29.12.2013 Views

Time measurement: Solar Time

Time measurement: Solar Time

Time measurement: Solar Time

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Meccanica<br />

del<br />

volo spaziale


Space system phases<br />

Sistemispaziali+<br />

Meccanica Volo Spaziale<br />

Design and development<br />

Technology development<br />

Component procurement<br />

Manufacturing<br />

Assembly & Integration<br />

Verification & test<br />

Meccanica Volo Spaziale<br />

Launch<br />

Meccanica Volo Spaziale<br />

Operations<br />

Harness<br />

Thermal control<br />

Electrical<br />

Telecomms<br />

power<br />

Data handling<br />

Payload<br />

AOCS<br />

Structure<br />

Propulsion<br />

Mechanisms


Design Process<br />

Mission<br />

Requirements &<br />

Constraints<br />

Software<br />

Objectives<br />

Environment<br />

Lifetime<br />

Payload<br />

Reliability<br />

Schedule<br />

Technology<br />

Budget<br />

Attitude<br />

determination<br />

& control<br />

Mission<br />

analysis<br />

Thermal<br />

control<br />

Instruments<br />

Electrical<br />

power<br />

Dry<br />

mass<br />

Data<br />

handling<br />

Telemetry<br />

tracking &<br />

command<br />

Operations<br />

& ground<br />

systems<br />

Study<br />

Results<br />

S/C Design<br />

S/C Configuration<br />

Launcher<br />

Risk<br />

Cost<br />

Simulation<br />

Study Requirements<br />

Products<br />

Study Level<br />

Planning<br />

Resources<br />

Propellant<br />

mass<br />

Propulsion<br />

Structure<br />

Adapter<br />

Wet<br />

mass<br />

Launch<br />

mass<br />

Programmatics<br />

Options<br />

Conceptual model<br />

of mission &<br />

spacecraft<br />

design process


Trajectory classes<br />

Mission Analysis Trajectory and trajectory control design<br />

Meteosat<br />

Ulysses<br />

Olympus<br />

ERS<br />

Hipparcos<br />

Soho<br />

Huygens (Cassini)<br />

Spacelab<br />

Ariane 4 Ariane 5<br />

Envisat<br />

ECS<br />

International<br />

Space Station<br />

ISO<br />

Artemis<br />

Giotto


Mission phases: Earth Satellite Example<br />

Launch –Low Earth Orbit Phase (LEOP) -Transfer – Commissioning –<br />

Operations – De-commissioning - End of Life<br />

AGILE (04/07)<br />

Astro-rivelatore Gamma<br />

a Immagini Leggero


Mission phases:<br />

interplanetary transfer trajectory example<br />

Ulysses (10/90)<br />

Plane inclination<br />

variation:Gravity assist<br />

maneuver: 80.2 deg<br />

Mass at launch: 370 kg<br />

Payload mass: 55 kg<br />

Fuel mass: 33 kg<br />

Power: 285 W


Mission phases:<br />

interplanetary transfer trajectory example<br />

Cassini-Huygens (10/97)<br />

Gravity Assist : Venus-Venus-<br />

Earth-Jupiter<br />

Launch Mass: 2523 kg<br />

Fuel Mass: 1027 kg<br />

Power: 640 W


Mission phases:<br />

interplanetary transfer trajectory<br />

example<br />

Messenger (08/04)<br />

Mass: 1100 kg<br />

Fuel mass 592 kg<br />

Payload mass 50 kg<br />

Power: 450 W


Mission phases:<br />

interplanetary transfer trajectory example<br />

Messenger 1° GA Earth<br />

2005<br />

Messenger 2° GA Venus<br />

2006<br />

Messenger MOI<br />

2011


Trajectory design<br />

Rosetta (03/04)<br />

Launch Mass: 3000 kg<br />

Fuel mass 1800 kg<br />

Power: 850 W


Programma del Corso<br />

Sistemi di riferimento e misura del tempo<br />

Sistemi di riferimento: Eliocentrico-Eclittico; Geocentrico-Equatoriale; Topocentrico-<br />

Orizzontale. Fenomeno della precessione degli equinozi. Misura del tempo: tempo solare e<br />

tempo siderale. La data Giuliana. (Navigazione interplanetaria)


Programma del Corso<br />

Meccanica Celeste<br />

Il problema degli n corpi. Potenziale gravitazionale. Il problema dei due corpi. Richiami di proprietà<br />

geometriche delle coniche. Legami sussistenti tra le costanti del moto e la geometria dell'orbita. Analisi<br />

energetica orbitale. Calcolo del periodo orbitale e leggi di Keplero.<br />

Orbite kepleriane<br />

Definizione dei sei elementi orbitali classici. Trasformazioni di coordinate tra i vari sistemi di riferimento.<br />

Calcolo dell'orbita dati gli stati iniziali. Tempo di volo: Equazione di Keplero. Metodi numerici per il<br />

calcolo dell'anomalia eccentrica.<br />

Facoltativo: Problema di Lambert e sua soluzione nel caso di orbita ellittica. Traiettorie interplanetarie.<br />

Sfere di influenza. Metodo delle coniche raccordate.


