outline, the perforations<br />

were mostly circular (Figure 1A, B)<br />

but a few were more elliptical (Figure 1C).<br />

The outer edges of the drillholes were<br />

clearly defined, and SEM observations of<br />

the surface of the tube adjacent to the hole<br />

show no obvious signs of either dissolution<br />

or rasping. The inner perforations<br />

were rather more ragged and smaller<br />

than the outer diameter. Most of the holes<br />

we have examined had curved walls leading<br />

to a countersunk morphology,<br />

although some (Figure 1D) were more<br />

straight-sided.<br />

The positions of drill holes in the<br />

tubes of Ditrupa arietina are shown in<br />

Figure 2. It is clear that most are located<br />

in the mid portion of the tube, below the<br />

anterior bulge. Although they occur all<br />

around the circumference of the tube, the<br />

distribution of the holes is not uniform,<br />

there being a clear preference for the concave<br />

aspect.<br />

The length distributions of a sub-sample<br />

(n = 376) of living Ditrupa arietina<br />

recorded by Morton & Salvador (2009) are<br />

FIGURE 1. Scanning electron micrographs of a<br />

variety of drill holes in the tubes of Ditrupa arietina<br />

collected from the seabed offshore from<br />

Vila Franca do Campo, São Miguel, <strong>Açores</strong>, in<br />

2006. Scale bars represent 100 µm for A and B<br />

and 200 µm C and D.<br />

FIGURE 2. Histograms showing the size distributions<br />

(tube lengths) of living (white) and<br />

drilled (black) individuals of Ditrupa arietina<br />

collected from the seabed offshore from Vila<br />

Franca do Campo, São Miguel, <strong>Açores</strong>, in 2006.<br />

plotted together with the same <strong>da</strong>ta for<br />

drilled individuals in Figure 3. Although<br />

virtually all sizes of D. arietina tubes were<br />

drilled (from 5-21 mm tube lengths), the<br />

mean length of the drilled D. arietina


160 AÇOREANA<br />

2009, Sup. 6: 157-165<br />

tubes (n = 102) was 12.7 (S.D. 4.3) whereas<br />

that of the tubes occupied by living D.<br />

arietina (n = 378) was 14.9 (S.D. 2.8). The<br />

result of the t-test showed that the means<br />

of the two samples were significantly different<br />

(p =


MORTON & HARPER: DRILLING PREDATION UPON DITRUPA ARIETINA 161<br />

support of this contention, no marginellids<br />

are reported from the Açorean fauna<br />

and the trawls in which the drilled D. arietina<br />

were collected contained a number<br />

of individuals of Natica prietoi Hi<strong>da</strong>lgo,<br />

1873, formerly identified as Natica a<strong>da</strong>nsoni<br />

de Blainville, 1825 (see Gubbioli &<br />

Nofroni, 1998), and no nudibranchs of<br />

any species. Further evidence to support<br />

a naticid origin for the drill holes is the<br />

preferred position in an area of the tube<br />

that would be embedded in the sediment<br />

and hence accessible only to an endobenthic<br />

pre<strong>da</strong>tor. Naticids are, moreover,<br />

known to be highly specific with regard<br />

to the position on the prey’s exoskeleton<br />

chosen for attack (Thomas, 1976; Kabat,<br />

1990).<br />

Martins et al. (2009), although recording<br />

one living specimen of Natica dilwinii<br />

Payraudeau, 1826, dredged at 300 m<br />

depth off Vila Franca do Campo, consider<br />

that Natica prietoi is definitively the most<br />

common naticid recorded alive from the<br />

<strong>Açores</strong>, as described in this study.<br />

Notwithstanding, Morton (1990) recorded<br />

living Natica intricata (Donovan, 1804)<br />

from Ilhéu de Vila Franca, São Miguel,<br />

and was reported by this author to feed,<br />

by drilling, on the tellinoidean bivalve<br />

Ervilia castanea Montagu, 1803. Other<br />

naticids have also been reported to occur<br />

in the <strong>Açores</strong> (Table 1), but these are generally<br />

records of empty shells. Euspira<br />

pulchella (Risso, 1826) has been recorded<br />

from the seabed at 2,000 metres depth in<br />

the <strong>Açores</strong> by Ávila et al. (1998). Natica<br />

variabilis Recluz in Reeve, 1855 was<br />

recorded from the offshore sea-bed of São<br />

Miguel by Morton & Britton (1995) and<br />

by Ávila et al. (1998). Natica alderi Forbes,<br />

1838 was recorded from São Jorge by<br />

Morton (1967) and, finally, Ávila et al.<br />

(1998) records Polinices lacteus (Guilding,<br />

1834).<br />

One further point which may have<br />

some bearing on these disparate records<br />

(except for Natica prietoi that, as this study<br />

shows, is numerous on the offshore seabed<br />

at ~ 200 metres depth), is that the<br />

Caribbean species Natica canrena<br />

(Linnaeus, 1758) has been recorded from<br />

the <strong>Açores</strong> by Morton & Britton (1998),<br />

Morton et al. (1998) and Ávila et al. (1998),<br />

an occurrence explained by the former<br />

authors as a chance event resulting from<br />

this species having a teleplanic larva<br />

(Laursen, 1981). The same argument has<br />

been presented for the occasional recorded<br />

occurrence of the North African<br />

Polinices lacteus in the <strong>Açores</strong> (Laursen,<br />

1981; Ávila et al., 1998; Morton et al.,<br />

1998).<br />

Natica prietoi is a small species (~ 10<br />

mm in shell diameter) and was the only<br />

naticid collected along with the samples,<br />

in the same trawls, of Ditrupa arietina<br />

reported upon by Morton & Salvador<br />

(2009) and herein. It seems, therefore,<br />

that Natica prietoi is a plausible candi<strong>da</strong>te<br />

TABLE 1. A species list of Natici<strong>da</strong>e recorded from the <strong>Açores</strong><br />

Species Location References<br />

Natica prietoi Hi<strong>da</strong>lgo, 1873 São Miguel Martins et al., 2009; this study.<br />

Natica dillwinii Payraudeau, 1826 São Miguel Martins et al., 2009.<br />

Natica a<strong>da</strong>nsoni de Blainville, 1825 São Miguel Ávila et al., 1998.<br />

Natica intricata (Donovan, 1804) São Miguel Morton, 1990; Ávila et al., 1998.<br />

Euspira pulchella (Risso, 1826) 2,000 metres Ávila et al., 1998<br />

Natica variabilis Recluz in Reeve, 1855 São Miguel Morton & Britton, 1995; Ávila et al., 1998.<br />

Natica alderi (Forbes, 1838) São Jorge Morton, 1967.<br />

Natica canrena (Linnaeus 1758)<br />

Natica canrena (Linnaeus 1758)<br />

Laursen, 1981; Morton et al., 1998; Ávila et<br />

Polinices lacteus (Guilding, 1834)<br />

Polinices lacteus (Guilding, 1834)<br />

al., 1998; Morton & Britton, 2000.<br />

Laursen, 1981; Ávila et al., 1998; Morton et<br />

al., 1998.


162 AÇOREANA<br />

2009, Sup. 6: 157-165<br />

for the identity of the pre<strong>da</strong>tor responsible<br />

for the holes in D. arietina.<br />

If the above conclusion is correct, this<br />

is the first record of a naticid attacking a<br />

serpulid polychaete. We are aware of<br />

only one other report, by Paine (1963),<br />

who observed a single individual of<br />

Neverita duplicata (Say, 1822) attacking the<br />

sabellid Owenia fusiformis delle Chiaje,<br />

1841.<br />

The incidence of multiple, complete,<br />

drillholes in a small number of tubes is<br />

curious (Fig. 1D). Simultaneous drilling<br />

by multiple individuals, although reported<br />

upon for muricids (Brown &<br />

Alexander, 1994; Taylor & Morton, 1996),<br />

is unlikely in naticids because of the manner<br />

in which such pre<strong>da</strong>tors handle their<br />

prey that is (albeit in other species)<br />

enveloped by the foot of the attacker<br />

which would preclude access by another<br />

would-be pre<strong>da</strong>tor. It is possible, however,<br />

that they represent sequential attacks,<br />

the first two of which were failures<br />

although they were evidently complete,<br />

in the sense that they perforate the full<br />

thickness of the tube, they may have been<br />

non-functional (Kitchell et al., 1986).<br />

Another possibility is that they were<br />

caused by another pre<strong>da</strong>tory taxon and<br />

we do note that the multiple holes illustrated<br />

in Figure 1D are more straightsided<br />

than are most of the others and thus<br />

more like muricid drill holes (Carriker,<br />

1981). Moreover, muricids are known to<br />

feed in clusters of conspecifics and sympatric<br />

species (Abe, 1980; Tong, 1986;<br />

Taylor & Morton, 1996). This raises the<br />

possibility of there being a muricid pre<strong>da</strong>tor<br />

on the offshore seabed that also feeds<br />

on Ditrupa arietina.<br />

Notwithstanding, this study appears<br />

to be the first to record significant drilling<br />

pre<strong>da</strong>tion upon Ditrupa arietina although<br />

Tan & Morton (1998) record the buccinid<br />

Engina armillata aperturally (but never<br />

drilling) attacking cemented serpulids in<br />

Hong Kong. In the <strong>Açores</strong>, the only significant<br />

pre<strong>da</strong>tor captured in the dredges<br />

with D. arietina was the naticid Natica<br />

a<strong>da</strong>nsoni. However, we conclude, in the<br />

light of this study, that further research is<br />

needed to establish the pre<strong>da</strong>tor-prey<br />

relationship(s) on and in the Açorean offshore<br />

seabed.<br />

ACKNOWLEDGEMENTS<br />

The authors are grateful to Prof. A.M.<br />

de Frias Martins, University of the<br />

<strong>Açores</strong>, for organising the workshop at<br />

which this research was undertaken and<br />

for providing the boat facilities allowing<br />

collection of the samples herein reported<br />

upon. Ms. Andreia Salvador (The<br />

Natural History Museum, London) is<br />

thanked for assistance with the sorting of<br />

the samples.<br />

LITERATURE CITED<br />

ABE, N., 1980. Food and feeding habit of<br />

some carnivorous gastropods (preliminary<br />

report). Benthos Research, 19/20:<br />

39-47.<br />

ÁVILA, S.P., J.M.N. AZEVEDO, J.M.<br />

GONÇALVES, J. FONTES & F<br />

CARDIGOS, 1998. Checklist of the<br />

shallow-water marine molluscs of the<br />

Azores: 1 – Pico, Faial, Flores and<br />

Corvo islands. Açoreana, 8(4): 487-523.<br />

BAUMILLER, T.K., 1990. Non-pre<strong>da</strong>tory<br />

drilling of Mississippian crinoids by<br />

platyceratid<br />

gastropods.<br />

Palaeontology, 33: 743-748.<br />

BOLAM, S.G., & T.F. FERNANDES, 2002.<br />

Dense aggregations of tube-building<br />

polychaetes: response to small-scale<br />

disturbances. Journal of Experimental<br />

Marine Biology and Ecology, 269: 197-<br />

222.<br />

BOSENCE, D.W.J., 1979. The factors leading<br />

to aggregation and reef formation<br />

in Serpula vermicularis L. In: LAR-


MORTON & HARPER: DRILLING PREDATION UPON DITRUPA ARIETINA 163<br />

WOOD, G., & B.R. ROSEN (eds.),<br />

Biology and Systematics of Colonial<br />

Organisms, pp. 299–318. Systematics<br />

Association Special Volume No. 11,<br />

Academic Press, London and New<br />

York.<br />

BROMLEY, R.G., 1981. Concepts in ichnotaxonomy<br />

illustrated by small<br />

round holes in shells. Acta Geologica<br />

Hispanica, 16: 55-64.<br />

BROWN, K.M., & J.E. ALEXANDER,<br />

1994. Group foraging in a marine gastropod<br />

pre<strong>da</strong>tor: benefits and costs to<br />

individuals. Marine Ecology Progress<br />

Series, 112: 97-105.<br />

CARRIKER, M.R., 1981. Shell penetration<br />

and feeding by naticacean and muricacean<br />

pre<strong>da</strong>tory gastropods: a synthesis.<br />

Malacologia, 20: 403-422.<br />

GOSS-CUSTARD, J.D., 1975. Beach Feast.<br />

Birds, September/October: 23-26.<br />

GRÉMARE, A., J.-M. AMOUROUX & G.<br />

VÉTION, 1984a. Long term comparison<br />

of macrobenthos within the soft<br />

bottoms of the bay of Banyuls-sur-<br />

Mer (North-west Mediterranean Sea).<br />

Netherlands Journal of Sea Research, 40:<br />

281-302.<br />

GRÉMARE, A., R. SARDÁ, L.<br />

MEDERNACH, E. JORDANA, S.<br />

PINEDO, J.-M. AMOUROUX, D.<br />

MARTIN, C. NOZAIS & F.<br />

CHARLES, 1984b. On the dramatic<br />

increase of Ditrupa arietina (O.F.<br />

Müller) (Anneli<strong>da</strong>: Polychaeta) along<br />

both the French and Spanish Catalan<br />

coasts. Estuarine, Coastal and Shelf<br />

Science, 47: 447-457.<br />

GUBBIOLI, F., & I. NOFRONI, 1998. On<br />

the specific distinction between Natica<br />

a<strong>da</strong>nsoni Blainville, 1825 and Natica<br />

prietoi Hi<strong>da</strong>lgo, 1873 (Discopo<strong>da</strong>:<br />

Natici<strong>da</strong>e). La Conchiglia, Roma,<br />

30(289): 21-22.<br />

HARPER, E.M., 2003. Assessing the<br />

importance of drilling pre<strong>da</strong>tion over<br />

the Palaeozoic and Mesozoic.<br />

Palaeogeography, Palaeoclimatology,<br />

Palaeoecology, 210: 185-198.<br />

KABAT, A.R., 1990. Pre<strong>da</strong>tory ecology of<br />

naticid gastropods with a review of<br />

shell boring. Malacologia, 32: 155-193.<br />

KITCHELL, J.A., C.H. BOGGS, J.A. RICE,<br />

J.F. KITCHELL, A. HOFFMAN & A.<br />

MARTINELL, 1986. Anomalies in<br />

naticid pre<strong>da</strong>tory behavior: a critique<br />

and experimental observations.<br />

Malacologia, 27: 291-298.<br />

KOWALEWSKI, M., 2002. The fossil<br />

record of pre<strong>da</strong>tion: an overview of<br />

analytical methods. In: KOWALEWS-<br />

KI, M. & P.H. KELLEY (eds.), The fossil<br />

record of pre<strong>da</strong>tion. Paleontological Society<br />

Special Papers. Volume 8, pp. 3-42. Yale<br />

Printing Services, New Haven, CT.<br />

LABRUNE, C., A. GRÉMARE, J.-M.<br />

AMOUROUX, R SARDÁ, J. GIL & S.<br />

TABOADA, 2007. Assessment of softbottom<br />

polychaete assemblages in the<br />

Gulf of Lions (NW Mediterranean)<br />

based on a mesoscale survey.<br />

Estuarine, Coastal and Shelf Science, 71:<br />

133-147.<br />

LAURSEN, D., 1981. Taxonomy and distribution<br />

of teleplanic prosobranch larvae<br />

in the North Atlantic. Dana Report,<br />

89: 1-43 + plates I-III.<br />

MARTINS, A.M.F, S.P. ÁVILA, J.P.<br />

BORGES, A.C. COSTA, P. MADEIRA &<br />

B. MORTON, 2008. Illustrated checklist<br />

of the infralittoral molluscs off Vila<br />

Franca do Campo. In: MARTINS,<br />

A.M.F. (ed.), The Marine Fauna and Flora<br />

of the Azores (Proceedings of the Third<br />

International Workshop of Malacology and<br />

Marine Biology, São Miguel, 2006).<br />

Açoreana, Supplement 6: 15-103.<br />

MORTON, B., 1967. Malacological Report.<br />

In: Final Report, Chelsea College Azores<br />

Expedition, 1965, pp. 30-39. Unversity of<br />

London, London<br />

MORTON, B., 1990. The biology and functional<br />

morphology of Ervilia castanea<br />

(Bivalvia: Tellinacea) from the Azores.


164 AÇOREANA<br />

2009, Sup. 6: 157-165<br />

In: MARTINS, A.M.F. (ed.), The Marine<br />

Fauna and Flora of the Azores<br />

(Proceedings of the First International<br />

Workshop of Malacology, São Miguel,<br />

1988). Açoreana, Supplement 1990: 75-<br />

96.<br />

MORTON, B., & J.C. BRITTON, 1995.<br />

Partitioning of shell resources by<br />

Aspi<strong>dos</strong>iphon muelleri (Sipuncula) and<br />

Anapagurus laevis (Crustacea) in the<br />

Azores. In: MARTINS, A.M.F. (ed.),<br />

The Marine Fauna and Flora of the Azores<br />

(Proceedings of the Second International<br />

Workshop of Malacology and Marine<br />

Biology, São Miguel, 1991). Açoreana,<br />

Supplement 1995: 66-67.<br />

MORTON, B., & J.C. BRITTON, 2000.<br />

Origins of the Açorean interti<strong>da</strong>l biota:<br />

the significance of introduced species,<br />

survivors of chance events. Arquipélago<br />

(Life and Marine Science), Supplement<br />

2 (Part A): 29-51.<br />

MORTON, B., & A. SALVADOR, 2008. The<br />

biology of the subtial polychate<br />

Ditrupa arietina (Serpuli<strong>da</strong>e) in the<br />

Azores and a description of the life history<br />

of its tube. In: MARTINS, A.M.F.<br />

(ed.), The Marine Fauna and Flora of the<br />

Azores (Proceedings of the Third<br />

International Workshop of Malacology and<br />

Marine Biology, São Miguel, 2006).<br />

Açoreana, Supplement 6: 145-156.<br />

MORTON, B., J.C. BRITTON & A.M.<br />

FRIAS MARTINS, 1998. Coastal<br />

Ecology of the <strong>Açores</strong>, i-viii + 249 pp.<br />

Socie<strong>da</strong>de Afonso Chaves, Ponta<br />

Delga<strong>da</strong>, São Miguel.<br />

PAINE, R.T., 1963. Trophic relationships of<br />

8 sympatric pre<strong>da</strong>tory gastropods.<br />

Ecology, 49: 63-73.<br />

PEARCE, J.B., & G. THORSON, 1967. The<br />

feeding and reproductive biology of<br />

the red whelk, Neptunea antiqua (L.)<br />

(Gastropo<strong>da</strong>, Prosobranchia). Ophelia,<br />

4: 277-314.<br />

POLOCZANSKA, E.S., D.J. HUGHES &<br />

M.T. BURROWS, 2004. Underwater<br />

television observations of Serpula vermicularis<br />

(L.) reefs and associated<br />

mobile fauna in Loch Creran,<br />

Scotland. Estuarine, Coastal and Shelf<br />

Science, 61: 425-435.<br />

PONDER, W.F., & J.D. TAYLOR, 1992.<br />

Pre<strong>da</strong>tory shell drilling by two species<br />

of Austroginella (Gastropo<strong>da</strong>:<br />

Marginelli<strong>da</strong>e). Journal of Zoology, 228:<br />

317-328.<br />

SHIMEK, R.L., 1984. The diets of Alaskan<br />

Neptunea. Veliger, 26: 274-281.<br />

TAN, K.S., & B. MORTON, 1998. The<br />

ecology of Engina armillata<br />

(Gastropo<strong>da</strong>: Buccini<strong>da</strong>e) in the Cape<br />

d’Aguilar Marine Reserve, Hong<br />

Kong, with particular reference to its<br />

preferred prey (Polychaeta:<br />

Serpuli<strong>da</strong>e). Journal of Zoology,<br />

London, 244: 391-403.<br />

TAYLOR, J.D., 1978a. Habitats and diets<br />

of pre<strong>da</strong>tory gastropods at Addu<br />

Atoll, Maldives. Journal of<br />

Experimental Marine Biology and<br />

Ecology, 31: 83-103.<br />

TAYLOR, J.D., 1978b. The diet of<br />

Buccinum un<strong>da</strong>tum and Neptunea antiqua<br />

(Gastropo<strong>da</strong>: Buccini<strong>da</strong>e). Journal<br />

of Conchology. 29: 309-318.<br />

TAYLOR, J.D., 1980. Diets and habitats of<br />

shallow water pre<strong>da</strong>tory gastropods<br />

around Tolo Channel, Hong Kong. In:<br />

MORTON, B. (Ed.). The Malacofauna of<br />

Hong Kong and Southern China.<br />

Proceedings of the First International<br />

Workshop on the Malacofauna of Hong<br />

Kong and Southern China: Hong Kong<br />

1977, pp. 163-180. Hong Kong<br />

University Press, Hong Kong.<br />

TAYLOR, J.D., & A. LEWIS, 1995. Diet<br />

and radular morphology of Peristernia<br />

and Latirolagena (Gastropo<strong>da</strong>:<br />

Fasciolarii<strong>da</strong>e) from Indo-Pacific coral<br />

reefs. Journal of Natural History, 29:<br />

1143-1154.<br />

TAYLOR, J.D., & B. MORTON, 1996. The<br />

diets of pre<strong>da</strong>tory gastropods in the


MORTON & HARPER: DRILLING PREDATION UPON DITRUPA ARIETINA 165<br />

Cape d’Aguilar Marine Reserve,<br />

Hong Kong. Asian Marine Biology, 13:<br />

141-165.<br />

TAYLOR, J.D., N.J. MORRIS & C.N. TAY-<br />

LOR, 1980. Food specialization and<br />

the evolution of pre<strong>da</strong>tory marine<br />

gastropods. Palaeontology, 23: 375-409.<br />

THOMAS, R.D.K., 1976. Gastropod pre<strong>da</strong>tion<br />

on sympatric Neogene species<br />

of Glycymeris glycymeris (Bivalvia)<br />

from the Eastern United States.<br />

Journal of Paleontology, 50: 488-499.<br />

TONG, L.K.Y., 1986. The feeding ecology<br />

of Thais clavigera and Morula musiva<br />

(Gastropo<strong>da</strong>: Murici<strong>da</strong>e) in Hong<br />

Kong. Asian Marine Biology, 3: 163-<br />

178.<br />

VERSTRAETEN, J., & F. NOLF, 2004.<br />

Natica a<strong>da</strong>nsoni de Blainville, 1825 and<br />

Natica prietoi Hi<strong>da</strong>lgo, 1873: two similar<br />

but yet different species<br />

(Gastropo<strong>da</strong>: Naticoidea: Natici<strong>da</strong>e).<br />

Neptunea, 3: 13-28.<br />

WITMAN, J.D., & R.A. COOPER, 1983.<br />

Disturbance and contrasting patterns<br />

of population structure in the brachiopod<br />

Terebratulina septentrionalis<br />

(Couthouy) from two subti<strong>da</strong>l habitats.<br />

Journal of Experimental Marine<br />

Biology and Ecology, 73: 57-79.<br />

YOUNG, D.K., 1969. Oka<strong>da</strong>ia elegans, a<br />

tube-boring nudibranch mollusc from<br />

the Central and West Pacific.<br />

American Zoologist, 9: 903-907.


AÇOREANA, Suplemento 6, Setembro 2009: 167-182<br />

THE PYCNOGONIDS (ARTHROPODA: PYCNOGONIDA) OF SÃO MIGUEL,<br />

AZORES, WITH DESCRIPTION OF A NEW SPECIES OF ANOPLODACTYLUS<br />

WILSON, 1878 (PHOXICHILIDIIDAE)<br />

Roger N. Bamber 1 & Ana Cristina Costa 2<br />

1<br />

The Natural History Museum, Cromwell Road, London SW7 5BD, U.K.<br />

e-mail: roger.bamber@artoo.co.uk<br />

2<br />

CIBIO-Pólo <strong>Açores</strong>, Department of Biology, University of the Azores, 9501-801 Ponta Delga<strong>da</strong>, São Miguel, Azores, Portugal<br />

ABSTRACT<br />

During the Third International Workshop of Malacology and Marine Biology in São<br />

Miguel, Azores, in July 2006, sampling of algae, and of the littoral and sublittoral benthos<br />

was undertaken in order to characterize the smaller marine arthropod fauna of this region,<br />

including pycnogonids. In the event, 50 specimens of Pycnogoni<strong>da</strong>, representing six<br />

species and including a new species of Anoplo<strong>da</strong>ctylus, were collected. In addition, previous<br />

pycnogonid material collected around São Miguel in 1996 and 1997 was analyzed,<br />

from 112 samples of which a further 3705 pycnogonid specimens were identified, representing<br />

eight species, three additional to the above six. All of this material is described<br />

below. The zoogeography of the fifteen species now recorded from the Azores is analyzed,<br />

and the likely origins of the Azorean pycnogonid fauna are discussed.<br />

RESUMO<br />

Durante o 3º Workshop Internacional de Malacologia e Biologia Marinha em São<br />

Miguel, <strong>Açores</strong>, em Julho de 2006, realizaram-se amostragens de algas e o bentos do litoral<br />

e sublitoral com vista a caracterizar a fauna de artrópodes marinhos de reduzi<strong>da</strong>s<br />

dimensões <strong>da</strong> região, incluindo picnogonídeos. Na ocasião foram recolhi<strong>dos</strong> 50<br />

exemplares de Pycnogoni<strong>da</strong>, representando seis espécies e incluindo uma nova espécie de<br />

Anoplo<strong>da</strong>ctylus. Para além disso, analisou-se material de picnogonídeos, previamente<br />

recolhido em São Miguel em 1996 e 1997, de 112 amostragens <strong>da</strong>s quais mais 3705<br />

espécimes de picnogonídeos foram identifica<strong>dos</strong>, representando oito espécies, três <strong>da</strong>s<br />

quais para além <strong>da</strong>s seis atrás referi<strong>da</strong>s. Todo este material é descrito em segui<strong>da</strong>.<br />

