Andrey A. Gontcharov 2 and Michael Melkonian - American Journal ...

Andrey A. Gontcharov 2 and Michael Melkonian - American Journal ... Andrey A. Gontcharov 2 and Michael Melkonian - American Journal ...

29.12.2013 Views

American Journal of Botany 95(9): 1079–1095. 2008. I N SEARCH OF MONOPHYLETIC TAXA IN THE FAMILY DESMIDIACEAE (ZYGNEMATOPHYCEAE, VIRIDIPLANTAE): THE GENUS COSMARIUM 1 Andrey A. Gontcharov 2 and Michael Melkonian Botanisches Institut, Lehrstuhl I, Universit ä t zu K ö ln, Gyrhofstr. 15, D-50931 K ö ln, Germany Nuclear-encoded small subunit (SSU) rDNA, 1506 group I introns, and chloroplast rbcL genes were sequenced from 97 strains representing the largest desmid genus Cosmarium (45 spp.), its putative relatives Actinotaenium (5 spp.), Xanthidium (4 spp.), Euastrum (9 spp.), Staurodesmus (13 spp.), and other Desmidiaceae (Zygnematophyceae, Streptophyta) and used to assess phylogenetic relationships in the family. Analyses of single genes and of a concatenated data set (3260 nt) established 10 well-supported clades in the family with Cosmarium species distributed in six clades and one nonsupported assemblage. Most of the clades contained representatives of at least two genera highlighting the polyphyletic nature of the genera Cosmarium , Euastrum , Staurodesmus , and Actinotaenium . To enhance resolution between clades, we extended the data set by sequencing the slowly evolving chloroplast-encoded large subunit (LSU) rRNA gene from 40 taxa. Phylogenetic analyses of a concatenated data set (5509 nt) suggested a sister relationship between two clades that consisted mainly of Cosmarium species and included C. undulatum , the type species of the genus. We describe molecular signatures in the SSU rRNA for two clades and conclude that more studies involving new isolates, additional molecular markers, and reanalyses of morphological traits are necessary before the taxonomic revision of the genus Cosmarium can be attempted. Key words: Actinotaenium ; clades; Cosmarium ; Desmidiaceae; Euastrum ; molecular phylogeny; molecular signatures; polyphyly; taxonomy. The conjugating green algae (Zygnematophyceae, Viridiplantae) represent the most species-rich lineage in the Streptophyta except for the embryophytic land plants ( Gerrath, 1993 ). They share with most embryophytes not only a common ancestry but also the absence of flagellate reproductive stages. A peculiar mode of sexual reproduction (i.e., conjugation) sets the class apart from other streptophytes and may have contributed to their successful diversification (Brook, 1981). On the basis of ultrastructural analyses of mitosis and cytokinesis, zygnematophycean algae have been recognized as members of the streptophyte algae known also as Charophyceae sensu Stewart and Mattox ( Pickett-Heaps, 1975 ). Molecular phylogenetic analyses of the Zygnematophyceae corroborated these results ( Chapman and Buchheim, 1992 ; Surek et al., 1994 ; McCourt et al., 2000; Gontcharov et al., 2003 ), although the phylogenetic position of the class among the streptophyte algae still remains unresolved ( Chapman et al., 1998 ; Karol et al., 2001 ; Lewis and McCourt, 2004 ; Turmel et al., 2007 ). Phylogenetic analyses of the Zygnematophyceae using a broad taxon sampling and multigene data sets have more recently led to the conclusion that many traditional genera of the class are polyphyletic, suggesting that the characters used to delineate these taxa are either plesiomorphic, homoplasious or unreliable ( Gontcharov et al., 2003 , 2004 ; Gontcharov and Melkonian, 2005 ; Hall et al., 2008 ). This situation is well 1 Manuscript received 7 February 2008; revision accepted 11 June 2008. The authors thank P. C. Silva and F. A. C. Kouwets for discussion on the type species of Cosmarium . This work was supported by DFG grant ME-658/26-1. 2 Author for correspondence (e-mail: gontcharov@biosoil.ru); permanent address: Institute of Biology and Soil Science, 690022, Vladivostok-22, Russia. doi:10.3732/ajb.0800046 1079 known in microalgal systematics in which descriptions of genera have often been based on single or very few morphological characters visible in the light microscope without a careful investigation of phylogenetic significance (one related example is that of the coccoid green algal genus Chlorella and its relatives; Krienitz et al., 2004 ; Luo et al., 2006 ). We have therefore started to evaluate the genus concept in the most species-rich family of the Zygnematophyceae, the Desmidiaceae (desmids), using taxon-rich sampling and multigene phylogenetic analyses. Although the traditional genus Staurastrum Meyen ex Ralfs was shown to be polyphyletic, a monophyletic core of the genus could be identified using such an approach ( Gontcharov and Melkonian, 2005 ). It is anticipated that once a phylogenetic framework of a desmid genus has been established, a reinvestigation of its morphological traits should lead to the recognition of hitherto overlooked, but more sound and reliable generic morphological characters. Here, we address the phylogenetic status of the genus Cosmarium Corda ex Ralfs (Desmidiaceae, Zygnematophyceae), the most species-rich desmid genus with more than 1000 species described ( Gerrath, 1993 ). Together with Staurastrum (~700 spp.) it constitutes about half of the total number of species in the otherwise species-poor streptophyte green algae. It should be mentioned that Cosmarium has always been regarded as an artificial genus and thus taxonomically problematic ( West and West, 1905 , 1908 ; Fritsch, 1953 , Hirano, 1959a ; Krieger and Gerloff, 1962 , 1965, 1969; Prescott et al., 1981 , Croasdale and Flint, 1988 ; Brook and Johnson, 2002 ; Gerrath, 2003 ). It was poorly circumscribed by a vague diagnosis ( Ralfs, 1848 ) and linked morphologically to other genera such as Euastrum Ehr. ex Ralfs and Xanthidium Ehr. ex Ralfs. Thus, although over the 160 years since its description, numerous taxa have been added to Cosmarium , the definition of the genus ( “ the fronds are minute, simple, constricted in the middle; the segments are generally broader than long and inflato-compressed, but in some species orbicular or cylindrical; they are neither

<strong>American</strong> <strong>Journal</strong> of Botany 95(9): 1079–1095. 2008.<br />

I N SEARCH OF MONOPHYLETIC TAXA IN THE FAMILY<br />

DESMIDIACEAE (ZYGNEMATOPHYCEAE, VIRIDIPLANTAE): THE<br />

GENUS COSMARIUM 1<br />

<strong>Andrey</strong> A. <strong>Gontcharov</strong><br />

2<br />

<strong>and</strong> <strong>Michael</strong> <strong>Melkonian</strong><br />

Botanisches Institut, Lehrstuhl I, Universit ä t zu K ö ln, Gyrhofstr. 15, D-50931 K ö ln, Germany<br />

Nuclear-encoded small subunit (SSU) rDNA, 1506 group I introns, <strong>and</strong> chloroplast rbcL genes were sequenced from 97 strains<br />

representing the largest desmid genus Cosmarium (45 spp.), its putative relatives Actinotaenium (5 spp.), Xanthidium (4 spp.),<br />

Euastrum (9 spp.), Staurodesmus (13 spp.), <strong>and</strong> other Desmidiaceae (Zygnematophyceae, Streptophyta) <strong>and</strong> used to assess phylogenetic<br />

relationships in the family. Analyses of single genes <strong>and</strong> of a concatenated data set (3260 nt) established 10 well-supported<br />

clades in the family with Cosmarium species distributed in six clades <strong>and</strong> one nonsupported assemblage. Most of the clades contained<br />

representatives of at least two genera highlighting the polyphyletic nature of the genera Cosmarium , Euastrum , Staurodesmus<br />

, <strong>and</strong> Actinotaenium . To enhance resolution between clades, we extended the data set by sequencing the slowly evolving<br />

chloroplast-encoded large subunit (LSU) rRNA gene from 40 taxa. Phylogenetic analyses of a concatenated data set (5509 nt)<br />

suggested a sister relationship between two clades that consisted mainly of Cosmarium species <strong>and</strong> included C. undulatum , the<br />

type species of the genus. We describe molecular signatures in the SSU rRNA for two clades <strong>and</strong> conclude that more studies involving<br />

new isolates, additional molecular markers, <strong>and</strong> reanalyses of morphological traits are necessary before the taxonomic<br />

revision of the genus Cosmarium can be attempted.<br />

Key words: Actinotaenium ; clades; Cosmarium ; Desmidiaceae; Euastrum ; molecular phylogeny; molecular signatures; polyphyly;<br />

taxonomy.<br />

The conjugating green algae (Zygnematophyceae, Viridiplantae)<br />

represent the most species-rich lineage in the Streptophyta<br />

except for the embryophytic l<strong>and</strong> plants ( Gerrath, 1993 ).<br />

They share with most embryophytes not only a common ancestry<br />

but also the absence of flagellate reproductive stages. A peculiar<br />

mode of sexual reproduction (i.e., conjugation) sets the<br />

class apart from other streptophytes <strong>and</strong> may have contributed<br />

to their successful diversification (Brook, 1981). On the basis of<br />

ultrastructural analyses of mitosis <strong>and</strong> cytokinesis, zygnematophycean<br />

algae have been recognized as members of the streptophyte<br />

algae known also as Charophyceae sensu Stewart <strong>and</strong><br />

Mattox ( Pickett-Heaps, 1975 ). Molecular phylogenetic analyses<br />

of the Zygnematophyceae corroborated these results<br />

( Chapman <strong>and</strong> Buchheim, 1992 ; Surek et al., 1994 ; McCourt<br />

et al., 2000; <strong>Gontcharov</strong> et al., 2003 ), although the phylogenetic<br />

position of the class among the streptophyte algae still remains<br />

unresolved ( Chapman et al., 1998 ; Karol et al., 2001 ; Lewis <strong>and</strong><br />

McCourt, 2004 ; Turmel et al., 2007 ).<br />

Phylogenetic analyses of the Zygnematophyceae using a<br />

broad taxon sampling <strong>and</strong> multigene data sets have more recently<br />

led to the conclusion that many traditional genera of the<br />

class are polyphyletic, suggesting that the characters used to<br />

delineate these taxa are either plesiomorphic, homoplasious or<br />

unreliable ( <strong>Gontcharov</strong> et al., 2003 , 2004 ; <strong>Gontcharov</strong> <strong>and</strong><br />

<strong>Melkonian</strong>, 2005 ; Hall et al., 2008 ). This situation is well<br />

1<br />

Manuscript received 7 February 2008; revision accepted 11 June 2008.<br />

The authors thank P. C. Silva <strong>and</strong> F. A. C. Kouwets for discussion on the<br />

type species of Cosmarium . This work was supported by DFG grant<br />

ME-658/26-1.<br />

2<br />

Author for correspondence (e-mail: gontcharov@biosoil.ru);<br />

permanent address: Institute of Biology <strong>and</strong> Soil Science, 690022,<br />

Vladivostok-22, Russia.<br />

doi:10.3732/ajb.0800046<br />

1079<br />

known in microalgal systematics in which descriptions of genera<br />

have often been based on single or very few morphological<br />

characters visible in the light microscope without a careful investigation<br />

of phylogenetic significance (one related example is<br />

that of the coccoid green algal genus Chlorella <strong>and</strong> its relatives;<br />

Krienitz et al., 2004 ; Luo et al., 2006 ). We have therefore started<br />

to evaluate the genus concept in the most species-rich family<br />

of the Zygnematophyceae, the Desmidiaceae (desmids), using<br />

taxon-rich sampling <strong>and</strong> multigene phylogenetic analyses. Although<br />

the traditional genus Staurastrum Meyen ex Ralfs was<br />

shown to be polyphyletic, a monophyletic core of the genus<br />

could be identified using such an approach ( <strong>Gontcharov</strong> <strong>and</strong><br />

<strong>Melkonian</strong>, 2005 ). It is anticipated that once a phylogenetic<br />

framework of a desmid genus has been established, a reinvestigation<br />

of its morphological traits should lead to the recognition<br />

of hitherto overlooked, but more sound <strong>and</strong> reliable generic<br />

morphological characters.<br />

Here, we address the phylogenetic status of the genus Cosmarium<br />

Corda ex Ralfs (Desmidiaceae, Zygnematophyceae),<br />

the most species-rich desmid genus with more than 1000 species<br />

described ( Gerrath, 1993 ). Together with Staurastrum<br />

(~700 spp.) it constitutes about half of the total number of species<br />

in the otherwise species-poor streptophyte green algae. It<br />

should be mentioned that Cosmarium has always been regarded<br />

as an artificial genus <strong>and</strong> thus taxonomically problematic ( West<br />

<strong>and</strong> West, 1905 , 1908 ; Fritsch, 1953 , Hirano, 1959a ; Krieger<br />

<strong>and</strong> Gerloff, 1962 , 1965, 1969; Prescott et al., 1981 , Croasdale<br />

<strong>and</strong> Flint, 1988 ; Brook <strong>and</strong> Johnson, 2002 ; Gerrath, 2003 ). It<br />

was poorly circumscribed by a vague diagnosis ( Ralfs, 1848 )<br />

<strong>and</strong> linked morphologically to other genera such as Euastrum<br />

Ehr. ex Ralfs <strong>and</strong> Xanthidium Ehr. ex Ralfs. Thus, although<br />

over the 160 years since its description, numerous taxa have<br />

been added to Cosmarium , the definition of the genus ( “ the<br />

fronds are minute, simple, constricted in the middle; the segments<br />

are generally broader than long <strong>and</strong> inflato-compressed,<br />

but in some species orbicular or cylindrical; they are neither


1080 <strong>American</strong> <strong>Journal</strong> of Botany [Vol. 95<br />

emarginate at the end nor lobed at the sides, <strong>and</strong> have no spines<br />

or processes ” ; Ralfs, 1848 , p. 91) has not changed <strong>and</strong> its discriminatory<br />

power diminished. Although widely acknowledged<br />

to be polyphyletic, the genus is still adopted to date in its original<br />

sense ( Lenzenweger, 1999 ; Brook <strong>and</strong> Johnson, 2002 ; Gerrath,<br />