Programma del Corso<br />

Manovre orbitali<br />

Manovre impulsive ad un impulso e a due impulsi (trasferimenti alla Hohmann e manovre biellittiche).<br />

Manovre impulsive a tre impulsi: coplanari e con cambiamento di piano orbitale. Trasferimento orbitale<br />

tra orbite ellittiche. Trasferimenti orbitali con impulso fissato. Finestra di lancio. Trasferimenti con<br />

spinte basse. Perdite di gravità. Manovre di rifasamento.<br />

Documento Acrobat


Programma del Corso<br />

Progetto e dinamica dei lanciatori<br />

Dinamica impulsiva. Dinamica di un monostadio: lancio sulla verticale; lancio balistico;<br />

Ottimizzazione di un pluristadio.<br />

Facoltativo: dinamica bidimensionale di lancio


Programma del corso<br />

Perturbazioni orbitali<br />

Orbite particolari ottenute attraverso l’effetto perturbativo: sunsincrone, Molnya<br />

Moto di assetto di un satellite (facoltativo)<br />

Richiami di meccanica dei corpi rigidi. Terne di riferimento. Angoli di Eulero.<br />

Equazioni di Eulero. Stabilità delle rotazioni attorno agli assi principali di inerzia.<br />

Dinamica di satelliti a tre gradi di libertà attorno al baricentro. Calcolo del gradiente di<br />

gravità. Dinamica dei satelliti stabilizzati a gradiente di gravità.


Sistemi di riferimento e misura del tempo<br />

V.M.Blanco “Basic physic of the solar system”, Addison Wesley Ed.<br />

Dispense del Corso<br />

.Progetto e dinamica dei lanciatori<br />

K.J.Ball, G.F.Osborne, “Space Vehicle Dynamics”, Oxford Press<br />

Dispense del Corso<br />

Problemi di Meccanica Celeste<br />

M.H.Kaplan, Modern Spacecraft Dynamics and Control”, J.Wiley & Sons<br />

R.Bate,D.Mueller,J.White,”Fundamentals of astrodynamics”, Dover Pubbs, NY<br />

G.Mengali,”Meccanica del volo spaziale”, Ed.PLUS<br />

Orbite kepleriane<br />

H.D.Curtis, Orbital Mechanics for Engineering Students<br />

V.A.Chobotov, “Orbital Mechanics”, AIA education series<br />

G.Mengali,”Meccanica del volo spaziale”, Ed.PLUS<br />

M.H.Kaplan, Modern Spacecraft Dynamics and Control”, J.Wiley & Sons<br />

Manovre orbitali<br />

H.D.Curtis, Orbital Mechanics for Engineering Students<br />

G.Mengali,”Meccanica del volo spaziale”, Ed.PLUS<br />

C.Brown,”Space Mission Design”,AIAA Education series<br />

Perturbazioni orbitali<br />

M.H.Kaplan, Modern Spacecraft Dynamics and Control”, J.Wiley & Sons<br />

C.Brown,”Space Mission Design”,AIAA Education series<br />

Moto di assetto di un satellite<br />

M.H.Kaplan, Modern Spacecraft Dynamics and Control”, J.Wiley & Sons<br />

W.Viesel, “Spaceflight Dynamics”, Mc Graw-Hill<br />

References


Exam rules<br />

Modalità di valutazione<br />

Tipologia delle prove<br />

Le prove necessarie ai fini della valutazione del corso consistono in:<br />

a) 3 compitini scritti ciascuno relativo ad un’area tematica affrontata nel corso e composto da alcuni esercizi numerici e<br />

domande teoriche<br />

b) interrogazione orale sul programma svolto<br />

I compiti scritti vengono svolti durante il corso, al termine del periodo di lezione/esercitazione inerenti all’argomento<br />

trattato; indicativamente:<br />

1. Prima metà doi Novembre: trasformazioni di coordinate<br />

2. Fine Dicembre: Meccanica Orbitale<br />

3. Fine Gennaio: lanciatori<br />

La valutazione dei compiti scritti è la seguente:<br />

Valutazione<br />

gravemente insufficiente<br />

insufficiente<br />

Sufficiente/discreto/buono/ottimo<br />

Voto<br />

E*<br />

E<br />

D/C/B/A<br />

Esito<br />

impedisce la partecipazione all’orale; richiede lo<br />

svolgimento in aula di uno scritto<br />

Richiede lo svolgimento a casa del tema del compito<br />

Consente la partecipazione all’orale il cui voto di<br />

partenza è definito dalla media dei voti acquisiti nei<br />

compiti<br />

• L’insufficienza grave in 3 scritti preclude l’ammissione all’orale e implica la re-iscrizione e frequenza del corso<br />

• L’insufficienza grave in 2 scritti richiede lo svolgimento in aula di uno scritto su tutto il programma svolto<br />

• L’insufficienza grave in 1 scritto implica lo svolgimento in aula di uno scritto relativo alle tematiche insufficienti<br />

Regole dell’esame<br />

Sono previsti appelli d’esame a Febbraio, Giugno/Luglio Settembre per sostenere la prova orale.