Analisa-se a zoogeografia <strong>da</strong>s quinze espécies agora regista<strong>da</strong>s para os <strong>Açores</strong> e discutese<br />

a provável origem <strong>da</strong> fauna de picnogonídeos Açorianos.<br />

INTRODUCTION<br />

Pycnogonids are a group of the arthropods<br />

with minimal dispersive ability<br />

(Bamber, 1998); the larvae are not planktonic,<br />

and there are only limited examples<br />

of adults swimming, and then not as a<br />

directional migratory movement (Arnaud<br />

& Bamber, 1987). A few genera, such as<br />

the deep-water (Bathypallenopsis) and the<br />

generally shallow-water Anoplo<strong>da</strong>ctylus,<br />

are known to live upon medusae, and<br />

thus obtain passive dispersion in the<br />

plankton (Lebour, 1916; Arnaud &<br />

Bamber, 1987; Bamber, 2002). Some<br />

species are known to have spread in fouling<br />

communities on ship’s hulls (Krapp &<br />

Sconfietti, 1983; Bamber, 1985).<br />

The Azores are a group of islands<br />

somewhat isolated in the north-east<br />

Atlantic, lying adjacent to the Mid-<br />

Atlantic Ridge some 1600 km west of<br />

Portugal and 1730 km southeast of<br />

Newfoundland. The main surface water<br />

currents reaching the archipelago bring<br />

waters from two directions: the Azores<br />

drift, a diffuse southerly arm of the Gulf<br />

Stream breaking off from the North


168 AÇOREANA<br />

2009, Sup. 6: 167-182<br />

Atlantic Drift supplies water from the<br />

Americas, while the somewhat less-significant<br />

western eddies of the Canary<br />

Current bring waters from Spain and<br />

North Africa; below these, the midwater<br />

current brings warm, hyperhaline water<br />

from the Mediterranean outflow (Morton<br />

et al., 1998; Gofas, 1990). For the passively-dispersing<br />

Pycnogoni<strong>da</strong>, therefore, it is<br />

of some interest to determine the suite of<br />

species which has colonized this archipelago,<br />

and their provenance.<br />

The only previous specific study of<br />

the Pycnogoni<strong>da</strong> of the Azores was that<br />

reported by Arnaud (1974), who recorded<br />

ten species from shallow waters, including<br />

the discovery of the currently<br />

Azorean-endemic Achelia anomala, as well<br />

as four species from waters of >500 m<br />

depth. Other previous records of pycnogonids<br />

in the Azores were noted by<br />

Loman (1912), Bouvier (1917), Arnaud<br />

(1978), Stock (1971; 1990) and Bamber<br />

(2002), although a number of these were<br />

from abyssal depths. Munilla & Sanchez<br />

(1988) reported on pycnogonids from the<br />

Canary Islands.<br />

The twelve species recorded previously<br />

in litt. from the Azores, from depths<br />

shallower than 100 m, are:<br />

Family Ammothei<strong>da</strong>e:<br />

Achelia anomala Arnaud, 1974 (currently<br />

endemic);<br />

A. echinata Hodge, 1864;<br />

Tanystylum orbiculare Wilson, 1878.<br />

Family Phoxichilidii<strong>da</strong>e:<br />

Anoplo<strong>da</strong>ctylus angulatus (Dohrn 1881);<br />

A. maritimus Hodgson, 1915;<br />

A. petiolatus (Kroyer, 1844);<br />

A. pygmaeus (Hodge, 1864).<br />

Family Callipalleni<strong>da</strong>e:<br />

Callipallene emaciata (Dohrn, 1881)<br />

Family Endei<strong>da</strong>e:<br />

Endeis spinosa (Montagu, 1808);<br />

E. straughani Clark, 1970 (see Stock,<br />

1990; an Australian species, possibly<br />

a misidentification, or an<br />

immigrant via ships’-hull-fouling,<br />

see Bamber, 1979 [as E. picta])<br />

Family Rhynchothoraci<strong>da</strong>e:<br />

Rhynchothorax philopsammum Hedgpeth,<br />

1951;<br />

R. monnioti Arnaud 1974.<br />

No members of the speciose family<br />

Nymphoni<strong>da</strong>e have yet been recorded.<br />

During the Third International<br />

Workshop of Malacology and Marine<br />

Biology at Vila Franca do Campo, on the<br />

island of São Miguel, Azores, in July 2006,<br />

sampling of the littoral and sublittoral<br />

benthos around São Miguel was undertaken<br />

in order to characterize the smaller<br />

marine arthropod fauna of this region,<br />

including pycnogonids. In the event, 50<br />

specimens representing six species, one<br />

new to science, were collected. In addition,<br />

a previous collection from around<br />

the island was made available, from 112<br />

samples from which a further 3705 pycnogonid<br />

specimens were identified, representing<br />

eight species, three additional<br />

to the above six. All of this material is<br />

described below.<br />

MATERIAL AND METHODS<br />

The present material comes from two<br />

sources. During the Workshop at Vila<br />

Franca do Campo in July 2006, a number<br />

of littoral and infralittoral habitats on the<br />

island of São Miguel were sampled for<br />

pycnogonids, including crevice habitats,<br />

macroalgae and soft sediments. The principal<br />

sampling areas were the littoral sediments,<br />

rocks and algae below the Clube<br />

Naval building (the old Vila Franca do<br />

Campo abattoir); the sediments and algae<br />

within the flooded crater of the Ilhéu de<br />

Vila Franca; and the soft sediments off<br />

Vila Franca do Campo (ca N37° 43’ W<br />

25°25’), from 12 to 200 m depth. Offshore<br />

sediments were sampled using a 0.025 m 2


BAMBER & COSTA: PYCNOGONIDS FROM SÃO MIGUEL 169<br />

van Veen grab and various dredges. All<br />

samples were washed through a 0.5 mm<br />

mesh sieve, and specimens sorted alive.<br />

Some of these specimens were fixed in<br />

absolute ethanol to allow DNA analysis.<br />

Extensive material collected in 1996<br />

and 1997, from infralittoral rocky-substratum<br />

sites around São Miguel, was also<br />

analysed in detail. Replicate samples of<br />

algae (Stypocaulon scoparia, Halopteris filicina<br />

and Zonaria tournefortii) were collected<br />

by SCUBA diving at depths from between<br />

5 and 16 m. Details of the sampling and<br />

protocols are given by Costa & Ávila<br />

(2001). The sampling sites, anti-clockwise<br />

around the Island from the north-west,<br />

were Mosteiros, Ponta <strong>da</strong> Ferraria, Santa<br />

Clara , Pesqueiro, Emissário, Sinaga,<br />

Atalha<strong>da</strong>, Ribeira <strong>da</strong> Praia, Caloura, Porto<br />

de Vila Franca do Campo, Ilhéu de Vila<br />

Franca, Ribeira Quente, Faial <strong>da</strong> Terra,<br />

Nordeste, Porto Formoso, Ladeira de<br />

Velha, Ribeirinha, Lactoaçoreana, Cofaco<br />

and São Vicente. These sites variously<br />

represented exposed and sheltered<br />

shores, undisturbed, naturally disturbed<br />

(near shallow-water vent sites or stream<br />

mouths) and polluted shores.<br />

Voucher and type-material has been<br />

lodged in the collections of The Natural<br />

History Museum, London (NHM). The<br />

higher taxonomy is based on Arnaud &<br />

Bamber (1987). All measurements are<br />

axial, measured dorsally for the trunk<br />

and proboscis (trunk length being from<br />

the anterior margin of the cephalon to the<br />

posterior margin of the fourth lateral<br />

processes), laterally for oviger and legs.<br />

SYSTEMATICS<br />

Family Ammothei<strong>da</strong>e Dohrn, 1881<br />

Achelia echinata Hodge, 1864<br />

Figure 1A<br />

Material: 1 male, 2 females, 1 subadult,<br />

WVF011, northeastern side of Ilhéu de<br />

Vila Franca do Campo, 16 m, scuba dive<br />

collection by Gonçalo Calado, José Pedro<br />

Borges, Joana Xavier, Paola Rachello,<br />

Patrícia Madeira, 20 July 2006. 3 males, 4<br />

females, 2 subadults, WVF040, off Amora,<br />

Ponta Garça, São Miguel, Azores, N37°<br />

42’ 720” W25° 21’ 554”, 37.8 m depth,<br />

small dredge sample, 26 July 2006, coll.<br />

António de Frias Martins & Jerry<br />

Harasewych. 1 female, 1 subadult, littoral<br />

rock scrape, Vila Franca do Campo<br />

marina, 19 July 2006, coll. Kathe Jensen. 1<br />

male with eggs, Isl. 24.5, mid-lagoon<br />

algae, within the flooded crater of the<br />

Ilhéu de Vila Franca, 24 July 2006, coll. A.<br />

Salvador, R. Robbins & R.B.<br />

12 specimens, Mosteiros, 8 November<br />

1996; 139 specimens, Mosteiros, 17 June<br />

1997; 41 specimens, Ponta <strong>da</strong> Ferraria, 17<br />

June 1997; 53 specimens, Santa Clara, 7<br />

November 1996; 201 specimens, Santa<br />

Clara, 12 June 1997; 20 specimens,<br />

Pesqueiro, 7 November 1997; 21<br />

specimens, Emissário, 2 November 1996;<br />

237 specimens, Emissário, 12 June 1997;<br />

37 specimens, Sinaga, 30 May 1997; 1<br />

specimen, Atalha<strong>da</strong>, 25 October 1996; 246<br />

specimens, Atalha<strong>da</strong>, 30 May 1997; 32<br />

specimens, Ribeira <strong>da</strong> Praia, 25 October<br />

1996; 70 specimens, Ribeira <strong>da</strong> Praia, 16<br />

June 1997; 61 specimens, Caloura, 14<br />

October 1996; 119 specimens, Caloura, 26<br />

June 1997; 48 specimens, Porto de Vila<br />

Franca do Campo, 9 May 1997; 8<br />

specimens, Ilhéu de Vila Franca do<br />

Campo, 24 October 1996; 47 specimens,<br />

Ilhéu de Vila Franca do Campo, 16 June<br />

1997; 44 specimens, Ribeira Quente, 18<br />

June 1997; 5 specimens, Faial <strong>da</strong> Terra, 17<br />

October 1996; 59 specimens, Faial <strong>da</strong><br />

Terra, 30 May 1997; 19 specimens,<br />

Nordeste, 21 November 1966; 143<br />

specimens, Nordeste, 2 May 1997; 36<br />

specimens, Porto Formoso, 30 October<br />

1996; 140 specimens, Porto Formoso, 19<br />

June 1997; 13 specimens, Ladeira <strong>da</strong><br />

Velha, 19 June 1997; 16 specimens,<br />

Ribeirinha, 8 October 1996; 140


170 AÇOREANA<br />

2009, Sup. 6: 167-182<br />

specimens, Ribeirinha, 25 June 1997; 10<br />

specimens, Lactoaçoreana, 14 October<br />

1996; 76 specimens, Lactoaçoreana, 25<br />

June 1997; 5 specimens, Cofaco, 25 June<br />

1997; 13 specimens, São Vicente, 7<br />

October 1996; 18 specimens, São Vicente,<br />

6 May 1997; all coll. João Brum & A.C.C.<br />

Remarks: with a total of 2146 specimens<br />

from 110 samples listed above, Achelia<br />

echinata is easily the commonest shallowwater<br />

pycnogonid in the Azores (occurring,<br />

for example, at every sampling site<br />

in 1996 and 1997). In the light of the<br />

potential for cryptic sibling species in this<br />

taxon, specimens collected in alcohol<br />

were analysed for their 16s DNA to compare<br />

with specimens from England which<br />

had already been analysed as part of a<br />

larger project (Bamber et al., in prep.) and<br />

showed 100% agreement. All the<br />

Azorean material was collected in association<br />

with algae, on which, inter alia, this<br />

species is known to feed (Bamber &<br />

Davis, 1982).<br />

Ammothella longipes (Hodge, 1864)<br />

Figure 1B<br />

Ammothoa longipes Hodge, 1864<br />

Achelia longipes sens. auctt.;<br />

Achelia magnirostris (Dohrn, 1881)<br />

Material: 1 specimen, Atalha<strong>da</strong>, 30 May<br />

1997; 1 specimen, Ribeira <strong>da</strong> Praia, 16<br />

June 1997; 16 specimens, Porto de Vila<br />

Franca do Campo, 9 May 1997; 6<br />

specimens, Ribeira Quente, 18 June 1997;<br />

31 specimens, Lactoaçoreana, 25 June<br />

1997; all coll. João Brum & A.C.C.<br />

Remarks: This species has been recorded<br />

from the Atlantic coasts of Europe<br />

(England being the type-locality), the<br />

Mediterranean and North Africa, as well<br />

as the Canaries (Sanchez & Munilla,<br />

1989), but had not been recorded previously<br />

from the Azores. It is readily distinguished<br />

from sympatric Achelia echinata<br />

by the fleshy, glabrous dorsodistal<br />

tubercles on the lateral processes, the lack<br />

of spinose tubercles on the lateral<br />

processes and coxae, and in having nine<br />

palp articles (A. echinata having eight).<br />

Family Phoxichilidii<strong>da</strong>e Sars, 1891<br />

Anoplo<strong>da</strong>ctylus amora sp. nov.<br />

Figure 2.<br />

Material: 1 male, holotype<br />

(NHM.2007.416), 1 male, 1 subadult<br />

female, paratypes (NHM.2007.417-418),<br />

VWF040, off Amora, Ponta Garça, São<br />

Miguel, Azores, N37° 42’ 720” W25° 21’<br />

554”, 37.8 m depth, small dredge sample,<br />

26 July 2006, coll. António de Frias<br />

Martins & Jerry Harasewych; 1 subadult<br />

male, Vila Franca do Campo marina, São<br />

Miguel, Azores, littoral rock scraping, 19<br />

July 2006, coll. Kathe Jensen.<br />

2 males, paratypes (NHM.2007.419-<br />

420), Caloura, 26 June 1997; 1 male,<br />

paratype (NHM.2007.421), Ilhéu de Vila<br />

Franca do Campo, 16 June 1997; 1<br />

subadult male, 1 female, paratypes<br />

(NHM.2007.422-423), Faial <strong>da</strong> Terra, 30<br />

May 1997; all coll. João Brum & A.C.C.<br />

Description of male: habitus typical of the A.<br />

petiolatus form, trunk (Figure 2A, B) almost<br />

glabrous, with segment articulations<br />

between cephalon, trunk segment two and<br />

trunk segment three. Cephalon overhanging<br />

proboscis base to half proboscis length,<br />

lateral anterior margin with slight shoulders<br />

bearing short seta; dome-shaped ocular<br />

tubercle slightly taller than wide, without<br />

distal tubercle, with four pigmented eyes<br />

and laterodistal sensory pit; oviger attachment<br />

on mid-ventral surface of first lateral<br />

process. Lateral processes shorter than segment<br />

width, separated by less than their<br />

own diameter, with simple anterodistal seta<br />

and very small dorsodistal tubercle (little<br />

more than a swelling). Abdomen simple,<br />

sub-clavate, angled upward at about 45º,<br />

exceeding distal edge of coxa 1 of leg 4, sub-


BAMBER & COSTA: PYCNOGONIDS FROM SÃO MIGUEL 171<br />

FIGURE 1. A, Achelia echinata, entire, dorsal (modified after Sars, 1893); B, Ammothoella longipes,<br />

entire, dorsal.


172 AÇOREANA<br />

2009, Sup. 6: 167-182<br />

distally bearing pair of lateroventral spines<br />

and single mid-dorsal spine.<br />

Proboscis stout, parallel-sided, one-third<br />

as long as trunk.<br />

Chelifore (Figure 2C) scape of one article,<br />

slender, with sparse dorsal and distal<br />

setae; chela compact, fingers just shorter<br />

than palm, palm and moveable finger<br />

setose, cutting edges naked. Palp absent.<br />

Oviger (Figure 2D) of six articles, proximal<br />

article short, compact; article 2 (O2)<br />

three times as long as wide, with single dor-<br />

FIGURE 2. Anoplo<strong>da</strong>ctylus amora sp. nov., male holotype, A, lateral and B, dorsal; C, right chelifore; D, left<br />

oviger; E, third left leg; F, detail of distal articles of third leg; G, coxa 2 and femur of male A. petiolatus.<br />

Scale line = 1 mm for A and B, 0.4 mm for C and D, 0.8 mm for E, 0.3 mm for F, 0.5 mm for G.


BAMBER & COSTA: PYCNOGONIDS FROM SÃO MIGUEL 173<br />

sal and ventral setae; O3 longest, 2.3 times<br />

length of O2, slender, with sparse dorsal and<br />

ventral setae; O4 just shorter than O2,<br />

curved, with dorsodistal setae; O5 0.6<br />

times as long as O4, with numerous setae<br />

pointing proximally; O6 compact, acornshaped,<br />

half length of O5, with outer and<br />

ventral setae pointing proximally.<br />

Third leg (Figure 2E) elongate, not<br />

slender. Coxa 1 compact, with sparse distal<br />

setae, without dorsal tubercle; coxa 2<br />

almost three-times as long as coxa 1, 2.5<br />

times as long as wide, with pronounced<br />

ventrodistal genital spur; coxa 3 just more<br />

than half length of coxa 2. Femur stout,<br />

less than four times as long as wide, twice<br />

as long as coxa 2, setose, without conspicuous<br />

dorsodistal spur; cement-gland tube<br />

externally very short, arising at 0.6 the<br />

length of the femur, extending subcutaneously<br />

half way to proximal end of<br />

femur. Tibia 1 shorter than femur (0.9<br />

times femur length), setose as figured;<br />

tibia 2 five times as long as wide, as long<br />

as femur, more densely setose, longest<br />

dorsodistal seta not on a spur. Tarsus<br />

small, triangular, with numerous ventral<br />

and single dorsal setae. Propodus (Figure<br />

2F) with distinct heel, with two large<br />

proximal and five slender distal heel<br />

spines; sole with row of seven simple submarginal<br />

setae in distal two-thirds, seven<br />

short, recurved marginal spines and distal<br />

lamina for 30% of sole length. Main<br />

claw two-thirds as long as propodus, auxiliary<br />

claws small, lateral, slender, 0.15<br />

times length of main claw.<br />

Description of female: generally as male,<br />

but ovigerous legs absent, femur swollen;<br />

no ventral tubercles on proboscis.<br />

Measurements of holotype male (mm). –<br />

Trunk length: 1.91; trunk segment 2<br />

length: 0.29; width across 2nd lateral<br />

processes: 0.99; abdomen length: 0.42;<br />

proboscis length: 0.53.<br />

Lengths of oviger articles 1 to 6<br />

respectively: 0.13; 0.31; 0.73; 0.27; 0.17;<br />

0.09.<br />

Fourth leg, lengths of coxa 1: 0.24;<br />

coxa 2: 0.69; coxa 3: 0.38; femur: 1.40<br />

(width 0.36); tibia 1: 1.23; tibia 2: 1.40<br />

(width 0.28); tarsus: 0.12; propodus: 0.55;<br />

main claw: 0.37; auxiliary claw: 0.06.<br />

Etymology: named after the location on<br />

São Miguel off which the type-locality<br />

lies.<br />

Remarks: there are two previously<br />

described species of Anoplo<strong>da</strong>ctylus which<br />

have a subcutaneous proximal extension<br />

of the cement gland tube, viz. A. erectus<br />

Cole, 1904 from the Pacific (the Americas<br />

from Chile to British Columbia, Hawaii,<br />

Polynesia, Japan, Korea and Hong Kong)<br />

at depths of 0 to 90 m, and A. amoybios<br />

Bamber, 2004 from Atlantic Equatorial<br />

Africa (Gabon and Equatorial Guinea) at<br />

depths of 36 to 63 m (see Stock, 1955;<br />

Müller, 1990; Bamber, 2004). Both of these<br />

species also share the characters of a sixarticled<br />

ovigerous leg, the ocular tubercle<br />

overhanging the proboscis, small auxiliary<br />

claws and a propo<strong>da</strong>l lamina. A.<br />

amoybios, the only other Atlantic species,<br />

is immediately distinct in having dorsodistal<br />

tubercles on coxa 1 of all legs. A.<br />

erectus normally has conspicuous dorsodistal<br />

tubercles on the lateral processes,<br />

unlike the present species. In addition, A.<br />

erectus is conspicuously more slender<br />

than A. amora sp. nov, femur and tibia 2<br />

length:width ratios being 5.3 and 7.7<br />

respectively (3.9 and 5 respectively in A.<br />

amora), and the width across trunk segment<br />

2 is four times the length of the segment<br />

(


174 AÇOREANA<br />

2009, Sup. 6: 167-182<br />

(Krøyer, 1844) from the Azores, at depths<br />

between 1 and 30 m; that species is readily<br />

distinguished from A. amora by its<br />

cement gland configuration (without subcutaneous<br />

extension, see Figure 2G).<br />

Anoplo<strong>da</strong>ctylus angulatus (Dohrn, 1881)<br />

Figure 3A to C<br />

Material: 1 female, WVF011, northeastern<br />

side of Ilhéu de Vila Franca do Campo, 16<br />

m, scuba dive collection by Gonçalo<br />

Calado, José Pedro Borges, Joana Xavier,<br />

Paola Rachello, Patrícia Madeira, 20 July<br />

2006.1 male, 3 females, 1 subadult, Isl.<br />

24.4, attached littoral algae, south wall<br />

within the flooded crater of the Ilhéu de<br />

Vila Franca, 24 July 2006, coll. A.<br />

Salvador, R. Robbins & R.B.; 2 males with<br />

eggs, 1 male, 4 females, 2 subadults, Isl.<br />

24.5, mid-lagoon algae, within the flooded<br />

crater of the Ilhéu de Vila Franca, 24<br />

July 2006, coll. A. Salvador, R. Robbins &<br />

R.B.<br />

1 specimen, Mosteiros, 8 November<br />

1996; 2 specimens, Mosteiros, 17 June<br />

1997; 1 specimen, Santa Clara, 7<br />

November 1996 ; 3 specimens, Santa<br />

Clara, 12 June 1997; 12 specimens,<br />

Pesqueiro, 7 November 1997; 2<br />

specimens, Emissário, 2 November 1996;<br />

24 specimens, Emissário, 12 June 1997; 4<br />

specimens, Sinaga, 30 May 1997; 25<br />

specimens, Atalha<strong>da</strong>, 30 May 1997; 1<br />

specimen, Ribeira <strong>da</strong> Praia, 25 October<br />

1996; 5 specimens, Ribeira <strong>da</strong> Praia, 16<br />

June 1997; 7 specimens, Caloura, 26 June<br />

1997; 6 specimens, Porto de Vila Franca<br />

do Campo, 9 May 1997; 2 specimens,<br />

Ribeira Quente, 18 June 1997; 10<br />

specimens, Nordeste, 2 May 1997; 1<br />

specimen, Porto Formoso, 30 October<br />

1996; 3 specimens, Porto Formoso, 19 June<br />

1997; 4 specimens, Ladeira <strong>da</strong> Velha, 19<br />

June 1997; 10 specimens, Ribeirinha, 25<br />

June 1997; 1 specimen, Cofaco, 25 June<br />

1997;2 specimens, São Vicente, 6 May<br />

1997; all coll. João Brum & A.C.C.<br />

Remarks: the commonest species of<br />

Anoplo<strong>da</strong>ctylus in the Azores, A. angulatus<br />

is also known from the Mediterranean,<br />

the Atlantic coasts of Northern Europe<br />

and North Africa (Morocco), as well as<br />

the Canary Islands. It is an algal-associated<br />

species without a conspicuous overhang<br />

of the anterior of the cephalon, and<br />

distinguished from sympatric specimens<br />

of A. virescens (also occurring in algae) by<br />

the marked angular distal corners of the<br />

proboscis (Figure 3B).<br />

Anoplo<strong>da</strong>ctylus maritimus Hodgson, 1915<br />

Figure 3D<br />

Incl. A. parvus Giltay, 1934; non-A. parvum<br />

(Hilton, 1942) = A. hokkaidoensis (Utinomi,<br />

1954).<br />

Material: 1 specimen, Emissário, 12 June<br />

1997; 2 specimens, Caloura, 26 June 1997;<br />

15 specimens, Porto de Vila Franca do<br />

Campo, 9 May 1997; 1 specimen, Ilhéu de<br />

Vila Franca do Campo, 24 October 1996; 2<br />

specimens, Ilhéu de Vila Franca do<br />

Campo, 16 June 1997; 10 specimens,<br />

Lactoaçoreana, 25 June 1997; all coll. João<br />

Brum & A.C.C.<br />

Remarks: Anoplo<strong>da</strong>ctylus maritimus has<br />

been recorded previously throughout<br />

Macaronesia, other than which it is a<br />

species of the Atlantic coast of the<br />

Americas (see discussion below) but has<br />

not been recorded from the Atlantic<br />

coasts of mainland Europe, North Africa<br />

or the Mediterranean.<br />

Anoplo<strong>da</strong>ctylus pygmaeus (Hodge, 1864)<br />

Figure 3E, F<br />

Material: 1 female, Isl. 24.4, attached lowlittoral<br />

algae, south wall within the flooded<br />

crater of the Ilhéu de Vila Franca;1<br />

female, Isl. 24.5, mid-lagoon algae, within<br />

the flooded crater of the Ilhéu de Vila<br />

Franca; both 24 July 2006, coll. A.<br />

Salvador, R. Robbins & R.B.


BAMBER & COSTA: PYCNOGONIDS FROM SÃO MIGUEL 175<br />

FIGURE 3. A to C, Anoplo<strong>da</strong>ctylus angulatus: A, entire, dorsal; B, proboscis, ventral; C, distal leg articles<br />

(lam = lamina); D, A. maritimus, distal leg articles; E and F, A. pygmaeus: E, body, lateral; F, third<br />

leg, entire; G to H, A. virescens: G, proboscis, ventral; H, distal leg articles.


176 AÇOREANA<br />

2009, Sup. 6: 167-182<br />

1 specimen, Pesqueiro, 7 November<br />

1997; 4 specimens, Porto de Vila Franca<br />

do Campo, 9 May 1997; 1 specimen, Faial<br />

<strong>da</strong> Terra, 30 May 1997; 1 specimen,<br />

Ribeirinha, 25 June 1997; all coll. João<br />

Brum & A.C.C.<br />

Remarks: Anoplo<strong>da</strong>ctylus pygmaeus is a<br />

small species (as its name suggests), similar<br />

to A. petiolatus but with a less-marked<br />

anterior cephalic overhang and with distinct<br />

distal spines on the dorsodistal<br />

tubercles of the lateral processes; auxiliary<br />

claws are absent. It has been recorded<br />

throughout the North Atlantic and<br />

Mediterranean, including the Canaries<br />

and the Azores, in shallow water (the<br />

record from 3850 m depth on the Cape<br />

Verde Slope by Bamber & Thurston, 1993,<br />

is presumed to be a result of samplinggear<br />

contamination from the fouling community<br />

on the ship’s hull).<br />

Anoplo<strong>da</strong>ctylus virescens (Hodge, 1864)<br />

Figure 3G, H<br />

Material: 1 female, WVF040, off Amora,<br />

Ponta Garça, São Miguel, Azores, N37°<br />

42’ 720” W25° 21’ 554”, 37.8 m depth,<br />

small dredge sample, 26 July 2006, coll.<br />

António de Frias Martins & Jerry<br />

Harasewych.<br />

Remarks: while isolated females of this<br />

genus can be difficult to identify to<br />

species, Anoplo<strong>da</strong>ctylus virescens, with its<br />

trunk segmentation only between somites<br />

1, 2 and 3, its presence of small auxiliary<br />

claws, its lack of propo<strong>da</strong>l lamina, of dorsodistal<br />

lateral-process tubercles, of ventral<br />

proboscis tubercles and of chela teeth,<br />

is only confusable with A. robustus<br />

(Dohrn, 1881), but the latter species has<br />

angulate corners to its proboscis, unlike<br />

the present species. A. virescens is known<br />

from the north-east Atlantic from the<br />

United Kingdom to Morocco and<br />

throughout the Mediterranean. This is the<br />

first record of this species for the Azores.<br />

Family Callipalleni<strong>da</strong>e Hilton, 1942<br />

Callipallene emaciata (Dohrn, 1881)<br />

Figure 4A<br />

Material: 1 male, 3 females, 1 juvenile, Isl.<br />

24.4, attached low-littoral algae, south<br />

wall within the flooded crater of the Ilhéu<br />

de Vila Franca; 5 females, 1 male, Isl. 24.5,<br />

mid-lagoon algae, within the flooded<br />

crater of the Ilhéu de Vila Franca; both 24<br />

July 2006, coll. A. Salvador, R. Robbins &<br />

R.B.<br />

4 specimens, Mosteiros, 8 November<br />

1996; 118 specimens, Mosteiros, 17 June<br />

1997; 12 specimens, Ponta <strong>da</strong> Ferraria, 17<br />

June 1997; 24 specimens, Santa Clara, 7<br />

November 1996; 61 specimens, Santa<br />

Clara, 12 June 1997; 17 specimens,<br />

Pesqueiro, 7 November 1997; 27<br />

specimens, Emissario, 2 November 1996;<br />

179 specimens, Emissario, 12 June 1997;<br />

26 specimens, Sinaga, 30 May 1997; 1<br />

specimen, Atalha<strong>da</strong>, 25 October 1996; 222<br />

specimens, Atalha<strong>da</strong>, 30 May 1997; 35<br />

specimens, Ribeira <strong>da</strong> Praia, 25 October<br />

1996; 29 specimens, Ribeira <strong>da</strong> Praia, 16<br />

June 1997; 18 specimens, Caloura, 14<br />

October 1996; 133 specimens, Caloura, 26<br />

June 1997; 24 specimens, Porto de Vila<br />

Franca do Campo, 9 May 1997; 29<br />

specimens, Ilhéu de Vila Franca do<br />

Campo, 16 June 1997; 13 specimens,<br />

Ribeira Quente, 18 June 1997; 4<br />

specimens, Faial <strong>da</strong> Terra, 17 October<br />

1996; 21 specimens, Faial <strong>da</strong> Terra, 30 May<br />

1997; 4 specimens, Nordeste, 21<br />

November 1966; 51 specimens, Nordeste,<br />

2 May 1997; 25 specimens, Porto Formoso,<br />

30 October 1996; 69 specimens, Porto<br />

Formoso, 19 June 1997; 5 specimens,<br />

Ladeira <strong>da</strong> Velha, 19 June 1997; 29<br />

specimens, Ribeirinha, 8 October 1996; 67<br />

specimens, Ribeirinha, 25 June 1997; 14<br />

specimens, Lactoaçoreana, 14 October<br />

1996; 26 specimens, Lactoaçoreana, 25<br />

June 1997; 4 specimens, Cofaco, 25 June


BAMBER & COSTA: PYCNOGONIDS FROM SÃO MIGUEL 177<br />

1997; 17 specimens, São Vicente, 7<br />

October 1996; 1 specimen, São Vicente, 6<br />

May 1997; all coll. João Brum & A.C.C.<br />

Remarks: the European shallow-water<br />

species of the genus Callipallene are small,<br />

cryptic species normally associated with<br />

epizoan turfs of bryozoans and hydroids.<br />

The distinction of these taxa was analysed<br />

by Stock (1952), since when his subspecies<br />

have been raised to full specific rank (C.<br />

brevirostris (Johnston, 1837), C. emaciata, C.<br />

FIGURE 4. A to B, Callipallene emaciata: A, entire, dorsal; B, distal; leg articles; C, Endeis spinosa,<br />

entire, dorsal (after Bamber, 1983).