2003 ; Coesel <strong>and</strong> Meesters, 2007 ). Unfortunately, attempts<br />

during the 19th century to resolve the taxonomic problems in<br />

Cosmarium <strong>and</strong> establish more “ natural ” (morphologically uniform)<br />

taxonomic entities were unsuccessful (e.g., N ä geli, 1849 ; de<br />

Bary, 1858 ; Lundell, 1871 ; Kirchner, 1878 ; Gay, 1884 ; Hansgirg,<br />

1888 ; de Toni, 1889 ; Raciborski, 1889 ; Turner, 1892 ). The<br />

novel taxa were based on simple morphological features such<br />

as cell <strong>and</strong> semicell shape, ornamentation of the cell surface,<br />

degree of cell constriction, <strong>and</strong> chloroplast shape that occur in<br />

any combination in the genus. In 1954, Teiling established a<br />

new genus, Actinotaenium Teil ., for taxa with smooth-walled,<br />

elongated cells, circular in apical view, <strong>and</strong> displaying a shallow<br />

sinus. Although Actinotaenium is often regarded as a “ natural<br />

group ” ( Prescott et al., 1981 , p. 1), its members are distinct<br />

only in the combination of characters that individually occur in<br />

many Cosmarium taxa. Another consequence of the unsatisfactory<br />

taxonomic status of Cosmarium is the fact that only one<br />

unfinished attempt of a monography of the genus dealing with<br />

fewer than half of the described species exists ( Krieger <strong>and</strong><br />

Gerloff, 1962, 1965, 1969). The lack of type material <strong>and</strong> the<br />

inaccessibility or vagueness of many original descriptions further<br />

complicates a critical assessment of species that are distinguished<br />

largely on the basis of the shapes of cells, semicells,<br />

<strong>and</strong> chloroplasts; features of cell wall ornamentation; <strong>and</strong> zygospore<br />

shape. The extent of the variability of these characters<br />

is poorly known, <strong>and</strong> their taxonomic significance has never<br />

been assessed within a cladistic framework.<br />

The first tests of the genus concept of Cosmarium with molecular<br />

tools confirmed the expected polyphyly of the genus,<br />

but this result was based on a very limited taxon sampling, <strong>and</strong><br />

the phylogeny was affected by long-branched taxa <strong>and</strong> the limited<br />

phylogenetic resolution of the marker used (nuclear-encoded<br />

small subunit [SSU] rDNA). Six Cosmarium sequences<br />

representing distinct morphotypes within the genus had no relationship<br />

to each other; instead, some species formed clades with<br />

members of other genera ( <strong>Gontcharov</strong> et al., 2003 ). Conversely,<br />

phylogenetic analyses of two taxa of Cosmarium with the same<br />

morphotype, revealed only a distant relationship between them,<br />

questioning the validity of morphological characters traditionally<br />

used in the taxonomy of the genus but confirming a previously<br />

reported relationship between some smooth-celled species<br />

of Cosmarium <strong>and</strong> spine-bearing Staurodesmus Teil. taxa<br />

( <strong>Gontcharov</strong> et al., 2003 ; <strong>Gontcharov</strong> <strong>and</strong> <strong>Melkonian</strong>, 2005 ).<br />

The primary goal of this study was to define major monophyletic<br />

lineages within the traditional genus Cosmarium , related<br />

genera, <strong>and</strong> the family Desmidiaceae <strong>and</strong> generate a<br />

hypothesis of their phylogenetic relationship. To this end, we<br />

sampled more than 120 species, representing major morphotypes<br />

of Cosmarium , <strong>and</strong> its putative relatives, Staurodesmus ,<br />

Euastrum , Xanthidium , <strong>and</strong> Actinotaenium . Nuclear-encoded<br />

SSU rDNA, noncoding 1506 group I introns, chloroplast large<br />

subunit (LSU) rDNA <strong>and</strong> protein-coding rbcL gene sequences<br />

were obtained from these taxa <strong>and</strong> analyzed individually <strong>and</strong> in<br />

concatenation using different phylogenetic methods. We identified<br />

10 clades in the Desmidiaceae, with the genus Cosmarium<br />

distributed over six of these. Furthermore, Cosmarium , Euastrum<br />

, Staurodesmus , <strong>and</strong> Actinotaenium were shown to be<br />

polyphyletic. Mapping traditional morphological traits that dis-<br />

criminate these genera on the phylogenetic tree revealed extensive<br />

homoplasy, calling into question the current genus concept<br />

in the Desmidiaceae.<br />

MATERIALS AND METHODS<br />

Cultures — One hundred twenty-seven strains of Desmidiaceae <strong>and</strong> Peniaceae<br />

used for this study were obtained from different sources (Appendix 1)<br />

<strong>and</strong> grown in modified WARIS-H culture medium ( McFadden <strong>and</strong> <strong>Melkonian</strong>,<br />

1986 ) at 15 ° C with a photon fluence rate of 40 µ mol ⋅ m − 2 ⋅ s<br />

− 1<br />

in a 14/10 h light/<br />

dark cycle. The taxonomic designation of all strains was verified by light microscopy<br />

prior to DNA extraction ( Krieger <strong>and</strong> Gerloff, 1962 , 1965 , 1969 ;<br />

Prescott et al., 1981 ; Croasdale <strong>and</strong> Flint, 1988 ; Brook <strong>and</strong> Johnson, 2002 ;<br />

Coesel <strong>and</strong> Meesters, 2007 ).<br />

DNA extraction, amplification, <strong>and</strong> sequencing — After mild ultrasonication<br />

to remove mucilage, total genomic DNA was extracted using the Qiagen<br />

(Hilden, Germany) DNeasy Plant Mini Kit. Nuclear-encoded (nu) SSU rDNA<br />

(including the 1506 group I intron) <strong>and</strong> chloroplast-encoded (cp) rbcL <strong>and</strong> LSU<br />

rDNA were amplified by polymerase chain reactions (PCR) using published<br />

protocols <strong>and</strong> 5 ′ -biotinylated PCR primers ( Marin et al., 1998, 2005 ;<br />

<strong>Gontcharov</strong>, et al., 2004 ). PCR products were purified with the Dynabeads<br />

M-280 system (Dynal Biotech, Oslo, Norway) <strong>and</strong> used for bidirectional sequencing<br />

reactions (for protocols, see Hoef-Emden et al., 2002 ). Gels were run<br />

on a Li-Cor IR 2 DNA sequencer (Li-Cor, Lincoln, Nebraska, USA).<br />

Sequence alignments <strong>and</strong> tree reconstructions — Sequences were manually<br />

aligned using the SeaView program ( Galtier et al., 1996 ). For coding regions of<br />

the nu SSU rDNA, cp LSU rDNA, <strong>and</strong> noncoding 1506 group I introns, the<br />

alignment was guided by primary <strong>and</strong> secondary structure conservation<br />

( Bhattacharya et al., 1994 , 1996 ; Wuyts et al., 2000 , 2001 ; Gillespie et al.,<br />

2006 ). All three codon positions of the rbcL gene were used for analyses. The<br />

alignments are available at http://srs.ebi.ac.uk/, accessions ALIGN_001252,<br />

ALIGN_001253 <strong>and</strong> ALIGN_001254.<br />

The amount of phylogenetic signal vs. noise in our nu SSU rDNA, rbcL , <strong>and</strong><br />

cp LSU rDNA data were assessed by plotting the uncorrected against corrected<br />

distances determined with the respective model of sequence evolution estimated<br />

by the program MODELTEST version 3.06 ( Posada <strong>and</strong> Cr<strong>and</strong>all, 1998 ).<br />

The selected models <strong>and</strong> model parameters are summarized in Table 1 . Also,<br />

the measure of skewness (g1-value calculated for 10c000 r<strong>and</strong>omly selected<br />

trees in the program PAUP* version 4.0b10; Swofford, 2002 ) was compared<br />

with the empirical threshold values ( Hillis <strong>and</strong> Huelsenbeck, 1992 ) to verify the<br />

nonr<strong>and</strong>om structuring of the data. To quantify the extent of substitution saturation<br />

in data sets, we calculated the I ss statistic for the individual <strong>and</strong> combined<br />

data sets with the program DAMBE ( Xia <strong>and</strong> Xie, 2001 ).<br />

Phylogenetic trees were inferred with maximum likelihood (ML), neighborjoining<br />

(NJ) distance, <strong>and</strong> maxiumum parsimony (MP) optimality criteria using<br />

PAUP* 4.0b10 <strong>and</strong> Bayesian inference (BI) using the program MrBayes version<br />

3.1.2 ( Huelsenbeck <strong>and</strong> Ronquist, 2001 ). Evolutionary models (for ML<br />

<strong>and</strong> NJ analyses) were selected by the Akaike information criterion in<br />

MODELTEST. ML <strong>and</strong> MP analyses used heuristic searches with a branchswapping<br />

algorithm (tree bisection-reconnection); distances for NJ analyses<br />

were calculated by ML. In BI, two parallel MCMC runs were carried out for<br />

two million generations sampling every 100 generations for a total of 20 000<br />

samples. The first 500 – 1500 samples were discarded as burn-in, <strong>and</strong> the remaining<br />

samples were analyzed using the sumt comm<strong>and</strong> in MrBayes. The robustness<br />

of the trees was estimated by bootstrap percentages (BP; Felsenstein,<br />

1985 ) using 1000 (NJ <strong>and</strong> MP) or 100 (ML) replications <strong>and</strong> by posterior probabilities<br />

(PP) for BI. BP < 50% <strong>and</strong> PP < 0.95 were not taken into account.<br />

In MP, the stepwise addition option (10 heuristic searches with r<strong>and</strong>om taxon<br />

input order) was used for each bootstrap replicate. The ML bootstrap used a<br />

single heuristic search (starting tree via stepwise addition) per replicate.<br />

Previous molecular phylogenetic studies resolved the families Peniaceae<br />

(the genus Penium ) <strong>and</strong> Desmidiaceae as sisters <strong>and</strong> have shown that they<br />

evolved with comparable evolutionary rates unlike the more distantly related,<br />

fast-evolving desmid families Gonatozygaceae <strong>and</strong> Closteriaceae ( Besendahl<br />

<strong>and</strong> Bhattacharya, 1999 ; McCourt et al., 2000; Denboh et al., 2001 ; <strong>Gontcharov</strong><br />

et al., 2003 ). Later Penium was found to not be monophyletic, <strong>and</strong> only one<br />

sublineage was sister to the Desmidiaceae ( <strong>Gontcharov</strong> et al, 2004 ; Hall et al.,<br />

2008 ). Therefore, only P. margaritaceum <strong>and</strong> P. spirostriolatum , comprising


September 2008]<br />

<strong>Gontcharov</strong> <strong>and</strong> <strong>Melkonian</strong> — The genus COSMARIUM Corda ex Ralfs<br />

1081<br />

Table 1. Evolutionary models, log likelihood values ( – lnL) <strong>and</strong> model parameters identified by the program MODELTEST for different data sets used for Figs. 2 – 4 <strong>and</strong> for additional analyses.<br />

127 taxa 97 taxa 40 taxa<br />

Model <strong>and</strong> model parameter rbcL ( Fig. 2 )<br />

nu SSU rDNA (with 1506<br />

group I intron) rbcL<br />

nu SSU rDNA (with intron)<br />

+ rbcL ( Fig. 3 )<br />

nu SSU rDNA (with intron)<br />

+ rbcL cp LSU rDNA<br />

cp LSU rDNA + nu SSU rDNA (with intron) +<br />

rbcL ( Fig. 4 )<br />

Model GTR+I+G GTR+I+G GTR+I+G GTR+I+G GTR+I+G GTR+I+G GTR+I+G<br />

– lnL 15157.271 12888.799 13512.904 27175.160 7373.987 17786.400 25536.258<br />

I 0.5644 0.7145 0.5701 0.6583 0.7864 0.6779 0.7197<br />

G 0.9369 0.4982 1.0241 0.6482 0.5697 0.6572 0.6007<br />

Base frequencies<br />

A 0.3002 0.2485 0.2975 0.2652 0.2783 0.2628 0.2694<br />

C 0.1632 0.2108 0.1708 0.1937 0.2301 0.1981 0.2128<br />

G 0.1857 0.2646 0.1884 0.2359 0.3100 0.2442 0.2710<br />

T 0.3509 0.2512 0.3433 0.3052 0.1816 0.2949 0.2467<br />

GC 0.3489 0.4754 0.3592 0.4296 0.5401 0.4423 0.4838<br />

Rate matrix ([G ↔ T = 1.00])<br />

[A ↔ C] 0.9147 1.5573 0.9356 1.2953 0.5478 1.2349 0.9605<br />

[A ↔ G] 3. 6638 3.7675 3.9135 4.0542 1.1043 3.6121 2.5445<br />

[A ↔ T] 1.2907 2.1920 1.4815 1.9766 1.6874 2.0898 2.0619<br />

[C ↔ G] 1.0244 0.5683 0.9365 0.7169 0.1431 0.6480 0.4238<br />

[C ↔ T] 7.1143 10.2938 7.5798 8.8722 2.9835 8.3522 6.8163<br />

Aligned nt 1339 1921 1339 3260 2255 3254 5509<br />

Constant nt 836 1524 846 2370 1960 2509 4469<br />

MP-informative<br />

a<br />

416 281 402 683 155 514 669<br />

MP-uninformative<br />

a<br />

86 119 90 209 140 231 371<br />

Measure of skewness (g1) − 0324 − 0396 − 0451 − 0406 − 0564 − 0526 − 0655<br />

0204/0766, < 0001 0185/0788, < 0001 0,21/0766, < 0001 0195/0806, < 0001 0222/0806, < 0001 0231/0793, < 0001 0163/0812, < 0001<br />

I ss ( I ss / I ss + c, P -value of 32 taxon<br />

data subsets)<br />

a<br />

Informative <strong>and</strong> uninformative (but not invariable) characters in MP


1082 <strong>American</strong> <strong>Journal</strong> of Botany [Vol. 95<br />

this distinct clade, were used as an outgroup for the Desmidiaceae in our analyses,<br />

<strong>and</strong> three more species of Penium were regarded as ingroup taxa (see<br />

Results).<br />

Combined analyses — For concatenated analyses, partitions were fused <strong>and</strong><br />

analyzed using a single “ concatenated model ” with averaged parameters. Before<br />

that, models for individual partitions ( Table 1 ), ML topologies, <strong>and</strong> ML/<br />

NJ(ML)/MP bootstrap support ( Table 2 ) were obtained <strong>and</strong> compared to reveal<br />

significant discrepancies. We also assessed incongruence between the data sets<br />

by the incongruence length difference (ILD) test ( Farris et al., 1994 ) in PAUP*<br />

(partition homogeneity test with 1000 replicates).<br />

The concatenated data set of nu SSU rDNA (including intron), rbcL , <strong>and</strong> cp<br />