Reference systems


Reference systems<br />

Goal: to describe the state vector of an object in space<br />

Coordinate system: cartesian/spherical<br />

Coordinate<br />

Name<br />

Celestial<br />

Fixed with<br />

or respect<br />

to<br />

inertial space<br />

Centre<br />

Earth (GCI<br />

Geocentric<br />

Inertial) or<br />

body<br />

Z-axis<br />

X-axis or<br />

Ref.Point<br />

Application<br />

Celestial Pole Vernal Equinox orbit analysis, astronomy<br />

Ecliptic inertial space Sun/Earth Ecliptic Pole Vernal Equinox<br />

solar system orbits, planet<br />

ephemeris<br />

Planet-fixed Planet Planet Planet Pole<br />

Greenwich or 0<br />

meridian<br />

apparent satellite motion<br />

Perifocal Orbit Planet<br />

Angular<br />

momentum<br />

Eccentricity<br />

vector<br />

Orbit analysis<br />

Spacecraft<br />

fixed<br />

RPY, RθB,<br />

NTB<br />

Spacecraft<br />

s/c c.m.<br />

Dependent<br />

on the<br />

design<br />

Body<br />

(spacecraft<br />

or other)<br />

Spacecraft axis<br />

toward nadir<br />

Yaw in the nadir<br />

or R in the radial<br />

direction<br />

spacecraft axis in<br />

the direction of<br />

velocity<br />

perpendicular to<br />

nadir toward<br />

velocity<br />

position and orientation of<br />

instruments<br />

attitude manoeuvres, planet<br />

observation and encounter<br />

Main plane + reference axis to be defined<br />

Orbital<br />

Mechanics


Revolution: angular motion of the c.m around the Sun<br />

Reference systems: planets motion<br />

Rotation: angular motion of the planet around its own axis<br />

Revolution axis<br />

equator<br />

23°27’<br />

Rotation axis<br />

Revolution axis<br />

equator<br />

Earth Orbit<br />

plane<br />

Venus<br />

Orbit plane<br />

Rotation axis<br />

177°


Rotation motion effects<br />

• daylight and night experienced<br />

• apparent daily motion of the Sun and night motion of the stars in the<br />

sky<br />

• polar bulginess<br />

• different escape velocity with latitude<br />

• deviations of objects moving along meridians because of the Coriolis<br />

apparent acceleration, depending on the latitude:<br />

– null at poles, maximum at equator (N S displacement = boreal<br />

hemisphere West deviation)


Revolution motion effects<br />

• Seasons existence (inclined rotational axis)<br />

• Different height of the Sun above the horizon along the year<br />

• Different rising and sunset points on the horizon along the year (at<br />

East-West at Equinoxes; toward North in summer and South in winter<br />

for a boreal observer)<br />

• Apparent rotation of the sky<br />

• Apparent annual motion of the Sun (Zodiac band rotation)


planets motion: relevant events<br />

Two particular illumination conditions can be identified:<br />

Equinox: Sun rays are perpendicular to the Earth (planet) equator; daylight<br />

and night duration is equal all over the planet<br />

Solstice: Sun rays are oblique to the surface, different latitudes experience<br />

different daylight/night duration


planets motion: relevant events<br />

Solstice line<br />

Equinoxes line


planets motion: relevant events\points<br />

linea<br />

equinozi<br />

Perielio<br />

3 gennaio<br />

Afelio<br />

7 luglio<br />

linea<br />

apsidi<br />

linea<br />

solstizi<br />

11°


Reference systems: Astronomy<br />

Spherical coordinates: 2 angular+1 radial information r=[r;ξ,ζ]<br />

Rectangular coordinates: 3 components information r=[r x<br />

; r y<br />

;r z<br />

]<br />

Spherical coordinates<br />

Radial information<br />

far objects: r∞<br />

spacecraft: r=|r|<br />

origin: Sun ; Earth ⊕; Planet<br />

Celestial Sphere<br />

r<br />

Reference planes<br />

•Planet’s orbit: defined by the planet’s revolutionary angular velocity vector<br />

•Planet’s equator: Defined by the planet’s rotational angular velocity vector<br />