178 AÇOREANA<br />

2009, Sup. 6: 167-182<br />

tiberi (Dohrn, 1881), C. phantoma (Dohrn,<br />

1881)). While C. brevirostris is the commonest<br />

species on the Atlantic coasts of<br />

North Europe, the present species is the<br />

only Callipallene recorded from the shallow<br />

waters of the Azores (the deeperwater<br />

C. producta Sars, 1888 has been<br />

recorded off the Azores (Bouvier, 1917;<br />

Arnaud, 1974) at depths >800 m), and is<br />

more commonly associated with algae<br />

than are the other species listed above.<br />

All the Azorean specimens were collected<br />

from algae, the species being the second<br />

commonest recorded (occurring, for<br />

example, at every sampling site in 1996<br />

and 1997).<br />

Family Endei<strong>da</strong>e Norman, 1908<br />

Endeis spinosa (Montagu, 1808)<br />

Figure 4B<br />

Material: 3 specimens, Mosteiros, 8<br />

November 1996; 3 specimens, Santa<br />

Clara, 12 June 1997; 1 specimen, Sinaga,<br />

30 May 1997; 5 specimens, Atalha<strong>da</strong>, 30<br />

May 1997; 9 specimens, Ribeira <strong>da</strong> Praia,<br />

16 June 1997; 1 specimen, Caloura, 14<br />

October 1996; 4 specimens, Caloura, 26<br />

June 1997; 1 specimen, Porto de Vila<br />

Franca do Campo, 9 May 1997; 2<br />

specimens, Ilhéu de Vila Franca do<br />

Campo, 16 June 1997; 1 specimen, Ribeira<br />

Quente, 18 June 1997; 2 specimens, Faial<br />

<strong>da</strong> Terra, 30 May 1997; 1 specimen,<br />

Nordeste, 2 May 1997; 2 specimens, Porto<br />

Formoso, 19 June 1997; 1 specimen,<br />

Lactoaçoreana, 14 October 1996; 1<br />

specimen, Lactoaçoreana, 25 June 1997; 1<br />

specimen, São Vicente, 6 May 1997; all<br />

coll. João Brum & A.C.C.<br />

Remarks: a widespread North Atlantic<br />

species, where its only native congener is<br />

Endeis charyb<strong>da</strong>ea (Dohrn, 1881) on<br />

European coasts. Stock’s (1990) record of<br />

E. meridionalis (Böhm, 1879) from Cape<br />

Verde is highly suspect. E. mollis<br />

(Carpenter, 1904) may be a Lessepsian<br />

immigrant to the Mediterranean. While<br />

the larval biology of this species is<br />

unknown, there is evidence of its waterborne<br />

transport, perhaps by association<br />

with hydromedusae.<br />

DISCUSSION<br />

There are now fifteen species of shallow-water<br />

pycnogonids recorded from<br />

the Azores: Ammothoella longipes,<br />

Anoplo<strong>da</strong>ctylus virescens and A. amora sp.<br />

nov. are newly recorded for the islands<br />

from the present study. Achelia echinata,<br />

Anoplo<strong>da</strong>ctylus angulatus and Callipallene<br />

emaciata are common.<br />

Analysis of the provenance of these<br />

species is somewhat challenged by the<br />

presence of species which have in the past<br />

been misidentified, early records worldwide<br />

depending on what was at the time<br />

a limited literature, and a limited understanding<br />

of specific characters.<br />

For example, Achelia echinata, a species<br />

with a type locality in the United<br />

Kingdom, has been recorded in the literature<br />

not only throughout the north-east<br />

Atlantic and Mediterranean (an accepted<br />

distribution), but also from China and<br />

Japan (as subspecies), from California<br />

and Alaska. Recent molecular work<br />

(Bamber et al. in prep.) has shown not<br />

only that the material from the Azores is<br />

fully conspecific with material from the<br />

United Kingdom, but also that the<br />

Chinese-Japanese “subspecies” is in fact a<br />

distinct species. The North- and East-<br />

Pacific material is highly suspect, and is<br />

not accepted herein.<br />

Rhynchothorax anophtalmus Arnaud,<br />

1972, recorded as such from the Azores by<br />

Arnaud (1974), was synonymized with R.<br />

philopsammum Hedgpeth, 1951 by Arnaud<br />

& Krapp (1990), when comparing specimens<br />

from the Mediterranean and from<br />

California: R. philopsammum is a<br />

Californian species, also recorded from


BAMBER & COSTA: PYCNOGONIDS FROM SÃO MIGUEL 179<br />

the Subantarctic, Pacific Mexico,<br />

Magellanic Chile, a number of Pacific<br />

Islands and Belize. Other than the Pacific<br />

material , the species is recorded (as R.<br />

anophtalmus) from Azores and the<br />

Mediterranean. Rhynchothorax is an interstitial<br />

genus which would not be expected<br />

to be transported by ships’-hull fouling or<br />

by floating weed. With this disparity in<br />

zoogeography, closer examination may<br />

yet show these two taxa to be distinct.<br />

Records of R. monnioti (type-locality the<br />

Azores) from Brazil and Trini<strong>da</strong>d<br />

(Arnaud & Krapp, 1990; Child, 1988) are<br />

dubious, and not accepted herein.<br />

In the light of the above, the species<br />

currently known from the Azores show a<br />

number of zoogeographies:<br />

- two currently endemic species – Achelia<br />

anomala (not recorded since the original<br />

discovery and description:<br />

Arnaud, 1974), and Anoplo<strong>da</strong>ctylus<br />

amora (recorded herein for the first<br />

time); Morton & Britton (2000) point<br />

out that endemism is low in these<br />

islands owing to their “youthfulness”<br />

(earliest emergence about 8 My ago),<br />

and such species are likely to be found<br />

elsewhere in the future;<br />

- two species from Macaronesia and the<br />

Mediterranean - Rhynchothorax anophtalmus<br />

from the Mediterranean; R.<br />

monnioti from the Mediterranean and<br />

the Canary Islands;<br />

- three species from the North-east<br />

Atlantic, the Mediterranean and<br />

North Africa (Morocco) – Ammothoella<br />

longipes, Anoplo<strong>da</strong>ctylus angulatus,<br />

Anoplo<strong>da</strong>ctylus virescens (the first two<br />

also recorded elsewhere in the<br />

Macaronesian system);<br />

- five species found in the Mediterranean<br />

and throughout the<br />

North Atlantic, including the<br />

Americas – Achelia echinata,<br />

Anoplo<strong>da</strong>ctylus petiolatus, Anoplo<strong>da</strong>ctylus<br />

pygmaeus, Callipallene emaciata and<br />

Endeis spinosa: closer study may yet<br />

distinguish cryptic species within<br />

these <strong>da</strong>ta;<br />

- a species found throughout the southern<br />

North Atlantic – Tanystylum orbiculare<br />

(distribution as the previous group 4,<br />

but not including the European<br />

Atlantic coasts);<br />

- a species from Macaronesia and the<br />

West Atlantic only – Anoplo<strong>da</strong>ctylus<br />

maritimus, recorded from Madeira,<br />

Cape Verde Islands, the Canaries and<br />

the Americas from Chesapeake Bay<br />

through the Gulf of Mexico and the<br />

Caribbean to Brazil;<br />

- an immigrant species – Endeis straughani<br />

(if a valid record), a species native<br />

to Australia but since recorded in<br />

ship’s-hull-fouling from Ghana<br />

(Bamber, 1979, as E. picta; Staples,<br />

1982).<br />

Apart from the presently endemic<br />

species and the anthropogenic immigrant,<br />

all but one of these species are also<br />

found in the Mediterranean, and of these<br />

all but the two Rhynchothorax species are<br />

recorded from Morocco. Five of these<br />

twelve species have not been found in the<br />

Western Atlantic. These <strong>da</strong>ta give a<br />

strong indication that the pycnogonid<br />

fauna of the Azores is largely of an easterly<br />

origin, from the Mediterranean, North<br />

Africa or Atlantic Europe.<br />

The notable exception is<br />

Anoplo<strong>da</strong>ctylus maritimus, recorded from<br />

the Azores, the Canary Islands, Cape<br />

Verde and Madeira (see Fage & Stock,<br />

1966; Stock, 1990; Child, 1992), and found<br />

in nine of the samples from 1996 and<br />

1997. This species is also found in the<br />

Americas (see above), including in the<br />

Sargasso Sea, and is commonly recorded<br />

amongst floating Sargassum (Bourdouillon,<br />

1955; Stock, 1954; Stock,<br />

1957; McCloskey, 1973; Stock,1992; Child,<br />

1992); indeed, Hodgson (1915) found it in<br />

floating Sargassum south of the Azores. In


180 AÇOREANA<br />

2009, Sup. 6: 167-182<br />

addition, Stock (1994) recorded “>500<br />

specimens” of A. maritimus associated<br />

with surface-floating hydroids in the<br />

mid-Atlantic, at 24.75°N 44 to 53°W.<br />

Drift dispersal in algae as a viable<br />

means of passive migration by pycnogonids<br />

was analyzed by Bamber (1998).<br />

Perhaps significantly, other species<br />

recorded amongst Sargassum are Endeis<br />

spinosa, Anoplo<strong>da</strong>ctylus petiolatus and<br />

Tanystylum orbiculare (see Timmermann,<br />

1932; Hedgpeth, 1948), and the first two<br />

of these have been recorded on Sargassum<br />

in the vicinity of the Azores (Hedgpeth,<br />

1948: Figure 7).<br />

Finally, it is notable that the most<br />

diverse genus recorded, Anoplo<strong>da</strong>ctylus,<br />

includes species which are known to live<br />

upon medusae, and thus obtain passive<br />

dispersion in the plankton (see<br />

Introduction, above); the comparatively<br />

widespread distribution of Anoplo<strong>da</strong>ctylus<br />

species is commonly attributed to this<br />

process (see Bamber, 1998 for discussion).<br />

Thus, the proximity and known distributions<br />

of most species would favour colonization<br />

by species from the east<br />

(Mediterranean, North Africa, Atlantic<br />

Southern Europe), and as far as we know<br />

this can be the only source of five of the<br />

species discussed above; Morton &<br />

Britton (2000) found that most components<br />

of the Azorean marine fauna show<br />

affiliation with the Mediterranean and<br />

southern Europe. However, the incidence<br />

of species recorded in the Americas in<br />

floating algae gives a mechanism for<br />

transport, which would argue for colonization<br />

from the west. In reality, pycnogonid<br />

colonization of the shallow water<br />

habitats of the Azores may be attributed<br />

to both processes. However, the mechanism<br />

of immigration from the east<br />

remains purely speculative.<br />

For the species occurring in the 1996<br />

and 1997 <strong>da</strong>ta in sufficient numbers for<br />

interpretation, no trends were detected in<br />

relation to disturbance or exposure,<br />

although Anoplo<strong>da</strong>ctylus amora only<br />

occurred at non-polluted sites.<br />

ACKNOWLEDGEMENTS<br />

We are indebted to Roni Robbins for<br />

assistance in the field collecting and sample<br />

analysis in 2006, to Andreia Salvador<br />

for sampling assistance in Ilhéu de Vila<br />

Franca, to João Brum for assistance in the<br />

diver-collections in 1996 and 1997, to<br />

Brian Morton for discussions on the origins<br />

of the Azorean fauna, particularly to<br />

António de Frias Martins for the organisation<br />

of, and inviting us to the<br />

Workshop, and to the other participants<br />

at the workshop for samples and for<br />

entertainment.<br />

LITERATURE CITED<br />

ARNAUD, F., 1974. Pycnogonides<br />

récoltés aux <strong>Açores</strong> par les campagnes<br />

1969 et Biaçores 1971. Bulletin<br />

Zoologisch Museum, Universiteit van<br />

Amster<strong>da</strong>m, 3(21): 169-187.<br />

ARNAUD, F., 1978. A new species of<br />

Ascorhynchus (Pycnogoni<strong>da</strong>) found<br />

parasitic on an opisthobranchiate<br />

mollusc. In Sea Spiders<br />

(Pycnogoni<strong>da</strong>). Zoological Journal of<br />

the Linnean Society of London, 63(1+2):<br />

99-104.<br />

ARNAUD, F., & R.N. BAMBER, 1987.<br />

The Biology of Pycnogoni<strong>da</strong>.<br />

Advances in Marine Biology, 24: 1-96.<br />

ARNAUD, F., & F. KRAPP, 1990. The<br />

genus Rhynchothorax (Pycnogoni<strong>da</strong>) in<br />

the Mediterranean Sea. Beaufortia,<br />

41(1): 1-7.<br />

BAMBER, R.N., 1979. A new species of<br />

Endeis (Pycnogoni<strong>da</strong>) from West<br />

Africa. Zoological Journal of the Linnean<br />

Society of London, 65: 251-254.<br />

BAMBER, R.N., 1983. The Marine Fauna<br />

of the Cullercoats District, No. 12:


BAMBER & COSTA: PYCNOGONIDS FROM SÃO MIGUEL 181<br />

Pycnogoni<strong>da</strong>. Reports of the Dove<br />

Marine Laboratory, 3rd series, 25: 1-24.<br />

BAMBER, R.N., 1985. The intinerant [sic]<br />

sea-spider Ammothea hilgendorfi<br />

(Böhm) in British Waters. Proceedings<br />

of the Hampshire Field Club and<br />

Archaeological Society, 41: 269-270.<br />

BAMBER, R.N., 1998. Zoogeographic<br />

trends in some Hong Kong arthropods.<br />

In: MORTON, B. (ed.), The<br />

Marine Biology of the South China Sea.<br />

(Proceedings of the Third International<br />

Conference on the Marine Biology of the<br />

South China Sea. Hong Kong, 28 October<br />

- 1 November 1996), pp. 91-112. Hong<br />

Kong University Press, Hong Kong.<br />

BAMBER, R.N., 2002. Bathypelagic pycnogonids<br />

(Arthropo<strong>da</strong>, Pycnogoni<strong>da</strong>)<br />

from the Discovery deep-sea cruises.<br />

Journal of Natural History, 36: 715-727.<br />

BAMBER, R.N., 2004. Two new pycnogonids<br />

(Arthropo<strong>da</strong>: Pycnogoni<strong>da</strong>) from<br />

Atlantic Equatorial Africa. Species<br />

Diversity, 9: 125-133.<br />

BAMBER, R.N., & M.H. DAVIS, 1982.<br />

Feeding of Achelia echinata Hodge<br />

(Pycnogoni<strong>da</strong>) on marine algae.<br />

Journal of Experimental Marine Biology<br />

and Ecology, 60: 181-187.<br />

BAMBER R.N., & M.H. THURSTON,<br />

1993. Deep water pycnogonids of the<br />

Cape Verde Slope. Journal of the<br />

Marine Biological Association of the<br />

United Kingdom, 73: 837-861.<br />

BOURDILLON, A., 1955. Les<br />

Pycnogonides de la croisière 1951 du<br />

Président Theodore Tissier. Revue des<br />

Travaux de l’Institute des Pêches<br />

Maritimes, 19(4): 581-609, plates I-III.<br />

BOUVIER, E.L., 1917. Pycnogonides provenant<br />

des campagnes scientifiques<br />

de S.A.S. le Prince de Monaco (1885-<br />

1913). Résultats des Campagnes<br />

Scientifiques accomplies sur son Yacht par<br />

Albert I er Prince Souverain de Monaco,<br />

51: 1-56; Plates I-IV.<br />

CHILD, C.A., 1988. Pycnogoni<strong>da</strong> from<br />

Al<strong>da</strong>bra Atoll. Bulletin of the the<br />

Biological Society of Washington, 8: 45-<br />

78, 9 figures.<br />

CHILD, C.A., 1992. Shallow-water<br />

Pycnogoni<strong>da</strong> of the Gulf of Mexico.<br />

Memoirs of the Hourglass Cruises, 9(1):<br />

1-86.<br />

COSTA A.C. & S.P. ÁVILA, 2001.<br />

Macrobenthic mollusc fauna<br />

inhabiting Halopteris spp. subti<strong>da</strong>l<br />

fronds in São Miguel, Azores. Scientia<br />

Marina, 63: 117-126.<br />

FAGE, L., & J.H. STOCK, 1966.<br />

Pycnogonides. Résultats Scientifiques<br />

du Campagne de la Calypso aux îles de<br />

Cap Vert (1959). 7. Annales de I’Institut<br />

Océanographique de Monaco, 44: 315-<br />

327; 1-4.<br />

GOFAS, S., 1990. The littoral Rissoi<strong>da</strong>e<br />

and Anabathri<strong>da</strong>e of São Miguel,<br />

Azores. . In: MARTINS, A.M.F. (ed.),<br />

Proceedings of the First International<br />

Workshop of Malacology, São Miguel,<br />

Azores, 1988. Açoreana, Supplement<br />

[2]: 97-134.<br />

HEDGPETH, J.W., 1948. The<br />

Pycnogoni<strong>da</strong> of the western North<br />

Atlantic and the Caribbean.<br />

Proceedings of the United States National<br />

Museum, 97(3216): 157-342; 3 charts.<br />

HODGSON, T.V., 1915. The Pycnogoni<strong>da</strong><br />

collected by the Gauss in the Antarctic<br />

regions, 1901-3; preliminary report.<br />

Annals and Magazine of Natural History,<br />

(8), 15(85): 141-149.<br />

KRAPP, F., & R. SCONFIETTI, 1983.<br />

Ammothea hilgendorfi (Böhm, 1879), an<br />

adventitious pycnogonid new for the<br />

Mediterranean Sea. Marine Ecology,<br />

4(2): 123-132.<br />

LEBOUR, M.V., 1916. Notes on the life<br />

history of Anaphia petiolata (Kröyer).<br />

Journal of the Marine Biological<br />

Association of the United Kingdom,<br />

11(1): 51-56.<br />

LOMAN, J.C.C., 1912. Note préliminaire<br />

sur les “Po<strong>dos</strong>omata” (Pycnogonides)


182 AÇOREANA<br />

2009, Sup. 6: 167-182<br />

du Musée Océanographique de<br />

Monaco. Bulletin de l’Institut<br />

Océanographique, Monaco, 238: 14 pp.;<br />

Plates A-K.<br />

McCLOSKEY, L.R., 1973. Pycnogoni<strong>da</strong>.<br />

Marine flora and fauna of the northeastern<br />

United States. United States<br />

Department of Commerce, NOAA<br />

Technical Reports NWFS CIRC-386: 1-<br />

12; 25 figs.<br />

MORTON, B., & J.C. BRITTON, 2000.<br />

The origins of the coastal and marine<br />

flora and fauna of the Azores.<br />

Oceanography and Marine Biology: an<br />

Annual Review, 38: 13-84.<br />

MORTON, B., J.C. BRITTON & A.M.F.<br />

MARTINS 1998. Coastal Ecology of the<br />

<strong>Açores</strong>, 249 pp. Socie<strong>da</strong>de Afonso<br />

Chaves, Ponta Delga<strong>da</strong>.<br />

MÜLLER, H.-G., 1990. Flachwasser-<br />

Pantopoden von Bora-Bora,<br />

Gesellschaftsinseln, S-Pazifik, mit<br />

zwei<br />

Neubeschreibungen.<br />

Senckenbergiana marit., 70: 185-201.<br />

MUNILLA, T, & E. SANCHEZ, 1988.<br />

Ecologia de los primeros<br />

Picnogóni<strong>dos</strong> litorales Canarios. VI<br />

Simposio Iberico de Estudio del Bentos<br />

Marino, Palma de Mallorca, 9-22 Sep.<br />

1988. 1988: p. 61.<br />

SANCHEZ E,. & T. MUNILLA, 1989.<br />

Estudio ecologico de los primeros picnogoni<strong>dos</strong><br />

litorales de las islas<br />

Canarias. Cahiers de Biologie Marine,<br />

30: 49-67.<br />

SARS, G.O., 1891. Pycnogonidea.<br />

Norwegian North-Atlantic Expedition,<br />

1876-1878, 6(Zool. 20): 1-163; Plates I-<br />

XV.<br />

STAPLES, D.A., 1982. Pycnogoni<strong>da</strong> of the<br />

Calliope River and Auckland Creek,<br />

Queensland. Memoirs of the<br />

Queensland Museum, 20(3): 455-471.<br />

STOCK, J.H., 1952. Revision of the<br />

European representatives of the genus<br />

Callipallene Flynn. Beaufortia, 1(13): 1-<br />

15.<br />

STOCK, J.H., 1954. Four new Tanystylum<br />

species, and other Pycnogoni<strong>da</strong> from<br />

the West Indies. Studies on the Fauna of<br />

Curaçao, 5(24): 115-129.<br />

STOCK, J.H., 1955b. Pycnogoni<strong>da</strong> from<br />

the West Indies, Central America and<br />

the Pacific Coast of North America.<br />

Papers from Dr Th. Mortensen’s<br />

Pacific Expedition 1914-1916.<br />

Videnskabelige Meddelelser fra Dansk<br />

Naturhistorisk Forening i Kjøbenhavn,<br />

117: 209-266.<br />

STOCK, J.H., 1957. Pantopoden aus dem<br />

Zoologischen Museum Hamburg. 2 (=<br />

IV-VI). Mitteilungen aus dem<br />

Zoologischen Museum in Hamburg, 55:<br />

81-106.<br />

STOCK, J.H., 1971. Pycnogonides<br />

récoltés durant la campagne<br />

Noratlante en Atlantique Nord.<br />

Bulletin Zoölogisch Museum,<br />

Universiteit van Amster<strong>da</strong>m, 2(4): 25-28.<br />

STOCK, J.H., 1990. Macaronesian<br />

Pycnogoni<strong>da</strong>. CANCAP Project.<br />

Contribution No. 78. Zoologische<br />

Mededelingen, 63: 205-233.<br />

STOCK, J.H., 1992. Pycnogoni<strong>da</strong> from<br />

southern Haiti. Tijdschrift voor<br />

Entomologie, 135: 113-139.<br />

STOCK, J.H., 1994. Indo-West Pacific<br />

Pycnogoni<strong>da</strong> collected by some major<br />

oceanographic expeditions.<br />

Beaufortia, 44(3): 17-77.<br />

TIMMERMANN, G., 1932.<br />

Biogeographische Untersuchungen<br />

über die Lebensgemeinschaft des treibenden<br />

Golfkrautes. Zeitschrift für<br />

Morphologie und Oekologie des Tieres,<br />

25: 288-355.


AÇOREANA, Suplemento 6, Setembro 2009: 183-200<br />

THE TANAIDACEANS (ARTHROPODA: PERACARIDA: TANAIDACEA) OF SÃO<br />

MIGUEL, AZORES, WITH DESCRIPTION OF TWO NEW SPECIES, AND A NEW<br />

RECORD FROM TENERIFE<br />

Roger N. Bamber 1 & Ana Cristina Costa 2<br />

1<br />

The Natural History Museum, Cromwell Road, London SW7 5BD, U.K. e-mail: r.bamber@artoo.co.uk<br />

2<br />

CIBIO-Pólo <strong>Açores</strong>, Department of Biology, University of the Azores, 9501-801 Ponta Delga<strong>da</strong>, São Miguel,<br />

Azores, Portugal<br />

ABSTRACT<br />

During the Third International Workshop of Malacology and Marine Biology in São<br />

Miguel, Azores, in July 2006, sampling of the littoral and sublittoral benthos was undertaken<br />

in order to characterize the smaller marine arthropod fauna of this region, including<br />

tanai<strong>da</strong>ceans. In the event, 338 tanai<strong>da</strong>cean specimens representing three species were<br />

collected; two of these species, Leptochelia caldera and Paratanais martinsi, are new to science.<br />

In addition, previous tanai<strong>da</strong>cean material collected around São Miguel in 1996 and<br />

1997 was analyzed, from which a further 272 specimens (three species, one not found in<br />

2006) were identified. No apseudomorph tanai<strong>da</strong>ceans were found. All of the material is<br />

described, and an attempt is made to investigate the provenance of the Azorean<br />

tanai<strong>da</strong>cean fauna, although the general lack of <strong>da</strong>ta from the North-east Atlantic precludes<br />

any reasonable interpretation other than some possible links with the<br />

Mediterranean. However, recent material of Zeuxo exsargasso collected from Tenerife, in<br />

the Canary Islands, does suggest Macaronesian links with the West Atlantic.<br />

RESUMO<br />

Durante o 3º Workshop Internacional de Malacologia e Biologia Marinha em São<br />

Miguel, <strong>Açores</strong>, em Julho de 2006, fizeram-se amostragens do bentos litoral e sublitoral de<br />

modo a caracterizar a fauna de pequenos artrópodes marinhos dessa região, incluindo os<br />

tanaidáceos. Assim, recolheream-se 338 espécimens de tanaidáceos representando três<br />

espécies; duas dessas espécies, Leptochelia caldera e Paratanais martinsi, são novas para a<br />

ciência. Para além disso, analisou-se material recolhido previamente à volta de São Miguel<br />

em 1996 e 1997, do qual foram identifica<strong>dos</strong> 272 especimens ( três espécies, uma <strong>da</strong>s quais<br />

não encontra<strong>da</strong> em 2006). Não se encontraram tanaidáceos apseudomorfos. Todo o<br />

material foi descrito, e abordou-se a questão <strong>da</strong> proveniência <strong>da</strong> fauna tanaidácea<br />

Açoreana, embora a ausência generaliza<strong>da</strong> de <strong>da</strong><strong>dos</strong> do Nordeste Atlântico impeça<br />

qualquer interpretação razoável para além de algumas possíveis ligações com o<br />

Mediterrâneo. No entanto, material recente de Zeuxo exsargasso recolhido em Tenerife,<br />

Ilhas Canárias, sugere ligações Macaronésicas com o Atlântico Oeste.<br />

INTRODUCTION<br />

The Azores are a group of islands<br />

somewhat isolated in the north-east<br />

Atlantic, lying adjacent to the Mid-<br />

Atlantic Ridge some 1300 km west of<br />

Portugal and 1730 km southeast of<br />

Newfoundland. The main surface water<br />

currents reaching the archipelago bring<br />

waters from two directions: the Azores<br />

Drift, a diffuse southerly arm of the Gulf<br />

Stream breaking off from the North<br />

Atlantic Drift supplies water from the<br />

Americas, while the somewhat less-significant<br />

western eddies of the Canary<br />

Current bring waters from Spain and<br />

North Africa; below these, the midwater<br />

current brings warm, hyperhaline water


184 AÇOREANA<br />

2009, Sup. 6: 183-200<br />

from the Mediterranean outflow (Gofas,<br />

1990; Morton et al., 1998). This hydrography<br />

clearly has implications for the colonization<br />

of the islands by benthic marine<br />

species.<br />

Tanai<strong>da</strong>ceans are a group of the<br />

arthropods with minimal dispersive ability;<br />

the larvae are not planktonic, and<br />

there are only limited examples of adults<br />

swimming (Bamber, 1998). Some species<br />

are known to have spread in fouling communities<br />

on ship’s hulls (Bamber, 1977),<br />

and others are known to live in floating<br />

algae (Sieg, 1980) or ectoparasitically on<br />

turtle tests and on manatees (see Morales-<br />

Vela et al., 2008). It is therefore of some<br />

interest to determine the suite of species<br />

which has colonized the Azores archipelago,<br />

and their provenance.<br />

Previous records of tanai<strong>da</strong>ceans from<br />

the Azores are very sparse, and largely<br />

incidental, although Dollfus (1897)<br />

reported on the tanai<strong>da</strong>cean material collected<br />

around the Azores during the<br />

cruise of the Hirondelle in 1887 and 1888.<br />

All but two of the species recorded in litt.<br />

are from deep-water (>100 m; mostly<br />

>500 m). Dollfus (1897) reported<br />

Leptochelia savignyi Krøyer, 1842 from<br />

Horta; despite the controversy regarding<br />

earlier records of sibling species of this<br />

taxon, Dollfus’ records appear to be substantiated<br />

(see below); L. savignyi was<br />

described originally from Madeira, so its<br />

occurrence in the Azores is not surprising.<br />

Dollfus (1897) also recorded Tanais<br />

dulongii (Audouin, 1826) (as Tanais<br />

cavolinii Milne-Edwards, 1828) from Baïe<br />

de Fayal, and described as new<br />

T. grimaldii from Horta, distinguishing the<br />

two on the shape of the cephalon (his new<br />

species having a shorter cephalon) and<br />

the number of uropod articles; there is<br />

doubt whether his T. dulongii specimens<br />

were in fact of that species (see below);<br />

Morton et al. (1998) mention the occurrence<br />

of Tanais in littoral algal mats.<br />

Finally, the record of “Paratanais atlanticus”<br />

of Dollfus (1897) is incertae sedis, but<br />

not attributable to Paratanais (see below).<br />

The nine confirmed species recorded<br />

from around the Azores are:<br />

Suborder Apseudomorpha<br />

Leviapseudes lepto<strong>da</strong>ctylus (Bed<strong>da</strong>rd,<br />

1886), Azores 1830 m.<br />

Suborder Tanaidomorpha<br />

Superfamily Tanaoidea<br />

Tanais grimaldii Dollfus, 1897, Azores,<br />

littoral, 5-6 m.<br />

Superfamily Paratanaoidea<br />

Siphonolabrum mirabile Lang, 1872,<br />

Azores 3500-4165 m.<br />

Agathotanais hanseni Lang, 1971, E.<br />

Pacific & Azores, 2861-4165 m<br />

Leptognathia abyssorum (Dollfus, 1897),<br />

Azores, 1287 m.<br />

Paratyphlotanais richardi (Dollfus, 1897),<br />

W Ireland, Azores, 699-1287 m.<br />

Typhlotanais spiniventris Dollfus, 1897,<br />

Azores, 130-1287 m.<br />

Mesotanais dubius Dollfus, 1897,<br />

Azores, 1287 m.<br />

Leptochelia savignyi Krøyer, 1842,<br />

Azores, 5 to 6 m.<br />

During the Third International<br />

Workshop of Malacology and Marine<br />

Biology at Vila Franca do Campo, São<br />

Miguel, in July 2006, sampling of the littoral<br />

and sublittoral benthos was undertaken<br />

in order to characterize the smaller<br />

marine arthropod fauna of this region,<br />

including tanai<strong>da</strong>ceans. In the event, 338<br />

specimens representing three species<br />

were collected; two of these species are<br />

new to science. In addition, a previous<br />

collection from around the island was<br />

made available, from which a further 272<br />

specimens (three species, one additional<br />

to the above three) were identified. No<br />

apseudomorph tanai<strong>da</strong>ceans were found.


