28.12.2013 Views

investigation of the effect of hafnium and chromium additions on the ...

investigation of the effect of hafnium and chromium additions on the ...

investigation of the effect of hafnium and chromium additions on the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

INVESTIGATION OF THE EFFECT OF HAFNIUM AND CHROMIUM ADDITIONS ON<br />

THE MICROSTRUCTURES AND SHORT-TERM OXIDATION PROPERTIES OF DC<br />

MAGNETRON SPUTTERED β-NIAL BOND COATS DEPOSITED ON NI-BASED<br />

SUPERALLOYS<br />

by<br />

MICHAEL A. BESTOR<br />

A DISSERTATION<br />

Submitted in partial fulfillment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> requirements<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> Doctor <str<strong>on</strong>g>of</str<strong>on</strong>g> Philosophy<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Metallurgical <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials Engineering<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alabama<br />

TUSCALOOSA, ALABAMA<br />

2010


Copyright Michael Alan Bestor 2010<br />

ALL RIGHTS RESERVED


ABSTRACT<br />

Thermal barrier coatings play a major role in protecting turbine blades from extreme<br />

operating envir<strong>on</strong>ments <str<strong>on</strong>g>and</str<strong>on</strong>g> extending service lifetimes. Reactive elements (e.g. Zr, Hf, Y, Si,<br />

etc.) have been shown to enhance <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> such coating systems when<br />

added in appropriate amounts to overlay b<strong>on</strong>d coats. This study investigated <str<strong>on</strong>g>the</str<strong>on</strong>g> influences <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

processing parameters al<strong>on</strong>g with Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> short-term oxidati<strong>on</strong> performance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> β-NiAl based coatings deposited via direct current magnetr<strong>on</strong> sputtering <strong>on</strong>to CMSX-4 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

René N5 substrates. Sputtering parameters were optimized to yield a z<strong>on</strong>e T microstructure.<br />

The results indicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings are deposited as a solid soluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> precipitati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

RE-doped coatings occur following annealing at 1000°C for times up to four hours. Precipitates<br />

form heterogeneously within <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings with larger precipitates forming at grain boundaries<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> smaller <strong>on</strong>es forming within <str<strong>on</strong>g>the</str<strong>on</strong>g> grains at prior dislocati<strong>on</strong> lines. Small incorporati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coating increased <str<strong>on</strong>g>the</str<strong>on</strong>g> average grain size <str<strong>on</strong>g>and</str<strong>on</strong>g> precipitate size. Transmissi<strong>on</strong><br />

electr<strong>on</strong> microscopy <str<strong>on</strong>g>and</str<strong>on</strong>g> atom probe tomography c<strong>on</strong>firmed that <str<strong>on</strong>g>the</str<strong>on</strong>g> chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitates<br />

is mostly β’-Ni 2 AlHf accompanied by HfC <str<strong>on</strong>g>and</str<strong>on</strong>g> α-Cr.<br />

The results from <str<strong>on</strong>g>the</str<strong>on</strong>g> iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal oxidati<strong>on</strong> studies at 1050°C indicated that increasing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

preoxidati<strong>on</strong> annealing time from two to four hours decreased <str<strong>on</strong>g>the</str<strong>on</strong>g> mass gains observed with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

specimens up to 100 hours. However, significant oxidati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface was<br />

discovered <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidati<strong>on</strong> increased with Hf c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> preoxidati<strong>on</strong> annealing<br />

time. This oxidati<strong>on</strong> is thought to be caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> large number <str<strong>on</strong>g>of</str<strong>on</strong>g> pinhole defects with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ii


z<strong>on</strong>e T microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> large grain boundary volume. Increased Hf c<strong>on</strong>centrati<strong>on</strong>s were also<br />

found at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface <str<strong>on</strong>g>and</str<strong>on</strong>g> this has been shown to lead to dramatic internal<br />

oxidati<strong>on</strong>. The NiAlCrHf samples c<strong>on</strong>tain larger grain sizes <str<strong>on</strong>g>and</str<strong>on</strong>g> precipitates <str<strong>on</strong>g>and</str<strong>on</strong>g> a thinner TGO<br />

than <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf coatings. This combined with <str<strong>on</strong>g>the</str<strong>on</strong>g> lower mass gains during iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

oxidati<strong>on</strong> indicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coatings rapidly form a thin, protective α-Al 2 O 3 layer that<br />

limits additi<strong>on</strong>al transport <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen to <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coat. The results have been analyzed <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