In-plane reference vector<br />

•Inertial e.g. Aries point<br />

•Non-Inertial e.g. Prime meridian


Reference systems: Aries point<br />

Eliocentric reference<br />

Normal to the Earth Orbit = Celestial North Pole<br />

Earth revolution<br />

motion<br />

Summer solstice<br />

(≈ 21/06)<br />

γ<br />

Aries point<br />

Autumn Equinox<br />

(≈ 21/09)<br />

Ω<br />

Vernal Equinox (≈ 21/03)<br />

Winter solstice (≈ 21/12)<br />

Earth Orbit<br />

Geocentric reference<br />

Celestial North Pole<br />

Earth revolution motion<br />

Winter solstice (≈ 21/12)<br />

Aries point<br />

γ<br />

Vernal Equinox<br />

(≈ 21/03)<br />

Ω<br />

Autumn Equinox (≈ 21/09)<br />

Summer solstice (≈ 21/06)<br />

Ecliptic


Reference systems: Aries point<br />

Alternative definitions: γ point (Aries point)<br />

•Earth-to-Sun alignment points to the Aries Constellation (Vernal Equinox)<br />

• Line that has:<br />

•direction: E∩Π E= ecliptic plane; Π=Celestial Equator plane;<br />

•versus: positive whenever the Sun rises from the bottom to the top of the Π<br />

plane<br />

Ecliptic North<br />

Pole (K) 23.<br />

5°<br />

Boreal Pole<br />

(PNC)<br />

Ecliptic<br />

North Pole<br />

23.5°<br />

Boreal Pole<br />

(PNC)<br />

Earth Orbit<br />

Sun Apparent Orbit<br />

Austral Pole<br />

γ<br />

Celestial<br />

sphere<br />

Celestial<br />

Equator<br />

Austral Pole<br />

γ<br />

Celestial<br />

Equator<br />

Celestial<br />

Sphere<br />

Eliocentric reference<br />

Geocentric reference<br />

Ecliptic plane: plane of the apparent motion of the Sun around the Earth in one year


Reference systems: Spherical<br />

Ecliptic Reference<br />

geocentric – [K γ]<br />

Ecliptic North Pole K<br />

E<br />

β<br />

Celestial<br />

Sphere<br />

Ecliptic<br />

λ<br />

γ<br />

Ecliptic North Pole: ⊥E ∩Celestial Sphere<br />

Coordinates: Ecliptic Longitude; Ecliptic latitude: -90°


Reference systems: Spherical<br />

Celestial Equatorial Reference<br />

geocentric – [γ PNC]<br />

Celestial North Pole (Boreal Pole) PNC<br />

Celestial Sphere apparent rotation<br />

γ<br />

E<br />

α<br />

δ<br />

Celestial<br />

Sphere<br />

Celestial Equator<br />

Austral Pole<br />

Celestial North Pole: Celestial Sphere ∩ Earth rotation axis<br />

Coordinates: Right Ascension; Declination: 0°


Body Fixed Reference<br />

geocentric – [prime meridian - PNC]<br />

Northern Celestial Pole<br />

Reference systems: Geographical<br />

Relative Celetial sphere rotation<br />

Prime<br />

Meridian<br />

E<br />

L<br />

φ<br />

Celestial<br />

Sphere<br />

Southern celestial Pole<br />

Celestial Equator<br />

Celestial North Pole: Celestial Sphere ∩ Earth rotation axis<br />

Coordinates: Longitude; latitude: -12 h


Reference systems: Spherical<br />

Horizontal (topocentric) Reference<br />

Celestial North<br />

Pole PNC<br />

Z zenith-local vertical<br />

Celestial Equator<br />

Local horizon<br />

Celestial<br />

Sphere


Reference systems: Spherical<br />

geocentric –[ENZ]<br />

Topocentric Reference<br />

Celestial sphere<br />

relative rotation<br />

Zenith<br />

Zenith<br />

PNC<br />

ϕ= latitude<br />

East<br />

Az<br />

Celestial<br />

sphere<br />

North<br />

Celestial<br />

equator<br />

Horizon<br />

West<br />

Celestial<br />

sphere<br />

South<br />

N<br />

E<br />

Nadir<br />

h<br />

Local horizon<br />

Zenith≅ Geometric normal to the Earth Ellipsoid<br />

Nord: Z - Pb ∩ Horizon plane = N (Pb∩horizon plane


Reference systems: Spherical<br />

Topocentric Reference


Reference systems: Spherical<br />

<strong>Time</strong> dependence:examples<br />

Vernal Equinox<br />

Sun Coordinates<br />

δ=0°; α=0°<br />

Summer Solstice<br />

Sun Coordinates<br />

δ=23.5°; α=90°


Reference systems: Spherical<br />

<strong>Time</strong> dependence:examples<br />

Annual Sun trace on the celestial sphere<br />

Winter Solstice<br />

Sun Coordinates<br />

δ=-23.5°; α=270°


<strong>Time</strong> <strong>measurement</strong>: <strong>Solar</strong> <strong>Time</strong><br />

Terrestrial reference: Prime meridian Long=0°<br />

Different observer’s time <strong>measurement</strong> geometric reference frame rotation<br />

Polo Boreale<br />

Zenit<br />

N<br />

E<br />

ϕ = latitudine<br />

Long<br />

Σ<br />

W<br />

sfera<br />

celeste<br />

Prime<br />

meridian<br />

Σgreenwich<br />

S<br />

Long East0


Reference systems: Spherical<br />

Galactic Reference<br />

heliocentric – [galactic center –galactic plane (69.2°)]