BAMBER & COSTA: TANAIDACEANS FROM SÃO MIGUEL 185<br />

In addition, recently collected material<br />

from Tenerife, in the Canary Islands,<br />

kindly supplied to us by Brian Morton,<br />

revealed a new record of a tanai<strong>da</strong>cean,<br />

relevant to the origins of the<br />

Macaronesian fauna. All of the material is<br />

described below.<br />

MATERIAL AND METHODS<br />

The present Azores material comes<br />

from two sources. During the Workshop<br />

at Vila Franca do Campo in July 2006, a<br />

number of littoral and infralittoral habitats<br />

on the island of São Miguel were sampled<br />

for tanai<strong>da</strong>ceans, including crevice<br />

habitats, macroalgae and soft sediments.<br />

The principal sampling areas were the littoral<br />

sediments, rocks and algae below<br />

the Clube Naval building (the old Vila<br />

Franca do Campo abattoir); the sediments<br />

and algae within the caldera of the Ilhéu<br />

de Vila Franca; and the soft sediments off<br />

Vila Franca do Campo (ca N37º 43’ W25º<br />

25’), from 12 to 200 m depth. Offshore<br />

sediments were sampled using a 0.025 m 2<br />

van Veen grab and various dredges. All<br />

samples were washed through a 0.5 mm<br />

mesh sieve, and specimens sorted alive.<br />

Some of these specimens were fixed in<br />

absolute ethanol to allow DNA analysis.<br />

Extensive material collected in 1996<br />

and 1997, from 11 (1996) and 20 (1997)<br />

infralittoral rocky-substratum sites<br />

around São Miguel, was also analysed in<br />

detail. Samples of algae (Stypocaulon scoparia,<br />

Halopteris filicina and Zonaria tournefortii)<br />

were collected by SCUBA diving at<br />

depths from between 5 and 16 m. Details<br />

of the sampling and protocols are given<br />

by Costa & Ávila (2001). The sampling<br />

sites, anti-clockwise around the Island<br />

from the north-west, were Mosteiros,<br />

Ponta <strong>da</strong> Ferraria, Santa Clara, Pesqueiro,<br />

Emissário, Sinaga, Atalha<strong>da</strong>, Ribeira <strong>da</strong><br />

Praia, Caloura, Porto de Vila Franca do<br />

Campo, Ilhéu de Vila Franca, Ribeira<br />

Quente, Faial <strong>da</strong> Terra, Nordeste, Porto<br />

Formoso, Ladeira de Velha, Ribeirinha,<br />

Lactoaçoreana, Cofaco and São Vicente.<br />

These sites variously represented exposed<br />

and sheltered shores, undisturbed, naturally<br />

disturbed (near shallow-water vent<br />

sites or stream mouths) and polluted<br />

shores.<br />

Finally, a collection of littoral algal<br />

turf was made from a rocky interti<strong>da</strong>l<br />

platform at Playa de Fanabe, Costa Adeje,<br />

Tenerife, Canary Islands, in June 2007,<br />

from which a further species not found in<br />

the São Miguel material was extracted.<br />

Terminology used herein recognizes<br />

the first pair of antennae as antennules,<br />

the second pair as the antennae. The first<br />

maxilla is termed the maxillule. The first<br />

pair of pereopods (of six) is the pair<br />

immediately posterior to the chelipeds.<br />

Serially repetitive body-parts, such as the<br />

pereonites and subdivisions of antennal<br />

flagella are segments, others (such as the<br />

parts of the limb) are articles. Total length<br />

is measured axially from the tip of the<br />

rostrum to the posterior edge of the pleotelson;<br />

measurements were made dorsally<br />

on the body and antennules, and laterally<br />

on the pereopods and antennae. The<br />

term ‘spines’ is used in the traditional<br />

sense to distinguish between rigid ‘thornlike’<br />

structures and the more flexible<br />

‘hair-like’ setae (in keeping with their etymology<br />

and all historic literature); nonarticulating<br />

spine-shaped extensions of<br />

the cuticle are considered to be apophyses;<br />

comb–rows of fine setules, occasionally<br />

present on maxillae and pereopod<br />

articles, inter alia, are referred to as<br />

microtrichia.<br />

Voucher and type-material has been<br />

lodged in the collections of The Natural<br />

History Museum, London (NHM). The<br />

higher taxonomy is based on Guţu & Sieg<br />

(1999).


186 AÇOREANA<br />

2009, Sup. 6: 183-200<br />

SYSTEMATICS<br />

SÃO MIGUEL MATERIAL<br />

Suborder TANAIDOMORPHA Sieg, 1980<br />

Superfamily Tanaoidea Dana, 1849<br />

Family Tanai<strong>da</strong>e Dana, 1849<br />

Subfamily Tanainae Dana, 1849<br />

Genus Tanais Latreille, 1831<br />

Tanais grimaldii Dollfus, 1897<br />

Figure 1A, B<br />

Sieg, 1980, pp. 84-91; Figure 31, 22.<br />

Material: 1 female with oostegites, 1<br />

female with empty brood pouch, 2<br />

subadult females, 2 neuters, 1 manca<br />

(Registration N os NHM.2007.764-771), Isl.<br />

24.2, drift algae within the flooded crater<br />

of the Ilhéu de Vila Franca, 24 July 2006,<br />

coll. A. Salvador, R. Robbins & R.B.; 12<br />

females with oostegites, 4 brooding<br />

females, 6 males, 148 neuters, 24 mancae<br />

(NHM.2007.772-781), Isl. 24.4, attached<br />

low-littoral algae, south wall of the flooded<br />

crater of the Ilhéu de Vila Franca, 24<br />

July 2006, coll. A. Salvador, R. Robbins &<br />

R.B.; 4 females with oostegites, 1 brooding<br />

female, 4 males, 31 subadult females,<br />

42 neuters, 28 mancae, Isl. 24.5, midlagoon<br />

algae, within the flooded crater of<br />

the Ilhéu de Vila Franca, 24 July 2006, coll.<br />

A. Salvador, R. Robbins & R.B.; 2 neuters,<br />

2 mancae (NHM.2007.782-785), WVF011,<br />

northeastern side of Ilhéu de Vila Franca<br />

do Campo, 16 m, scuba dive collection by<br />

Gonçalo Calado, José Pedro Borges, Joana<br />

Xavier, Paola Rachello, Patrícia Madeira,<br />

20 July 2006.<br />

1 brooding female, 1 neuter, 1 manca<br />

II, Mosteiros, 17 June 1997; 1 neuter, 1<br />

manca II, Ponta <strong>da</strong> Ferraria, 17 June 1997;<br />

3 females (1 brooding), 2 males, 1 manca,<br />

Emissário, 2 November 1996; 1 manca,<br />

Atalha<strong>da</strong>, 30 May 1997; 1 female, 4<br />

neuters, 15 mancae, Caloura, 26 June<br />

1997; 5 neuters, 1 manca, Ribeira Quente,<br />

November 1996; 1 manca, Ribiera Quente,<br />

18 June 1997; 1 manca, Nordeste, 21<br />

November 1996; 1 male, 1 brooding<br />

female, 1 neuter, 2 mancae. Nordeste, 2<br />

May 1997; 1 female, Porto Formoso, 30<br />

October 1996; 4 males, 1 female with oostegites,<br />

3 neuters, 2 mancae, Porto<br />

Formoso, 19 June 1997; 2 males, 3 mancae,<br />

Ladeira <strong>da</strong> Velha, 19 June 1997; 4 females<br />

(1 brooding, 2 with oostegites), 1 male,<br />

4neuters, 1 manca, Ribeirinha, 8 October<br />

1996; 2 females with oostegites, 7 neuters,<br />

5 mancae, Ribeirinha, 25 June 1997; 4<br />

females (1 brooding), 8 neuters, 9 mancae,<br />

Lactoaçoreana, 25 June 1997; 1 male, 1<br />

female, Cofaco, 7 October 1996; 4 females<br />

(1brooding), 7 males, 6 neuters, 1 manca,<br />

São Vicente, 7 October 1996; 3 females, 3<br />

neuters, 6 mancae, São Vicente, 6 May<br />

1997. All coll. A.C.C. & João Brum.<br />

Remarks: Tanais grimaldii is one of the only<br />

two littoral tanai<strong>da</strong>cean species recorded<br />

previously from the Azores: the typelocality<br />

is Horta (Faial), at 5 to 6 m depth<br />

(Dollfus, 1897). T. grimaldii is distinguished<br />

from its only northeast Atlantic<br />

congener, T. dulongii (Audouin, 1826) by<br />

the conformation of the laciniae mobili of<br />

the mandibles (see Sieg, 1980, Figure 31),<br />

but also adults of the present species have<br />

one more article in the uropod (basis plus<br />

three-segmented endopod: Figure 1B)<br />

than does T. dulongii (basis plus two-segmented<br />

endopod). Dollfus (1897) also<br />

recorded Tanais dulongii (Audouin, 1826)<br />

(as Tanais cavolinii Milne-Edwards, 1828)<br />

from Baie de Fayal, distinguishing it and<br />

T. grimaldii on the shape of the cephalon<br />

(his new species having a shorter<br />

cephalon) and the number of uropod articles;<br />

it is unclear whether his specimens<br />

of putative T. dulongii were fully mature,<br />

as only adult T. grimaldii have four segments<br />

to the uropod endopod (T. dulongii<br />

can be distinguished from immature<br />

T. grimaldii with three-segmented


BAMBER & COSTA: TANAIDACEANS FROM SÃO MIGUEL 187<br />

FIGURE 1. A, B, Tanais grimaldii Dollfus, 1897: A, dorsal; B, uropod; C to E, Leptognathia breviremis<br />

(Lilljeborg, 1864): C, dorsal; D, uropod; E, cheliped. (A redrawn after Sars, 1886; B, Azores specimen;<br />

C to E modified from Sars, 1899).<br />

endopods, as the penultimate segment is<br />

twice as long as the ultimate segment in<br />

the former, only slightly longer in the latter).<br />

Dollfus did not examine the<br />

mandibular structure, and indeed would<br />

have been unaware of its significance.<br />

It is likely that all previous records of<br />

Tanais dulongii from the Azores in fact<br />

refer to T. grimaldii. The present species is<br />

also recorded from the Italian<br />

Mediterranean (Gulf of Naples, Ischia<br />

and Linosa); there are unconfirmed<br />

records from the western Mediterranean<br />

and Casablanca (Sieg, 1980).<br />

All the material reported above was<br />

collected from algae at less than 17 m<br />

depth. Brooding females and mancae<br />

were present in all the months sampled<br />

(May, June, July, October and November).<br />

Superfamily Paratanaoidea Lang, 1949<br />

Family Anarthruri<strong>da</strong>e Lang, 1971<br />

Subfamily Leptognathiinae Sieg, 1976<br />

Genus Leptognathia Sars, 1882


188 AÇOREANA<br />

2009, Sup. 6: 183-200<br />

cf. Leptognathia breviremis (Lilljeborg,<br />

1864)<br />

Figure 1C to E<br />

Material: 1 headless specimen, Ponta <strong>da</strong><br />

Ferraria, 17 June 1997, coll. A.C.C. & João<br />

Brum.<br />

This <strong>da</strong>maged specimen is almost<br />

unidentifiable; the cheliped and uropods are<br />

appropriate to L. breviremis. This species is<br />

known from the eastern North Atlantic, but<br />

has been recorded (dubiously) from the<br />

North Pacific. A figure of L. breviremis (modified<br />

from Sars, 1899) is given to aid possible<br />

recognition of this taxon in the Azores in<br />

future (Figure 1, C to E).<br />

Family Leptochelii<strong>da</strong>e Lang, 1973<br />

Genus Leptochelia Dana, 1849<br />

Leptochelia caldera sp. nov.<br />

Figures 2, 3<br />

Material: 1 female with oostegites, holotype<br />

(NHM.2007.424), 1 male, allotype<br />

(NHM.2007.425), 13 females, paratypes<br />

(NHM.2007.426-435), Isl. 24.4, attached<br />

low-littoral algae, south wall of the flooded<br />

crater of the Ilhéu de Vila Franca, 24<br />

July 2006, coll. A. Salvador, R. Robbins &<br />

R.B.; 2 females, paratypes<br />

(NHM.2007.436-437), Isl. 24.5, midlagoon<br />

algae, within the flooded crater of<br />

the Ilhéu de Vila Franca, 24 July 2006, coll.<br />

A. Salvador, R. Robbins & R.B..<br />

2 females, Pesqueiro, 7 November<br />

1997; 3 males, 32 females (3 brooding), 5<br />

neuters, Emissário, 2 November 1996; 3<br />

females, 1 male, Emissário, 12 June 1997; 1<br />

manca, Sinaga, 30 May 1997; 4 males, 40<br />

females (2 brooding), 9 neuters, 2 mancae,<br />

Atalha<strong>da</strong>, 25 October 1996; 1 male, 14<br />

females, 7 neuters, Atalha<strong>da</strong>, 30 May<br />

1997; 1 female, Caloura, 26 June 1997; 1<br />

neuter, Faial <strong>da</strong> Terra, 12 June 1997; 1<br />

female, 1 neuter, Nordeste, 12 May 1997; 1<br />

male, 1 neuter, Ribeirinha, 8 October 1996;<br />

all coll. A.C.C. & João Brum.<br />

Description of female: body (Figure 2A)<br />

slender, holotype 3.6 mm long, 7.3 times<br />

as long as wide. Cephalothorax subrectangular,<br />

1.6 times as long as wide, as<br />

long as pereonites 2 and 3 together, with<br />

slight rostrum, eyelobes rounded, eyes<br />

present and black, single setae at posterior<br />

of eyelobes and posterolaterally. Six<br />

free pereonites; pereonite 1 shortest, pereonites<br />

2 and 3 subequal, 1.3 times as long<br />

as pereonite 1; pereonites 4 and 5 subequal<br />

(pereonite 4 longest) and 1.25 times<br />

as long as pereonite 2; pereonite 6 just<br />

longer than pereonite 1 (all pereonites<br />

respectively 1.9, 1.4, 1.3, 1.1, 1.0 and 1.4<br />

times as wide as long). Pleon of five free<br />

subequal pleonites bearing pleopods;<br />

each pleonite about 3.5 times as wide as<br />

long, with paired lateral setae. Pleotelson<br />

(Figure 2M) semicircular, 0.16 times as<br />

long as pleon, 2.8 times as wide as long,<br />

with paired lateral setae, paired posterolateral<br />

setae on each side and two distal<br />

setae.<br />

Antennule (Figure 2D) of four tapering<br />

articles, proximal article 3.6 times as<br />

long as wide, 1.5 times as long as distal<br />

three articles together, with two long<br />

outer and single short dorsal and inner<br />

setae; second article twice as long as wide,<br />

distal outer seta shorter than article; third<br />

article 1.3 times as long as second and<br />

with one aesthetasc; fourth article minute,<br />

eccentric, with five distal setae.<br />

Antenna (Figure 2G) of six articles,<br />

proximal article compact, naked; second<br />

article as long as wide, with single ventrodistal<br />

and dorsodistal slender spines;<br />

third article 1.3 times as long as wide,<br />

with dorsodistal slender spine; fourth<br />

article longest, three times as long as<br />

wide; fifth article half as long as fourth;<br />

sixth article minute.<br />

Labrum (Figure 2H) rounded, setose,<br />

typical of genus. Left mandible (Figure<br />

2I) with crenulate lacinia mobilis wider<br />

than pars incisiva, proximal crenulation


BAMBER & COSTA: TANAIDACEANS FROM SÃO MIGUEL 189<br />

FIGURE 2. Leptochelia caldera sp. nov., A, holotype female, dorsal; B, allotype male, dorsal; C, allotype<br />

male, lateral; D, female antennule; E, male antennule; F, male antenna; G, female antenna; H,<br />

labrum, lateral; I, left mandible; J, maxillule and maxilla; K, maxilliped; L, epignath; M, pleotelson<br />

and left uropod. Scale line = 1 mm for A, B and C, 0.2 mm for D to G and M, 0.1 mm for H to L.


190 AÇOREANA<br />

2009, Sup. 6: 183-200<br />

on pars incisiva, pars molaris with strong<br />

rugosity; right mandible similar but without<br />

lacinia mobilis. Labium typical of<br />

genus, distally finely setose, without<br />

palp. Maxillule (Figure 2J) with seven<br />

long and two short distal spines and<br />

setose margins; palp of two articles with<br />

two distal setae; maxilla simple, ovoid.<br />

Maxilliped (Figure 2K) palp first article<br />

naked, second article with one outer and<br />

three inner setae, and distal seta exceeding<br />

distal margin of third palp article;<br />

third and fourth articles with filtering<br />

rows of six and seven setae respectively,<br />

third article with two further inner distal<br />

setae, fourth article with submarginal<br />

outer seta; basis with three long setae<br />

extending to third palp article; endites<br />

distally with single outer seta and one<br />

inner rounded and two robust spatulate<br />

spines. Epignath (Figure 2L) elongate,<br />

arcuate, with setose margin distally and<br />

proximally.<br />

Cheliped (Figure 3A) with rounded,<br />

compact basis 1.9 times as long as wide,<br />

with inner distal seta; merus subtriangular<br />

with three ventral setae; carpus 1.9<br />

times as long as wide, with three midventral<br />

setae; propodus typical for the genus,<br />

fixed finger with three ventral and three<br />

inner setae, cutting edge crenulate, setal<br />

row at base of <strong>da</strong>ctylus of three setae;<br />

<strong>da</strong>ctylus with proximal seta.<br />

Pereopod 1 (Figure 3C) longer than<br />

other pereopods, coxa with seta and<br />

rounded apophyses; basis slender, 4.1<br />

times as long as wide, with dorsoproximal<br />

seta; ischium compact with one seta;<br />

merus just shorter than carpus; carpus<br />

with three distal setae, longest of which is<br />

0.4 times length of propodus; propodus<br />

as long as carpus and merus together,<br />

with three <strong>dos</strong>rodistal setae on slight<br />

mound, one ventrodistal seta; <strong>da</strong>ctylus<br />

slender, extending into shorter slender<br />

unguis, the two together as long as propodus.<br />

Pereopod 2 (Figure 3D) more compact<br />

than pereopod 1; basis 3 times as<br />

long as wide; ischium with 2 setae, longer<br />

seta longer than ischium width; merus<br />

longer than carpus, merus with strong<br />

ventrodistal spine, carpus with shorter<br />

ventrodistal spine; propodus with paired<br />

dorsodistal setae and ventrodistal spine;<br />

merus, carpus and propodus with ventral<br />

microtrichia; <strong>da</strong>ctylus and short unguis<br />

together 0.6 times as long as propodus;<br />

<strong>da</strong>ctylus (Figure 3E) with collar of fine<br />

setules at half length and dorsodistal<br />

setule. Pereopod 3 (Figure 3F) similar to<br />

pereopod 2, including longer seta on<br />

ischium and <strong>da</strong>ctylus setulation, but carpus<br />

longer than merus and with short<br />

outer distal seta.<br />

Pereopod 4 (Figure 3G) basis stout, 2.4<br />

times as long as wide; ischium with two<br />

short setae; merus shorter than carpus,<br />

merus with two short, ventrodistal<br />

spines, carpus with outer, ventral and<br />

inner curved distal spines; propodus<br />

longer than carpus, with two ventrodistal<br />

short spines, four dorsodistal setae, one<br />

as long as <strong>da</strong>ctylus; <strong>da</strong>ctylus and unguis<br />

partially fused into a claw, curved.<br />

Pereopods 5 (Figure 3H) and 6 as pereopod<br />

4, but with pereopod 5 propodus<br />

with fewer distal setae.<br />

Pleopods all alike, typical for the<br />

genus, with single dorsal plumose seta on<br />

basis.<br />

Uropod (Figure 2M) biramous, basis<br />

naked; exopod of one segment, 0.7 times<br />

as long as proximal endopod segment,<br />

outer distal seta longer than inner distal<br />

seta; endopod of six segments, distal segments<br />

slender.<br />

Description of male: typical primary male,<br />

half length of female (allotype length<br />

1.7 mm), body (Figure 2B, C) more compact,<br />

cephalon just longer than pereonites<br />

1 to 3 together, with large eyelobes bearing<br />

conspicuous black eyes; pereonite 1<br />

shortest, pereonites 2 to 6 progressively


BAMBER & COSTA: TANAIDACEANS FROM SÃO MIGUEL 191<br />

FIGURE 3. Leptochelia caldera sp. nov., A, female cheliped; B, male cheliped; C, pereopod 1; D, pereopod<br />

2; E, detail of distal articles of pereopod 2; F to H, pereopods 3, 4 and 5 respectively. Scale<br />

line = 0.2 mm for A to D and F to H, 0.1 mm for E.


192 AÇOREANA<br />

2009, Sup. 6: 183-200<br />

longer, pereonite 4 1.7 times as long as<br />

pereonite 1. Five free pleonites, subequal<br />

in length, pleotelson just longer than<br />

pleonite 5. Sexual dimorphism as follows.<br />

Antennule (Figure 2E) elongate, first<br />

peduncle article arcuate, 4 times as long<br />

as wide; second article 0.6 times as long as<br />

first with ventrodistal penicillate setae<br />

and 2 midventral simple setae; third article<br />

0.6 times as long as second, with dorsodistal<br />

seta; flagellum of 7 segments,<br />

first with 4 proximal and 5 distal aesthetascs,<br />

segments 2 to 5 with 4, 4, 3 and 3<br />

distal aesthetascs respectively; segments 6<br />

and 7 more slender than others. Antenna<br />

(Figure 2F) similar to that of female but<br />

more compact. Mouthparts atrophied.<br />

Cheliped (Figure 3B) larger than that<br />

of female; carpus slender, 3.6 times as<br />

long as wide, with ventrodistal invagination<br />

to accommo<strong>da</strong>te propodus on reflexion;<br />

propodus fixed finger shorter than<br />

palm, with two inner tooth-like apophyses<br />

on cutting edge; moveable finger with<br />

spinules along cutting edge.<br />

Pleopods more setose than those of<br />

female.<br />

Etymology: caldera (from the Spanish<br />

cauldron) is a volcanic crater, the 2006<br />

type-material of this species having been<br />

collected from the sea-water-flooded<br />

crater of Ilhéu de Vila Franca.<br />

Remarks: there are four recorded species<br />

of Leptochelia with only 3 maxilliped<br />

basis setae, none of them occurring in the<br />

North Atlantic or Mediterranean, viz.<br />

L. itoi Ishimaru, 1982 (from Japan),<br />

L. lusei Bamber & Bird, 1997 (from Hong<br />

Kong), L. nobbi Bamber, 2005 (from<br />

Western Australia) and a species from<br />

Queensland, Australia (Bamber, in<br />

press). Of these four, only L. nobbi has a<br />

proximal antennule article more than 3<br />

times as long as wide, but that species<br />

has a compact basis to pereopod 1 (only<br />

three times as long as wide) and a uropod<br />

exopod only half as long as the<br />

proximal endopod segment length.<br />

Despite its much more compact proximal<br />

antennule peduncle article (2.5 times<br />

as long as wide), L. itoi shows most similarity<br />

to L. caldera sp. nov., but the cheliped<br />

basis of the Japanese species is<br />

more compact (1.5 times as long as<br />

wide), the distal seta of antennule<br />

peduncle article 2 is as long as the article<br />

(shorter in L. caldera), and the <strong>da</strong>ctylus<br />

plus claw of the first pereopod is much<br />

longer than the propodus (1.33 times as<br />

long, compared with subequal in length<br />

in L. caldera).<br />

The number of maxilliped basis setae<br />

in L. neapolitana Sars, 1882 is not known,<br />

but that species again differs from<br />

L. caldera in that the proximal antennule<br />

peduncle article is shorter (three times as<br />

long as wide), the uropod exopod is less<br />

than half the length of the proximal<br />

endopod segment, the <strong>da</strong>ctylus plus<br />

claw of the first pereopod is much longer<br />

than the propodus (1.36 times as long)<br />

and the cheliped basis more compact<br />

(1.35 times as long as wide).<br />

The male of the present species is<br />

generally very similar to the male of<br />

L. dubia sensu Sars, 1886 (non Krøyer,<br />

1842), but that species has longer anterior<br />

pereonites, and is without the degree<br />

of ventrodistal invagination on the cheliped<br />

carpus shown by L. caldera (and the<br />

female of Sars’ species has five maxilliped<br />

basis setae). The male of L. neapolitana<br />

has a similar cheliped to the present<br />

species, but has fewer antennule flagellum<br />

segments and more attenuate pereonites.<br />

None of the species described previously<br />

has the peculiar collar of setules at<br />

half length on the <strong>da</strong>ctylus of pereopods<br />

two and three shown by Leptochelia<br />

caldera.