LSU rDNA was analyzed by BI using specific model parameters for each<br />

partition.<br />

RESULTS<br />

Quality of the molecular data — Apart from the differences<br />

in the alignment length, base <strong>and</strong> substitution frequencies, number<br />

of parsimony-informative positions, pattern of substitution<br />

distribution (G parameter), <strong>and</strong> proportion of invariable sites<br />

between our data sets, the most complex GTR+I+G model of<br />

sequence evolution was identified by the MODELTEST as the<br />

best model fitting the data ( Table 1 ). A test of the data sets for<br />

substitution saturation (distribution of the uncorrected vs. corrected<br />

distances; Fig. 1 ) revealed a nearly linear correlation in<br />

the SSU rDNA data indicating low saturation. The saturation<br />

plot of rbcL was somewhat leveled off, suggesting the presence<br />

of some saturation that would be expected from the third codon<br />

position of this protein-coding gene ( <strong>Gontcharov</strong> et al., 2004 ).<br />

However, according to the I ss statistics, neither of the data sets<br />

was saturated ( P < 0,001; Table 2 ).<br />

Comparison of the skewness of the tree length distribution<br />

(g1 value) of r<strong>and</strong>om trees of all data sets with the empirical<br />

threshold values ( Hillis <strong>and</strong> Huelsenbeck, 1992 ) showed that<br />

the length distributions were considerably left-skewed, indicating<br />

that the alignments were significantly more structured than<br />

r<strong>and</strong>om data <strong>and</strong> likely contained a strong phylogenetic signal<br />

( Table 1 ).<br />

Noise assessment in the data sets without the outgroup (two<br />

Penium species) yielded results identical to those obtained with<br />

the complete data sets, suggesting that the outgroup did not interfere<br />

with the phylogenetic signal (not shown).<br />

rbcL data set (127 taxa) — ML analyses of 127 rbcL sequences<br />

(1339 nt, GTR+I+G model; Table 1 ) yielded the phylogenetic<br />

tree in Fig. 2 . Although resolution of internal branches<br />

was mostly low, 11 terminal clades that included most of the<br />

taxa studied were resolved <strong>and</strong> designated STD1, STD2, CO1,<br />

CO2, CO3, CO4, ARTHR, Euastrum , Micrasterias , omniradiate,<br />

<strong>and</strong> CAP ( Fig. 2 ). Most clades were well supported; only<br />

STD2, Euastrum , omniradiate, <strong>and</strong> CAP attained weak to moderate<br />

support ( Fig. 2 ; Table 2 ). In addition, two lineages containing<br />

most of the multicellular (filamentous or colonial) taxa<br />

analyzed <strong>and</strong> some Cosmarium species were recovered, the<br />

larger multicellular 2 assemblage, <strong>and</strong> a long-branched Spondylosium<br />

planum/S. secedens pair, multicellular 1. Species of<br />

the genus Xanthidium (including Staurastrum tumidum ;<br />

<strong>Gontcharov</strong> et al., 2003 ; <strong>Gontcharov</strong> <strong>and</strong> <strong>Melkonian</strong>, 2005 )<br />

were also split between several individual branches <strong>and</strong> one<br />

clade. Finally, Haplotaenium minutum formed an unresolved<br />

assemblage with two Staurastrum species; however, bootstrap<br />

analyses favored monophyly of Staurastrum with weak support<br />

( Fig. 2 ; Table 2 ).<br />

The majority of Cosmarium species were distributed among<br />

seven clades (ARTHR, CO1, CO2, CO3, CO4, STD2, <strong>and</strong> omniradiate)<br />

<strong>and</strong> one assemblage (multicellular 2). Most of these<br />

clades (except for CO2 <strong>and</strong> CO 3) also included species of other<br />

genera, namely Actinotaenium , Euastrum , Spondylosium , <strong>and</strong><br />

Staurodesmus ( Fig. 2 ). Two Cosmarium taxa, C. decedens <strong>and</strong><br />

C. ralfsii , were placed in the Euastrum <strong>and</strong> Micrasterias clades,<br />

respectively. In both cases, affiliation of the Cosmarium species<br />

to these lineages, however, was only weakly (60/55% BP) or<br />

moderately (86/78% BP) supported. In addition, the longbranched<br />

C. depressum diverged basally in the family together<br />

with Actinotaenium cruciferum <strong>and</strong> three Penium species (CAP<br />

clade; Fig. 2 ).<br />

Cosmarium was most prominent (26 of 68 species analyzed)<br />

in clade CO2. Strain SVCK482, identified as C. undulatum, the<br />

type species of the genus ( Silva, 1952 ; Gerrath, 1993 ), was also<br />

a member of this clade. Beside Cosmarium , this species-rich<br />

clade accommodated three Actinotaenium <strong>and</strong> four Euastrum<br />

species ( Fig. 2 ). CO2 was further divided into several subclades<br />

<strong>and</strong> some single branches, but their relationships were largely<br />

unresolved likely due to low sequence divergence in the clade.<br />

Cosmarium species also formed the bulk of the taxa in clade<br />

omniradiate, that also included Spondylosium p<strong>and</strong>uriforme<br />

<strong>and</strong> two additional Actinotaenium species ( Fig. 2 ). In the omniradiate<br />

clade, the Cosmarium species formed four well-supported<br />

subclades whose relationships, however, were unresolved<br />

in the rbcL phylogeny ( Fig. 2 ).<br />

Our analyses also revealed well-supported relationships between<br />

some Cosmarium <strong>and</strong> Staurodesmus species. Members<br />

of Staurodesmus were recovered in three distinct clades (STD1,<br />

STD2, <strong>and</strong> ARTHR), <strong>and</strong> two of these clades also contained<br />

species of Cosmarium . In both STD2 <strong>and</strong> ARTHR, Cosmarium<br />

species diverged in paraphyletic succession before the Staurodesmus<br />

taxa. Only in STD2 clade the derived position of the<br />

Staurodesmus species was supported by high bootstrap values<br />

( Fig. 2 ).<br />

Two Cosmarium strains, M 2717 <strong>and</strong> SVCK 570, both identified<br />

as C. punctulatum , were found in two distantly related<br />

clades, CO2 <strong>and</strong> CO3, respectively. Light microscopic examination<br />

revealed minor differences in cell dimensions <strong>and</strong> patterns<br />

of the cell wall ornamentation between the strains, which,<br />

nevertheless, fitted the rather broad species diagnosis (Prescott<br />

et al., 1982). A similar discrepancy between taxonomic designation<br />

<strong>and</strong> phylogenetic position in the tree was observed for<br />

Staurodesmus extensus <strong>and</strong> S. extensus var. joshuae that showed<br />

little affinity to each other in clade STD1 ( Fig. 2 ). It is likely<br />

that the small difference in cell morphology between these conspecific<br />

strains masked the conspicuous genetic distances between<br />

the two taxa that should warrant the status of separate<br />

species<br />

Concatenated data set (SSU rDNA + rbcL) — To increase<br />

phylogenetic resolution <strong>and</strong> probe the clades established in the<br />

rbcL analyses with another marker, we combined SSU rDNA<br />

(including 1506 group I introns) <strong>and</strong> rbcL sequences obtained<br />

from the same strain. The taxon sampling was reduced to 97<br />

species in this data set because in some taxa the SSU rRNA<br />

gene could not be amplified using various primer combinations<br />

(e.g., most members of the CO3 <strong>and</strong> CO4 clades) or their sequences<br />

formed extremely long branches in the SSU rDNA<br />

phylogeny (e.g., Cosmarium ovale <strong>and</strong> Euastrum moebii ). Concatenation<br />

of SSU rDNA <strong>and</strong> rbc L sequences resulted in a data<br />

set consisting of 3260 nt ( Table 1 ).


September 2008]<br />

<strong>Gontcharov</strong> <strong>and</strong> <strong>Melkonian</strong> — The genus COSMARIUM Corda ex Ralfs<br />

1083<br />

Table 2. Significances (ML/NJ(ML)/MP/BI) for the clades <strong>and</strong> branches (encircled numbers in Figs. 2 – 4 ) in different analyses. If there is no number<br />

before the slash, no ML bootstrapping was done for the data set.<br />

127 taxa 97 taxa 40 taxa<br />

Clade/branch rbcL ( Fig. 2 )<br />

nu SSU rDNA<br />

(with 1506 group I intron) rbcL<br />

nu SSU rDNA<br />

(with intron) + rbcL ( Fig. 3 )<br />

cp LSU rDNA<br />

nu SSU rDNA<br />

(with intron) + rbcL<br />

cp LSU rDNA + nu SSU rDNA<br />

(with intron) + rbcL ( Fig. 4 )<br />

ARTHR / 100/100/1.00 99/98/97/1.00 100 100 –/89/100/– 100 100<br />

STD1 /100/100/1.00 100 100 100 96/100/100/1.00 100/96/100/1.00 98/100/100/1.00<br />

CO1 /100/100/1.00 93/93/91/1.00 100 100 N/A N/A N/A<br />

CO2 /96/78/0.99 86/79/73/1.00 83/99/80/1.00 100 97/99/100/1.00 99/100/99/1.00 100<br />

CO3 /100/100/1.00 59/64/ − / − 100 100 N/A N/A N/A<br />

CO4 /92/85/0.99 N/A N/A N/A N/A N/A N/A<br />

Xanthidium / − / − / − -/60/-/1.00 56/63/68/- 78/96/85/1.00 -/58/100/- 95/100/100/1.00 98/100/100/1.00<br />

STD2 /77/84/ − − / − / − / − 75/79/83/0.99 92/96/94/1.00 71/83/90/0.99 84/96/78/1.00 98/100/90/1.00<br />

Multicellular 1+2 / − / − / − − / − / − / − − / − / − / − − / − / − / − − / − /67/- − / − /57/ − − / − /67–<br />

Euastrum /60/55/0.99 − / − / − / − − / − / − / − − / − / − / − − / − / − / − 84/93/82/0.95 60/ − /51/0.99<br />

Staurastrum /63/53/- 61/ − / − /- 57/60/ − / − 73/73/64/1.00 N/A N/A N/A<br />

Micrasterias /86/78/1.00 80/93/69/1.00 93/91/93/1.00 99/100/93/1.00 − / − /97/0.99 99/100/100/1.00 91/98/97/1.00<br />

Omniradiate /54/ − /0.99 68/71/ − /1.00 − / − / − /0.98 91/82/85/1.00 96/73/99/1.00 99/92/90/1.00 100/100/99/1.00<br />

CO2 + CO3 / − / − / − − / − / − /1.00 − / − / − / − − / − / − / − − /62/67/ − − / − / − / − − /78/67/ −<br />

CO2 + CO3 + / − / − / − − / − / − / − − / − / − / − − /63/ − / − − / − /68/ − − /70/67/ − 71/68/79/1.00<br />

Xanthidium<br />

1 /51/ − /0.95 − / − / − / − − / − / − 0.99 − / − / − / − − / − /52/ − 62/ − /56/0.97 78/ − /52/1.00<br />

2 /56/56/0.97 − / − / − / − 63/53/55/0.99 56/51/ − / − 92/81/95/ − 87/81/88/1.00 98/97/95/1.00<br />

Notes: N/A, not accessed; 100 =100/100/100/1.00<br />

Comparison of the SSU rDNA- <strong>and</strong> rbcL -based topologies<br />

for the 97 taxa data set <strong>and</strong> their bootstrap supports ( Table 2 )<br />

showed general agreement between the markers (results not<br />

shown). Only two clades attained somewhat weaker or no support<br />

in the SSU rDNA phylogeny compared to the rbcL data set<br />

(CO3 <strong>and</strong> STD2, respectively). Both partitions recovered two<br />

nonsupported assemblages, one containing eight of nine Euastrum<br />

species, the other the multicellular species <strong>and</strong> associated<br />

Cosmarium taxa ( Table 2 ). Most members of these assemblages<br />

had accelerated evolutionary rates in the SSU rRNA gene or in<br />

both genes that likely affected bootstrap support for their grouping.<br />

Different placement of these unresolved taxa/branches in<br />

the SSU rDNA <strong>and</strong> rbcL trees was responsible for failure of the<br />

combined data set to pass the ILD test ( P = 0.003). Only when<br />

long branches such as C. depressum , Actinotaenium cruciferum ,<br />

<strong>and</strong> members of the Euastrum <strong>and</strong> multicellular assemblages<br />

were removed from the data set did it pass the test ( P > 0,005).<br />

This result suggests that the nuclear <strong>and</strong> chloroplast data sets<br />

are congruent for the data set as a whole. Problems with the ILD<br />

test are well known (e.g., Dolphin et al., 2000 ; Yoder et al.,<br />

2001 ; Darlu <strong>and</strong> Lecointre, 2002 ; Dowton <strong>and</strong> Austin, 2002 ;<br />

Quicke et al., 2007 ), so failures due to localized cases of incongruence<br />

are not surprising ( Thornton <strong>and</strong> DeSalle, 2000 ). Phylogenetic<br />

analyses of the data set without the long-branched<br />

taxa mentioned revealed that they have no effect on the support<br />

levels of other terminal clades <strong>and</strong> the general tree topology.<br />

Fig. 1. Analyses of saturation in the nu SSU rDNA, rbcL , <strong>and</strong> cp LSU rDNA data (uncorrected vs. corrected distances). Corrected distances<br />

were calculated with the GTR+I+G model estimated by MODELTEST for each partition ( Table 1 ). (A) 97-taxa alignment ( Fig. 3 ), (B) 40-taxa alignment<br />

( Fig. 4 ).