Reference systems: Rectangular- ECI<br />

geocentric – [I;J;K]<br />

Celestial North Pole: Celestial Sphere ∩ Earth rotation axis<br />

Coordinates:<br />

[X;Y;Z] I≅γ; K≅PNC<br />

Notes:<br />

<strong>Time</strong> and observer independent<br />

On wide time windows γ=γ(t) ⇐Equinoxes precession and nutation


Reference systems: Rect.Heliocentric-ICRF<br />

Heliocentric – [I;J;K]<br />

International Celestial Reference<br />

Frame (1998 IAU)standard<br />

reference system<br />

Centre: <strong>Solar</strong> system baricentre<br />

Ecliptic Pole: Celestial Sphere ∩ Normal to Ecliptic<br />

Coordinates:<br />

[X;Y;Z]<br />

I≅γ; K≅Ecl.Pole<br />

Notes:<br />

<strong>Time</strong> and observer independent<br />

On wide time windows γ=γ(t) ⇐Equinoxes precession and nutation


Reference systems: Rect. ECEF-ITRF<br />

Geocentric – [Greenwich;J;North Pole]<br />

Because of plate tectonic motion (cm/yr) Greenwich Meridian is not planetfixed<br />

therefore the ITRF is used<br />

International Terrestrial Reference Frame standard reference system for<br />

accurate orbit determination<br />

Coordinates: [X;Y;Z]


Reference systems: Horizontal Rectangular<br />

Horizontal Reference


Perturbations<br />

Precession: <strong>Solar</strong> perturbation due to the Earth oblateness, Aries point γ moves<br />

counterclockwise (T=26000 years)<br />

Nutation:Lunar perturbation (T=18.6 years ~ Metonic cycle)<br />

⇒γ= γ(t)<br />

Periodical motion of the Earth rotational axis around the angular momentum vector<br />

of the ecliptic


Perturbations effects<br />

•All significant points rotate:<br />

equinoxes, solstices, perihelion,<br />

aphelion<br />

•Celestial Poles changes<br />

•Zodiac band rotation:<br />

constellations are visible earlier<br />

in time precession<br />

•Season chances: 20 min earlier<br />

every year<br />

The star indicating the<br />

Geographic North changes


<strong>Time</strong> <strong>measurement</strong><br />

[..]The main purpose of time is to define with precision the moment of a<br />

phenomenon [..].<br />

<strong>Time</strong> occurrence of the event= EPOCH (date)<br />

The definition of time interval is needed.<br />

<strong>Time</strong> interval definition asks for:<br />

• Origin to count from Begin of Christian Era<br />

• repeatable time interval based on some physical phenomenon<br />

At the time being four scales are defined:<br />

1. Sideral time<br />

2. <strong>Solar</strong> time<br />

3. Dynamical time<br />

4. Atomic time<br />

Earth rotation based


<strong>Time</strong> <strong>measurement</strong>:Astronomical clocks<br />

Significant intervals:<br />

Rotation of the Earth<br />

Revolution of the Earth<br />

Revolution of the Moon around the Earth<br />

¼ Moon cycle<br />

day<br />

year<br />

month<br />

week


<strong>Time</strong> <strong>measurement</strong>: Astronomical clocks<br />

The time interval definition and <strong>measurement</strong> are accomplished by taking into account the<br />

relative position of objects whose motion is known:<br />

For a terrestrial observer:<br />

Reference may be: the Sun (☼)<br />

the fixed stars<br />

North celestial pole<br />

Zenit<br />

ϕ = latitude<br />

Unit (day) = time span between 2 consecutive<br />

passages of the reference body on the observer<br />

meridian (celestial equatorial reference)<br />

N<br />

E<br />

Celestial<br />

sphere<br />

W<br />

S<br />

Σ<br />

t =time<br />

angle<br />

<strong>Time</strong> angle = celestial equator arc measured<br />

counterclockwise starting from the observer<br />

meridian (Σ point) up to the meridian passing<br />

through the observed object


<strong>Time</strong> <strong>measurement</strong>: Astronomical clocks<br />

<strong>Solar</strong> versus Sidereal time<br />

By changing the observed body the interval time changes<br />

not uniform definition of day


<strong>Time</strong> <strong>measurement</strong>: <strong>Solar</strong> <strong>Time</strong><br />

<strong>Solar</strong> <strong>Time</strong> unit: reference target = ☼<br />

Apparent <strong>Solar</strong> Day: time interval between two consecutive passages of the real Sun<br />

on the local meridian<br />

Local Apparent <strong>Time</strong>(LAT): time angle of the real Sun anti-meridian<br />

Main Issues<br />

Earth orbit eccentricity ⇒ variable <strong>Solar</strong> Day duration<br />

Earth Orbit inclination ⇒ variable <strong>Solar</strong> Day duration


<strong>Time</strong> <strong>measurement</strong>:<strong>Solar</strong> <strong>Time</strong><br />