BAMBER & COSTA: TANAIDACEANS FROM SÃO MIGUEL 193<br />

Dollfus (1897) recorded a male and a<br />

female of Leptochelia savignyi Krøyer,<br />

1842 from Horta at 5 to 6 m depth. This<br />

taxon has been the subject of some confusion<br />

over the last 150 years (including<br />

erroneous synonymy with L. dubia<br />

Krøyer, 1842), and it is now apparent<br />

that numerous species of Leptochelia<br />

await distinction based on morphological<br />

features of both genders which were<br />

not examined in any detail before<br />

Ishimaru (1985) (see Bamber, 2005 for<br />

discussion). From his subsequent report<br />

on Mediterranean and Atlantic species<br />

(Dollfus, 1898), it is apparent that<br />

Dollfus distinguished L. savignyi correctly<br />

on the basis of four longer articles in<br />

the antennule of the female (inter alia).<br />

There is debate whether the extra antennular<br />

article is an intermediate feature of<br />

a female changing into a male in a genus<br />

known to show progynous hermaphroditism<br />

(e.g. Smith, 1906); while this trend<br />

has been observed in some taxa of<br />

Leptochelia (R. Heard, pers. comm.), the<br />

male of L. savignyi sensu Sars, 1886 is a<br />

primary male, while Larsen & Rayment<br />

(2002) found this antennular structure a<br />

consistent feature of females of their new<br />

species L. elongata, including an ovigerous<br />

paratype. Dollfus (1898) reported a<br />

number of collections including females<br />

attributed to L. savignyi from the<br />

Mediterranean and the eastern Atlantic,<br />

implying a frequency of this antennular<br />

morphology unlikely to be shown only<br />

by transitional hermaphrodite specimens.<br />

His records from the Azores are<br />

thus accepted as valid, and L. savignyi<br />

sensu Sars, 1886 (see Figure 6A, B) is<br />

accepted as the same as L. savignyi<br />

Krøyer, 1842.<br />

Krøyer (1842) named a third species<br />

of Leptochelia, “Tanais” edwardsii, also<br />

from Madeira, but based only on the<br />

male. While it is possible that this taxon<br />

may never be confirmed (it is assumed to<br />

be the male of L. savignyi), from his figure<br />

(Krøyer, 1842: pl.2: Figures 13-19) it<br />

does not have the same antennular or<br />

pleotelson proportions as L. caldera.<br />

Family Paratanai<strong>da</strong>e Lang, 1949<br />

Sufamily Paratanaidinae Lang, 1949<br />

Genus Paratanais Dana, 1852<br />

Paratanais martinsi sp. nov.<br />

Figures 4, 5<br />

?Paratanais euelpis Monod, 1925, non<br />

Paratanais euelpis Barnard, 1920.<br />

Non- Paratanais atlanticus Dollfus,<br />

1897 (incertae sedis)<br />

Material: 1 female with brood pouch (in<br />

tube), holotype (NHM.2007.438), 1 female<br />

dissected, 2 females, 1 manca, 1 headless<br />

female, paratypes,(NHM.2007.439-440),<br />

WVF040, off Amora, Ponta Garça, São<br />

Miguel, Azores, 37º42’720”N<br />

25º21’554”W, 37.8 m depth, small dredge<br />

sample, 26 July 2006, coll. António de<br />

Frias Martins & Jerry Harasewych.<br />

Description of female: body (Figure 4A)<br />

elongate, slender, 4.2 mm long, eight<br />

times as long as wide, colour translucent<br />

white, eyes black. Cephalothorax subrectangular,<br />

1.2 times as long as wide, with<br />

slight rounded rostrum, single mid-lateral<br />

setae; eyes present, pigmented. Six free<br />

cylindrical pereonites; pereonite 1 shortest,<br />

with single anterolateral setae; pereonites<br />

2 and 3 subequal, twice as long as<br />

pereonite 1, also with single anterolateral<br />

setae; pereonites 4 and 5 subequal (pereonite<br />

4 longest), 1.2 times as long as pereonite<br />

2, pereonite 6 just shorter than pereonite<br />

2 (all pereonites respectively 2, 1.1,<br />

1.0, 0.9, 0.9 and 1.2 times as wide as long).<br />

Pleon of five free subequal pleonites bearing<br />

pleopods; pleonites 4.5 times as wide<br />

as long; pleonites 1 to 4 with one<br />

plumose, articulating lateral seta on each<br />

side, pleonite 5 with simple lateral seta.


194 AÇOREANA<br />

2009, Sup. 6: 183-200<br />

Pleotelson semicircular, short, 1.9 times as<br />

wide as long, distally with paired dorsal<br />

and paired terminal setae.<br />

Antennule (Figure 4B) of four articles,<br />

proximal article 2,3 times as long as wide,<br />

second article 1.3 times as long as wide,<br />

about one-third length of first, with dorsal<br />

seta longer than article length; third<br />

article nearly two-thirds length of second;<br />

distal article slender, longer than second<br />

and third articles together, with five distal<br />

setae and single aesthetasc.<br />

Antenna (Figure 4C) of six articles,<br />

proximal article compact, naked; second<br />

article with long ventrodistal and short<br />

dorsodistal apophyses each bearing seta;<br />

third article as long as wide, naked, with<br />

dorsodistal spine; fourth article just<br />

longer than second, with two distal simple<br />

setae; fifth article half as long as<br />

fourth with two distal setae; sixth article<br />

minute with five longer and one shorter<br />

distal setae.<br />

Labrum (Figure 4D) apically rounded,<br />

setose. Left mandible (Figure 4E)<br />

with crenulate pars incisiva and wide,<br />

crenulate lacinia mobilis; pars molaris<br />

robust with elaborate marginal “teeth”.<br />

Right mandible (Figure 4F) without<br />

lacinia mobilis, pars molaris less elaborate.<br />

Labium (Figure 4G) simple, finely<br />

setose, with fine outer marginal spinule,<br />

without palp. Maxillule (Figure 4H)<br />

with seven longer and two shorter distal<br />

spines, palp slender with two long distal<br />

setae; maxilla ovoid, naked. Maxilliped<br />

(Figure 4I) endites characteristic of<br />

genus, wide with denticulate outer margin,<br />

two inner distal ovate tubercles and<br />

single inner seta; palp first article naked,<br />

second article inner margin with two<br />

simple setae and shorter distal spine,<br />

outer margin with distal seta; third article<br />

with three inner bidenticulate spines,<br />

adjacent shorter simple spine; fourth<br />

article with four inner bidenticulate<br />

spines, single inner submarginal and<br />

outer simple setae; single inner spine on<br />

basis exceeding distal margin of endites.<br />

Epignath (Figure 4J) ribbon-like,<br />

glabrous but with two fine distal setae.<br />

Cheliped (Figure 5A) compact, carpus<br />

1.2 times as long as wide; propodus<br />

wider than long, fixed finger short with<br />

lamellate apophyses on cutting edge, terminal<br />

spine indistinct; <strong>da</strong>ctylus with<br />

dorsoproximal simple seta.<br />

Pereopod 1 (figue 5B) longer than<br />

others, coxa simple with seta; basis slender,<br />

arcuate, five times as long as wide;<br />

ischium compact with single seta; merus<br />

1.5 times as long as carpus; propodus 1.2<br />

times as long as merus, with one ventral<br />

and three dorsal distal setae; <strong>da</strong>ctylus<br />

with distinct, slender claw, both together<br />

as long as propodus. Pereopod 2 (Figure<br />

5C) similar to pereopod 1, but more compact,<br />

basis 3.1 times as long as wide,<br />

ischium with tow setae, merus shorter<br />

than carpus with ventral microtrichia<br />

and ventrodistal spine, carpus with ventral<br />

microtrichia, two ventrodistal and<br />

one larger inner distal spines. Pereopod<br />

3 (Figure 5D) similar to pereopod 2.<br />

Pereopod 4 (Figure 5E) basis robust, 2.2<br />

times as long as wide; merus 0.8 times as<br />

long as carpus, each with spination as<br />

pereopod 3; propodus longer than carpus<br />

with mid-dorsal penicillate seta,<br />

dorsodistal slender spine and ventrodistal<br />

stout spine; <strong>da</strong>ctylus and claw forming<br />

unguis, curved, two-thirds as long as<br />

propodus. Pereopod 5 (Figure 5F) as<br />

pereopod 4. Pereopod 6 (Figure 5G) as<br />

pereopod 4, but propodus more compact<br />

with two ventrodistal spines and three<br />

dorsodistal setae adjacent to slender<br />

spine.<br />

Pleopods (Figure 4K) all alike, with<br />

naked basis, endopod with single inner<br />

plumose seta; exopod without setae on<br />

inner margin.<br />

Uropod (Figure 5H) basis naked,<br />

endopod of two segments, exopod of one


BAMBER & COSTA: TANAIDACEANS FROM SÃO MIGUEL 195<br />

FIGURE 4. Paratanais martinsi sp. nov., A, holotype, dorsal; B, antennule; C, antenna; D, labrum;<br />

E, left mandible; F, right mandible; G, labium; H, maxillule and maxilla; I, maxilliped; J, epignath:<br />

K, pleopod (plumose nature of all setae not shown). Scale line = 1 mm for A, 0.2 mm for B and C,<br />

0.1 for D to J.


196 AÇOREANA<br />

2009, Sup. 6: 183-200<br />

segment, shorter than proximal segment<br />

of endopod.<br />

Male unknown.<br />

Etymology: named after António de Frias<br />

Martins, in gratitude for his assistance in<br />

attending the workshop, and exemplary<br />

hospitality.<br />

Remarks: the genus Paratanais has been<br />

capably diagnosed by Lang (1973). The<br />

only species from the North Atlantic<br />

attributed previously to Paratanais are all<br />

incertae sedis. Bate & Westwood (1868)<br />

described “Paratanais” rigidus from one<br />

specimen collected from Laminaria holdfasts<br />

off Glasgow, western Scotland: while<br />

their four-articled antennule is appropriate,<br />

they carefully describe the uropod<br />

rami as both being of one segment, and an<br />

elongate, slender chela; their species is<br />

not a member of the genus Paratanais, but<br />

with the inadequate description and figures<br />

must remain incertae sedis. P. limicola<br />

FIGURE 5. Paratanais martinsi sp. nov., A, cheliped; B to G, pereopods 1 to 6 respectively; H, uropod.<br />

Scale line = 0.2 mm for A to G, 0.15 mm for H.


BAMBER & COSTA: TANAIDACEANS FROM SÃO MIGUEL 197<br />

Harger, 1878 (see Harger, 1880, for<br />

description and figures) has a three-articled<br />

antennule, and the uropod has two<br />

segments in the exopod and five in the<br />

endopod: Harger himself (1880) moved<br />

this species, apparently correctly, to<br />

Leptochelia. Dollfus (1897) described<br />

“Paratanais” atlanticus from 130 m depth<br />

off the Azores, based on a male and two<br />

females; although the description is<br />

somewhat cursory, and the figures inadequate,<br />

his species clearly had a three-articled<br />

antennule in the female, and the uropod<br />

had a two-segmented exopod and a<br />

three-segmented endopod; Dollfus’<br />

species thus cannot be a member of the<br />

genus Paratanais. Finally, Monod (1925)<br />

suspected a specimen from 110 m depth<br />

off Morocco to be P. euelpis Barnard, 1920<br />

(a species adequately refigured by Lang,<br />

1973), but without full confidence (and<br />

without description or figure). It is possible<br />

that his specimen, if indeed of this<br />

genus, was of the present species.<br />

In having the setose apophyses on the<br />

second article of the antenna, more characteristic<br />

of species of Leptochelia,<br />

Paratanais martinsi sp. nov. is similar only<br />

to P. gaspodei Bamber, 2005, with which it<br />

also shares the elongate, slender uropod<br />

segments, and the short chela. The present<br />

species differs from P. gaspodei in a<br />

number of characters, including being<br />

generally more slender (pleonites 3, 4 and<br />

5 as long as or longer than wide, all wider<br />

than long in P. gaspodei), with more slender<br />

articles in the antennule and antenna<br />

(proximal peduncle article of antennule<br />

less than twice as long as wide in<br />

P. gaspodei), in the inner spines on the<br />

maxilliped basis exceeding the distal margin<br />

of the endites (not reaching the margin<br />

in P. gaspodei), and with the merus of<br />

pereopod 1 being 1.5 times as long as the<br />

carpus (subequal in length in P. gaspodei).<br />

With regard to the possible Moroccan<br />

record of Monod (1925), P. euelpis also has<br />

a shorter merus to pereopod 1, and is<br />

without the apophyses on the second article<br />

of the antenna, as well as differences<br />

in mouthpart setation.<br />

TENERIFE MATERIAL<br />

Superfamily Tanaoidea Dana, 1849<br />

Family Tanai<strong>da</strong>e Dana, 1849<br />

Subfamily Pancolinae Sieg, 1980<br />

Genus Zeuxo Templeton, 1840<br />

Zeuxo (Parazeuxo) exsargasso Sieg, 1980<br />

Figure 6 C, D<br />

Zeuxo (Parazeuxo) exsargasso<br />

1980, 217-221, figure 61.<br />

Sieg,<br />

Material: 3 males, 3 females with<br />

oostegites, 1 brooding female<br />

(NHM.2007.757-763), 1 female with<br />

oostegites (dissected), rocky interti<strong>da</strong>l<br />

platform covered in algal turf, Playa de<br />

Fanabe, Costa Adeje, Tenerife, 27 June<br />

2007. Coll. B Morton.<br />

Remarks: Zeuxo exsargasso was only<br />

known from the type collection from<br />

floating Sargassum natans, 20 miles southeast<br />

of Bermu<strong>da</strong> (Sieg, 1980). Its presence<br />

in the Canary Islands implies the possibility<br />

of transport by drift from America via<br />

the Gulf Stream and the Azores and<br />

Canary Currents. The only other recorded<br />

species of Zeuxo in north-eastern<br />

Atlantic waters is the only-distantly-related<br />

Zeuxo (Zeuxo) holdichi Bamber, 1990,<br />

known from the Atlantic shores of France<br />

and Portugal and the English Channel<br />

(Bamber, 1990; & unpubl. <strong>da</strong>ta). Zeuxo<br />

species are distinguished from Tanais<br />

species in their having five dorsallydemarcated<br />

pleonites (Tanais has only<br />

four), and no dorsal rows of plumose<br />

setae on the pleon (Tanais has conspicuous<br />

rows on pleonites 1 and 2); the uropod<br />

of Z. exsargasso has five segments<br />

(Figure 6D).


198 AÇOREANA<br />

2009, Sup. 6: 183-200<br />

DISCUSSION<br />

There are now five species of shallowwater<br />

tanai<strong>da</strong>cean recorded from the<br />

Azores, Tanais grimaldii, Leptochelia savignyi<br />

sensu stricto, Leptochelia caldera,<br />

Paratanais martinsi and the unconfirmed<br />

Leptognathia from Ponta <strong>da</strong> Ferraria.<br />

The present <strong>da</strong>ta demonstrate that<br />

Azorean tanai<strong>da</strong>cean fauna inhabits littoral<br />

to infralittoral algae, is generally<br />

sparse, but may show a relatively high<br />

degree of endemism. For the only species<br />

occurring in the 1996 and 1997 <strong>da</strong>ta in sufficient<br />

numbers for interpretation, Tanais<br />

grimaldii, no trends were detected in relation<br />

to disturbance or exposure.<br />

Unfortunately, these taxa give little<br />

information on the origins of the Azorean<br />

fauna. The Leptognathia specimen tells<br />

nothing. The two species described as<br />

new above are as yet unknown from elsewhere:<br />

Leptochelia is a worldwide genus,<br />

while Paratanais is predominantly southern<br />

hemisphere in distribution (Australia,<br />

Subantarctica, South Africa) but also<br />

found in the Indo-West Pacific, the Kurile<br />

Islands and California.<br />

T. grimaldii has been recorded from<br />

the Mediterranean (Adriatic) by Sars<br />

(1886, as T. cavolinii), his figure clearly<br />

showing the appropriate uropod structure.<br />

Sieg (1980) attributes the record of<br />

T. chevreuxi from the Moroccan coast by<br />

Monod (1925) to T. grimaldii, but regards<br />

it as doubtful, as he did the record from<br />

the Bay of Naples by Smith (1906); neither<br />

author gives a description or figure, and<br />

the decision of Sieg (loc. cit.) is based on<br />

their attributing the authority for their<br />

name to Sars, 1886. Both of these records<br />

are surely incertae sedis. There are no pub-<br />

FIGURE 6. A and B, Leptochelia savignyi: A, dorsal; B, antennule (redrawn after Sars, 1886). C and<br />

D, Zeuxo (Parazeuxo) exsargasso (Tenerife specimen): A, dorsal; B, pleotelson and uropods, dorsal.


BAMBER & COSTA: TANAIDACEANS FROM SÃO MIGUEL 199<br />

lished records of Tanais species from the<br />

Canary Islands or from Madeira.<br />

While there has been confusion over<br />

the years regarding Leptochelia savignyi<br />

(see above), the type locality is Madeira,<br />

and the only other valid records (other<br />

than those of Dollfus, 1897; 1898) are<br />

those of Sars (1886) from the<br />

Mediterranean, from the Ligurian Sea<br />

and off Sicily.<br />

Thus there are a few indications that<br />

the Azorean tanai<strong>da</strong>cean fauna may have<br />

links with the Mediterranean, but not<br />

elsewhere. Morton & Britton (2000)<br />

found that most components of the<br />

Azorean marine fauna show affiliation<br />

with the Mediterranean and southern<br />

Europe. However, the discovery of Zeuxo<br />

exsargasso in Tenerife strongly implies colonization<br />

from the western Atlantic to<br />

Macaronesia via the Gulf Stream, the<br />

Azores Current and the Canary Current<br />

(see Timmermann, 1932, for a discussion<br />

on faunistic transport in Sargassum).<br />

It is undoubtedly the case that the<br />

tanai<strong>da</strong>cean fauna of Macaronesia is very<br />

understudied, and that of the<br />

Mediterranean and Atlantic coasts of<br />

Europe and North Africa is little better<br />

known, still relying heavily on 19th century<br />

information. At the same time the<br />

speciation of such taxa as Leptochelia<br />

around the North-east Atlantic and<br />

Mediterranean needs proper study.<br />

ACKNOWLEDGEMENTS<br />

We are indebted to Roni Robbins for<br />

assistance in the field collecting and sample<br />

analysis in 2006, to Andreia Salvador<br />

for sampling assistance in Ilhéu de Vila<br />

Franca, to João Brum for assistance in the<br />

diver collections in 1996 and 1997, to<br />

Brian Morton for collecting the Tenerife<br />

material, to António de Frias Martins for<br />

the organisation of, and inviting us to, the<br />

2006 Workshop, and to the other participants<br />

at the workshop for samples and<br />

for entertainment.<br />

LITERARURE CITED<br />

BAMBER, R.N., 1977. On mobile littoral<br />

environments. Porcupine Newsletter,<br />

1(4): 62-63.<br />

BAMBER, R.N., 1990. A new species of<br />

Zeuxo (Crustacea: Tanai<strong>da</strong>cea) from<br />

the French Atlantic coast. Journal of<br />

Natural History, 24: 1587-1596.<br />

BAMBER, R.N., 1998. Zoogeographic<br />

trends in some Hong Kong arthropods.<br />

In: MORTON, B. (ed.), The<br />

Marine Biology of the South China Sea.<br />

Proceedings of the Third International<br />

Conference on the Marine Biology of the<br />

South China Sea. Hong Kong, 28 October<br />

- 1 November 1996. pp. 91-112. Hong<br />

Kong: Hong Kong University Press.<br />

BAMBER, R.N., 2005. The Tanai<strong>da</strong>ceans<br />

(Arthropo<strong>da</strong>: Crustacea: Peracari<strong>da</strong>:<br />

Tanai<strong>da</strong>cea) of Esperance, Western<br />

Australia, Australia. In: WELLS, F.E.,<br />

D.J. WALKER & G.A. KENDRICK<br />

(eds), Proceedings of the Twelfth International<br />

Marine Biological Workshop:<br />

The Marine Flora and Fauna of<br />

Esperance, Western Australia, pp. 613-<br />

728. Western Australia Museum,<br />

Perth.<br />

BATE, C.S., & J.O. WESTWOOD, 1868. A<br />

History of the British Sessile-Eyed<br />

Crustacea, 2: 117-154. John Van Voorst,<br />

London.<br />

COSTA, A.C., & S.P. ÁVILA, 2001.<br />

Macrobenthic mollusc fauna<br />

inhabiting Halopteris spp. subti<strong>da</strong>l<br />

fronds in São Miguel, Azores. Scientia<br />

Marina, 63: 117-126.<br />

DOLLFUS, A., 1897. Note préliminaire<br />

sur les Tanaidæ recueillis aux <strong>Açores</strong><br />

pen<strong>da</strong>nt les campagnes de l’Hirondelle<br />

(1887-1888). Bulletin de la Société<br />

Zoologique, France, 21: 207-215.<br />

DOLLFUS, A., 1898. Campagnes de la


200 AÇOREANA<br />

2009, Sup. 6: 183-200<br />

Melita. Tanai<strong>da</strong>e récoltes par M. Ed.<br />

Chevreux <strong>da</strong>ns l’Atlantique et <strong>da</strong>ns la<br />

Méditerranée. Memoires de la Société<br />

Zoologique, France, 11: 33-47.<br />

GOFAS, S., 1990. The littoral Rissoi<strong>da</strong>e<br />

and Anabathri<strong>da</strong>e of São Miguel,<br />

Azores. In: MARTINS, A.M.F. (ed),<br />

The Marine Fauna and Flora of the<br />

Azores (Proceedings of the First<br />

International Workshop of Malacology,<br />

São Miguel, 1988). Açoreana, 1990<br />

Supplement: 97-134.<br />

GUTU, M., & J. SIEG, 1999. Ordre<br />

Tanaï<strong>da</strong>cés (Tanai<strong>da</strong>cea Hansen,<br />

1895). Mémoires de l’Institute<br />

Océanographique, Monaco, 19: 353-389.<br />

HARGER, O., 1880. Appendix E. The<br />

Natural History of Marine Animals,<br />

XIV. Report on the marine Isopo<strong>da</strong> of<br />

New England and adjacent waters.<br />

Report of the United States Commission<br />

of Fish and Fisheries, 6: Report of the<br />

Commissioner for 1878, pp. 295-449,<br />

plates 1-13.<br />

ISHIMARU, S-i., 1985. A new species of<br />

Leptochelia (Crustacea, Tanai<strong>da</strong>cea)<br />

from Japan, with a redescription of L.<br />

savignyi (Kroyer, 1842). Publications of<br />

the Seto Marine Biological Laboratory,<br />

30(4/6): 241-267.<br />

KRØYER, H., 1842. Nye Arter af Slægten<br />

Tanais. Naturhistorishe Tiddskrift, 4:<br />

167-188.<br />

LANG, K., 1973. Taxonomische und phylogenetische<br />

Untersuchungen über<br />

die Tanai<strong>da</strong>ceen (Crustacea). 8. Die<br />

Gattung Leptochelia Dana, Paratanais<br />

Dana, Heterotanais G.O. Sars und<br />

Nototanais Richardson. Dazu einige<br />

Bemerkungen über die Monokonophora<br />

und ein Nachtrag.<br />

Zoologica Scripta, 2: 197-229.<br />

LARSEN, K., & H. RAYMENT, 2002. New<br />

species of Leptochelia (Crustacea:<br />

Tanai<strong>da</strong>cea) from the An<strong>da</strong>man Sea,<br />

north-eastern Indian Ocean. Phuket<br />

Marine Biological Center Special<br />

Publication, 32(1): 17-31.<br />

MONOD, T., 1925. Tanai<strong>da</strong>cés et isopodes<br />

aquatiques de l’Afrique occidentale<br />

et septentrionale. 1 er partie:<br />

Tanai<strong>da</strong>cea, Anthuri<strong>da</strong>e, Valvifera.<br />

Bulletin de la Société des Sciences<br />

Naturelles du Maroc, 5(3): 61-85.<br />

MORALES-VELA, B., E. SUAREZ-<br />

MORALES, J. PADILLA-SALDIVAR<br />

& R.W. HEARD, 2008. The tanaid<br />

Hexapleomera robusta (Crustacea:<br />

Peracari<strong>da</strong>) from the Caribbean manatee,<br />

with comments on other crustacean<br />

epibionts. Journal of the Marine<br />

Biological Association of the United<br />

Kingdom, 88: 591-596.<br />

MORTON, B., & J.C. BRITTON, 2000.<br />

The origins of the coastal and marine<br />

flora and fauna of the Azores.<br />

Oceanography and Marine Biology: an<br />

Annual Review, 38: 13-84.<br />

MORTON, B., J.C. BRITTON & A.M.F.<br />

MARTINS, 1998. Coastal Ecology of the<br />

<strong>Açores</strong>, 249 pp. Socie<strong>da</strong>de Afonso<br />

Chaves, Ponta Delga<strong>da</strong>.<br />

SARS, G.O., 1886. Nye bidrag til kundskaben<br />

om Middelhavets invertebratfauna.<br />

III. Middelhavets saxisopoder<br />

(Isopo<strong>da</strong> chelifera). Archiv for<br />

Mathematik og Naturvidenskab, 11: 263-<br />

368.<br />

SARS, G.O., 1899. An account of the<br />

Crustacea of Norway with short descriptions<br />

and figures of all the species. II.<br />

Isopo<strong>da</strong>, 265 pp. + pls. 1-18. Bergen<br />

Museum, Christiania.<br />

SIEG, J., 1980. Taxonomische Monographie<br />

der Tanai<strong>da</strong>e Dana 1849<br />

(Crustacea: Tanai<strong>da</strong>cea). Abhandlungen<br />

der Senckenbergischen Naturforschenden<br />

Gesellschaft, 537: 1-267.<br />

SMITH, G., 1906. High and low dimorphism,<br />

with an account of certain<br />

Tanai<strong>da</strong>e of the Bay of Naples.<br />

Mitteilungen aus der Zoologischen<br />

Station zu Neapel, 17: 312-340.<br />

TIMMERMANN, G., 1932. Biogeographische<br />

Untersuchungen über die<br />

Lebensgemeinschaft des treibenden<br />

Golfkrautes. Zeitschrift für Morphologie<br />

und Oekologie des Tieres, 25: 288-355.