1084 <strong>American</strong> <strong>Journal</strong> of Botany [Vol. 95


September 2008]<br />

<strong>Gontcharov</strong> <strong>and</strong> <strong>Melkonian</strong> — The genus COSMARIUM Corda ex Ralfs<br />

1085<br />

In the combined analyses the clades ARTHR, STD1, CO1,<br />

CO2, <strong>and</strong> CO3 attained 100%BP/1.00 PP in all analyses ( Fig. 3 ;<br />

Table 2 ). The support increased also from weak or moderate to<br />

high ( > 90% BP) for the omniradiate <strong>and</strong> STD2 clades. The earlier<br />

unresolved Xanthidium lineage attained moderate bootstrap<br />

values, whereas the two multicellular assemblages remained<br />

without support. The more divergent SSU rDNA sequences<br />

contributed also to the resolution of the terminal branches<br />

within some clades, in particular CO2 ( Fig. 3 ).<br />

Concatenated data set (nu SSU rDNA+rbcL+cp LSU<br />

rDNA) — Although phylogenetic analyses using SSU rDNA<br />

<strong>and</strong> rbcL led to the recognition of 10 well-resolved clades in the<br />

Desmidiaceae, resolution of internal branches was low; thus relationships<br />

among clades remained unclear ( Figs. 1, 2 ; Table<br />

2 ). We therefore increased the data set by adding a more slowly<br />

evolving marker, the chloroplast-encoded LSU rRNA gene<br />

( Table 1 ). For these analyses, taxon sampling within the wellsupported<br />

clades was reduced to 1 – 2 representatives per clade<br />

(a total of 40 taxa).<br />

The PCR products obtained by amplification of cp LSU<br />

rDNA with primers that bound in the B19 <strong>and</strong> G20 domains of<br />

the gene (nomenclature after De Rijk et al., 2000 ), varied significantly<br />

in length between species. This inconsistency was<br />

due to the presence of a single intron in 16 taxa that occurred at<br />

four different insertion sites ( Fig. 4 ). BLAST searches indicated<br />

that the introns in the cp LSU rDNA of desmids are similar to<br />

group IA1, IA3, <strong>and</strong> IB4 introns from other green algal chloroplasts<br />

<strong>and</strong> likely contain group I homing endonucleases<br />

( Turmel et al., 1993 , 1995 ).<br />

As expected, the phylogeny recovered with the concatenated<br />

data set including the cp LSU rDNA (a total of 5509 nt) was<br />

generally congruent with the phylogenies obtained in the previous<br />

analyses ( Fig. 4 ). Compared to a concatenated data set of<br />

the nu SSU rDNA <strong>and</strong> rbcL with a congruent taxon sampling<br />

(40 taxa: Table 2 ), the cp LSU rDNA data set added phylogenetic<br />

signal (<strong>and</strong> thus enhanced bootstrap values) to some internal<br />

branches, in particular the Desmidiaceae (exclusive of the<br />

Penium clades <strong>and</strong> Actinotaenium cruciferum ; 98% BP in ML;<br />

Fig. 4 ), the omniradiate clade (100% BP in ML) <strong>and</strong> its basal<br />

position in the Desmidiaceae (78% BP in ML for the Desmidiaceae<br />

excluding omniradiate <strong>and</strong> the Penium clades + A. cruciferum<br />

), <strong>and</strong> a putative novel clade consisting of CO2, CO3, <strong>and</strong><br />

Xanthidium (71% BP in ML). These results suggest that the cp<br />

LSU rRNA gene could be a useful molecular marker for future<br />

phylogenetic analyses in the Desmidiaceae, especially when the<br />

focus is on resolving the deeper divergences in the family.<br />

Mapping morphological characters that define genera on<br />

the phylogenetic tree — Most of the 10 clades identified in the<br />

Desmidiaceae by our molecular phylogenetic analyses, comprised<br />

representatives of several desmid genera demonstrating<br />

the artificial nature of these taxa <strong>and</strong> the inadequacy of the morphological<br />

features used to define them. As a first step to characterize<br />

the new clades, we mapped morphological features of<br />

the cell <strong>and</strong> chloroplast of each species, on the rbcL topology<br />

(NJ[ML] bootstrap consensus; Fig. 2 ) in all clades/assemblages<br />

that contain Cosmarium species ( Fig. 5 ). The following morphological<br />

characters were computed <strong>and</strong> mapped: (1) apical<br />

view of the cell (circular [omniradiate], elliptical [biradiate] or<br />

triangular), (2) ornamentation of the cell wall (smooth-walled,<br />

ornamented [granular/spiny] or with [a few] stout spines), (3)<br />

width of the isthmus (narrow [ < 1/2 of the cell width] or broad<br />

[ > 1/2 of the cell width]), <strong>and</strong> (4) type of the chloroplast (axial<br />

or parietal). In addition, distinct features of specific genera, e.g.,<br />

a lobed cell outline (L), incision of the apical lobe (I), <strong>and</strong> presence<br />

of filaments (F) or colonies (C) were also recorded ( Fig. 5 ).<br />

Most members of clades that consist predominantly of Cosmarium<br />

species (CO2, <strong>and</strong> omniradiate) display some sort of<br />

cell wall ornamentation, i.e., granules or warts, arranged in<br />

taxon-specific patterns. However, smooth-walled species (e.g.,<br />

C. hammerii , C. cucumis , Actinotaenium spp.) were also members<br />

of the same clades. None of the prominent Cosmarium lineages<br />

was distinct in the degree of radiation. Biradiate cells are<br />

generally more common in the genus <strong>and</strong> in our clades, but omniradiate<br />

species also occur <strong>and</strong> often constitute distinct subclades<br />

(e.g., Actinotaenium spp.; Fig. 5 ). Taxa with the same<br />

chloroplast morphology, width of isthmus (which may influence<br />

the pattern of cytokinesis; see Meindl (1986) , H ö ftberger<br />

<strong>and</strong> Meindl (1993) ) or cell/semicell shape are also not confined<br />

to single clades ( Fig. 5 ). Characters are mostly nonlinked <strong>and</strong><br />

occur together in various combinations. However, the 12 taxa<br />

characterized by circular in vertical view cells (<strong>and</strong> distributed<br />

over five clades/assemblages <strong>and</strong> five genera: Cosmarium , Actinotaenium<br />

, Bambusina , Groenbladia , <strong>and</strong> Spondylosium ) all<br />

had cells with a wide isthmus, whereas the opposite does not<br />

apply ( Fig. 5 ).<br />

Synapomorphies in the SSU rRNA — Mapping morphological<br />

characters traditionally used to distinguish desmid genera<br />

on the phylogenetic tree clearly demonstrated that these characters<br />

cannot be used to circumscribe the clades identified in this<br />

study ( Fig. 5 ). To initiate a molecular circumscription of the<br />

clades, we searched for the presence of molecular signatures,<br />

i.e., nonhomoplasious synapomorphies (NHS; according to<br />

Marin et al., 2003 ) in the SSU rRNA. We restricted the analysis<br />

to clades that contained a large number of Cosmarium species.<br />

Screening of the secondary structure-based alignment revealed<br />

several substitutions in the SSU rRNA that characterize the omniradiate<br />

<strong>and</strong> CO2 clades ( Fig. 6 ).<br />

All species comprising the omniradiate clade were distinct in<br />

two transversions in an internal loop of Helix 25 (H673 after<br />

Gillespie et al. (2006) ; nucleotides 30 (G → A) <strong>and</strong> 36 (A → U);<br />

Fig. 5A ), whereas all other members of the Desmidiaceae (<strong>and</strong><br />

also the Desmidiales) reveal the plesiomorphic state (G, A) at<br />

these positions. The two substitutions in the clade omniradiate<br />

thus represent nonhomoplasious synapomorphies of this clade.<br />

A compensatory base change (A-U → G-C) in base pair 38 of<br />

Helix 49 (bp 47 of H1399; according to Gillespie et al. (2006) )<br />

differentiated all members of clade CO2 from the rest of the<br />

←<br />

Fig. 2. The rbcL phylogeny of desmids (Desmidiaceae, Zygnematophyceae) based on 127 sequences (1339 nt, maximum likelihood [ML] topology,<br />

for model <strong>and</strong> model parameters see Table 1 ; two Penium spp. as an outgroup). Nodes are characterized by bootstrap percentages (BP) ( ≥ 50%) <strong>and</strong> posterior<br />

probabilities (PP) ( ≥ 0.95): neighbor joining (NJ[ML])/MP/Bayesian inference (BI). Branches with 100% BP in all methods <strong>and</strong> 1.00 PP are shown boldface.<br />

For clade names see Results. Clades containing Cosmarium species are underlined. For species represented by more than one accession, strain data<br />

are given. Cosmarium undulatum , the type species of the genus, is in bold.


1086 <strong>American</strong> <strong>Journal</strong> of Botany [Vol. 95


September 2008]<br />

<strong>Gontcharov</strong> <strong>and</strong> <strong>Melkonian</strong> — The genus COSMARIUM Corda ex Ralfs<br />

1087<br />

family ( Fig. 6B ). The A-U pair is conserved across the family<br />

<strong>and</strong> the order Desmidiales making the CBC in clade CO2 an<br />

NHS for this clade.<br />

DISCUSSION<br />

In this study, two ribosomal genes (nu SSU rDNA <strong>and</strong> cp<br />

LSU rDNA), the protein-coding rbcL , <strong>and</strong> the noncoding 1506<br />

group I intron of the SSU rDNA were used to assess phylogenetic<br />

relationships among species of the Desmidiaceae (Zygnematophyceae,<br />

Streptophyta). The phylogenetic structure of the<br />

most species-rich genus in the family, Cosmarium , <strong>and</strong> its putative<br />

relatives, Actinotaenium , Euastrum , Staurodesmus , <strong>and</strong><br />

Xanthidium was the major focus of our analyses. A large data<br />

set <strong>and</strong> extensive taxon sampling revealed 10 distinct clades in<br />

the Desmidiaceae.<br />

Most of the clades established here were well supported<br />

( Figs. 2, 3 ). Comparison of individual topologies <strong>and</strong> their<br />

support values showed that the different markers used<br />

contained a similar phylogenetic signal <strong>and</strong> yielded largely<br />

congruent phylogenetic relationships between desmid taxa<br />

( Table 2 ). In general, the rbcL gene provided better support<br />

for most of the clades but was less informative in resolving<br />

relationships among species within clades (e.g., CO2),<br />

whereas divergence of the nu SSU rDNA <strong>and</strong> the 1506 group<br />

I intron was sometimes too high to recover a clade (e.g., CO3,<br />

STD2; Table 2 ). Differences in evolutionary rates between<br />

markers were particularly pronounced in clade CO2, in which<br />

divergence of rbcL at the species level was particularly low<br />

compared to SSU rDNA (compare Figs. 2 <strong>and</strong> 3 ). The concatenated<br />

analyses of SSU rDNA <strong>and</strong> rbcL resulted in increased<br />

support for clades compared to phylogenetic analyses of individual<br />

genes ( Table 2 ). Relationships among clades, however,<br />

remained largely unresolved even when fast <strong>and</strong> slow evolving<br />

sequences were combined ( Fig. 4 ). In the latter case,<br />

though, taxon sampling was smaller, <strong>and</strong> phylogenetic resolution<br />

may be much better, when taxon sampling is increased<br />

to the same level as in the concatenated SSU rDNA <strong>and</strong> rbcL<br />

analyses.<br />

Phylogeny of Cosmarium — Not surprisingly, the results<br />

presented here confirmed the long-anticipated artificial nature<br />

of the genus (e.g., West <strong>and</strong> West, 1905 , 1908 ; Fritsch, 1953 ,<br />

Krieger <strong>and</strong> Gerloff, 1962 ; Prescott et al., 1981 ). Early molecular<br />

phylogenetic studies were indicative in this respect, but the<br />

limited taxon sampling, presence of long-branched taxa, <strong>and</strong><br />

the relatively low phylogenetic signal of the markers made the<br />

conclusions preliminary ( Lee, 2001 ; Nam <strong>and</strong> Lee, 2001 ;<br />

<strong>Gontcharov</strong> et al., 2003 ; Moon <strong>and</strong> Lee, 2003 ; <strong>Gontcharov</strong> <strong>and</strong><br />

<strong>Melkonian</strong>, 2005 ; Hall et al., 2008 ). In the current study, 45 (68<br />

in the rbcL analyses) species/strains of Cosmarium were distributed<br />

over six clades, one nonsupported assemblage (multicellular),<br />

<strong>and</strong> a long-branched basal lineage ( Fig. 3 ). Four of the<br />

six clades also included species of other desmid genera. In the<br />

rbcL analyses with 127 taxa, additional species of Cosmarium<br />

associated with other clades ( Euastrum , Micrasterias ) or formed<br />

a novel clade (CO4).<br />

One reason for the rampant polyphyly of the genus Cosmarium<br />

lies in its vague diagnosis that lacks any distinct synapomorphic<br />

or even typological characters. When describing<br />

Cosmarium , Ralfs (1848) stressed the lack of some characters<br />

typical for other genera (e.g., incision at the apex, lateral lobes,<br />

spines or processes), but he did not present a single character or<br />

a combination of features that is unique to the genus. We have<br />

shown that the morphology of the genus Cosmarium as defined<br />

by Ralfs is one of the most common in the family <strong>and</strong> has likely<br />

arisen independently in several lineages ( Fig. 5 ). Its evolutionary<br />

status (ancestral vs. derived) could be also different. Noteworthy<br />

in this respect is the close relationship between<br />

smooth-walled Cosmarium <strong>and</strong> spine-bearing Staurodesmus<br />

taxa in their common clades. It is very likely that in the STD2<br />

clade, a triradiate cell with a stout spine at each angle, typical<br />

for the genus Staurodesmus , was derived from a smooth-walled<br />

biradiate “ Cosmarium ” taxon ( Figs. 2 – 4 ), whereas in the AR-<br />

THR clade spines may have been lost in some members, in<br />

which case the “ Cosmarium ” -type morphology may be the derived<br />

state ( Fig. 2 ).<br />

The presence of several morphotypes in most Cosmarium -<br />

containing clades demonstrates homoplasy of morphological<br />

features thought to be important for desmid taxonomy. Traditionally,<br />

semicell shape, degree of radiation (biradiate vs. omniradiate),<br />

cell wall features (smooth vs. ornamented), <strong>and</strong><br />

chloroplast morphology have been used to distinguish intrageneric<br />

taxa in Cosmarium ( de Bary, 1858 ; Lundell, 1871; Hansgirg,<br />

1888 ; De Toni, 1889 ; Raciborski, 1889 ; Turner, 1892 ;<br />

West <strong>and</strong> West, 1905 ; Hirano, 1959a , b ; Bourrelly, 1966 ).<br />

However, our study revealed that each of these morphological<br />

features has a mosaic distribution in the tree <strong>and</strong> does not explicitly<br />

characterize a specific clade ( Fig. 5 ). Our phylogenies<br />

revealed a patchy distribution of the omniradiate morphotype<br />

over our trees in several unrelated clades ( Figs. 1 – 4 ). Moreover,<br />

we found that some species that differ in their degree of<br />

radiation have nearly identical sequences (e.g., Cosmarium<br />

portianum [biradiate]/ C. bisphaericum [omniradiate] in the<br />

omniradiate clade; C. lundelli <strong>and</strong> C. pachydermum<br />

[biradiate]/ Actinotaenium turgidum [omniradiate] in CO2 ( Fig.<br />

2 ), <strong>and</strong> C. connatum [biradiate]/ C. pseudoconnatum [pseudoomniradiate]<br />

in CO3, Fig. 2 ). The latter case is a good example<br />

for the likely derived nature of the omniradiate morphotype at<br />

least in some Cosmarium strains. In conclusion, the degree of<br />

radiation is a homoplasious feature in the family Desmidiaceae<br />

<strong>and</strong> its taxonomic significance has been largely overestimated.<br />

Morphological heterogeneity of all clades containing Cosmarium<br />

taxa ( Fig. 5 ) <strong>and</strong> lack of information on other phenotypical<br />

features currently does not allow conclusions to be<br />

drawn on the morphological characters that may unite their<br />

members or, more importantly, that differentiate the clades.<br />

The characters traditionally used to define taxa above the species<br />

level are not suitable for this purpose, in particular features<br />

of cell wall ornamentation <strong>and</strong> chloroplast morphology ( Fig. 5 ).<br />

Many Cosmarium species have distinct patterns of granules,<br />

←<br />

Fig. 3. Phylogeny of Desmidiaceae (Zygnematophyceae) based on combined analyses of nu SSU rDNA, 1506 group I intron <strong>and</strong> rbcL sequences (97<br />

taxa, 3260 nt, maximum likelihood [ML] topology, for model <strong>and</strong> model parameters see Table 1 ). The tree was rooted with two Penium spp. Nodes are<br />

characterized by bootstrap percentages (BP ≥ 50%) <strong>and</strong> Bayesian posterior probabilities (PP ≥ 0.95): neighbor joining (NJ[ML])/MP/Bayesian inference<br />

(BI). Branches with 100% BP in all methods <strong>and</strong> 1.00 PP are boldfaced. See Fig. 2 for further details.