GoalUniform <strong>Solar</strong> <strong>Time</strong> unit definition<br />

Mean Sun Definition:<br />

•Circular Orbit (e=0)<br />

•Zero inclination of Earth orbit on the Equator (i=0°)<br />

Mean <strong>Solar</strong> Day= time interval between two consecutive passages of the Mean Sun<br />

on the local meridian<br />

(Proposed by Newcomb in 1895)<br />

Mean <strong>Solar</strong><br />

Day<br />

Local Mean <strong>Time</strong>(LMT): local hour angle of the mean Sun anti-meridian<br />

Universal <strong>Time</strong>(UT): Greenwich hour angle of the mean Sun anti-meridian


<strong>Time</strong> <strong>measurement</strong><br />

Giorno solare: corpo di riferimento = ☼<br />

Giorno solare vero: tempo intercorso tra due<br />

passaggi consecutivi del sole vero sul medesimo<br />

meridiano<br />

Local Apparent <strong>Time</strong>(LAT): angolo<br />

orario dell’antimeridiano<br />

del sole vero<br />

Ellitticità orbita terrestre ⇒ durata<br />

giorno solare variabile<br />

Inclinazione orbita terrestre ⇒ durata<br />

giorno solare variabile<br />

Giorno solare medio= tempo intercorso tra due<br />

passaggi consecutivi del sole medio sul medesimo<br />

meridiano<br />

1 giorno<br />

solare<br />

medio<br />

moto medio del sole:<br />

•orbita circolare (e=0)<br />

•inclinazione sull’eq.celeste nulla (i=0°)<br />

Local Mean <strong>Time</strong>(LMT): angolo<br />

orario dell’antimeridiano del<br />

sole medio


<strong>Time</strong> <strong>measurement</strong>:<strong>Solar</strong> <strong>Time</strong><br />

Mean <strong>Solar</strong> Day= constant duration=24h<br />

Observed Sun (apparent)≠measured Sun (mean) ⇒ Equation of time (E.o.T.)<br />

LAT-LMT=E<br />

E= Actual sun position error<br />

E ecc =error from e≠0<br />

Actual motion≅ mean motion at:<br />

apocentre (July) and pericentre (January)<br />

⇒T=1 year<br />

~Pericentre + =v↑ LAT0<br />

~Apocentre=v↓ LAT >LMT ⇒E>0


<strong>Time</strong> <strong>measurement</strong>:<strong>Solar</strong> <strong>Time</strong><br />

Actual motion≅ mean motion at:<br />

equinoxes(March-September) & solstices<br />

⇒T=0.5 years<br />

E incl =error from i≠0°<br />

Equinox SVLMT E>0<br />

solstice SV>SM ⇒LAT


<strong>Time</strong> <strong>measurement</strong>:<strong>Solar</strong> <strong>Time</strong><br />

Effects sum= cumulative error: E=E ecc + E incl<br />

Listed in the Ephemeredes tables


<strong>Time</strong> <strong>measurement</strong>: <strong>Solar</strong> <strong>Time</strong><br />

Reference UT=00 h 00 m 00 s


<strong>Time</strong> <strong>measurement</strong>: <strong>Solar</strong> <strong>Time</strong><br />

Terrestrial reference: Prime meridian Long=0°<br />

Different observer’s time <strong>measurement</strong> geometric reference frame rotation<br />

Polo Boreale<br />

Zenit1<br />

Zenit2<br />

N<br />

E<br />

ϕ = latitudine<br />

W<br />

sfera<br />

celeste<br />

S<br />

Σ<br />

angoli<br />

orari<br />

Long East0<br />

LMT Greenwich =GMT = Universal <strong>Time</strong> (UT)


<strong>Time</strong> <strong>measurement</strong>: <strong>Solar</strong> <strong>Time</strong><br />

<strong>Solar</strong> <strong>Time</strong>: corrections<br />

Error (E): measured according to an Earth meridian = Greenwich meridian at 00h<br />

LMT greenwich<br />

=GMT=UT (universal time)<br />

Greenwich meridian-observer meridian link: terrestrial longitude (L)<br />

Therefore:<br />

• Goal: mean angular position of the Sun into actual (apparent) sun position conversion:<br />

• Procedure for error computation:<br />

LMT→E → LAT<br />

1. Transfer to Greenwich:<br />

E(LMT) →E(GMT) ⇒ LMT →L →GMT<br />

2. Listed time translation:<br />

E<br />

E: E=E|<br />

h i<br />

00 UT<br />

se GMT≠00h E<br />

→lineear interpolation on 24h<br />

E i+<br />

1<br />

00hUT, g i<br />

00hUT, g i+1<br />

a h b m c sUT , g i<br />

days<br />

Ei 1 -<br />

E (GMT) =<br />

+ Ei<br />

(GMT - GMT i ) +<br />

24<br />

h<br />

Ei


<strong>Time</strong> <strong>measurement</strong>: <strong>Solar</strong> <strong>Time</strong><br />

Analemma:<br />

Apparent Sun Trajectory with respect to the mean Sun within a year


Analemmas<br />

Milano<br />

Bergamo


<strong>Time</strong> <strong>measurement</strong>: <strong>Solar</strong> <strong>Time</strong><br />