AÇOREANA, Suplemento 6, Setembro 2009: 201-210<br />

THE SOFT-SEDIMENT INFAUNA OFF SÃO MIGUEL, AZORES, AND A<br />

COMPARISON WITH OTHER AZOREAN INVERTEBRATE HABITATS<br />

Roger N. Bamber & Roni Robbins<br />

The Natural History Museum, Cromwell Road, London SW7 5BD, U.K. e-mail: roger.bamber@artoo.co.uk<br />

ABSTRACT<br />

During the Third International Workshop of Malacology and Marine Biology in the<br />

Azores in July 2006, sampling of the littoral and sublittoral soft-sediment benthos around<br />

Vila Franca do Campo, São Miguel, was undertaken in order to characterize the benthic<br />

infaunal communities, and to compare the faunal density and diversity with the communities<br />

associated with algae.<br />

The sedimentary infauna was particularly sparse, with the average number of species<br />

and individuals per sample being 4.4 and 25 respectively. Although density and diversity<br />

were greatest between 20 and 40 m depth, there was no community trend with depth<br />

down to 250 m. The dominant taxa were actively mobile species. By contrast, the fauna<br />

of algal habitats was far denser and more species rich: these samples had an average of 17<br />

species and 360 individuals per sample.<br />

These results indicate an unstructured, impoverished sedimentary infauna, dominated<br />

by errant taxa which can tolerate unstable sediments, and not well-characterized as a<br />

community. The impoverishment of sedimentary benthos of this part of the Azores is<br />

attributed to sediment instability.<br />

SUMÁRIO<br />

Durante o 3º Workshop Internacional de Malacologia e Biologia Marinha nos <strong>Açores</strong><br />

em Julho de 2006, foram feitas amostragens do bentos do sedimento móvel do litoral e<br />

sublitoral perto de Vila Franca do Campo, São Miguel, com vista a caracterizar as<br />

comuni<strong>da</strong>des bentónicas <strong>da</strong> infauna e comparar a densi<strong>da</strong>de e diversi<strong>da</strong>de <strong>da</strong> infauna com<br />

as comuni<strong>da</strong>des associa<strong>da</strong>s às algas.<br />

A infauna sedimentar era particularmente esparsa, sendo o número médio de espécies<br />

e indivíduos por amostragem 4,4 e 25, respectivamente. Embora a densi<strong>da</strong>de e a<br />

diversi<strong>da</strong>de fossem as mais eleva<strong>da</strong>s entre os 20 e os 40 m de profundi<strong>da</strong>de, não se notou<br />

tendência na comuni<strong>da</strong>de com a profundi<strong>da</strong>de até aos 250 m. Os taxa dominantes eram<br />

espécies activamente móveis. Em contraste, a fauna <strong>dos</strong> habitats algais era de longe mais<br />

densa e mais rica em espécies: ali se registou a média de 17 espécies e 360 indivíduos por<br />

amostra.<br />

Estes resulta<strong>dos</strong> indicam uma infauna sedimentar não estrutura<strong>da</strong>, empobreci<strong>da</strong>,<br />

domina<strong>da</strong> por taxa errantes que podem tolerar sedimentos instáveis, e não bem<br />

caracteriza<strong>da</strong> coo comuni<strong>da</strong>de. O empobrecimento do bentos sedimentar desta parte <strong>dos</strong><br />

<strong>Açores</strong> atribui-se à instabili<strong>da</strong>de do sedimento.<br />

INTRODUCTION<br />

The Azores are a group of islands<br />

somewhat isolated in the north-east<br />

Atlantic, lying adjacent to the Mid-<br />

Atlantic Ridge some 1300 km west of<br />

Portugal and 1730 km southeast of<br />

Newfoundland. The main surface water<br />

currents reaching the archipelago bring<br />

waters from two directions: the Azores<br />

Drift, a diffuse southerly arm of the Gulf<br />

Stream breaking off from the North<br />

Atlantic Drift supplies water from the<br />

Americas, while the somewhat less-sig-


202 AÇOREANA<br />

2009, Sup. 6: 201-210<br />

nificant western eddies of the Canary<br />

Current bring waters from Spain and<br />

North Africa; below these, the midwater<br />

current brings warm, hyperhaline water<br />

from the Mediterranean outflow (Gofas,<br />

1990; Morton et al., 1998; Morton &<br />

Britton, 2000). This hydrography clearly<br />

has implications for the colonization of<br />

the islands by benthic marine species.<br />

While there have been a number of<br />

previous studies on the fauna associated<br />

with the rocky shores, or with littoral and<br />

infralittoral algae (e.g. Hawkins et al.,<br />

1990; Bullock et al., 1990; Bullock, 1995;<br />

taxa reviewed by Morton & Britton, 2000),<br />

and which have normally been taxon specific<br />

(see papers by Chapman et auctt. in<br />

Morton, 1990), there have been few published<br />

studies of the soft-sediment communities,<br />

largely owing to their recognized<br />

sparseness. Morton (1990) points<br />

out that there was at that time no information<br />

on the soft shores of the Azores, as<br />

virtually all are high energy beaches,<br />

“superficially devoid of significant life”<br />

(see also Morton et al., 1998). Two surveys<br />

had been conducted of the soft-sediment<br />

fauna of the sheltered habitat within the<br />

flooded crater of Ilhéu de Vila Franca, one<br />

in 1988 and one in 1995 (Morton, 1990;<br />

Wells, 1995 respectively).<br />

During the Third International<br />

Workshop of Malacology and Marine<br />

Biology in the Azores in July 2006, sampling<br />

of the littoral and sublittoral softsediment<br />

benthos off Vila Franca do<br />

Campo was undertaken in order to gain<br />

some insight into the communities present.<br />

Some sites were sampled within the<br />

flooded crater of the Ilhéu de Vila Franca<br />

to compare with the findings of the 1988<br />

and 1991 studies. Comparisons were<br />

made between the invertebrate fauna of<br />

quantitative (grab plus shore collected)<br />

and qualitative (dredge) benthic samples,<br />

as well as the fauna associated with<br />

infralittoral algae.<br />

METHODS<br />

Quantitative samples were collected<br />

using a 0.025 m 2 Peterson grab, taking<br />

two replicates per sampling station.<br />

Littoral and infralittoral sands were sampled<br />

quantitatively using a plastic scoop,<br />

also to 0.05 m 2 . The samples were sieved<br />

across a 0.5 mm mesh and sorted live.<br />

Qualitative samples were collected<br />

using a variety of dredges, towed at 1 to 2<br />

knots for between 6 and 10 minutes.<br />

Crustaceans, pycnogonids, polychaetes,<br />

sipunculans, phoronids and echinoderms<br />

from these samples were retained<br />

serendipitously.<br />

The depths of the grab and dredge<br />

samples ranged between 12 and 250 m.<br />

Position fixing was by GPS.<br />

Qualitative algal samples were collected<br />

either from littoral rocks (sample<br />

Island 24.10), or from sublittoral sites in<br />

the crater of Ilhéu de Vila Franca.<br />

Material as collected from the dredge<br />

samples was also analyzed from one<br />

SCUBA collection on algae, sponges, etc.,<br />

at 16 m depth.<br />

All taxa were identified to species<br />

where possible. Nomenclature and<br />

authorities are as in Costello et al. (2001).<br />

Sample numbers are prefixed “Island” for<br />

those collected within the Ilhéu de Vila<br />

Franca, otherwise “WVF”.<br />

RESULTS<br />

The sampling sites analyzed are listed<br />

in Table 1, with depths, sampling gear<br />

and univariate community statistics.<br />

Quantitative samples<br />

The twelve grab and shore-collected<br />

quantitative samples were analyzed<br />

together. The complete faunal <strong>da</strong>ta from<br />

these samples is given in Appendix 1. It<br />

is immediately apparent that the benthic<br />

infauna is indeed sparse: only one of the


BAMBER & ROBBINS: THE SOFT-SEDIMENT INFAUNA OFF SÃO MIGUEL 203<br />

TABLE 1. List of samples, with depth, sampling gear and univariate ‘community’ statistics.<br />

Sample Date depth,<br />

m<br />

sampling<br />

gear<br />

species individuals species<br />

richness<br />

Shannon-<br />

Weiner H'<br />

Evenness<br />

WVF005 19/7/06 42 dredge 7 15 2.216 2.28 0.8121<br />

WVF006 19/7/06 40 dredge 10 12 3.622 3.252 0.9788<br />

WVF007 19/7/06 178 dredge 10 26 2.762 2.887 0.8689<br />

WVF008 19/7/06 148 dredge 4 6 1.674 1.792 0.8962<br />

WVF011 20/7/06 16 scuba 26 196 4.574 3.861 0.8315<br />

WVF015 21/7/06 46 dredge 11 17 3.53 3.293 0.9518<br />

WVF016 21/7/06 19 dredge 8 24 2.203 2.772 0.924<br />

WVF019 21/7/06 23 grab 16 91 3.325 3.033 0.7581<br />

WVF020 21/7/06 50 grab 7 14 2.274 2.407 0.8573<br />

WVF021 21/7/06 118 grab 2 2<br />

Island24.1 24/7/06 0 scoop 1 17<br />

Island24.2 24/7/06 drift weed 16 129 3.087 2.845 0.7113<br />

Island24.3 24/7/06 0.5 scoop 0<br />

Island24.4 24/7/06 0.3 weed 25 719 3.505 3.328 0.7259<br />

Island24.5 24/7/06 0.5 weed 27 606 3.913 3.456 0.7352<br />

Island24.6 24/7/06 0.3 scoop 0<br />

Island24.7 24/7/06 0.5 scoop 0<br />

Island24.9 24/7/06 0.3 scoop 0<br />

Island24.10 24/7/06 0 weed scrape 3 7<br />

WVF034 25/7/06 16.7 grab 5 12 1.61 1.781 0.7669<br />

WVF035 25/7/06 23 grab 8 46 1.828 2.519 0.8398<br />

WVF036 25/7/06 36 grab 8 105 1.504 1.668 0.556<br />

WVF039 25/7/06 12 grab 1 1<br />

WVF040 26/7/06 38 dredge 5 20 1.335 1.882 0.8106<br />

WVF041 25/7/06 250 dredge 6 12 2.012 2.355 0.9112<br />

littoral/infralittoral samples contained<br />

any macrofauna, that on the sand bar in<br />

Ilhéu de Vila Franca (Island24.1) containing<br />

17 individuals of the errant isopod<br />

Eurydice affinis. Similarly, the grab samples<br />

at 12 m (WVF039) contained only a<br />

single specimen of the bivalve Ervilia castanea.<br />

Figure 1 shows the distribution<br />

with depth of faunal density (numbers<br />

per 0.05 m2), number of species and<br />

Shannon-Weiner diversity. The greatest<br />

faunal density and number of species<br />

occur between 20 and 40 m depth, but values<br />

are consistently low, with the average<br />

number of species and individuals per<br />

sample being 4.4 and 25 respectively.<br />

The community diversity is generally<br />

low, Shannon-Weiner index values ranging<br />

between 1 and 3, and also peaks at<br />

around 20 to 40 m depth, although, owing<br />

to the proportionately higher number of<br />

species (7) in a sparse fauna (n=14) at station<br />

WVF020, diversity remains in the<br />

upper range to 50 m.<br />

Dominant taxa were actively mobile<br />

species, the mysid Gastrosaccus normani,<br />

the amphipods Microdeutopus versiculatus<br />

and Harpinia laevis, the polychaete<br />

Armandia polyophthalma and the pre<strong>da</strong>tory<br />

polychaete Glycera capitata. The most<br />

numerous sessile species was the tubicolous<br />

polychaete Myriochele oculata,


204 AÇOREANA<br />

2009, Sup. 6: 201-210<br />

FIGURE 1. Univariate community parameters by depth for the sedimentary infauna, quantitative<br />

samples only.<br />

although that species was constrained to<br />

two stations. Indeed, of the 28 species<br />

recorded, 21 are actively mobile species<br />

less reliant on sedimentary-habitat stability.<br />

Qualitative samples<br />

The complete faunal <strong>da</strong>ta from the<br />

dredge samples is given in Appendix 2.<br />

These samples are not directly comparable<br />

as no molluscs were analyzed (they<br />

having been removed for other studies),<br />

and the univariate community statistics<br />

are only indicative, as the samples were<br />

not quantitative (although the Shannon-<br />

Weiner diversity index is relatively sample-size-independent).<br />

The fauna was again found to be<br />

sparse and inconsistent, 29 of the 42<br />

species recorded occurring in only one<br />

sample. Although no dredges shallower<br />

than 19 m were analyzed, there was an<br />

indication that the numbers of species<br />

and individuals were highest around 19<br />

to 50 m depth, similar to the results from<br />

the grab sample results, but the sample at<br />

178 m (WVF007) had high density and<br />

species number. Average numbers of<br />

species and individuals were 7.5 and 16.5<br />

respectively.<br />

The dominant taxa were again actively<br />

mobile species, including amphipods,<br />

decapods, errant polychaetes, while the<br />

only obligately sessile taxa were tubicolous<br />

species, the tanai<strong>da</strong>cean Paratanais<br />

martinsi, the spionid polychaete Spio<br />

armata and the phoronid Phoronis muelleri,<br />

each occurring only once.<br />

Overall, although extra species were<br />

found from the dredge samples (which<br />

had taken a larger volume per sample),<br />

the fauna was relatively similar to that<br />

found in the grab samples.<br />

Algal and other samples<br />

The non-sedimentary samples were<br />

analyzed in order to compare faunal densities<br />

and species complements of the<br />

non-infaunal community.<br />

Appendix 3 lists the complete faunal<br />

<strong>da</strong>ta from these samples, which comprise<br />

a scuba-collection (WVF011), floating<br />

(Island 24.2), submerged (Island 24.4,<br />

island 24.5) or littorally attached


BAMBER & ROBBINS: THE SOFT-SEDIMENT INFAUNA OFF SÃO MIGUEL 205<br />

(Island 24.10) algae in the Ilhéu de Vila<br />

Franca lagoon.<br />

It is immediately apparent that the<br />

fauna of these habitats was far denser and<br />

more species rich. Even though the littoral<br />

rock-pool algal sample was impoverished,<br />

the algal samples had an average of 17<br />

species and 360 individuals per sample.<br />

The dominant species were the crevicial<br />

or algal-associated polychaete<br />

Platynereis dumerilii, and peracarid crustaceans,<br />

notably algal-associated<br />

amphipods (Hyale spp., Erichthonius spp.,<br />

Microdeutopus versiculatus, Corophium acutum,<br />

Caprella acanthifera), isopods<br />

(Dynamene bidentata, Cymodoce truncata,<br />

Paranthura costana) and tanai<strong>da</strong>ceans<br />

(Tanais grimaldii), together with algalassociated<br />

pycnogonids (Anoplo<strong>da</strong>ctylus<br />

pygmaeus, A. angulatus) and the only<br />

cumacean recorded during the 2006 surveys,<br />

Cumella limicola. However, other<br />

dominant species (the polychaete Fabricia<br />

stellata, the amphipod Dexamine spinosa)<br />

are taxa which commonly occur in sediments,<br />

but which were not recorded away<br />

from the algae.<br />

Most of the species recorded from the<br />

scuba sample, collected from 16 m depth<br />

to the north-east off Ilhéu de Vila Franca,<br />

were the same as those dominant taxa<br />

from the algal samples, confirming this<br />

dense and diverse community is not<br />

restricted to the sheltered waters of the<br />

crater lagoon.<br />

DISCUSSION<br />

The <strong>da</strong>ta from both sets of sedimentary<br />

infaunal samples were subjected to<br />

multivariate analysis simply on presence<br />

or absence of species, owing to the qualitative<br />

nature of the dredge samples. The<br />

<strong>da</strong>ta set was reduced to those 30 taxa<br />

occurring as more than one individual in<br />

the survey, and to those samples with<br />

some fauna.<br />

The dendrogram of sample similarity<br />

(Figure 2) shows relatively poor clustering<br />

owing to the sparse and patchy nature<br />

of the fauna. Sample WVF040 is quite distinct,<br />

the three species recorded there<br />

(two pycnogonids and a tanai<strong>da</strong>cean) not<br />

being found elsewhere; this sample was<br />

not analyzed further. Similar reasons<br />

account for the isolation of samples<br />

WVF007, WVF008 and Island24.1. The<br />

remaining six grab samples and five<br />

dredge samples show that there is, in fact,<br />

no particular trend with depth in the<br />

community, dredge sample WVF041,<br />

taken at 250 m, falling comfortably within<br />

the subcluster of four grab samples taken<br />

at depths between 16.7 and 36 m. This<br />

lack of a trend is confirmed by the nonparametric<br />

ordination by multidimensional<br />

scaling (MDS) (Figure 3).<br />

Although the stations WVF007 and<br />

WVF008, both deeper than 140 m, are isolated,<br />

the species which distinguish them,<br />

Onuphis eremita and Ebalia tuberosa, are<br />

not species confined to deeper water.<br />

These results indicate an unstructured,<br />

impoverished sedimentary infauna,<br />

dominated by errant taxa which can<br />

tolerate unstable sediments, and not wellcharacterized<br />

as a community, thus not<br />

showing any particular community<br />

trends with depth. This fauna is most<br />

impoverished in shallow depths (


206 AÇOREANA<br />

2009, Sup. 6: 201-210<br />

FIGURE 2. Dendrogram by Bray-Curtis similarity (%) for sedimentary benthic infaunal samples<br />

(presence-absence <strong>da</strong>ta).<br />

which would most readily recruit. It was<br />

notable that the densest algal-associated<br />

communities occurred sublittorally, most<br />

littoral algae of the adjacent São Miguel<br />

shoreline supporting little of no fauna.<br />

ACKNOWLEDGEMENTS<br />

We are indebted to Andreia Salvador<br />

for sampling assistance in Ilhéu de Vila<br />

Franca, to António de Frias Martins for<br />

FIGURE 3. MDS ordination based on the similarity<br />

<strong>da</strong>ta from figure 2, with circles of diameter<br />

proportional to sample depth.<br />

the organisation of, and inviting us to the<br />

Workshop, and to the other participants<br />

at the workshop for samples, assistance<br />

with the boat-work, discussion and entertainment.<br />

LITERATURE CITED<br />

BULLOCK, R.C., 1995. The distribution<br />

of the molluscan fauna associated<br />

with the interti<strong>da</strong>l coralline algal turf<br />

of a partially submerged volcanic<br />

crater, the Ilhéu de Vila Franca, São<br />

Miguel, Azores. In: MARTINS, A.M.F.<br />

(ed.), The Marine Fauna and Flora of the<br />

Azores (Proceedings of the Second<br />

International Workshop of Malacology<br />

and Marine Biology, São Miguel, 1991).<br />

Açoreana, Supplement [4]: 9-55.<br />

BULLOCK, R.C., R.D. TURNER & R.A.<br />

FRALICK, 1990. Species richness and<br />

diversity of algal-associated micromolluscan<br />

communities from São<br />

Miguel, Azores. In: MARTINS, A.M.F.<br />

(ed.), The Marine Fauna and Flora of the<br />

Azores (Proceedings of the First<br />

International Workshop of Malacology,


BAMBER & ROBBINS: THE SOFT-SEDIMENT INFAUNA OFF SÃO MIGUEL 207<br />

São Miguel, 1988). Açoreana,<br />

Supplement [2]: 39-58.<br />

COSTELLO, M.J., C. EMBLOW & R.<br />

WHITE (eds.), 2001. European<br />

Register of marine Species. A checklist<br />

of the marine species in Europe<br />

and a bibliography of guides to their<br />

identification. Patrimoines Naturels,<br />

50: 463 pp.<br />

GOFAS, S., 1990. The littoral Rissoi<strong>da</strong>e<br />

and Anabathri<strong>da</strong>e of São Miguel,<br />

Azores. In: MARTINS, A.M.F. (ed.),<br />

The Marine Fauna and Flora of the<br />

Azores (Proceedings of the First<br />

International Workshop of Malacology,<br />

São Miguel, 1988). Açoreana,<br />

Supplement [2]: 97-134.<br />

HAWKINS, S.J., L.P. BURNAY, A. NETO,<br />

R. TRISTÃO <strong>da</strong> CUNHA & A.M. de<br />

FRIAS MARTINS, 1990. A description<br />

of the zonation patterns of molluscs<br />

and other biota on the south coast of<br />

São Miguel, Azores. In: MARTINS,<br />

A.M.F. (ed.), The Marine Fauna and<br />

Flora of the Azores (Proceedings of the<br />

First International Workshop of<br />

Malacology, São Miguel, 1988).<br />

Açoreana, Supplement [2]: 21-38.<br />

MORTON, B., 1990. The interti<strong>da</strong>l ecology<br />

of Ilhéu de Vila Franca – a<br />

drowned volcanic crater in the<br />

Azores. In: MARTINS, A.M.F. (ed.),<br />

The Marine Fauna and Flora of the<br />

Azores (Proceedings of the First<br />

International Workshop of Malacology,<br />

São Miguel, 1988). Açoreana,<br />

Supplement [2]: 3-20.<br />

MORTON, B. & J.C. BRITTON, 2000. The<br />

origins of the coastal and marine flora<br />

and fauna of the Azores.<br />

Oceanography and Marine Biology: an<br />

Annual Review, 38: 13-84.<br />

MORTON, B., J.C. BRITTON & A.M.F.<br />

MARTINS, 1998. Coastal Ecology of the<br />

<strong>Açores</strong>, 249pp. Socie<strong>da</strong>de Afonso<br />

Chaves, Ponta Delga<strong>da</strong>.<br />

WELLS, F.E., 1995. An investigation of<br />

marine invertebrate communities in<br />

the sediments of Ilhéu de Vila Franca<br />

off the island of São Miguel, Azores.<br />

In: MARTINS, A.M.F. (ed.), The Marine<br />

Fauna and Flora of the Azores<br />

(Proceedings of the Second International<br />

Workshop of Malacology and Marine<br />

Biology, São Miguel, 1991). Açoreana,<br />

Supplement [4]: 57-65.


208 AÇOREANA<br />

2009, Sup. 6: 201-210<br />

APPENDIX 1. Complete benthic faunal <strong>da</strong>ta from quantitative sedimentary samples<br />

WVF WVF WVF Island Island Island Island Island WVF WVF WVF WVF<br />

Sample 019 020 021 24.1 24.3 24.6 24.7 24.9 034 035 036 039 TOTAL<br />

SIPUNCULA<br />

Golfingia minuta 2 2<br />

ANNELIDA<br />

Glycera capitata 9 1 6 6 22<br />

Glycera tesselata 3 3<br />

Glycinde nordmanni 1 1<br />

Eumi<strong>da</strong> cf. bahusiensis 1 1<br />

Scoloplos armiger 1 1<br />

Spio armata 2 2<br />

Armandia polyophthalma 24 7 7 4 42<br />

Myriochele oculata 4 70 74<br />

Ditrupa arietina 1 3 4<br />

ARTHROPODA<br />

Crustacea<br />

Mysi<strong>da</strong>cea<br />

Gastrosaccus normani 22 1 1 18 8 50<br />

Anchialina agilis 1 1 2<br />

Amphipo<strong>da</strong><br />

Harpinia laevis 14 5 14 33<br />

Synchelidium haplocheles<br />

5 5<br />

Erichthonius punctatus 1 1<br />

Microdeutopus versiculatus 6 1 2 5 1 15<br />

Ampithoe rubricata 1 1<br />

Caprella penantis 1 1<br />

Isopo<strong>da</strong><br />

Eurydice affinis 1 1 17 19<br />

Decapo<strong>da</strong><br />

Atyaephyra desmaresti 1 1<br />

Processa edulis 1 1<br />

Crangon trispinosus 2 2<br />

Parthenope expansa 1 1<br />

MOLLUSCA<br />

Bivalvia<br />

Ervilia castanea 1 1 2<br />

Moerella donacina 1 1<br />

Solemya sp. 1 1<br />

ECHINODERMATA<br />

Echinocardium flavescens<br />

4 3 7<br />

Echinocyamus pusillus 1 3 1 5<br />

No. of Species 16 7 2 1 0 0 0 0 6 10 10 1 28<br />

No. of Individuals 91 14 2 17 0 0 0 0 13 53 109 1 300


BAMBER & ROBBINS: THE SOFT-SEDIMENT INFAUNA OFF SÃO MIGUEL 209<br />

APPENDIX 2. Faunal <strong>da</strong>ta from qualitative dredge samples (Mollusca not included)<br />

Sample WVF005 WVF006 WVF007 WVF008 WVF015 WVF016 WVF040 WVF041 TOTAL<br />

SIPUNCULA<br />

Golfingia margaritacea 1 1<br />

Golfingia minuta 1 1<br />

ANNELIDA<br />

Harmothoe spp. 4 3 7<br />

Glycera capitata 1 2 4 7<br />

Glycera tesselata 1 3 4<br />

Glycinde nordmanni 1 1<br />

Nereis pelagica 3 3<br />

Nereis diversicolor 2 2<br />

Eulalia cf. expusilla 1 1<br />

Spio armata 1 1<br />

Armandia polyophthalma 1 1<br />

Pisione remota 1 1<br />

Onuphis eremita 6 1 7<br />

Hyalinoecia tubicola 1 1 2<br />

ARTHROPODA<br />

Pycnogoni<strong>da</strong><br />

Achelia echinata 9 9<br />

Anoplo<strong>da</strong>ctylus virescens 1 1<br />

Anoplo<strong>da</strong>ctylus amora 3 3<br />

Crustacea<br />

Mysi<strong>da</strong>cea<br />

Gastrosaccus normani 1 1 4 2 8<br />

Amphipo<strong>da</strong><br />

Ampelisca spinipes 1 1<br />

Erichthonius punctatus 1 1<br />

Erichthonius difformis 7 1 4 12<br />

Microdeutopus versiculatus<br />

2 2<br />

Melita gladiosa 2 2<br />

Lembos websteri 1 1<br />

Isopo<strong>da</strong><br />

Eurydice affinis 1 1 3 5<br />

Tanai<strong>da</strong>cea<br />

Paratanais martinsi 6 6<br />

Decapo<strong>da</strong><br />

Processa edulis 1 2 3<br />

Crangon trispinosus 6 6<br />

Anapagurus laevis 1 1<br />

Paguri<strong>da</strong>e indet. 1 2 3<br />

Galathea intermedia 1 3 4<br />

Scyllarus arctus 1 1<br />

Ebalia tuberosa 7 3 10<br />

Liocarcinus arcuatus 1 1<br />

Liocarcinus marmoreus 4 4<br />

Liocarcinus pusillus 1 1<br />

Pilumnoides inglei 1 1<br />

Parthenope expansa 1 1 2<br />

Macropodia rostrata 1 1<br />

PHORONIDA<br />

Phoronis muelleri 1 1<br />

ECHINODERMATA<br />

Echinocardium flavescens 2 2<br />

Echinocyamus pusillus 1 1<br />

No. of Species 7 10 10 4 10 8 5 6 42<br />

No. of Individuals 15 12 26 6 17 24 20 12 132


210 AÇOREANA<br />

2009, Sup. 6: 201-210<br />

APPENDIX 3. Faunal <strong>da</strong>ta from algal samples<br />

Sample WVF011 Island 24.2 Island 24.4 Island 24.5 Island 24.10 TOTAL<br />

SIPUNCULA<br />

Golfingia margaritacea 1 1<br />

ANNELIDA<br />

Harmothoe spp. 4 2 1 7<br />

Nereis pelagica 2 2<br />

Platynereis dumerilii 13 47 162 129 351<br />

Nainereis cf. laevigata 2 2<br />

Euphrosyne armadillo 1 1<br />

Polyophthalmus pictus 4 2 5 1 12<br />

Eupolymnia nebulosa 1 1<br />

Fabricia stellata 4 12 13 29<br />

ARTHROPODA<br />

Pycnogoni<strong>da</strong><br />

Achelia echinata 4 1 5<br />

Callipallene emaciata 6 6 12<br />

Anoplo<strong>da</strong>ctylus amora 0<br />

Anoplo<strong>da</strong>ctylus pygmaeus<br />

1 1 2<br />

Anoplo<strong>da</strong>ctylus angulatus 1 5 9 15<br />

Crustacea<br />

Amphipo<strong>da</strong><br />

Ampelisca aequicornis A 3 3<br />

Ampelisca aequicornis B 3 3<br />

Erichthonius punctatus 12 1 8 3 24<br />

Erichthonius difformis 42 4 43 51 140<br />

Microdeutopus versiculatus 26 1 51 37 115<br />

Melita gladiosa 3 1 4<br />

Lembos websteri 13 13<br />

Ampithoe rubricata 3 1 13 7 1 25<br />

Dexamine cf. spinosa 12 27 31 25 95<br />

Hyale nilssoni 8 9 82 85 184<br />

Hyale perieri 4 4<br />

Corophium acutum 2 55 57<br />

Caprella penantis 2 4 2 8<br />

Caprella acanthifera 18 17 21 56<br />

Isopo<strong>da</strong><br />

Paranthura costana 1 1 11 9 22<br />

Eurydice affinis 18 18<br />

Dynamene bidentata 3 22 13 38<br />

Cymodoce truncata 3 7 5 15<br />

Janira maculosa 1 7 8<br />

Tanai<strong>da</strong>cea<br />

Tanais grimaldii 4 7 194 110 315<br />

Leptochelia caldera 15 2 17<br />

Cumacea<br />

Cumella limicola 6 11 11 28<br />

Decapo<strong>da</strong><br />

Thoralus cranchi 1 1<br />

Clibanarius erythropus 4 4<br />

Paguri<strong>da</strong>e indet. 5 5<br />

Pilumnus hirtellus 2 2<br />

MOLLUSCA<br />

Gastropo<strong>da</strong><br />

Setia subvaricosa 1 5 6 12<br />

Rissoa guernei 1 1<br />

No. of Species 26 16 25 27 3 41<br />

No. of Individuals 196 129 719 606 7 1657


AÇOREANA, Suplemento 6, Setembro 2009: 211-216<br />

SHELL OCCUPANCY BY THE HERMIT CRAB CLIBANARIUS ERYTHROPUS<br />

(CRUSTACEA) ON THE SOUTH COAST OF SÃO MIGUEL, AÇORES<br />

Pedro Rodrigues 1 & Roshan K. Rodrigo 2<br />

1<br />

CIBIO-Pólo <strong>Açores</strong>, Department of Biology, University of the Azores, 9501-801 Ponta Delga<strong>da</strong>, São Miguel,<br />

Azores, Portugal. e-mail: pedrorodrigues@uac.pt<br />

2<br />

Faculty of Science, Department of Zoology, University of Colombo, Colombo 7, Sri Lanka<br />

ABSTRACT<br />

The importance of gastropod shells to hermit crabs is well known. The strong association<br />

between hermit crabs and their adopted shells influences almost all aspects of their<br />

biology and there is a strong correlation between the sizes of the shell and the crustacean.<br />

The hermit crab Clibanarius erythropus is abun<strong>da</strong>nt on the rocky shores of the <strong>Açores</strong>.<br />

However, there are few references to the ecology of this species. The aim of the present<br />

study was thus to evaluate the occupancy of mollusc shell species by C. erythropus on the<br />

south coast of the island of São Miguel. Shells of Columbella a<strong>da</strong>nsoni had the highest occupancy<br />

rate followed by Mitra cornea and Stramonita haemostoma. The significant differences<br />

in the estimated shell volumes available for C. erythropus suggests that juveniles choose<br />

Nassarius incrassatus, medium sized hermits prefer Pollia dorbignyi, C. a<strong>da</strong>nsoni and M.<br />

cornea, and the largest adults opt for S. haemastoma shells.<br />

RESUMO<br />

A importância <strong>da</strong>s conchas de gastrópodes para os berna<strong>dos</strong>-eremitas é bem<br />

conheci<strong>da</strong>. A forte associação entre os bernar<strong>dos</strong>-eremita e as suas adopta<strong>da</strong>s conchas<br />

influencia grandemente quase to<strong>dos</strong> os aspectos <strong>da</strong> sua biologia, existindo uma forte<br />

correlação entre o tamanho <strong>da</strong> concha e o tamanho do crustáceo. O bernado-eremita<br />