1088 <strong>American</strong> <strong>Journal</strong> of Botany [Vol. 95


September 2008]<br />

<strong>Gontcharov</strong> <strong>and</strong> <strong>Melkonian</strong> — The genus COSMARIUM Corda ex Ralfs<br />

1089<br />

spines, or warts on the cell surface, <strong>and</strong> it is not clear whether<br />

these types <strong>and</strong> patterns are homologous <strong>and</strong> what features<br />

would represent character states here. Also very little is known<br />

about such a distinct characteristic of the desmid cell wall as the<br />

pores, their types, functions, significance of different distribution<br />

patterns. Preliminary studies already revealed quite a diversity<br />

of pore patterns ( Cout é <strong>and</strong> Tell, 1981 ; Neuhaus <strong>and</strong><br />

Kiermayer, 1981 ; Coesel, 1984 ; <strong>Gontcharov</strong> et al., 2002 ), however,<br />

their possible suitability for desmid taxonomy above the<br />

species level is virtually unknown.<br />

Our knowledge about the diversity of chloroplast structures<br />

in desmids is also very limited <strong>and</strong> has not been extended significantly<br />

beyond the careful early studies of L ü tkem ü ller<br />

(1893 , 1895 ) <strong>and</strong> Carter (1919a , b , 1920a , b ). Teiling (1952)<br />

typified chloroplast shapes of desmids <strong>and</strong> presented a scenario<br />

of their hypothetical evolution correlating it with cell morphology,<br />

mostly radiation, but chloroplast morphology is still poorly<br />

known in many Cosmarium species.<br />

Type species of Cosmarium — Affiliation of a type species is<br />

crucial for the identity of a genus. In Cosmarium this issue is<br />

complicated by the uncertainty with the designation of the type<br />

species. The Index Nominum Genericorum (ING; http://botany.<br />

si.edu/ing/) recognizes C. margaritiferum as the type although<br />

in the earlier version of ING C. undulatum had been suggested<br />

( Silva, 1952 ). The designation of C. margaritiferum as the type<br />

is credited to N ä geli (1849 , p. 114). However, N ä geli considered<br />

Cosmarium as the subgenus of Euastrum <strong>and</strong> referred to E.<br />

margaritiferum Ehr. Ehrenberg (1835) regarded his alga identical<br />

with Ursinella margaritifera Turpin (1820) , so the correct<br />

citation should be Euastrum margaritiferum (Turpin) Ehr. Because<br />

the publications by Turpin <strong>and</strong> Ehrenberg were published<br />

before the starting point of desmid taxonomy ( Ralfs, 1848 ),<br />

N ä geli ’ s designation of the type species is invalid (ICBN, Art.<br />

7.7). Obviously, N ä geli was not familiar with Ralfs ’ s publication<br />

at that time, <strong>and</strong> his typification had no relation to the genus<br />

Cosmarium Corda ex Ralfs.<br />

Moreover, the alga described by Turpin is not identifiable<br />

<strong>and</strong> obviously not identical to two or likely three species illustrated<br />

by Ralfs under the name C. margaritiferum (1848, tables<br />

XVI, XXXIII; figs. 2a – d , 3 a, b). In contrast, the choice of C.<br />

undulatum as the type of Cosmarium was prompted by the fact<br />

that it is the most clearly known of the species included in the<br />

genus by Corda ( Silva, 1952 ). We agree with Silva that N ä geli ’ s<br />

typification should be rejected because it is based on an invalidly<br />

published name, <strong>and</strong> following Silva (1952), we regard C.<br />

undulatum as the type species of the genus Cosmarium .<br />

Our analyses placed C. undulatum in the CO2 clade ( Figs.<br />

2 – 4 ) linking the genus name to this clade. The CO2 clade is a<br />

member of a large, weakly supported assemblage that unites<br />

two more clades, CO3 <strong>and</strong> the genus Xanthidium ( Fig. 4 ). The<br />

species richness of the CO2 <strong>and</strong> CO3 clades <strong>and</strong> the diversity<br />

of morphotypes in the clades suggest that these lineages<br />

will accommodate the majority of the existing Cosmarium<br />

species.<br />

Cosmarium species from other clades that have no affinity to<br />

CO2/CO3 should in the future either be classified together with<br />

representatives of the genera in their clades or recognized as<br />

new genera.<br />

The omniradiate clade is phylogenetically most distant from<br />

the rest of the genus Cosmarium <strong>and</strong> is likely one of the basal<br />

branches in the Desmidiaceae ( <strong>Gontcharov</strong> et al., 2003 , 2004 ;<br />

this study). Like other clades containing Cosmarium spp., this<br />

clade includes a number of morphotypes distinct in cell/semicell<br />

shape, chloroplast morphology, <strong>and</strong> cell wall ornamentation<br />

( Fig. 5 ). Membership of two omniradiate Actinotaenium<br />

(formerly Penium ) species with elongated, weakly constricted<br />

cells <strong>and</strong> Spondylosium (formerly Cosmarium ) p<strong>and</strong>uriforme<br />

forming short filaments further complicates the circumscription<br />

of the clade. However, we discovered several nonhomoplasious<br />

molecular synapomorphies (NHS; for definition, see Marin et<br />

al., 2003 ) in the SSU rDNA that discriminate members of the<br />

omniradiate <strong>and</strong> CO2 clades from all other taxa in the family<br />

Desmidiaceae <strong>and</strong> that might be useful in future taxonomic revisions<br />

( Fig. 6 ).<br />

The taxonomic affinity of Cosmarium species belonging to<br />

the clades ARTHR <strong>and</strong> STD2, <strong>and</strong> the nonsupported assemblage<br />

multicellular, is not yet clear. The distinctness of the<br />

ARTHR <strong>and</strong> STD2 clades from STD1 that contains the type<br />

species of the genus Staurodesmus, Std. triangularis ( <strong>Gontcharov</strong><br />

<strong>and</strong> <strong>Melkonian</strong>, 2005 ), received further support with the extended<br />

taxon sampling <strong>and</strong> the larger data sets in this study. The<br />

current lack of synapomorphic phenotypic characters for these<br />

clades calls for further phenotypic study before taxonomic conclusions<br />

should be made.<br />

Within the assemblage of multicellular desmids, the Cosmarium<br />

species either showed affinity to the colonial Heimansia<br />

( C. sinostegos ), the filamentous Spondylosium pulchellum<br />

( C. regnellii ) or formed an independent lineage ( C. diffi cile , C.<br />

dilatatum ; Figs. 2, 3 ). Most taxa comprising this cluster are<br />

characterized by fast evolutionary rates in all three genes <strong>and</strong><br />

were long-branched in the individual as well as the concatenated<br />

analyses ( Figs. 2 – 4 ). One may hypothesize that the morphological<br />

diversification of Desmidiaceae from a unicellular<br />

to a multicellular life habit, a consequence of a peculiar cell<br />

division mode ( Gerrath, 1970 , 1973 ; Krupp <strong>and</strong> Lang, 1985a ,<br />

b ), may have been accompanied by accelerated rates of evolution<br />

in several genes. These long branches likely affected topologies<br />

<strong>and</strong> may have been responsible for lack of support for<br />

this assemblage in almost all data sets ( Table 2 ).<br />

Identification of monophyletic entities consisting of species<br />

of the traditional genus Cosmarium should stimulate the search<br />

for synapomorphic phenotypic characters distinguishing these<br />

lineages.<br />

Euastrum — The current study substantiated the polyphyletic<br />

nature of the traditional genus Euastrum ( Hall et al., 2008 ) assigning<br />

its species to several clades (see Results). Most Euastrum<br />

taxa studied formed an assemblage that received low or no<br />

support with the different data sets ( Figs. 2 – 4 ; Table 2 ). The<br />

←<br />

Fig. 4. Phylogenetic tree of 40 species representing major lineages (see Results) of desmids based on comparisons of concatenated nu SSU rDNA<br />

(including 1506 group I intron), cp rbcL <strong>and</strong> LSU rDNA sequences (5509 aligned nt). The tree was constructed with maximum likelihood (ML) (GTR+I+G,<br />

for model parameters, see Table 1 ). BP ≥ 50% for ML/neighbor joining (NJ)(GTR+I+G)/MP <strong>and</strong> PP ≥ 0.95 (Bayesian inference) values are given for the<br />

nodes. Branches with bootstrap percentages (BP) 100% in all methods <strong>and</strong> 1.00 posterior probabilities (PP) are boldfaced. Presence of group I introns in<br />

the cp LSU rDNA is indicated by asterisk <strong>and</strong> their positions relative to Escherichia coli 23S rDNA are given.


1090 <strong>American</strong> <strong>Journal</strong> of Botany [Vol. 95


September 2008]<br />

<strong>Gontcharov</strong> <strong>and</strong> <strong>Melkonian</strong> — The genus COSMARIUM Corda ex Ralfs<br />

1091<br />

Fig. 6. Nonhomoplasious synapomorphies in the SSU rRNA molecule characterizing the “ Cosmarium ” clades (A) omniradiate <strong>and</strong> (B) CO2 of the<br />

Desmidiaceae (see Results). Alignments contained only representative taxa for the clades. Taxa <strong>and</strong> nucleotides characterized by the synapomorphy are<br />

boldfaced. SSU rRNA secondary structure after Wuyts et al. (2000) ; diagrams are based upon the last taxon in the alignment. The nomenclature of nucleotides<br />

(nt, single str<strong>and</strong>ed spacers <strong>and</strong> loops) <strong>and</strong> base pairs (bp, stem regions of Helices) depends on the polarity of the RNA: increasing numbers indicate<br />

the 5 ′ → 3 ′ direction.<br />

relatively high divergence of Euastrum sequences may have<br />

been responsible for the uncertain status of this assemblage, so<br />

that it requires further study with a more comprehensive taxon<br />

sampling. It appears that the Euastrum assemblage is split into<br />

two morphologically distinct lineages. One lineage comprises<br />

large-celled taxa ( > 50 – 60 µ m long) with smooth cell walls <strong>and</strong><br />

a more or less regular porous cell surface often provided with<br />

several large facial protrusions <strong>and</strong> excavations, e.g., E. oblongum<br />

<strong>and</strong> E. affi ne . In these species, the polar lobe has a narrow<br />

vertical incision with parallel margins. A similar<br />

morphology is typical for a number of other Euastrum taxa, <strong>and</strong><br />

their affiliation with this lineage is anticipated ( <strong>Gontcharov</strong><br />

et al., 2003 ).<br />

The second lineage contains relatively small-celled (typically<br />

< 50 µ m long) <strong>and</strong> variously ornamented taxa. Their apical<br />

incision is less pronounced <strong>and</strong> often appears as a V-shaped<br />

invagination.<br />

Euastrum taxa placed outside the Euastrum assemblage are<br />

large-celled, with granules or spines arranged in specific patterns.<br />

Their semicells are divided into one or two basal lobes<br />

<strong>and</strong> a polar lobe, as is typical for the genus, but the polar lobe is<br />

concave to nearly straight <strong>and</strong> lacks an apical incision. Species<br />

with these characteristics were distributed between two putatively<br />

related clades consisting mostly of Cosmarium taxa, i.e.,<br />

CO2 <strong>and</strong> CO4. In most cases, their phylogenetic position could<br />

be accessed with rbcL only; therefore, we consider their position<br />

as tentative. However, high support values for the clades<br />

that include Euastrum substellatum , E. verrucosum , E. germanicum<br />

, E. spinulosum , E. moebii , <strong>and</strong> E. prowsei ( Fig. 2 )<br />

suggest that these species are distinct from other Euastrum<br />

taxa.<br />

Actinotaenium — This study confirmed the polyphyletic status<br />

of the genus Actinotaenium as suggested previously<br />

( <strong>Gontcharov</strong> et al., 2003 ). In our analyses, six Actinotaenium<br />

species were distributed among three only distantly related lineages<br />

including the genus Penium (e.g., A. cruciferum ; Figs.<br />

2 – 4 ). Their position in the tree highlights the homoplasious nature<br />

of the characters used to define the genus (elongated, omniradiate<br />

cells with two stellate [ A. cucurbita , A . cf. wollei ] or<br />

numerous parietal [ A. turgidum ] chloroplasts <strong>and</strong> smooth cell<br />

walls ( Teiling, 1954 ).<br />

The status of phenotypic characters in A. phymatosporum<br />

<strong>and</strong> A. silvae-nigrae , members of the omniradiate clade, <strong>and</strong><br />

particularly A. cruciferum , having a weak affinity to one of the<br />

Penium clades ( Figs. 2 – 4 ), is unclear. The morphology of the<br />

former species (elongate-elliptical, omniradiate cells with a<br />

very weak median constriction <strong>and</strong> axial chloroplasts) is similar<br />

←<br />

Fig. 5. Bootstrap consensus topology of 10 major clades of desmids (Desmidiaceae) based on neighbor joining (NJ[ML]) analyses of rbcL sequence<br />

data ( Fig. 2 ) with mapped features of cell <strong>and</strong> chloroplast morphology traditionally used to define genera.