Civil <strong>Time</strong>: LCT<br />

LMT ≠ for different longitude on Earth→rule = Earth sphere partitioning into 24 orange<br />

slices<br />

1 slice =1h=15°<br />

Reference time in the slice: LMT of the central meridian<br />

Reference Origin: Greenwich (GB)<br />

GMT-LMT=L EST green L0<br />

From: LCT to LMT: LCT-LMT=∆L<br />

Ex: Etna (central meridian): LMT=LCT=16.00h<br />

Milan LCT=16.00h ≠ LMT ∆L= 15°-9°=6°=24min<br />

LMT=15h 26min


<strong>Time</strong> <strong>measurement</strong>: <strong>Solar</strong> <strong>Time</strong><br />

24 slices 1h each (15 deg)<br />

Each location assumes its fuse central meridian time Local Civil <strong>Time</strong><br />

LCT+∆long = LMT


<strong>Time</strong> <strong>measurement</strong>: Civil<strong>Time</strong><br />

CET = Central Europe time: UT+1h<br />

CEST = Central Europe Saving time: UT+2h<br />

EET = Eastern European time: UT+2h<br />

EEST = Eastern European Saving time: UT+3h<br />

MST = Moskow Standard <strong>Time</strong>: UT+3h<br />

MSD = Moskow Saving Daylight: UT+4h<br />

EST = Eastern Standard time: UT-5h<br />

EDT = Eastern Daylight saving time UT-4h<br />

PST = Pacific Standard time: UT-8h<br />

PDT = Pacific Daylight saving time UT-7h<br />

… … … …


<strong>Time</strong> <strong>measurement</strong>: Sideral <strong>Time</strong><br />

Sideral <strong>Time</strong>: reference body = Stars<br />

∆t≈1<br />

°<br />

Sideral day:<br />

1 sideral day<br />

<strong>Time</strong> span betweeen two consecutive passages of the vernal point on the local meridian:<br />

23h 56m =360°<br />

LST=α star +t star<br />

Local Sideral <strong>Time</strong> (LST):<br />

Hour angle of γ<br />

Sideral Day


<strong>Time</strong> <strong>measurement</strong>: sideral time<br />

Reference UT=00 h 00 m 00 s


<strong>Time</strong> <strong>measurement</strong>: Calendars<br />

• Calendar date : Gregorian time representation DD/MM/YYYY<br />

uncomfortable for computation<br />

• Julian date: no. of days since 01/01/4713 B.C. , noon<br />

(the Julian date for January 1, 2000, 12.00h p.m. is 2451544.5)<br />

•Modified Julian Date: no.of days since November 17,1858 (-2400000.5 JD)<br />

midnight January 1, 2000, 00.00h am=51544 days<br />

•Modified Julian Date 2000(MJD2000): no. of days since midnight January 1,2000<br />

•Common time reference dates are:<br />

• 1950 coordinates mean value at epoch 01/01/1950<br />

• 2000 coordinates mean value at epoch 01/01/2000<br />

Gregorian to JD<br />

Y + (M + 9) /12 275 M<br />

J = 367 Y − 7<br />

+ + D + 1721013<br />

4<br />

9<br />

.5


<strong>Time</strong> <strong>measurement</strong>: Years<br />

Year: time interval between two consecutive passages of the Earth on a same<br />

point on its orbit<br />

Tropic Year: vernal point passage = 365.2422 solar days<br />

366.2422 Sidereal days<br />

Anomalistic year: pericentre passage: 365.2564 solar days<br />

Sideral year: fixed star alignment: 365.2596 solar days<br />

Tropical and anomalistic years depend on time dependent reference frames


<strong>Time</strong> <strong>measurement</strong>: Calendars<br />

Calendars: long period reference<br />

-Gregorian calendar: ex. January 31, 2007 Wednesday<br />

Period: year<br />

reference: tropic year (365,2422dd~365dd)<br />

decimal correction: +1 day every 4 years: leap: 0.25x4<br />

excess: .25-.2422=0.0078 d/yr~0.01dd/yr<br />

⇒ every 100>1d ∃ leap<br />

due: 0.0022 d/sec<br />

⇒ every 400 ∃ leap<br />

-Julian Calendar: (introduced by Giulio Cesare in 45 BC up to 1500)<br />

Period: year<br />

Reference: tropic year (365.25)