Clibanarius erythopus é uma espécie muito abun<strong>da</strong>nte nas costas rochosas. To<strong>da</strong>via, são<br />

raras as referências à ecologia e à biologia desta espécie. O presente estudo teve como<br />

objectivo avaliar a ocupação de conchas de espécies de moluscos por C. erythropus na costa<br />

sul de São Miguel. Conchas de Columbella a<strong>da</strong>nsoni obtiveram a maior taxa de ocupação,<br />

segui<strong>da</strong>s de Mitra cornea e de Stramonita haemastoma. As diferenças significativas no<br />

volume de concha estimado acessível a C. erythropus sugerem que os juvenis escolhem<br />

conchas de Nassarius incrassatus, os de tamanho médio preferem conchas de Pollia<br />

dorbignyi, C. a<strong>da</strong>nsoni e M. cornea, e os adultos maiores optam por conchas de S.<br />

haemastoma.<br />

INTRODUCTION<br />

The importance of gastropod shells to<br />

hermit crabs is well known; such<br />

shells particularly supplying protection<br />

against pre<strong>da</strong>tors (Vance, 1972) and physical<br />

stresses (Reese, 1969) due to the fact<br />

that the crabs have a soft, vulnerable<br />

abdomen. Shells can be found either<br />

empty, obtained by confrontations<br />

between individual crabs, or by removal<br />

of the gastropod (Elwood & Neil, 1992).<br />

The availability of shells is the main factor<br />

limiting populations of hermit crabs<br />

(Kellog, 1976) and they usually partition<br />

shell resources according to size<br />

(Bertness, 1981; Scully, 1983; Neil, 1985)<br />

and/or their own body size (Mitchell,<br />

1975), shell shape, weight and volume<br />

(Reese, 1963; Kuris & Brody, 1976;<br />

Conover, 1978). Interspecific competition<br />

among hermit crabs for shell resources<br />

may also be avoided by partitioning habitats.<br />

Partitioning also occurs between


212 AÇOREANA<br />

2009, Sup. 6: 211-216<br />

hermit crabs and other species such as<br />

sipunculans (Morton & Britton, 1995).<br />

Hermit crabs that occupy large shells<br />

can better resist to desiccation, thermal<br />

stress and pre<strong>da</strong>tion (Rittschof et al.,<br />

1995). However, heavy shells may limit<br />

reproduction and growth because of the<br />

high-energy cost of locomotion (Bertness,<br />

1981). For another hand, small shells render<br />

the crabs more vulnerable to pre<strong>da</strong>tion<br />

and may reduce their growth rate<br />

(Hazlett, 1981; Angel, 2000). The strong<br />

association between hermit crabs and<br />

their adopted shells influences greatly<br />

almost all aspects of their biology<br />

(Hazlett, 1981) and there is a strong correlation<br />

between shell and crab sizes<br />

(Abrams et al., 1986; Botelho & Costa,<br />

2000; Sant’Anna et al., 2006).<br />

The hermit crab Clibanarius erythropus<br />

(Latreille, 1818) is a common species<br />

along the Mediterranean shores and<br />

Atlantic coasts from United Kingdom to<br />

the <strong>Açores</strong> (Ingle, 1993). In the Açorean<br />

archipelago, C. erythropus is abun<strong>da</strong>nt on<br />

rocky shores, including tide pools<br />

(Morton et al., 1998). However, references<br />

to the general ecology and biology of this<br />

species are few (Gherardi, 1991).<br />

The aim of the present study was to<br />

evaluate the occupancy of mollusc shell<br />

species by Clibanarius erythropus in the<br />

south coast of São Miguel island.<br />

MATERIAL AND METHODS<br />

FIGURE 1. Location of the sampling sites on<br />

São Miguel. A. Ilhéu de Vila Franca do Campo;<br />

B. Vila Franca do Campo Harbour; C. Roí<strong>da</strong> <strong>da</strong><br />

Praia; D. Ponta <strong>da</strong> Galera; E. Baía do Cruzeiro.<br />

The study was carried out on the<br />

south coast of São Miguel during July<br />

2006 as part of the 3 rd International<br />

Workshop on the Malacology and Marine<br />

Biology of the <strong>Açores</strong> covered in Vila<br />

Franca do Campo, São Miguel, <strong>Açores</strong>.<br />

Five populations of Clibanarius erythropus<br />

were studied for shell occupancy<br />

(Figure 1).<br />

The hermit crabs were hand-sampled<br />

by snorkelling for ten minutes to stan<strong>da</strong>rdize<br />

capture effort and brought alive<br />

to the laboratory where individuals and<br />

shells were identified according to Wirtz<br />

(1995) and Morton et al. (1998). The occupied<br />

shells were measured (total shell<br />

length and shell width) using vernier callipers<br />

to the nearest 0.01 mm. The volume<br />

of each shell was estimated according to<br />

Morton & Britton (1995) by squaring the<br />

shortest linear measurement (width) and<br />

multiplying this value by the longest linear<br />

measurement (length).<br />

A Chi-square test was applied to the<br />

five most common occupied shell species.<br />

The relationship between those and the<br />

estimated volume was also subjected to<br />

analysis of variance (ANOVA) against the<br />

null hypothesis that different shell species<br />

have the same volume available for<br />

Clibanarius erythropus.<br />

RESULTS<br />

Eleven species of gastropod shells<br />

occupied by Clibanarius erythropus were<br />

collected and frequency of occupation at<br />

each site is identified in Table 1.<br />

Columbella a<strong>da</strong>nsoni Menke, 1853, Mitra<br />

cornea (Lamarck, 1811) and Stramonita<br />

haemastoma (Linnaeus, 1766) were the<br />

most commonly occupied shells, followed<br />

by Pollia dorbignyi (Payraudeau,<br />

1826) and Nassarius incrassatus (Ström,<br />

1768).


RODRIGUES & RODRIGO: SHELL OCCUPANCY BY CLIBANARIUS ERYTHROPUS 213<br />

TABLE 1. The frequency of mollusc shells occupied by Clibanarius erythropus from the different<br />

sampling sites on São Miguel.<br />

Mollusc shell Site A Site B Site C Site D Site E TOTAL<br />

Pollia dorbignyi (Payraudeau, 1826) 6 1 0 34 0 41<br />

Columbella a<strong>da</strong>nsoni Menke, 1853 54 41 51 67 31 244<br />

Stramonita haemastoma (Linnaeus, 1766) 6 15 81 25 15 142<br />

Mitra cornea (Lamarck, 1811) 1 46 0 27 84 158<br />

Nassarius incrassatus (Ström, 1768) 10 4 5 4 0 23<br />

Calliostoma lividum Dautzenberg, 1927 1 0 0 0 0 1<br />

Coralliophila meyendorffii (Calcara, 1845) 0 4 0 0 0 4<br />

Melarphe neritoides (Linnaeus, 1756) 0 0 0 1 0 1<br />

Littorina striata King & Broderip, 1832 0 0 0 0 5 5<br />

Jujubinus sp. 0 0 0 0 1 1<br />

Bittium cf. latreillii (Payraudeau, 1826) 0 0 0 0 2 2<br />

TOTAL: 78 111 137 158 138 622<br />

The Chi-square test, comparing the<br />

total number of the five commonest occupied<br />

shells from the different sampling<br />

sites, indicated a significantly different<br />

proportion of species occupied by<br />

Clibanarius erythropus (χ 2 = 386.1, p


214 AÇOREANA<br />

2009, Sup. 6: 211-216<br />

ability of certain gastropods influences<br />

their pattern of shell utilization in the natural<br />

habitat as the crabs tend to be opportunistic<br />

with regards to the shells they<br />

inhabit (Botelho & Costa, 2000). The significant<br />

differences in the estimated shell<br />

volume available for Clibanarius erythropus,<br />

the presence of empty shells (personal<br />

observations), and that the crab<br />

requires different shell sizes atdifferent<br />

stages of their growth (Morton & Britton,<br />

1995), suggests that juvenile C. erythropus<br />

individuals choose Nassarius incrassatus<br />

shells, middle size individuals prefer<br />

Pollia dorbignyi, Columbella a<strong>da</strong>nsoni and<br />

Mitra cornea shells, and larger adults opt<br />

for Stramonita haemastoma shells. This is<br />

in accor<strong>da</strong>nce with the study of Botelho &<br />

Costa (2000) where it was reported that<br />

hermit crabs of < 8.6 mm occupied all<br />

shell species, whereas those > 8.6 mm<br />

were found only in S. haemastoma shells.<br />

Smaller crabs occupied Littorina striata<br />

and N. incrassatus shells.<br />

ACKNOWLEDGMENTS<br />

We are grateful to Professor António<br />

M. de Frias Martins for the opportunity to<br />

undertake this research, and Professor<br />

Brian Morton for the review of this paper.<br />

This project was supported by the Third<br />

International Workshop on Malacology<br />

and Marine Biology, Vila Franca do<br />

Campo, São Miguel, <strong>Açores</strong><br />

The experiments performed for the<br />

present study comply with the laws of the<br />

country in which they were performed.<br />

LITERATURE CITED<br />

ABRAMS, P.A., C. NYBLADE & S.<br />

SHELDON, 1986. Resource partitioning<br />

and competition for shells in a<br />

subti<strong>da</strong>l hermit crab species assemblage.<br />

Oecologia, 69: 429-445.<br />

ANGEL, J.E., 2000. Effects of shell fit in<br />

the biology of the hermit crab Pagurus<br />

longicarpus (Say). Journal of<br />

Experimental Marine Biology and<br />

Ecology, 243(2): 169-184.<br />

BERTNESS, M.D., 1981. The influence of<br />

shell-type on hermit crab growth and<br />

clutch size. Crustaceana, 40(2): 197-<br />

205.<br />

BOTELHO, A., & A.C. COSTA, 2000.<br />

Shell occupancy of the interti<strong>da</strong>l hermit<br />

crab Clibanarius erythropus<br />

(Decapo<strong>da</strong>, Diogeni<strong>da</strong>e) on São<br />

Miguel (Azores). Hydrobiologia, 440:<br />

111-117.<br />

CONOVER, M., 1978. Importance of various<br />

shell characteristics to the shell<br />

selection behavior of the hermit crabs.<br />

Journal of Experimental Marine Biology<br />

and Ecology, 32: 131-142.<br />

ELWOOD, R.W., & S.J. NEIL, 1992.<br />

Assessments and Decisions, 192 pp.<br />

Chapman & Hall, London.<br />

GHERARDI, F., 1991. Relative growth,<br />

population structure and shell-utilization<br />

of the hermit crab Clibanarius erythropus<br />

in the Mediterranean. Oebalia,<br />

17: 181-196.<br />

HAZLETT, B., 1981. The behavioural<br />

ecology of hermit crabs. Annual<br />

Review of Ecology and Systematics, 12: 1-<br />

22.<br />

INGLE, R., 1993. Hermit Crabs of the<br />

Northeastern Atlantic Ocean and the<br />

Mediterranean Sea, 495 pp. Chapman<br />

& Hall, London.<br />

KELLOG, C.W., 1976. Gastropod shells: a<br />

potentially limiting resource for hermit<br />

crabs. Journal of Experimental<br />

Marine Biology and Ecology, 22: 101-<br />

111.<br />

KURIS, A.M., & M.S. BRODY, 1976. Use<br />

of principal components analysis to<br />

describe the snail shell resource for<br />

hermit crabs. Journal of Experimental<br />

Marine Biology and Ecology, 22: 69-77.<br />

MITCHELL, K.A., 1975. An analysis of<br />

shell occupation by two sympatric


RODRIGUES & RODRIGO: SHELL OCCUPANCY BY CLIBANARIUS ERYTHROPUS 215<br />

species of hermit crab. I. Ecological factors.<br />

Biological Bulletin, 149: 205-213.<br />

MORTON, B., & J.C. BRITTON, 1995.<br />

Partitioning of shell resources by<br />

Aspi<strong>dos</strong>iphon muelleri (Sipuncula) and<br />

Anapagurus laevis (Crustacea) in the<br />

Azores. IN: MARTINS, A.M.F. (ed.),<br />

The Marine Fauna and Flora of the<br />

Azores (Proceedings of the Second<br />

International Workshop of Malacology<br />

and Marine Biology, São Miguel, 1991).<br />

Açoreana, Supplement [4]: 67-77.<br />

MORTON, B., J.C. BRITTON & A.M.F.<br />

MARTINS, 1998. Ecologia Costeira <strong>dos</strong><br />

<strong>Açores</strong>, x + 249 pp. Socie<strong>da</strong>de Afonso<br />

Chaves, Ponta Delga<strong>da</strong>.<br />

NEIL, S.J., 1985. Size assessment and<br />

cues: studies of hermit crab contests.<br />

Behaviour, 92: 22-38.<br />

REESE, E.S., 1963. The behavioral mechanisms<br />

underlying shell selection by<br />

hermit crabs. Behaviour, 21: 78-126.<br />

REESE, E.S., 1969. Behavioral a<strong>da</strong>ptations<br />

of interti<strong>da</strong>l hermit crabs.<br />

American Zoologist, 9: 343-355.<br />

RITTSCHOF, D., J. SARRICA & D.<br />

RUBENSTEIN, 1995. Shell dynamics<br />

and microhabitat selection by striped<br />

legged hermit crabs, Clibanarius vittatus<br />

(Bose). Journal of Experimental<br />

Marine Biology and Ecology, 192(2): 157-<br />

172.<br />

SANT’ANNA, B., C.M. ZANGRANDE,<br />

L.D.A. REIGADA & M.A.A.<br />

PINHEIRO, 2006. Shell utilization<br />

pattern of the hermit crab Clibanarius<br />

vittatus (Crustacea, Anomura) in an<br />

estuary at São Vicente, State of São<br />

Paulo, Brazil. Iheringia, Série Zoologia,<br />

96(2): 261-266.<br />

SCULLY, E.P., 1983. The behavioural ecology<br />

of competition and resource utilization<br />

among hermit crabs. In:<br />

REBACH, S., & D. DUNHAM (eds.),<br />

Studies in A<strong>da</strong>ptation: The behavior of<br />

higher Crustacea, pp. 23-55. John<br />

Wiley, New York.<br />

VANCE, R.R., 1972. The role of shell adequancy<br />

in behavioural interactions<br />

involving the hermit crab Pagurus<br />

longicarpus. Marine Biology, 104: 31-39.<br />

WIRTZ, P., 1995. Unterwasserfuhrer<br />

Madeira-Kanaren-Azoren, 247 pp.<br />

Stephanie Naglschmid, Stuttgart.


AÇOREANA, Suplemento 6, Setembro 2009: 217-225<br />

A CONSERVATIONAL APPROACH ON THE SEABIRD POPULATIONS OF ILHÉU<br />

DE VILA FRANCA DO CAMPO, AZORES, PORTUGAL<br />

Pedro Rodrigues 1 , Joana Micael 1 , Roshan K. Rodrigo 2 & Regina T. Cunha 1<br />

1<br />

CIBIO-Pólo <strong>Açores</strong>, Department of Biology, University of the Azores, 9501-801 Ponta Delga<strong>da</strong>, São Miguel,<br />

Azores, Portugal. e-mail: pedrorodrigues@uac.pt<br />

2<br />

Faculty of Science, Department of Zoology, University of Colombo, Colombo 7, Sri Lanka<br />

ABSTRACT<br />

This study was performed to identify the seabird species occurring on Ilhéu de Vila<br />

Franca do Campo (IVFC) off São Miguel island, Azores, giving a special emphasis on the<br />

description of their ecology and threats. Flush counts, ground searches and raft counts<br />

were conducted and two types of natural habitats were identified. The results confirmed<br />

the nesting of two en<strong>da</strong>ngered species and revealed three other possible breeders enhancing<br />

the importance of the islet for the protection and conservation of Azorean seabird populations.<br />

Although playing an important role on the conservation of Cory’s shearwater<br />

and Common tern populations, the islet can be threatened by continuous habitat degra<strong>da</strong>tion<br />

by human disturbance. The implementation of a habitat restoration program is<br />

suggested for the islet in a near future.<br />

RESUMO<br />

Foi feito um levantamento <strong>da</strong>s espécies de aves marinhas que ocorrem no Ilhéu de Vila<br />

Franca do Campo, com especial ênfase para a sua ecologia e ameaças. Foram realiza<strong>da</strong>s<br />

contagens visuais, procura de ninhos e contagem de janga<strong>da</strong>s ao longo de todo o ilhéu e<br />

zonas adjacentes, confirmando a nidificação de duas espécies ameaça<strong>da</strong>s e a possibili<strong>da</strong>de<br />

de nidificação de outras três. A identificação de dois tipos de habitats naturais evidencia<br />

a importância do ilhéu para a protecção e conservação <strong>da</strong>s populações de aves marinhas.<br />

Apesar do importante papel na conservação <strong>da</strong>s populações de cagarros e garajauscomuns,<br />

o ilhéu de Vila Franca do Campo continua a ser ameaçado por uma contínua<br />

degra<strong>da</strong>ção <strong>dos</strong> seus habitats devido à acção humana. Este trabalho sugere, num futuro<br />

próximo, a implementação de medi<strong>da</strong>s proteccionistas e um programa de restauração <strong>dos</strong><br />

habitats naturais deste ilhéu.<br />

INTRODUCTION<br />

The Azorean archipelago, located in the<br />

north Atlantic Ocean, has always been<br />

recognized as an interesting place for<br />

birds, mainly seabirds, not only due to the<br />

coast line with steep scarps but also to its<br />

geographical location (N36-39º, W25-31º)<br />

that represents an ornithological transition<br />

between temperate and tropical<br />

zones (Monteiro et al., 1996a, b).<br />

Thirteen seabird species are known to<br />

occur in the Azores. The regular breeders<br />

are Bulwer’s petrel (Bulweria bulwerii),<br />

Cory’s shearwater (Calonectris diomedia<br />

borealis), Manx shearwater (Puffinus puffinus),<br />

Little shearwater (Puffinus baroli),<br />

Band-rumped storm-petrel (Oceanodroma<br />

castro), Monteiro’s storm petrel<br />

(Oceanodroma monteiroi), Yellow-legged<br />

gull (Larus michaelis atlantis), Common<br />

tern (Sterna hirundo) and Roseate tern (S.<br />

dougallii). There are two occasional<br />

breeders, Red-billed tropicbird (Phaethon<br />

aethereus) and Sooty tern (Onychoprion fuscatus),<br />

a possible breeder, Cape Verde<br />

petrel (Pterodroma feae), and a possible former<br />

breeder, White-faced storm-petrel<br />

(Pelagodroma marina) (Le Grand et al.,<br />

1984; Monteiro et al., 1996a).


218 AÇOREANA<br />

2009, Sup. 6: 217-225<br />

The archipelago accounts for the<br />

largest population of Cory’s shearwater of<br />

the world with more than 180.000 couples<br />

(79% of the European population)<br />

(Rodrigues & Nunes, 2002). Also representative<br />

are the populations of Bandrumped<br />

storm-petrel, 915 to 1240 couples<br />

(around 25% of the European population),<br />

Little shearwater, 800 to 1500 couples<br />

(around 20% of the European population)<br />

(Monteiro et al., 1999), Roseate tern<br />

with more than 1000 couples (60% of the<br />

European population) and Common tern,<br />

around 2000 couples (5% of the European<br />

population) (Rodrigues & Nunes, 2002).<br />

All these seabird species have a vulnerable<br />

status, except Roseate tern which<br />

is in Danger, and the Common tern with a<br />

Favourable Conservation status<br />

(Rodrigues & Nunes, 2002).<br />

Most seabird populations breeding in<br />

Azores have been suffering dramatic historical<br />

declines as a consequence of major<br />

habitat degra<strong>da</strong>tion, mainly by human<br />

activities from the late 15 th century on,<br />

and the introduction of mammalian<br />

FIGURE 1. Ilhéu de Vila Franca do Campo with identified habitats, burrows and nests cavities.<br />

C - Vegetated Sea Cliffs of the Macaronesian Coasts habitat; H - Endemic Macaronesian Heaths<br />

habitat; F - Forests of iron trees; V – vineyards; + Common tern (CT) nests; * Cory’s shearwater (CS)<br />

burrows/nests cavities; CS destroyed nest; CS abandoned nest; CS abandoned egg; CT<br />

destroyed nest; CT abandoned nest; CT abandoned egg; Area of public permitted access.


RODRIGUES ET AL: SEABIRD CONSERVATION AT ILHÉU DE VILA FRANCA 219<br />

pre<strong>da</strong>tors (Monteiro et al., 1996b), so they<br />

tend to breed on isolated islets and sea<br />

cliffs, free of pre<strong>da</strong>tors and human disturbance,<br />

with natural habitats without invasive<br />

alien species (Monteiro et al., 1996b;<br />

Ramos et al., 1997; Groz & Pereira, 2005).<br />

One of these islets is the Ilhéu de Vila<br />

Franca do Campo (IVFC) (Figure 1), 1.2<br />

km south of São Miguel island.<br />

Several studies were published on the<br />

islet’s biota, describing its general topography<br />

and biological characteristics,<br />

mainly about its marine life and coastal<br />

ecology (Martins, 1978, 1995, 2004;<br />

Morton, 1990; Britton, 1995; Backeljau et<br />

al., 1995; Morton et al., 1998) revealing the<br />

ecological and geological importance of<br />

the place.<br />

Some surveys targeting Cory’s shearwater<br />

and terns were made in the Azores<br />

(del Nevo et al., 1993; Bolton, 2001 and<br />

Monteiro et al., unpublished report) but<br />

none of them went to the islet. Monteiro<br />

et al. (1999) estimated 0 to 10 Bandrumped<br />

storm-petrel couples breeding on<br />

the islet.<br />

Due to the unique importance of the<br />

IVFC as an agglomeration of various<br />

micro-ecosystems, the Azorean<br />

Government established it as a Nature<br />

Reserve in 1983, as provided by the<br />

Regional Legislative Decree nº 3/83/A, of<br />

March 3 rd , and some rules were implemented<br />

with the intention to preserve<br />

and protect the islet; the public access was<br />

restricted to the lagoon, the marine area<br />

of the reserve was extended to 30 m deep,<br />

and fishing and any underwater activity<br />

were forbidden. In spite of these protection<br />

measures, the flora and fauna in the<br />

islet and its lagoon have suffered a significant<br />

negative impact caused by the flood<br />

of people mostly during the summer<br />

(Morton et al., 1998). The islet is popular<br />

for recreation and between May and<br />

September a boat brings in about 400 persons<br />

a <strong>da</strong>y.<br />

This study was developed to identify<br />

the breeding species of seabirds on IVFC,<br />

giving special emphasis to habitat characterization<br />

and threats, thus contributing<br />

to the conservation and protection of<br />

the islet’s natural habitats and their<br />

seabird populations.<br />

MATERIAL AND METHODS<br />

The study was carried out on the<br />

IVFC (N37º42.30’, W25º26.52’), during<br />

July 2006, in the course of the 3 rd international<br />

Workshop on Malacology and<br />

Marine Biology in Vila Franca do<br />

Campo, São Miguel, Azores (Figure 1).<br />

The islet is a drowned volcanic crater<br />

with a surface area of 61.640 m 2 , accessed<br />

by a narrow channel, but with several<br />

fissures also connecting the lagoon with<br />

the sea outside. The main length of the<br />

islet is 420 m from east to west, reaches<br />

an altitude of 62 meters, and is divided<br />

into two portions: the Big islet, that constitutes<br />

almost all the islet’s area and the<br />

Small islet on the northeast side. There<br />

are also several rocks of different sizes,<br />

outstanding the Farilhão with 32.5 m,<br />

and Baixa <strong>da</strong> Cozinha with 19.4 m. On<br />

the islet there is an internal lagoon connected<br />

to the open sea trough chaps and<br />

underwater tunnels. Inside the lagoon<br />

there is a small pier where people enter<br />

the islet (Martins, 2004).<br />

The habitat characterisation of the<br />

islet was made in loco following the<br />

Interpretation Manual of European<br />

Union Habitats (European Habitats<br />

Committee, 1991).<br />

Three different methods were conducted<br />

to identify the seabird species of<br />

the islet, and to estimate species abun<strong>da</strong>nce<br />

and number of breeding pairs:<br />

1. Flush counts<br />

Six boat rides, of 15 minutes each,<br />

were undertaken for flush counts of<br />

seabirds and to observe the external


220 AÇOREANA<br />

2009, Sup. 6: 217-225<br />

coast zone of the islet. The method consisted<br />

on counting the number of individuals<br />

visible from the boat (eye view),<br />

at different hours of the <strong>da</strong>y, three rides<br />

in the morning and three on the afternoon.<br />

Species were identified and all the<br />

individuals standing on the islet or flying<br />

over the sea were counted.<br />

2. Ground searches<br />

Two ground searches were made for<br />

occupied nests of terns and<br />

Porcellariiformes (Figure 1). Signs of<br />

occupation included the presence of an<br />

adult, eggs or chicks in a visible nest<br />

chamber. In sites where a nest chamber<br />

was not visible, a burrow was considered<br />

to be occupied if it was of sufficient size<br />

to accommo<strong>da</strong>te a bird or if there was<br />

one or more evidences of occupation<br />

(e.g. faeces; shed breast feathers, excavated<br />

soil or absence of obstructing vegetation<br />

or spider webs in the burrow’s<br />

entrance).<br />

3. Raft counts<br />

During the breeding season, Cory’s<br />

shearwater characteristically form flocks<br />

(called “rafts”) on the sea, with the number<br />

of individuals increasing by the end<br />

of the <strong>da</strong>y, waiting for nightfall to fly up<br />

to the breeding colony (Mallet &<br />

Coghlan, 1964). According to Rich<strong>da</strong>le<br />

(1963) and Skira (1991) over half of the<br />

adult shearwaters at a colony are<br />

expected to be non-breeders.<br />

Raft counts were conducted for<br />

Cory’s shearwater from two places, one<br />

on the top of the south side of the islet,<br />

and another from Ponta de São Pedro<br />

(N37º42.39’, W25º26.41’) on the coast of<br />

São Miguel island and in front of the<br />

islet; raft counts were made by the end of<br />

the <strong>da</strong>y, starting exactly at 08:00 pm, for<br />

45 minutes long, using binoculars (10 X<br />

50).<br />

All the methods applied in this study<br />

involved two replicates from two different<br />

observers.<br />

RESULTS<br />

Habitats<br />

Two types of natural habitats were<br />

identified on the IVFC (Figure 1): i)<br />

Vegetated Sea Cliffs of the Macaronesian<br />

Coasts habitat, dominated by the endemic<br />

fescue (Festuca petraea), with associated<br />

plants such as rush (Juncus acutus),<br />

wild carrot (Daucus carota), seaside goldenrod<br />

(Soli<strong>da</strong>go sempervirens) and rock<br />

samphire (Crithmum maritimum); ii)<br />

Endemic Macaronesian Heaths habitat<br />

dominated by the endemic green heather<br />

(Erica azorica), with associated plants<br />

such as laurel (Laurus azorica), Myrica<br />

faya, Cyrtomium falcatum, Holcus rigidus<br />

and Euphorbia azorica. This last habitat<br />

presents plenty of exotic plants such as<br />

the giant reed (Arundo donax), used in the<br />

past for protective barriers of the vineyards,<br />

tamarisks (Tamarix gallica), brambles<br />

(Rubus ulmifolius) and australian pittosporum<br />

(Pittosporum undulatum).<br />

On the higher southern and western<br />

inner slopes of the Big islet there are two<br />

small “forests” of iron trees (Metrosideros<br />

tomentosa) and vineyards (Vitis labrusca),<br />

although they are no longer cultivated.<br />

Seabirds<br />

There was evidence of two species of<br />

seabirds breading on the islet (Figure 1),<br />

Cory’s shearwater and Common tern,<br />

but three more species were registered,<br />

Little shearwater, Band-rumped stormpetrel<br />

and Roseate tern, although at present<br />

without any breeding evidence.<br />

Table 1 shows avifauna abun<strong>da</strong>nce<br />

determined through the different methods<br />

used.<br />

Cory’s shearwater breeds on Big islet<br />

with Vegetated Sea Cliffs of the<br />

Macaronesian Coasts habitat where 34<br />

burrows and nests cavities were found,<br />

and on slopes of Endemic Macaronesian<br />

Heaths habitat that exhibited 10 burrows


RODRIGUES ET AL: SEABIRD CONSERVATION AT ILHÉU DE VILA FRANCA 221<br />

TABLE 1. Seabird abun<strong>da</strong>nce from flush and raft counts and number of couples from occupied<br />

nests/burrows on the Ilhéu de Vila Franca do Campo. SD = Stan<strong>da</strong>rd Deviation.<br />