1092 <strong>American</strong> <strong>Journal</strong> of Botany [Vol. 95<br />

to that of the genus Penium in which they were placed until<br />

relatively recently ( Kouwets <strong>and</strong> Coesel, 1984 ), <strong>and</strong> these characteristics<br />

may be pesiomorphic.<br />

The affiliation of the type species of the genus, A. curtum ,<br />

remains currently unknown ( <strong>Gontcharov</strong> et al., 2003 ), <strong>and</strong> taxonomic<br />

revision of Actinotaenium must await clarification of its<br />

phylogenetic position.<br />

Conclusions — Phylogenetic analyses based on several genes<br />

from two genomes <strong>and</strong> extensive taxon sampling confirmed the<br />

anticipated artificial nature of the desmid genera Cosmarium,<br />

Euastrum, Staurodesmus , <strong>and</strong> Actinotaenium . Our results highlight<br />

the inadequacy of morphological features such as cell <strong>and</strong><br />

semicell shape, degree of radiation, chloroplast morphology,<br />

<strong>and</strong> cell wall ornamentation, traditionally used to discriminate<br />

these genera <strong>and</strong> revealed numerous cases of homoplasy in distantly<br />

related lineages. Many clades established during this<br />

study deserve to be recognized as new genera but cannot be<br />

formally described in the framework of the current morphology-based<br />

taxonomic concept of desmids because either their<br />

phenotypical features are insufficiently known or they do not<br />

differ from those of other clades <strong>and</strong> genera. Molecular signatures<br />

may be used to circumscribe the new taxa in the future,<br />

but their utility is not straightforward in a group that accounts<br />

for more than 2000 species. Although many desmid strains are<br />

available in culture collections, the strains still represent only a<br />

minute fraction of the taxa described, the unknown diversity of<br />

desmids that may exist in the environment notwithst<strong>and</strong>ing.<br />

Many more isolates of desmids are needed as well as refined<br />

analyses of morphological traits <strong>and</strong> additional molecular markers.<br />

At the current state of knowledge, desmid systematics has<br />

arrived at the beginning.<br />

LITERATURE CITED<br />

Besendahl , A. , <strong>and</strong> D. Bhattacharya . 1999 . Evolutionary analyses<br />

of small-subunit rDNA coding regions <strong>and</strong> the 1506 group I introns<br />

of Zygnematales (Charophyceae, Streptophyta). <strong>Journal</strong> of Phycology<br />

35 : 560 – 569 .<br />

Bhattacharya , D. , S. Damberger , B. Surek , <strong>and</strong> M. <strong>Melkonian</strong> .<br />

1996 . Primary <strong>and</strong> secondary structure analysis of the rDNA group I<br />

introns of the Zygnematales. Current Genetics 29 : 282 – 286 .<br />

Bhattacharya , D. , B. Surek , M. Rüsing , S. Damberger , <strong>and</strong> M.<br />

<strong>Melkonian</strong> . 1994 . Group I introns are inherited through common ancestry<br />

in the nuclear-encoded rRNA of Zygnematales (Chlorophyta).<br />

Proceedings of the National Academy of Sciences, USA 91 : 9916 –9920 .<br />

Bourrelly , P. 1966 . Les algues d ’ eau douce. Tome I, Les algues vertes.<br />

N. Boubee <strong>and</strong> Cie, Paris, France.<br />

Brook , A. J. 1981 . The biology of desmids. Botanical Monographs 16.<br />

Blackwell, Oxford, UK.<br />

Brook , A. J. , <strong>and</strong> L. R. Johnson . 2002 . Order Zygnemales. In D. M.<br />

John, B. A. Whitton, <strong>and</strong> A. J. Brook [eds.], The freshwater algal lora<br />

of the British Isles. An identification guide to freshwater <strong>and</strong> terrestrial<br />

algae, 479 – 593. Cambridge University Press, Cambridge, UK.<br />

Carter , N. 1919a . Studies on the chloroplasts of desmids. I. Annals of<br />

Botany 33 : 215 – 254 .<br />

Carter , N. 1919b . Studies on the chloroplasts of desmids. II. Annals of<br />

Botany 33 : 295 – 304 .<br />

Carter , N. 1920a . Studies on the chloroplasts of desmids. III. The chloroplasts<br />

of Cosmarium. Annals of Botany 34 : 265 – 285 .<br />

Carter , N. 1920b . Studies on the chloroplasts of desmids. IV. Annals of<br />

Botany 34 : 303 – 319 .<br />

Chapman , R. L. , <strong>and</strong> M. A. Buchheim . 1992 . Green algae <strong>and</strong> the evolution<br />

of l<strong>and</strong> plants: Inferences from nuclear-encoded rRNA gene<br />

sequences. Bio Systems 28 : 127 – 137 .<br />

Chapman , R. L. , M. A. Buchheim , C. F. Delwiche, T. Friedl, V. A. R.<br />

Huss, K. G. Karol, L. A. Lewis, et al . 1998 . Molecular systematics<br />

of the green algae . I n D. E. Soltis <strong>and</strong> J. J. Doyle [ eds .], Molecular systematics<br />

of plants , 508 – 540. Kluwer , Boston , Massachusetts , USA.<br />

Coesel , P. F. M. 1984 . Taxonomic implications of SEM revealed cell<br />

wall sculpturing in some small-sized desmid species (Chlorophyta,<br />

Conjugatophyceae). Acta Botanica Neerl<strong>and</strong>ica 33 : 385 – 398 .<br />

Coesel , P. F. M. , <strong>and</strong> K. J. Meesters . 2007 . Desmids of the lowl<strong>and</strong>s.<br />

Mesotaeniaceae <strong>and</strong> Desmidiaceae of the European lowl<strong>and</strong>s. KNNV<br />

Publishing, Zeist, Netherl<strong>and</strong>s.<br />

Cout é , A. , <strong>and</strong> G. Tell . 1981 . Ultrastructure de la paroi cellulaire des<br />

Desmidiacees au microscope electronique a balayage. Nova Hedwigia<br />

68 ( Beiheft ): 1 – 228 .<br />

Croasdale , H. T. , <strong>and</strong> E. A. Flint . 1988 . Flora of New Zeal<strong>and</strong>.<br />

Freshwater algae, Chlorophyta, Desmids II. Caxton Press,<br />

Christchurch, New Zeal<strong>and</strong>.<br />

Darlu , P. , <strong>and</strong> G. Lecointre . 2002 . When does the incongruence length<br />

difference test fail? Molecular Biology <strong>and</strong> Evolution 19 : 432 – 437 .<br />

De Bary , A. 1858 . Untersuchungen ü ber die Familie der Conjugaten<br />

(Zygnemeen und Desmidieen), F ö rstner, Leipzig, Germany.<br />

Denboh , T. , D. Hendrayanti , <strong>and</strong> T. Ichimura . 2001 . Monophyly<br />

of the genus Closterium <strong>and</strong> the order Desmidiales (Charophyceae,<br />

Chlorophyta) inferred from nuclear small subunit rDNA data. <strong>Journal</strong><br />

of Phycology 37 : 1063 – 1072 .<br />

De Rijk , P. , J. Wuyts , Y. Van De Peer , T. Winkelmans , <strong>and</strong> R. De<br />

Wachter . 2000 . The European large subunit ribosomal RNA database.<br />

Nucleic Acids Research 28 : 177 – 178 .<br />

De Toni , G. B. 1889 . Sylloge algarum omnium hucusque cognitarum, vol. 1.<br />

Chlorophyceae. Privately published, Padova, Italy.<br />

Dolphin , K. , R. Belshaw , C. D. L. Orme , <strong>and</strong> D. L. J. Quicke . 2000 . Noise<br />

<strong>and</strong> incongruence: Interpreting results of the incongruence length difference<br />

test. Molecular Phylogenetics <strong>and</strong> Evolution 17 : 401 – 406 .<br />

Dowton , M. , <strong>and</strong> A. D. Austin . 2002 . Increased congruence does not<br />

necessarily indicate increased phylogenetic accuracy — The behavior<br />

of the incongruence length difference test in mixed-model analyses.<br />

Systematic Biology 51 : 19 – 31 .<br />

Ehrenberg , G. C. 1835 . Dritter Beitrag zur Erkenntniss grosser<br />

Organisation in der Richtung des kleinster Raumes. Abh<strong>and</strong>lungen<br />

K ö niglich Preu ß ische Akademie der Wissenschaften zu Berlin 1833 :<br />

149 – 336 .<br />

Farris , J. S. , M. K ä llersj ö , A. G. Kluge , <strong>and</strong> C. Bult . 1994 . Testing<br />

significance of incongruence. Cladistics 10 : 315 – 319 .<br />

Felsenstein , J. 1985 . Confidence limits on phylogenies: An approach using<br />

the bootstrap. Evolution 39 : 783 – 791 .<br />

Fritsch , F. E. 1953 . Comparative studies in a polyphyletic group: The<br />

Desmidiaceae. Proceedings of the Linnean Society of London 164 :<br />

258 – 280 .<br />

Galtier , N. , M. Gouy , <strong>and</strong> C. Gautier . 1996 . SeaView <strong>and</strong> Phylowin,<br />

two graphic tools for sequence alignment <strong>and</strong> molecular phylogeny.<br />

Computer Applications in the Biosciences 12 : 543 – 548 .<br />

Gay , F. 1884 . Essai d ’ une Monographie locale des Conjug é es. Montpellier<br />

Revue des Sciences Naturelle s, III 3: 187 – 228; 285 – 335.<br />

Gerrath , J. F. 1970 . Ultrastucture of the connecting str<strong>and</strong>s in<br />

Cosmocladium saxonicum de Bary (Desmidiaceae) <strong>and</strong> a discussion<br />

of the taxonomy of the genus. Phycologia 9 : 209 – 215 .<br />

Gerrath , J. F. 1973 . Notes on desmid ultrastructure. Nova Hedwigia 42<br />

( Beiheft ): 103 – 113 .<br />

Gerrath , J. F. 1993 . The biology of desmids: A decade of progress. In<br />

F. E. Round <strong>and</strong> D. J. Chapman [eds.], Progress in phycological research,<br />

vol. 9, 79 – 192. Biopress, Bristol, UK.<br />

Gerrath , J. F. 2003 . Conjugating green algae <strong>and</strong> desmids. In J. D. Wehr<br />

<strong>and</strong> R. G. Sheath [eds.], Freshwater algae of North America, ecology<br />

<strong>and</strong> classification, 353 – 381. Academic Press, San Diego, California,<br />

USA.<br />

Gillespie , J. J. , J. S. Johnston , J. J. Cannone , <strong>and</strong> R. R. Gutell .<br />

2006 . Characteristics of the nuclear (18S, 5.8S, 28S <strong>and</strong> 5S) <strong>and</strong><br />

mitochondrial (12S <strong>and</strong> 16S) rRNA genes of Apis mellifera (Insecta:<br />

Hymenoptera): Structure, organization, <strong>and</strong> retrotransposable elements.<br />

Insect Molecular Biology 15 : 657 – 686 .


September 2008]<br />

<strong>Gontcharov</strong> <strong>and</strong> <strong>Melkonian</strong> — The genus COSMARIUM Corda ex Ralfs<br />

1093<br />

<strong>Gontcharov</strong> , A. A. , D. L. Findlay , H. J. Kling , <strong>and</strong> M. M. Watanabe .<br />

2002 . Desmids (Desmidiales, Streptophyta) from the Experimental<br />

Lakes Area, Ontario, Canada. The genera Actinotaenium <strong>and</strong><br />

Cosmarium. Algological Studies 105 : 51 – 78 .<br />

<strong>Gontcharov</strong> , A. A. , B. Marin , <strong>and</strong> M. <strong>Melkonian</strong> . 2003 . Molecular<br />

phylogeny of conjugating green algae (Zygnemophyceae,<br />

Streptophyta) inferred from SSU rDNA sequence comparisons.<br />

<strong>Journal</strong> of Molecular Evolution 56 : 89 – 104 .<br />

<strong>Gontcharov</strong> , A. A. , B. Marin , <strong>and</strong> M. <strong>Melkonian</strong> . 2004 . Are combined<br />

analyses better than single gene phylogenies? A case study using<br />

SSU rDNA <strong>and</strong> rbc L sequence comparisons in the Zygnematophyceae<br />

(Streptophyta). Molecular Biology <strong>and</strong> Evolution 21 : 612 – 624 .<br />

<strong>Gontcharov</strong> , A. A. , <strong>and</strong> M. <strong>Melkonian</strong> . 2005 . Molecular phylogeny of<br />

Staurastrum Meyen ex Ralfs <strong>and</strong> related genera (Zygnematophyceae,<br />

Streptophyta) based on coding <strong>and</strong> noncoding rDNA sequence comparisons.<br />

<strong>Journal</strong> of Phycology 41 : 887 – 899 .<br />

Hall , J. D. , K. G. Karol , R. M. McCourt , <strong>and</strong> C. F. Delwiche .<br />

2008 . Phylogeny of the conjugating green algae based on chloroplast<br />

<strong>and</strong> mitochondrial nucleotide sequence data. <strong>Journal</strong> of Phycology<br />

44 : 467 – 477 .<br />

Hansgirg , A. 1888 . Prodromus der Algenflora von B ö hmen. Archiv f ü r<br />

die naturwissenschaftliche L<strong>and</strong>esdurchforschung von B ö hmen 6:<br />

3 – 9, 97-288.<br />

Hillis , D. M. , <strong>and</strong> J. P. Huelsenbeck . 1992 . Signal, noise <strong>and</strong> reliability in<br />

molecular phylogenetic analyses. <strong>Journal</strong> of Heredity 83 : 189 – 195 .<br />

Hirano , M. 1959a . Flora desmidiarum japonicarum, no. 5. Contributions<br />

from the Biological Laboratory , Kyoto University 7 : 226 – 301 .<br />

Hirano , M. 1959b . Flora desmidiarum japonicarum, no. 6. Contributions<br />

from the Biological Laboratory , Kyoto University 9 : 302 – 386 .<br />

Hoef-Emden , K. , B. Marin , <strong>and</strong> M. <strong>Melkonian</strong> . 2002 . Nuclear <strong>and</strong> nucleomorph<br />

SSU rDNA phylogeny in the Cryptophyta <strong>and</strong> the evolution<br />

of cryptophyte diversity. <strong>Journal</strong> of Molecular Evolution 55 :<br />

161 – 179 .<br />

H ö ftberger , M. , <strong>and</strong> U. Meindl . 1993 . Cell differentiation, ultrastructure<br />

<strong>and</strong> nuclear migration in the desmid Xanthidium armatum. Nova<br />