Reference systems: summary


Spherical reference systems transformation: basics<br />

Spherical trigonometry<br />

Hp: arcs= geodetics = maximum circle arcs<br />

Sine theorem<br />

sin b<br />

sin Bˆ<br />

sin b<br />

sin Bˆ<br />

=<br />

=<br />

sin c<br />

sin Ĉ<br />

sin a<br />

sin Â<br />

Cosine theorem<br />

cos c = cos a ⋅cos b + sin a ⋅sin b ⋅cos Ĉ<br />

cos a = cos b ⋅cos c + sin b ⋅sin c⋅cos Â<br />

cos Cˆ =−cos Aˆ ⋅ cos Bˆ<br />

+ sin Aˆ<br />

⋅sin Bˆ<br />

⋅cos c<br />

cos Aˆ<br />

=−cos Bˆ ⋅ cos Cˆ<br />

+ sin Bˆ ⋅sin cˆ<br />

⋅cos a<br />

Cotangent theorem<br />

sin a ⋅ctgb<br />

= cos a ⋅cos Ĉ + sin Ĉ⋅ctgBˆ<br />

sin c⋅ctga<br />

= cos c⋅cos Bˆ + sin Bˆ ⋅ctgÂ


Rectangular reference systems transformation: basics<br />

⎡1 0 0 ⎤<br />

ROT1( ϑ ) =<br />

⎢<br />

0 cos sin<br />

⎥<br />

⎢<br />

ϑ ϑ<br />

⎥<br />

⎢⎣<br />

0 −sinϑ cosϑ⎥⎦<br />

⎡cos ϑ 0 −sin<br />

ϑ⎤<br />

ROT2( ϑ ) =<br />

⎢<br />

0 1 0<br />

⎥<br />

⎢<br />

⎥<br />

⎢⎣<br />

sin ϑ 0 cos ϑ ⎥⎦<br />

⎡ cos ϑ sin ϑ 0⎤<br />

ROT3( ϑ ) =<br />

⎢<br />

sin cos 0<br />

⎥<br />

⎢<br />

− ϑ ϑ<br />

⎥<br />

⎢⎣<br />

0 0 1⎥⎦


Reference systems transformation: Rectangular<br />

ECEF<br />

IJK<br />

ECIECEF<br />

r = ROT3( ϑ )r<br />

GST<br />

r = ROT3( −ϑ )r<br />

GST<br />

IJK<br />

ECEF<br />

ECEFTopocentric ENZ<br />

r = ROT2( − 90 °+ϕ) ROT3( λ)<br />

r<br />

ENZ<br />

LST<br />

ECEF<br />

= ROT2( − 90 °+ϕ) ROT3( ϑ = λ+ ϑ ) r<br />

GST<br />

IJK<br />

ECITopocentric ENZ<br />

ρ=<br />

r<br />

ENZ<br />

IJK<br />

−r<br />

site−IJK<br />

ρ = ROT2(-90°+ ϕ)ROT3( λ+<br />

ϑ ) ρ<br />

GST<br />

IJK


Reference systems transformation: Spherical/Rectangular<br />

Geocentric inertialECEF<br />

r = ROT3( ϑ )r<br />

ECEF<br />

-1 ⎛rJ<br />

⎞<br />

λ=tan<br />

⎜ ⎟<br />

⎝ rI<br />

⎠<br />

ϕ= sin<br />

⎛r<br />

⎜ r<br />

⎝<br />

−1 k<br />

⎞<br />

⎟<br />

⎠<br />

GST<br />

IJK<br />

⎡rcosϕcosλ⎤ ⎡rI<br />

⎤<br />

r =<br />

⎢<br />

rcosϕsinλ ⎥<br />

=<br />

⎢<br />

r<br />

⎥<br />

ECEF<br />

⎢ ⎥ ⎢ J ⎥<br />

⎢⎣ rsinϕ<br />

⎥⎦ ⎢⎣r<br />

K<br />

⎥⎦<br />

Geocentric Inertial (equatorial)ECI<br />

⎡rcosδcosα⎤ ⎡rI<br />

⎤<br />

r =<br />

⎢<br />

rcosδsinα ⎥<br />

=<br />

⎢<br />

r<br />

⎥<br />

IJK<br />

⎢ ⎥ ⎢ J ⎥<br />

⎢⎣ rsinδ<br />

⎥⎦ ⎢⎣r<br />

K<br />

⎥⎦<br />

2 2 2 -1 ⎛rK<br />

⎞<br />

r = r<br />

ECEF I + rJ + rK<br />

δ=sin<br />

⎜ ⎟<br />

⎝ r ⎠<br />

⎛r<br />

-1 J<br />

λ=α−ϑGST<br />

α=tan<br />

⎜ ⎟<br />

rI<br />

⎝<br />

⎞<br />


Reference systems transformation: Spherical/Rectangular<br />

HorizontalENZ<br />

ρ<br />

ENZ<br />

( )<br />

( )<br />

sin ( el)<br />

⎡ρcos el sin Az ⎤<br />

⎢<br />

⎥<br />

= ⎢<br />

ρcos el cos Az ⎥<br />

⎢ ρ ⎥<br />

⎣<br />

⎦<br />

K<br />

( ) cos( el)<br />

sin el<br />

E<br />

( ) cos( Az)<br />

sin Az<br />

ρ<br />

= =<br />

ρ<br />

2 2<br />

+ ρ<br />

ρ<br />

ρ<br />

= =<br />

ρ ρ ρ ρ<br />

N<br />

2<br />

+<br />

2 2<br />

+<br />

2<br />

ρ<br />

E N E N<br />

E<br />

ρ<br />

N


Northern sky


Southern Sky

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!