Species<br />

Flush counts<br />

(individuals)<br />

Mean ± SD<br />

Ground searches<br />

(couples)<br />

Raft counts<br />

(individuals)<br />

Mean ± SD<br />

Cory’s shearwater 154 ± 22.6 44 395 ± 21.2<br />

Common tern 325 ± 35.4 80 -<br />

Roseate tern 2 - -<br />

Little shearwater 1 - -<br />

Band-rumped storm-petrel 1 - -<br />

and nests cavities. The three nests found<br />

on Small islet were destroyed or abandoned.<br />

Common terns breed on two external<br />

rocks of the islet, Baixa <strong>da</strong> Cozinha (10<br />

nests) and Farilhão (19 nests), and on the<br />

external coast of the Small islet with<br />

Vegetated Sea Cliffs of the Macaronesian<br />

Coasts habitat (41 nests).<br />

Occasional observations on the populations<br />

of Cory’s shearwater and<br />

Common terns allowed identification of<br />

chicks being reared, incubating parents,<br />

destroyed and abandoned nests and<br />

abandoned eggs (Table 2). It was not possible<br />

to identify the exact number of eggs<br />

laid per couple of Common terns.<br />

Evidences of human disturbance were<br />

found near potential seabird nests,<br />

including recreation, wastes, and van<strong>da</strong>lism<br />

such as broken eggs and burrows<br />

destruction. There were an equivalent<br />

percentage of abandoned nests in both<br />

populations (11%) and about 18% of<br />

Cory’s shearwater nests and 5% of<br />

Common tern nests were destroyed.<br />

Nearly 7% of Cory’s shearwater eggs and<br />

1% of Common tern eggs were abandoned<br />

by the progenitors.<br />

DISCUSSION<br />

The Vegetated Sea Cliffs of the<br />

Macaronesian Coasts habitat of the IVFC<br />

are well preserved probably because they<br />

occur on the external rocks of the islet and<br />

on inaccessible cliffs, but also because<br />

they are highly influenced by salt-water<br />

spray where exotic plants cannot grow.<br />

According to Sjögren (1973) the association<br />

Festucetum petreae is characteristic of<br />

Azores coastal habitats, occurring mainly<br />

in the sea cliffs. The characteristic species<br />

of this association is the common endemic<br />

Festuca petraea, which usually develops<br />

coastal prairies. Other species are found<br />

in this association, such as the common<br />

Soli<strong>da</strong>go sempervirens and Crithmum maritimum,<br />

the less common Tolpis succulenta<br />

and even rarest endemic plants like<br />

Azorina vi<strong>da</strong>lii and Myosotis maritima.<br />

The Endemic Macaronesian Heaths<br />

habitat was much degraded with exotic<br />

plants such as Arundo donax, Lantana<br />

TABLE 2. Number of observations on Cory’s shearwater and Common tern nests on Ilhéu de Vila<br />

Franca do Campo.<br />

Species<br />

Used<br />

nests<br />

Destroyed<br />

nests<br />

Abandoned<br />

nests<br />

Abandoned<br />

eggs<br />

Incubating<br />

couples<br />

Rearing<br />

chicks<br />

Cory’s shearwater 44 8 5 3 9 6<br />

Common tern 80 4 9 1 37 11


222 AÇOREANA<br />

2009, Sup. 6: 217-225<br />

camara and Pittosporum undulatum.<br />

According to the Convention on<br />

Biological Diversity, invasive alien species<br />

which introduction and/or spread threatens<br />

biological diversity are now considered<br />

the second cause of biodiversity loss<br />

at a global level, after direct habitat<br />

destruction (Shine et al., 2000; Groz &<br />

Pereira, 2005).<br />

The methods used in this study to<br />

estimate species abun<strong>da</strong>nce and number<br />

of breeding pairs were effective because<br />

they complemented each other giving a<br />

broader view of the colonies. These<br />

results confirmed nesting of two en<strong>da</strong>ngered<br />

species and listed three other possible<br />

breeders revealing the importance of<br />

the IVFC for the protection and conservation<br />

of seabirds.<br />

Cory’s shearwater breeds generally in<br />

the inaccessible sea cliffs of the islet and<br />

less in slopes with Macaronesian vegetation.<br />

The differences between the numbers<br />

of burrows and nests found in the<br />

Vegetated Sea Cliffs of the Macaronesian<br />

Coasts habitat and in the Endemic<br />

Macaronesian Heaths habitat are probably<br />

related to human disturbance and<br />

degra<strong>da</strong>tion of this last habitat with invasive<br />

alien species that are a threat to<br />

seabird populations (Groz & Pereira,<br />

2005). Adults arrive in colonies by late-<br />

February, lay eggs from late-May to early-<br />

June and hatching is relatively synchronous,<br />

most chicks hatching between 18<br />

and 31 July (Granadeiro, 1991). Young<br />

birds fledge from late-October to early-<br />

November (Monteiro et al., 1996b). They<br />

lay only one egg per year and do not<br />

replace it if it is <strong>da</strong>maged or lost soon<br />

after laying, so there is an ecological significance<br />

when a couple looses their egg,<br />

all the dispended energy is lost and it is<br />

one less breading couple.<br />

Common terns breed in inaccessible<br />

rocks with Vegetated Sea Cliffs of the<br />

Macaronesian Coasts habitat, where<br />

human disturbance is almost absent, and<br />

where they can avoid possible pre<strong>da</strong>tors.<br />

Adults arrive in colonies by early-April,<br />

egg laying occurs from early-May to mid-<br />

June and they stay in colonies until late-<br />

September (Monteiro et al., 1996b). A<br />

clutch of 2-4 (usually 3) eggs is laid. One<br />

brood per season is typical but re-nesting<br />

is common when the first nest is<br />

destroyed (Peterson, 1988). This study<br />

indicates that the colony on IVFC represents<br />

at least 18% of the Azorean total population.<br />

Although being a protected species,<br />

populations of these seabirds are becoming<br />

smaller than in the past, they have been<br />

chased and hunted by humans, and suffered<br />

with pre<strong>da</strong>tion from introduced<br />

mammals and from deforestation<br />

(Monteiro et al., 1996b).<br />

The suite of terns and shearwaters is of<br />

major international conservation<br />

importance (Rodrigues & Nunes, 2002).<br />

Their breeding distributions in the Atlantic<br />

Ocean are concentrated in Europe and<br />

most species have small world populations<br />

(Monteiro et al., 1999) being classified as<br />

globally threatened species (Collar et al.,<br />

1994). The Azorean population of Cory’s<br />

shearwater decreased around 50% between<br />

1996 and 2001 (Rodrigues & Nunes, 2002),<br />

and a similar situation was observed for<br />

Common tern populations, estimated<br />

around 4000 breeding couples for 1992 (del<br />

Nevo et al. 1993), against 2000 breeding<br />

couples for year 2000 (Rodrigues & Nunes,<br />

2002), probably due to the impact of continuous<br />

lost of their habitats.<br />

People’s access to nests and burrows<br />

represents an important threat over<br />

seabirds in the islet, and several impacts<br />

from recreation and van<strong>da</strong>lism, are leading<br />

to their distraction from normal activities;<br />

parents spend less time tending young<br />

birds or eggs, flying away from nests, leaving<br />

eggs or chicks vulnerable to pre<strong>da</strong>tors<br />

and amenity, nests are destroyed and


RODRIGUES ET AL: SEABIRD CONSERVATION AT ILHÉU DE VILA FRANCA 223<br />

seabirds entirely abandon the colonies.<br />

These impacts can affect Azorean seabirds,<br />

particularly Common terns, since the<br />

colony of IVFC represents one of the<br />

largest in the Azores.<br />

Due to the importance of the Azores<br />

archipelago for seabirds in Europe, it is<br />

fun<strong>da</strong>mental to protect every natural habitat<br />

and to conserve the few areas where<br />

they breed, usually steep scarps and islets<br />

(Monteiro et al, 1996b, 1999; Ramos et al.,<br />

1997).<br />

In conclusion, results from the present<br />

work indicate that IVFC plays an important<br />

role on the conservation of Cory’s<br />

shearwater and Common tern populations,<br />

since hundreds of couples of these two<br />

species breed on the islet. But this importance<br />

can be threatened by the continuous<br />

degra<strong>da</strong>tion of their habitats.<br />

Seabirds become mature at a late age,<br />

experience low annual fecundity, often<br />

refrain from breeding, and enjoy annual<br />

adult survival rates as high as 98%. This<br />

suite of life history characteristics limits the<br />

capacity for seabird populations to recover<br />

quickly from major perturbations, and presents<br />

important conservation challenges<br />

(Russell, 1999).<br />

An urgent management plan for IVFC<br />

is necessary, in order to conserve the natural<br />

habitats of the islet and protect their<br />

seabird populations.<br />

According to Groz & Pereira (2005),<br />

islets habitats are expected to respond<br />

rapidly to habitat restoration, so it is urgent<br />

to implement an habitat restoration program<br />

and a major efficient islet control to<br />

people access, in order to improve seabirds<br />

breeding conditions on the islet. A welldesigned<br />

legal and institutional framework<br />

is essential to provide a basis for effective<br />

eradication and control measures of alien<br />

plant species (Shine et al., 2000), control of<br />

soil erosion and multiplication and reintroduction<br />

of native flora. A mark-recapture<br />

analysis is useful for tracking demographic<br />

changes in a population over time<br />

(i.e., assessing population size, adult survival,<br />

and juvenile recruitment) (Brichetti et<br />

al., 2000) and could be used to evaluate the<br />

effect of the habitat restoration programme.<br />

Moreover, seabirds are believed to constitute<br />

useful samplers of the marine environmental<br />

since they have been recognized<br />

as potentially useful and economical indicators<br />

of the status of marine environment<br />

and, in particular, the status of commercially<br />

important prey stocks (Furness &<br />

Greenwood, 1993).<br />

ACKNOWLEDGEMENTS<br />

We are grateful to Professor António M.<br />

de Frias Martins for the opportunity to<br />

undertake this research.<br />

This project was supported by the<br />

Third International Workshop of<br />

Malacology and Marine Biology, Vila<br />

Franca do Campo, São Miguel, Azores, July<br />

2006.<br />

The experiments performed for the present<br />

study comply with the laws of the<br />

country in which they were performed.<br />

LITERATURE CITED<br />

BACKELJAU, T., K. BREUGELMANS, C.<br />

BRITO, L. DE BRUYN, H. DE WOLF &<br />

J. TIMMERMANS, 1995. Macrogeographic<br />

genetic homogeneity in<br />

Littorina striata from the Azores<br />

(Mollusca: Prosobranchia). In: MART-<br />

INS, A..F. (ed.), The Marine Fauna and<br />

Flora of the Azores (Proceedings of the<br />

Second International Workshop of<br />

Malacology and Marine Biology, Vila<br />

Franca do Campo, São Miguel, Azores,<br />

1991). Açoreana, Supplement [4]:159-<br />

171.<br />

BOLTON, M., 2001. Population census of<br />

a threatened seabird, Cory’s shearwater<br />

Calonectris diomedea, in the Azores


224 AÇOREANA<br />

2009, Sup. 6: 217-225<br />

archipelago. Fauna & Flora<br />

International.<br />

BRICHETTI, P., U.F. FOSCHI & G.<br />

BOANO, 2000. Does El Ninõ affect<br />

survival rate of Mediterranean populations<br />

of Cory’s shearwater?<br />

Waterbirds, 23: 147-154.<br />

BRITTON, J.C., 1995. The relationship<br />

between position on shore and shell<br />

ornamentation in two size-dependent<br />

morphotypes of Littorina striata with<br />

an estimate of evaporative water loss<br />

in these morphotypes and Melarhaphe<br />

neritoides. In: GRAHAME, J., P.J.<br />

MILL & D.G. REID (eds.),<br />

Developments in Hydrobiology III.<br />

Advances in Littorinid Biology, pp. 129-<br />

142. Kluwer Academic Press,<br />

Dordrecht, The Netherlands.<br />

COLLAR, N., M. CROSBY & A. STAT-<br />

TERSFIELD, 1994. Birds to watch 2.<br />

The world list of threatened birds.<br />

BirdLife International (Birdlife<br />

Conservation Series 4), Cambridge.<br />

EUROPEAN HABITATS COMMITTEE,<br />

1991. CORINE biotopes manual,<br />

Habitats of the European Community.<br />

EUR 12587/3, Office for Official<br />

Publications of the European<br />

Communities, 1991.<br />

FURNESS, R., & J. GREENWOOD, 1993.<br />

Birds as monitors of environmental<br />

change, 325 pp. Chapman & Hall,<br />

London.<br />

GRANADEIRO, J., 1991. The breeding<br />

biology of Cory’s shearwater<br />

Calonectris diomedea borealis on<br />

Berlenga island, Portugal. Seabird, 13:<br />

30-39.<br />

GROZ, M., & J. PEREIRA, 2005. Invasive<br />

alien species as a threat to seabird<br />

populations: an account of habitat<br />

restoration on Ilhéu <strong>da</strong> Praia<br />

(Graciosa, Azores) special protection<br />

area. Airo, 15: 3-9.<br />

LE GRAND, G., K. EMMERSON & A.<br />

MARTIN, 1984. The status and conservation<br />

of seabirds in the Macaronesian<br />

islands. In: CROXALL, J.P., P.G.H.<br />

EVANS & R.W. SCHREIBER (eds.),<br />

Status and conservation of the world’s<br />

seabirds pp. 377-391. ICBP Technical<br />

Publication.<br />

MALLET, G., & L. COGHLAN, 1964.<br />

Cory’s shearwater Procellaria diomedea<br />

breeding in the Azores. Ibis 106: 123-<br />

125.<br />

MARTINS, A.M.F., 1978. Mollusques des<br />

<strong>Açores</strong>. Ilhéu de Vila Franca do Campo, 1.<br />

Basommatophora, 31 pp., 5 plates. Ponta<br />

Delga<strong>da</strong>: Centenary of “Carlos<br />

Machado” Museum Foun<strong>da</strong>tion.<br />

MARTINS, A.M.F., 1995. Terrestrial<br />

molluscs of Ilhéu de Vila Franca do<br />

Campo, São Miguel, Azores – an<br />

illustrated list. In: MARTINS A.M.F.<br />

(ed.), The Marine Fauna and Flora of the<br />

Azores (Proceedings of the Second<br />

International Workshop of Malacology and<br />

Marine Biology, Vila Franca do Campo,<br />

São Miguel, Azores, 1991). Açoreana,<br />

Supplement [4]: 249-259.<br />

MARTINS, A.M.F., 2004. The Princess’<br />

Ring, 99 pp. Intermezzo-Audiovisuais,<br />

L<strong>da</strong>., Lisboa.<br />

MONTEIRO, L., J. RAMOS & R.<br />

FURNESS, 1996a. Past and present status<br />

and conservation of the seabirds<br />

breeding in the Azores archipelago.<br />

Biological Conservation, 78: 319-328.<br />

MONTEIRO, L., J. RAMOS & R. FUR-<br />

NESS, 1996b. Movements, morphology,<br />

breeding, molt, diet and feeding of<br />

seabirds in the Azores. Colonial<br />

Waterbirds, 19(1): 82-97.<br />

MONTEIRO, L., J. RAMOS, J. PEREIRA, P.<br />

MONTEIRO, R. FEIO, D.<br />

THOMPSON, S. BEARHOP, R.<br />

FURNESS, M. LARANJO, G. HILTON,<br />

V. NEVES, M. GROZ & K.<br />

THOMPSON, 1999. Status and distribution<br />

of Fea’s Petrel, Bulwer’s Petrel,<br />

Manx Shearwater, Little Shearwater<br />

and Band-Rumped Storm-Petrel in the


RODRIGUES ET AL: SEABIRD CONSERVATION AT ILHÉU DE VILA FRANCA 225<br />

Azores Archipelago. Waterbirds, 22(3):<br />

358-366.<br />

MONTEIRO, L., R. FEIO, J. PEREIRA, P.<br />

MONTEIRO, J. RAMOS, A. TAVARES,<br />

L. WILSON, L. HEWITSON, V. NEVES<br />

& R. FURNESS, unpublished report.<br />

Population census of Cory’s shearwater<br />

Calonectris diomedea borealis in the<br />

Azores archipelago. University of<br />

Azores, Horta.<br />

MORTON, B., 1990. The interti<strong>da</strong>l ecology<br />

of Ilhéu de Vila Franca – a drowned<br />

volcanic crater in the Azores. In: MAR-<br />

TINS, A.M.F. (ed.), The Marine Fauna<br />

and Flora of the Azores (Proceedings of the<br />

First International Workshop of<br />

Malacology, São Miguel, Azores, 1988).<br />

Açoreana, Supplement [2]: 3-20.<br />

MORTON, B., J.C. BRITTON & A.M.F.<br />

MARTINS, 1998. Coastal Ecology of the<br />

Azores, X + 249 pp. Socie<strong>da</strong>de Afonso<br />

Chaves, Ponta Delga<strong>da</strong>.<br />

del NEVO, A., E. DUNN, F. MEDEIROS,<br />

G. le GRAND, P. AKERS, M. AVERY &<br />

L. MONTEIRO, 1993. The status of<br />

Roseate Terns Sterna dougallii and<br />

Common Terns Sterna hirundo in the<br />

Azores. Seabird, 15: 30-37.<br />

PETERSON, D., 1988. Common tern,<br />

Sterna hirundo. In: ANDRLE, R.F., & J.R.<br />

CARROLL (eds.), The Atlas of Breeding<br />

Birds in New York State, pp 178-179.<br />

Cornell Univ. Press, Ithaca, NY.<br />

RAMOS, J, L. MONTEIRO, E. SOLA & Z.<br />

MONIZ, 1997. Characteristics and<br />

competition for nest cavities in burrowing<br />

procellariiformes. The Condor,<br />

99: 634-641.<br />

RICHDALE, L., 1963. Biology of the sooty<br />

shearwater Puffinus griseus. Proceedings<br />

of Zoology Society of London, 141: 1-117.<br />

RODRIGUES, P., & M. NUNES, 2002.<br />

Characterization of most appropriate territories<br />

for bird population in Azores archipelago,<br />

77 pp. Portuguese Society for<br />

Study of Birds, Lisbon.<br />

SHINE, C., N. WILLIAMS & L. GÜN-<br />

DLING, 2000. A guide to design in legal<br />

and institutional frameworks on invasive<br />

alien species. World Conservation<br />

Union, Gland, Switzerland.<br />

SJÖGREN, E., 1973. Recent changes in the<br />

vascular flora and vegetation of the<br />

Azores islands. Memórias <strong>da</strong><br />

Socie<strong>da</strong>de. Broteriana, 22: 1-515.<br />

SKIRA, I., 1991. The short-tailed shearwater:<br />

a review of its biology. Corella, 15:<br />

45-52.


Remembering<br />

Joseph C. Britton (1942-2006)<br />

with Brian Morton and Fred Wells at his side, at the 2nd International Workshop of Malacology<br />

and Marine Biology, Vila Franca do Campo (1991)<br />

Joseph Cecil Britton passed away on 29 th November 2006. His life intersected the<br />

Azores in 1991, when he attended the 2nd International Workshop of Malacology and<br />

Marine Biology, and stayed linked to these islands from then on. I first met Joe at one<br />

of the Hong Kong workshops in 1989. Always polite and respectful, a true companion<br />

in science, beer and joie de vivre, Joe’s good humour made him a valued member of the<br />

team of scientists he joined here in the mutual search for knowledge. He knew that he<br />

was path finding, but this only increased his determination to help Azorean scientists<br />

and students understand their rich marine cultural heritage. His accumulated wealth of<br />

information about marine ecology flowed easily through his elegant discourse (albeit<br />

with a true Texan twang) and his calm devotion to work fostered in everyone a sense of<br />

duty. One of Joe Britton’s greatest contributions to the Azores, and one in which I was<br />

privileged to be part of, was the book Coastal Ecology of the <strong>Açores</strong>, one of a series of<br />

monographs created by Brian Morton, about the shores of Hong Kong and of Texas.<br />

Other works about the ecology and conservation of the Azores followed and, at the time<br />

of his death, he was compiling a huge list of publications related to the marine biology<br />

of the Azores. The completion of this task would form a lasting memorial to him and<br />

his work. Joe Britton was a member of the Editorial Board of Açoreana. A true friend,<br />

Joe will be missed, but his memory will be with us forever.


AÇOREANA é a revista <strong>da</strong> Socie<strong>da</strong>de Afonso Chaves<br />

- Associação de Estu<strong>dos</strong> Açoreanos e visa publicar<br />

trabalhos devota<strong>dos</strong> principalmente às diversas áreas <strong>da</strong><br />

história natural <strong>dos</strong> <strong>Açores</strong>. AÇOREANA está indexa<strong>da</strong> em<br />

BYOSIS, é envia<strong>da</strong> para Zoological Record e distribuí<strong>da</strong> em<br />

regime de troca por bibliotecas de vários países.<br />

Os manuscritos, em Português, Francês ou Inglês,<br />

incluirão um RESUMO e tradução deste numa <strong>da</strong>quelas<br />

línguas. O formato conformar-se-á com o de números<br />

posteriores a 2000. To<strong>da</strong>s as partes do manuscrito (texto,<br />

referências, tabelas, legen<strong>da</strong>s) serão <strong>da</strong>ctilografa<strong>da</strong>s a dois<br />

espaços. Nomes de géneros e espécies serão sublinha<strong>dos</strong>;<br />

to<strong>da</strong>s as outras indicações serão deixa<strong>da</strong>s ao critério do<br />

editor. As ilustrações deverão ser executa<strong>da</strong>s de forma a<br />

permitir uma utilização eficiente do espaço útil (página,<br />

125x180 mm; coluna, 62x180 mm); letras e números<br />

deverão permanecer perfeitamente legíveis após a redução.<br />

As referências no texto seguirão uma <strong>da</strong>s seguintes formas:<br />

‘Dance (1986) descreveu …‘ ou ‘ … (Morton, 1965) …‘ ou ‘…<br />

(Nobre, 1924, 1930; Martins, 1989a, b; Hawkins et al., 1990;<br />

Martins & Ripken, 1998;).’ A bibliografia é lista<strong>da</strong><br />

alfabeticamente e os nomes <strong>dos</strong> autores repeti<strong>dos</strong> sempre<br />

que necessário; os nomes <strong>da</strong>s revistas são apresenta<strong>dos</strong> por<br />

extenso. A listagem bibliográfica (BIBLIOGRAFIA<br />

CITADA) seguirá o formato <strong>dos</strong> números posteriores a<br />

2000, conforme se exemplifica:<br />

HOUBRICK, R.S., 1990. Anatomy, reproductive biology<br />

and systematic position of Fossarus ambiguus (Linné)<br />

(Fossarinae: Planaxi<strong>da</strong>e; Prosobranchia). In:<br />

MARTINS, A.M.F. (ed.), The Marine Fauna and Flora of<br />

the Azores (Proceedings of the First International Workshop<br />

of Malacology, São Miguel, 1988). Açoreana, Supplement<br />

[2]: 59-73.<br />

LEAL, J.H., & P. BOUCHET, 1991. Distribution patterns and<br />

dispersal of prosobranch gastropods along a seamount<br />

chain in the Atlantic Ocean. Journal of the Marine<br />

Biological Association of the United Kingdom, 71 (1): 11-<br />

25.<br />

MORELET, A., 1860. Notice sur l’Histoire Naturelle des <strong>Açores</strong><br />

suivie d’une description des Mollusques terrestres de cet<br />

Archipel, 216 pp. J.-B. Baillière et Fils, Paris.<br />

Tabelas e ilustrações virão após BIBLIOGRAFIA<br />

CITADA, constando no manuscrito o lugar apropriado para<br />

a sua integração; as ilustrações devem ser numera<strong>da</strong>s em<br />

série única; as legen<strong>da</strong>s <strong>da</strong>s figuras serão apresenta<strong>da</strong>s<br />

separa<strong>da</strong>mente após as ilustrações.<br />

Aceitam-se notas curtas que não deverão exceder três<br />

páginas <strong>da</strong>ctilografa<strong>da</strong>s a dois espaços. Normalmente não<br />

comportarão sumário ou subtítulos.<br />

Para salvaguar<strong>da</strong>r a interpretação na<br />

eventuali<strong>da</strong>de de desformatação do material digital, uma<br />

cópia impressa completa com tabelas, legen<strong>da</strong>s e ilustrações<br />

será submeti<strong>da</strong> ao editor, juntamente com uma cópia em<br />

CD ou via e.mail.<br />

SEPARATAS. O primeiro autor receberá 50 separatas<br />

grátis; cópias adicionais a preço de custo poderão ser<br />

requisita<strong>da</strong>s no acto <strong>da</strong> devolução <strong>da</strong>s provas.<br />

CORRESPONDÊNCIA. Enviar para o editor, Prof.<br />

António M. de Frias Martins, Socie<strong>da</strong>de Afonso Chaves -<br />

Associação de Estu<strong>dos</strong> Açoreanos, Apartado 258, 9501-903<br />

Ponta Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal. E.mail:<br />

afonsochaves.sac@gmail.com<br />

AÇOREANA is the journal of the Socie<strong>da</strong>de Afonso<br />

Chaves - Associação de Estu<strong>dos</strong> Açoreanos and aims at the<br />

publication of works devoted mainly to the various areas<br />

of the natural history of the Azores. AÇOREANA is<br />

indexed by BIOSIS, sent to Zoological Record, and distributed<br />

via exchange to libraries throughout the world.<br />

The manuscripts, in Portuguese, French or English,<br />

should include a concise ABSTRACT with a translation of<br />

it in one of those languages. The format of the manuscript<br />

should follow that of the issues after 2000. All<br />

parts of the manuscript (text, references, tables, legends)<br />

should be typed double-spaced. Underline all genus and<br />

species names; leave all other indications to the editor.<br />

The illustrations should be carefully executed to allow<br />

full utilization of space (full page, 125x180 mm; one column,<br />

62x180 mm); letters and numbers should remain<br />

perfectly easy to read after reduction. References in the<br />

text should take one of the following forms: ‘Morelet<br />

(1860) described …‘ or ‘ … (Morelet, 1860) …‘ or ‘…<br />

(Morelet & Drouët, 1857; Morelet, 1860; Nobre, 1924,<br />

1930; Martins, 1989a, b; Hawkins et al., 1990).’<br />

References are listed alphabetically, the authors’ names<br />

repeated; journal titles are cited in full. Bibliographic<br />

listing should follow the format of the issues after 2000,<br />

according to the examples:<br />

HOUBRICK, R.S., 1990. Anatomy, reproductive biology<br />

and systematic position of Fossarus ambiguus (Linné)<br />

(Fossarinae: Planaxi<strong>da</strong>e; Prosobranchia). In:<br />

MARTINS, A.M.F. (ed.), The Marine Fauna and Flora<br />

of the Azores (Proceedings of the First International<br />

Workshop of Malacology, São Miguel, 1988). Açoreana,<br />

Supplement [2]: 59-73.<br />

LEAL, J.H., & P. BOUCHET, 1991. Distribution patterns<br />

and dispersal of prosobranch gastropods along a<br />

seamount chain in the Atlantic Ocean. Journal of the<br />

Marine Biological Association of the United Kingdom, 71<br />

(1): 11-25.<br />

MORELET, A., 1860. Notice sur l’Histoire Naturelle des<br />

<strong>Açores</strong> suivie d’une description des Mollusques terrestres<br />

de cet Archipel, 216 pp. J.-B. Baillière et Fils, Paris.<br />

Tables and illustrations should come after LITERA-<br />

TURE CITED, but there should be in the manuscript an<br />

indication of their insertion; the legends for the illustrations<br />

should be presented separately after the illustrations.<br />

Short notes can also be submitted, not exceeding<br />

three pages typed double-spaced. Normally they should<br />

not include a summary or headings.<br />

To safeguard interpretation of eventually deformatted<br />

digital material, one printed copy complete with<br />

tables, legends and illustrations should be submitted to<br />

the editor, along with a copy in CD or via e.mail.<br />

REPRINTS. The first author receives 50 reprints free<br />

of charge; additional copies, at cost price, can be ordered<br />

when returning the proofs.<br />

CORRESPONDENCE. Manuscripts and<br />

correspondence related to the journal should be<br />

addressed to the editor, Prof. António M. de Frias<br />

Martins, Socie<strong>da</strong>de Afonso Chaves — Associação de<br />

Estu<strong>dos</strong> Açoreanos, Apartado 258, 9501-903 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal. E.mail:<br />

afonsochaves.sac@gmail.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!