Hedwigia 56 : 75 – 88 .<br />

Huelsenbeck , J. P. , <strong>and</strong> F. Ronquist . 2001 . MrBayes: Bayesian inference<br />

of phylogenetic trees. Bioinformatics (Oxford, Engl<strong>and</strong>) 17 :<br />

754 – 755 .<br />

Karol , K. G. , R. M. McCourt , M. T. Cimino , <strong>and</strong> C. F. Delwiche . 2001 . The<br />

closest living relatives of l<strong>and</strong> plants. Science 294 : 2351 –2353 .<br />

Kirchner , O. 1878 . Kryptogamenflora von Schlesien, II. B<strong>and</strong>, I. Heft.<br />

Algen. Breslau, Germany.<br />

Kouwets , F. A. C. , <strong>and</strong> P. F. M. Coesel . 1984 . Taxonomic revision of<br />

the conjugatophycean family Peniaceae on the basis of cell wall ultrastructure.<br />

<strong>Journal</strong> of Phycology 20 : 555 – 562 .<br />

Krieger , W. , <strong>and</strong> J. Gerloff . 1962 . Die Gattung Cosmarium . Liefer 1. J.<br />

Cramer, Weinheim, Germany.<br />

Krieger , W. , <strong>and</strong> J. Gerloff . 1965 . Die Gattung Cosmarium . Liefer 2.<br />

J. Cramer, Weinnheim, Germany.<br />

Krieger , W. , <strong>and</strong> J. Gerloff . 1969 . Die Gattung Cosmarium . Liefer<br />

3+4. J. Cramer, Weinnheim, Germany.<br />

Krienitz , L. , E. H. Hegewald , D. Hepperle , V. A. R. Huss , T. Rohrs ,<br />

<strong>and</strong> M. Wolf . 2004 . Phylogenetic relationship of Chlorella<br />

<strong>and</strong> Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae).<br />

Phycologia 43 : 529 – 542 .<br />

Krupp , J. M. , <strong>and</strong> N. J. Lang . 1985a . Cell division <strong>and</strong> filament formation<br />

in the desmid Bambusina brebissonii (Chlorophyta). <strong>Journal</strong> of<br />

Phycology 21 : 16 – 25 .<br />

Krupp , J. M. , <strong>and</strong> N. J. Lang . 1985b . Cell division <strong>and</strong> the role of<br />

the primary wall in the filamentous desmid Onychonema laeve<br />

(Chlorophyta). <strong>Journal</strong> of Phycology 21 : 316 – 322 .<br />

Kusel-Fetzmann , E. , <strong>and</strong> M. Schagerl . 1992 . Verzeichnis der<br />

Sammlung von Algen-Kulturen an der Abteilung f ü r Hydrobotanik<br />

am Institut f ü r Pflanzenphysiologie der Universit ä t Wien. Phyton 32 :<br />

209 – 234 .<br />

Lee , O.-M. 2001 . The nucleotide sequences variability in ITS <strong>and</strong> 5.8S regions<br />

of the nuclear rDNA among Cosmarium species. Algae (Korean<br />

Phycological Society) 16 : 129 – 136 .<br />

Lenzenweger , R. 1999 . Desmidiaceenflora von Ö sterreich, Teil 3. J.<br />

Cramer, Berlin, Stuttgart, Germany.<br />

Lewis , L. A. , <strong>and</strong> R. M. McCourt . 2004 . Green algae <strong>and</strong> the origin of<br />

l<strong>and</strong> plants. <strong>American</strong> <strong>Journal</strong> of Botany 91 : 1535 – 1556 .<br />

Lundell , P. M. 1871 . De Desmidiaceis quae in Suecia inventae sunt,<br />

observationes criticae. Nova Acta Regiae Societatis Scientiarum<br />

Upsaliensis . Ser. 3 : 1 – 100 .<br />

Luo , W. , S. Pflugmacher , T. Pr ö schold , N. Walz , <strong>and</strong> L. Krienitz .<br />

2006 . Genotype versus phenotype variability in Chlorella <strong>and</strong><br />

Micractinium (Chlorophyta, Trebouxiophyceae). Protist 157 : 315 –333 .<br />

L ütkemüller , J. 1893 . Beobachtungen über die Chlorophyllkörper einiger<br />

Desmidiaceen. Ö sterreichische botanische Zeitschrift 43: 5 –11, 41 –44.<br />

L ü tkem ü ller , J. 1895 . Ü ber die Gattung Spirotaenia Breb.<br />

Österreichische botanische Zeitschrift 45: 1 –6, 51 –57, 88 –94.<br />

Marin , B. , M. Klingberg , <strong>and</strong> M. <strong>Melkonian</strong> . 1998 . Phylogenetic relationships<br />

among the Cryptophyta: Analysis of nuclear-encoded SSU<br />

rRNA sequences support the monophyly of extant plastid-containing<br />

lineages. Protist 149 : 265 – 276 .<br />

Marin , B. , E. C. M. Nowack , <strong>and</strong> M. <strong>Melkonian</strong> . 2005 . A plastid in the<br />

making: Evidence for a second primary endosymbiosis. Protist 156 :<br />

425 – 432 .<br />

Marin , B. , A. Palm , M. Klingberg , <strong>and</strong> M. <strong>Melkonian</strong> .<br />

2003 . Phylogeny <strong>and</strong> taxonomic revision of plastid-containing euglenophytes<br />

based on SSU rDNA sequence comparisons <strong>and</strong> synapomorphic<br />

signatures in the SSU rRNA secondary structure. Protist 154 :<br />

99 – 145 .<br />

McCourt , R. M. , K. G. Karol ., J. Bell, K. M. Helm-Bychowski,<br />

A. Grajewska, M. F. Wojciechowski, <strong>and</strong> R. W. Hoshaw .<br />

2000 . Phylogeny of the conjugating green algae (Zygnemophyceae)<br />

based on rbc L sequences. <strong>Journal</strong> of Phycology 36 : 747 – 758 .<br />

McFadden , G. I. , <strong>and</strong> M. <strong>Melkonian</strong> . 1986 . Use of HEPES buffer<br />

for microalgal culture media <strong>and</strong> fixation for electron microscopy.<br />

Phycologia 25 : 551 – 557 .<br />

Meindl , U. 1986 . Autonomous circular <strong>and</strong> radial motions of the nucleus<br />

in Pleurenterium tumidum <strong>and</strong> their relation to cytoskeletal elements<br />

<strong>and</strong> the plasma membrane. Protoplasma 135 : 50 – 66 .<br />

Moon , B. , <strong>and</strong> O.-M. Lee . 2003 . A phylogenetic significance of several<br />

species from genus Cosmarium (Chlorophyta) of Korea based on<br />

mitochondrial cox III gene sequences. Algae (Korean Phycological<br />

Society) 18 : 199 – 206 .<br />

N ä geli , C. 1849 . Gattungen einzelliger Algen, physiologisch und systematisch<br />

bearbeitet. Neue Denkschriften der Allgemeinen schweizerischen<br />

Gesellschaft f ü r die gesamten . Die Naturwissenschaften 8 :<br />

1 – 139 .<br />

Nam , M. , <strong>and</strong> O.-M. Lee . 2001 . A comparative study of the morphological<br />

characters <strong>and</strong> sequence data of rbc L gene in Cosmarium species.<br />

Algae (Korean Phycological Society) 16 : 349 – 361 .<br />

Neuhaus , G. , <strong>and</strong> O. Kiermayer . 1981 . Formation <strong>and</strong> distribution of<br />

cell wall pores in desmids. In O. Kiermayer [ed.], Cytomorphogenesis<br />

in plants, 216 – 228. Wien, New York, Springer, Germany.<br />

Pickett-Heaps , J. D. 1975 . Green algae. Sinauer, Sunderl<strong>and</strong>,<br />

Massachusetts, USA.<br />

Posada , D. , <strong>and</strong> K. A. Cr<strong>and</strong>all . 1998 . MODELTEST: Testing the<br />

model of DNA substitution. Bioinformatics (Oxford, Engl<strong>and</strong>) 14 :<br />

817 – 818 .<br />

Prescott , G. W. , C. E. M. Bicudo , <strong>and</strong> W. C. Vinyard . 1982 . A synopsis<br />

of North <strong>American</strong> desmids. Part II. Desmidiaceae. Section 4.<br />

University of Nebraska Press, Lincoln, USA.<br />

Prescott , G. W. , H. T. Croasdale , W. C. Vinyard , <strong>and</strong> C. E. M. Bicudo .<br />

1981 . A synopsis of North <strong>American</strong> desmids, part II. Desmidiaceae,<br />

section 3. University of Nebraska Press, Lincoln, Nebraska, USA.<br />

Quicke , D. L. J. , O. R. Jones , <strong>and</strong> D. R. Epstein . 2007 . Correcting<br />

the problem of false incongruence due to noise imbalance in the<br />

incongruence length difference (ILD) test. Systematic Biology 5 6 :<br />

496 – 503 .<br />

Raciborski , M. 1889 . Desmidyje nowe. Pamietnik Akademii Umiejtnosci<br />

w Krakowie 17: 73 – 113.<br />

Ralfs , J. 1848 . The British Desmidieae. Reeve, Benham <strong>and</strong> Reeve,<br />

London, UK.


1094 <strong>American</strong> <strong>Journal</strong> of Botany [Vol. 95<br />

Silva , P. C. 1952 . A review of nomenclatural conservation in the algae<br />

from the point of view of the type method. University of California.<br />

Publications in Botany 25 : 381 – 395 .<br />

Surek , B. , U. Beemelmanns , M. <strong>Melkonian</strong> , <strong>and</strong> D. Bhattacharya .<br />

1994 . Ribosomal RNA sequence comparisons demonstrate an evolutionary<br />

relationship between Zygnematales <strong>and</strong> charophytes. Plant<br />

Systematics <strong>and</strong> Evolution 191 : 171 – 181 .<br />

Swofford , D. L. 2002 . PAUP*: Phylogenetic analysis using parsimony<br />

(*<strong>and</strong> other methods), version 4b10. Sinauer, Sunderl<strong>and</strong>, MA, USA.<br />

Teiling , E. 1952 . Evolutionary studies on the shape of the cell <strong>and</strong> of the<br />

chloroplast in desmids. Botaniska Notiser 105 : 264 – 306 .<br />

Teiling , E. 1954 . Actinotaenium , genus Desmidiacearum resuscitatum.<br />

Botaniska Notiser 1954 : 376 – 426 .<br />

Thornton , J. W. , <strong>and</strong> R. Desalle . 2000 . A new method to localize<br />

<strong>and</strong> test the significance of incongruence: detecting domain shuffling<br />

in the nuclear receptor superfamily. Systematic Biology 4 9 :<br />

183 – 201 .<br />

Turmel , M. , V. Cote , C. Otis , J.-P. Mercier , M. W. Gray , K. M.<br />

Lonergan , <strong>and</strong> C. Lemieux . 1995 . Evolutionary transfer of ORFcontaining<br />

group I introns between different subcellular compartments<br />

(chloroplast <strong>and</strong> mitochondrion). Molecular Biology <strong>and</strong> Evolution<br />

12 : 533 – 545 .<br />

Turmel , M. , R. R. Gutell , J.-P. Mercier , C. Otis , <strong>and</strong> C. Lemieux .<br />

1993 . Analysis of the chloroplast large subunit ribosomal RNA gene<br />

from 17 Chlamydomonas taxa. <strong>Journal</strong> of Molecular Biology 232 :<br />

446 – 467 .<br />

Turmel , M. , J. F. Pombert , P. Charlebois , C. Otis , <strong>and</strong> C. Lemieux .<br />

2007 . The green algal ancestry of l<strong>and</strong> plants as revealed by the<br />

chloroplast genome. International <strong>Journal</strong> of Plant Sciences 168 :<br />

679 – 689 .<br />

Turner , W. B. 1892 . Algae aquae dulcis Indiae orientalis. The freshwater<br />

algae (principally Desmidiaceae) of East India. Kongliga Svenska<br />

Vetenskapsakademiens H<strong>and</strong>lingar 25 : 1 – 187 .<br />

Turpin , P. J. F. 1820 . Dictionnaire des Sciences Naturelles. Planches, part<br />

2. R è gne organis é . V é g é taux acotyl é dons. Levrault, Paris, France.<br />

West , W. , <strong>and</strong> G. S. West . 1905 . A monograph of the British Desmidiaceae,<br />

vol. II. The Ray Society, London, UK.<br />

West , W. , <strong>and</strong> G. S. West . 1908 . A monograph of the British<br />

Desmidiaceae, vol. III. The Ray Society, London, UK.<br />

Wuyts , J. , P. De Rijk , Y. Van de Peer , G. Pison , P. Rousseeuw , <strong>and</strong> R.<br />

De Wachter . 2000 . Comparative analysis of more than 3000 sequences<br />

reveals the existence of two pseudoknots in area V4 of eukaryotic<br />

small subunit ribosomal RNA. Nucleic Acids Research 28 :<br />

4698 – 4708 .<br />

Wuyts , J. , Y. Van de Peer , <strong>and</strong> R. De Wachter . 2001 . Distribution of<br />

substitution rates <strong>and</strong> location of insertion sites in the tertiary structure<br />

of ribosomal RNA. Nucleic Acids Research 29 : 5017 – 5028 .<br />

Xia , X. , <strong>and</strong> Z. Xie . 2001 . DAMBE: Data analysis in molecular biology<br />

<strong>and</strong> evolution. <strong>Journal</strong> of Heredity 92 : 371 – 373 .<br />

Yoder , A. D. , J. A. Irwin , <strong>and</strong> B. A. Payseur . 2001 . Failure of the ILD<br />

to determine data combinability for slow loris phylogeny. Systematic<br />

Biology 50 : 408 – 424 .<br />

A ppendix 1 . Strain information <strong>and</strong> EMBL/GenBank accession numbers for taxa used in this study. A dash ( — ) indicates the region was not sampled. New sequences<br />

are boldfaced. ACOI = Coimbra Collection of Algae, University of Coimbra, Portugal (http://www1.ci.uc.pt/botanica/ACOI.htm); ASW = Sammlung von<br />

Algen-Kulturen, University of Vienna, Austria ( Kusel-Fetzmann <strong>and</strong> Schagerl, 1992 ); CCAC = Culture Collection of Algae at the University of Cologne,<br />

Germany (http://www.ccac.uni-koeln.de); M = Culture Collection <strong>Melkonian</strong>, Botanical Institute, University of Cologne, Germany (strains available upon<br />

request); NIES = Microbial Culture Collection at National Institute for Environmental Studies, Tsukuba, Japan (http://www.nies.go.jp/biology/mcc/home.htm);<br />

SAG = Sammlung von Algenkulturen, University of G ö ttingen, Germany (http://www.epsag.uni-goettingen.de/html/sag.html); SVCK = Sammlung von<br />

Conjugaten-Kulturen, University of Hamburg, Germany (http://www.biologie.uni-hamburg.de/b-online/d44_1/44_1.htm). Taxon names in parentheses correspond<br />

to those used in the culture collection catalogue.<br />

Taxon ; strain; nu SSU rDNA+1506 group I intron (if a separate entry); rbcL ; cp LSU rDNA.<br />

Actinotaenium cruciferum (de Bary) Teil.; M2025; AM920332 ; AM911235 ;<br />

AM919466 . A. cucurbita (Ralfs) Teil.; M1199; AJ428099+ AM910431 ;<br />

AM911236 ; AM919439 . A. phymatosporum (Nordst) Coes. et Kouwets;<br />

M1368; AJ428088+ AM910432; AM911233; AM919434 . A . ( Penium )<br />

silvae-nigrae (Raban.) Kouwets. et Coes. var. parallelum . (Krieg.)<br />

Kouwets. et Coes.; SVCK295; AM920333; AM911234 ; —. A. turgidum<br />

(Ralfs) Teil. ex Rouzicka et Pouzar; M1192; —; AM911238 ; —. A. cf.<br />

wollei (W. et G. S. West) Teil. ex Rouzicka et Pouzar; M2945; AM920384;<br />

AM911237 ; —. Bambusina borreri (brebissonii) (Ralfs) Cl.; CCAC<br />

0045; AJ428118+ AM910433 ; AJ553935; AM919437 . Cosmarium<br />

amoenum Br é b. in Ralfs ; M1172; —; AM911322 ; —. C. angulosum<br />

Br é b. ; ACOI378; —; AM911328 ; —. C. binum Nordst. ; ACOI896; —;<br />

AM911329 ; —. C. bioculatum Br é b. ex Ralfs; CCAP612/17; AM920354;<br />

AM911265 ; —. C. biretum Br é b. in Ralfs; M2123; AM920339;<br />

AM911267; AM919440 . C. bisphaericum Printz; SVCK436; AM920338;<br />

AM911266 ; —. C. blyttii Wille; CCAP612/19; AM920374; AM911290 ;<br />

—. C. botrytis Menegh. ex Ralfs; SVCK274; AM920378; AM911295;<br />

AM919462 . C. broomei Thwaites ex Ralfs; M2075; AM920340;<br />

AM911269 ; —. C. caelatum Ralfs; ACOI826; —; AM911319 ; —. C.<br />

connatum Br é b. in Ralfs ; ACOI1152; —; AM911317 ; —. C. contractum<br />

Kirchn.; SVCK396; AJ428112+AJ829661; AJ553937; —. C. cf.<br />

contractum ( hians ) ; NIES452; AM920365; AM911283; AM919459 . C.<br />

crenatum Ralfs ex Ralfs; M2164; AM920370; AM911268 ; —. C.<br />

cucumis Corda ex Ralfs; M2715; AM920334; AM911270; AM919442 .<br />

C. cyclicum Lund.; M1208; AM920388 ; AM911304 ; —. C. decedens<br />

(Reinsch) Racib. ; ACOI794; —; AM911330 ; —. C. depressum (N ä g.)<br />

Lund. ; ACOI1030; —; AM911325 ; —. C. depressum ; ; AM920367;<br />

AM911285 ; —. C. difficile L ü tkem. ; ACOI403; —; AM911326 ; —. C.<br />

dilatatum L ü tkem. et Gr ö nbl.; SVCK463; AJ829665; AM911274 ; —. C.<br />

elegantissimum Lund.; M1887; AJ428115+ AM910434; AM911271;<br />

AM919465 . C. granatum Br é b. in Ralfs; M2127; AM920364; AM911282;<br />

AM919445 . C. hammeri Reinsch; ACOI349; AM920386; AM911302 ;<br />

— . C. holmii Wille; M1211; AM920387; AM911303; AM919461 . C.<br />

impressulum Elfv.; SVCK58; AM920362; AM911279 ; — . C. laeve<br />

Rabenh.; SVCK35; AM920363; AM911280 ; — . C. lundellii Delp.;<br />

SVCK357; AJ428113+ AM910446; AM911310 ; — . C. maculatum<br />

Turn. ; SVCK422; — ; AM911315 ; — . C. margaritiferum Menegh. ex<br />

Ralfs ; SVCK88; — ; AM911311 ; — . C. meneghinii Br é b. ex Ralfs;<br />

SVCK59; AM920366; AM911284; AM919458 . C. notabile de Bary var.<br />

medium (Gutw.) Krieg. et Gerloff; ACOI936; AM920369; AM911287 ;<br />

— . C. obsoletum (Hantz.) Reinsch; M2303; — ; AM911277 ; — . C.<br />

obtusatum Schidle; M2275; AM920389; AM911305 ; — . C. ochthodes<br />

Nordst.; M1205; AM920376; AM911293 ; — . C. ornatum Ralfs;<br />

SVCK569; AM920372; AM911288 ; — . C. ovale Ralfs; SVCK342;<br />

AJ428114+ AM910447; AM911309 ; — . C. pachydermum Lund.;<br />

SVCK24; — ; AM911321 ; — . C. perforatum Lund. ; SVCK109; — ;<br />

AM911318 ; — . C. phaseolus Br é b. in Ralfs; M2302; AM920382;<br />

AM911299 ; — . C. portianum Archer; M2560; AM920337; AM911273;<br />

AM919450 . C. protractum (N ä g.) de Bary; SVCK460; AM920381;<br />

AM911298 ; — . C. pseudoconnatum Nordst. ; M1272; — ; AM911316 ;<br />

— . C. pseudonitidum Nordst.; ACOI1160; AM920377; AM911294 ; — .<br />

C. punctulatum Br é b.; M2717; AM920383; AM911300; AM919464 . C.<br />

punctulatum; SVCK570; AM920373; AM911289; AM919451 . C.<br />

quadratum Ralfs ; SVCK484; — ; AM911323 ; — . C. quadratum; M2946;<br />

— ; AM911313 ; — . C. quadrum Lund. var. sublatum (Nordst.) W. et G. S.<br />

West f. dilatatum Scott et Gr ö nbl.; ACOI368; AM920335; AM911272 ;<br />

— . C. ralfsii Br é b. in Ralfs ; SVCK300; — ; AM911324 ; — . C. regnellii<br />

Wille; M2947; AM920350; AM911276 ; — . C. reniforme (Ralfs) Arch.;<br />

SVCK34; AM920336 ; AY964179; AM919447 . C. sinostegos Schaarschm.<br />

var. obtusius Gutw.; ACOI406; AM920349; AM911275; AM919435 . C.


September 2008]<br />

<strong>Gontcharov</strong> <strong>and</strong> <strong>Melkonian</strong> — The genus COSMARIUM Corda ex Ralfs<br />

1095<br />

sportella Br é b.; M2152; AM920390; AM911306 ; —. C. subcrenatum<br />

Hantz.; M1200; AM920368; AM911286 ; —. C. subcucumis Schmidle ;<br />

ACOI103; —; AM911312 ; —. C. subgranatum (Nordst.) L ü tkem. ;<br />

M2629; —; AM911281 ; —. C. subochthodes Schmidle; ACOI377 ;<br />

AM920379; AM911296 ; —. C. subprotumidum Nordst.; SVCK373;<br />

AM920375; AM911292 ; —. C. tesselatum (Delp.) Nordst. ; SVCK381;<br />

—; AM911320 ; —. C. tetraophthalmum K ü tz. ex Ralfs; SVCK220; —;<br />

AM911314 ; —. C. tinctum Ralfs; M2301; AM920355; AM911278;<br />

AM919455 . C. trachypleurum Lund.; ACOI935; AM920391; AM911307 ;<br />

—. C. trilobulatum Reinsch; ACOI866; AM920385; AM911301 ; —. C.<br />

undulatum Corda ex Ralfs; SVCK482; AM920380; AM911297;<br />

AM919463 . C. vexatum West; M2119; AM920392; AM911308 ; —.<br />

Cosmarium sp.; M2093; AM920394; FM163363; —. Cosmarium sp.;<br />

M2856; —; AM911327 ; —. Cosmarium sp.; M2731; AM920395;<br />

AM911291 ; —. Euastrum affi ne ( humerosum ) Ralfs; SVCK185;<br />

AM920342; AM911240; AM919432 . E. bidentatum N ä g.; ACOI282;<br />

AM920345; AM911243 ; —. E. binale Ralfs. var. gutwinskii (Schm.)<br />

Homfeld; ACOI488; AM920347; AM911245 ; —. E. biverrucosum<br />

<strong>Gontcharov</strong> et Watanabe; SVCK464; AM920346; AM911244 ; —. E.<br />

divaricatum Lund.; SVCK 156; AM920344; AM911242; AM919444 . E.<br />

germanicum (Schmidle) W. Krieg. ; SVCK461; —; AM911251 ; —. E.<br />

moebii (Borge) Scott et Prescott; SVCK358; AM920393; AM911248 ; —.<br />

E. oblongum (Grev.) Ralfs; ASW 07018; AJ428095+ AM910435;<br />

AM911239 ; —. E. prowsei Scott et Prescott ; SVCK353; —; AM911249 ;<br />

—. E. spinulosum Delp. var. henriquesii Sampaio ; ACOI1092; —;<br />

AM911252 ; —. E. subalpinum Messik.; ACOI855; AM920348;<br />

AM911246; AM919432 . E. subhexalobum W. et G. S. West ; ACOI1671;<br />

—; AM911253 ; —. E. substellatum Nordst.; SVCK364; AM920371;<br />

AM911247; AM919446 . E. trigiberrum W. et G. S. West; ACOI1174;<br />

AM920343; AM911241 ; —. E. verrucosum Lund. ; SVCK798; —;<br />

AM911250 ; —. Groenbladia neglecta (Racib.) Teil.; SVCK478;<br />

AJ428119+ AM910436 ; AJ553943; —. Haplotaenium (Pleurotaenium)<br />

minutum (Ralfs) B<strong>and</strong>o; SVCK302; AJ428090+ AM910437 ; AJ553947;<br />

AM919438 . Heimansia (Cosmocladium) pusilla (Hilse) Coes.; SVCK428;<br />

AJ428125+ AM910448 ; AJ553948; —. Micrasterias fi mbriata Ralfs;<br />

M1188; AJ428098+ AM910450; AM911257 ; —. M. cf. thomasiana Arch.<br />

var. notata (Nordst.) Gronbl.; M2253; AM920341; AM911256;<br />

AM919430 . Penium cylindrus (Ehr.) Br é b. ex Ralfs; ACOI780;<br />

AJ553930+ AM910438 ; AJ553959; AM919467 . P. exiguum W. West;<br />

M2159 ; AJ553929+ AM910439 ; AJ553960; — . P. margaritaceum (Ehr.)<br />

ex Br é b. in Ralfs; SAG 22.82; AF115440; AM911254; AM919469 . P.<br />

polymorphum (Perty) Perty; M2335; AM920331; AM911255; AM919468 .<br />

P. spirostriolatum Barker.; SVCK189; AJ553928+ AM910440 ; AJ553961;<br />

— . Phymatodocis nordstedtiana Wolle; SVCK327; AJ428122+ AM910449 ;<br />

AJ553962; — . Spondylosium p<strong>and</strong>uriforme (Heimerl) Teil.; SAG 52.88;<br />

AJ428124+ AM910441 ; AJ553969; AM919449 . S. planum (Wolle) W. et<br />

G. S. West; SAG 41.81; AJ428123+ AM910442; AM911260; AM919441 .<br />

S. pulchellum Arch.; SVCK365; AJ428130; AM911261 ; — . S. pulchrum<br />

(Bail.) Arch.; SVCK331; AJ428129+ AM910443 ; AJ553970.1;<br />

AM919436 . S. secedens (de Bary) Arch.; SVCK31; AJ428128+ AM910445;<br />

AM911259 ; — . Staurastrum lunatum Ralfs; SVCK15;<br />

AJ428106+AJ829640; AJ553971; AM919431 . S. orbiculare Ehr. ex<br />

Ralfs; M2217; AJ829660; AM911331; AM919456 . S. sebaldi Reinsch;<br />

M1133; AJ829630; AM911332 ; — . S. tumidum Br é b. ex Ralfs; SVCK85;<br />

AJ428108+AJ829666; AJ553972; AM919452 . Staurodesmus bienianus<br />

(Rabenh.) Florin; M1130; AJ829659; AM911341; AM919457 . S.<br />

brevispina (Br é b. ex Ralfs) Croasd. var. obversus (West) Croasd.;<br />

ACOI881; AM920361; AM911340 ; — . S. convergens (Ehr. ex Ralfs)<br />

Lillier; M1886; AJ428102+AJ829651; AM911344 ; AM919460 . S.<br />

extensus (Borge) Teil.; ACOI956; AM920358; AM911337 ; — . S. extensus<br />

var. joshuae (Gutw.) Teil.; ACOI1000; AM920360; AM911339 ; — . S.<br />

glaber (Ehr.) Teil.; ACOI954; AM920356; AM911334 ; — . S.<br />

( Staurastrum ) isthmosus (Heimerl) Croasd.; SVCK466; AM920359;<br />

AM911338 ; — . S. mucronatus (Ralfs ex Br é b.) Croasd.; M1394;<br />

AJ428103+AJ829658; AM911342 ; — . S. omearii (Arch.) Thom.; M0751;<br />

AJ829655; AM911333; AM919453 . S. spencerianus (Mask.) Teil.;<br />

ACOI735; AM920357; AM911335 ; — . S. ( Arthrodesmus ) triangularis<br />

(Lagerh.) Teil.; SVCK280; AJ829654; AM911336; AM919454 . S.<br />

( Arthrodesmus ) validus (W. et G. S. West) Scott et Gr ö nbl.; SVCK457;<br />

AJ829653; AM911343 ; — . Triploceras gracile Bail.; SVCK173;<br />

AJ428089+ AM910444; AM911258; AM919448 . Xanthidium<br />

antilopaeum var. canadense Josh.; SVCK147; AM920353; AM911264 ;<br />

— . X. armatum (Br é b.) Ralfs; ASW 07059; AJ428094+AJ829667;<br />

DQ026262; — . X. cristatum Br é b. var. uncinatum Ralfs f. ornatum<br />

Jackson; SVCK426; AM920352; AM911263 ; — . X. subhastiferum W.<br />

West; CCAP 690/1; AM920351; AM911262; AM919443 .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!