discussed relative to previous research <strong>on</strong> sputter deposited NiAl-Hf coatings.<br />

iii


LIST OF ABBREVIATIONS<br />

Abbreviati<strong>on</strong>s<br />

APT<br />

atom probe tomography<br />

b. c. c. body centered cubic<br />

CVD<br />

DC<br />

EB-PVD<br />

EDS<br />

EPMA<br />

FEG<br />

HAADF<br />

IDZ<br />

LEAP<br />

PVD<br />

RE<br />

RF<br />

SEM<br />

STEM<br />

TBC<br />

TEM<br />

TGO<br />

chemical vapor depositi<strong>on</strong><br />

direct current<br />

electr<strong>on</strong>-beam physical vapor depositi<strong>on</strong><br />

energy dispersive X-ray spectroscopy<br />

electr<strong>on</strong> probe microanalysis<br />

field emissi<strong>on</strong> gun<br />

high angle annular dark field<br />

interdiffusi<strong>on</strong> z<strong>on</strong>e<br />

local electrode atom probe<br />

physical vapor depositi<strong>on</strong><br />

reactive element<br />

radio frequency<br />

scanning electr<strong>on</strong> microscopy<br />

scanning transmissi<strong>on</strong> electr<strong>on</strong> microscopy<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coatings<br />

transmissi<strong>on</strong> electr<strong>on</strong> microscopy<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal grown oxide<br />

iv


WDS<br />

XRD<br />

YSZ<br />

wavelength dispersive X-ray spectroscopy<br />

X-ray diffracti<strong>on</strong><br />

yttria-stabilized zirc<strong>on</strong>ia<br />

Symbols<br />

a o<br />

lattice parameter<br />

at.%<br />

β<br />

atomic percent<br />

NiAl<br />

β′ Ni 2 AlHf<br />

d 111<br />

spacing between NiAl (111) planes<br />

γ′ Ni 3 Al<br />

K p<br />

parabolic c<strong>on</strong>stant<br />

λ<br />

wavelength<br />

v


ACKNOWLEDGEMENTS<br />

With any project, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are always so many that assist us in many ways that make <str<strong>on</strong>g>the</str<strong>on</strong>g> job<br />

at h<str<strong>on</strong>g>and</str<strong>on</strong>g> easier. My dissertati<strong>on</strong> research was definitely no excepti<strong>on</strong>. In my six years at The<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alabama, I have made many new friends <str<strong>on</strong>g>and</str<strong>on</strong>g> had <str<strong>on</strong>g>the</str<strong>on</strong>g> opportunity to learn more<br />

about life through <str<strong>on</strong>g>the</str<strong>on</strong>g>m. First, I would like to thank Drs. Mark Weaver <str<strong>on</strong>g>and</str<strong>on</strong>g> Alan Lane for<br />

serving as my advisors during my research efforts with <str<strong>on</strong>g>the</str<strong>on</strong>g> university. My badges <str<strong>on</strong>g>of</str<strong>on</strong>g> h<strong>on</strong>or are<br />

extended to James Hill, Kim Clary, Dr. Lawrence Hill, Ken Dunn, Bob Fanning, Rich Martens,<br />

Dr. Michael Bersch, Johnny Goodwin, Anne Brasher, Jan Crietz, <str<strong>on</strong>g>and</str<strong>on</strong>g> Lyndall Wils<strong>on</strong> as <str<strong>on</strong>g>the</str<strong>on</strong>g>y are<br />

my “unsung heroes” with all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir assistance <str<strong>on</strong>g>and</str<strong>on</strong>g> making my transiti<strong>on</strong> from Mississippi State<br />

University <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tinued research a pleasurable experience. The support <str<strong>on</strong>g>of</str<strong>on</strong>g> every <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> my<br />

colleagues: Dr. Jair Lizarazo-Adarme, Dr. Patrick Henry, Dr. Xiao Li, Dr. Shelby Shuler, Dr.<br />

Michael Ivie, Arthur Brown, Patrick Coleman, Jas<strong>on</strong> Morgan, Mark Calhoun, Alex Dues,<br />

Prentice Singlet<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> Robb Morris is greatly acknowledged for all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>and</str<strong>on</strong>g> discussi<strong>on</strong>s<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g> years.<br />

I would like to express special gratitude from my NASA sp<strong>on</strong>sors at Marshall Space<br />

Flight Center: Tim Vaughn, Greg Jerman, James Cost<strong>on</strong>, Dr. Binayak P<str<strong>on</strong>g>and</str<strong>on</strong>g>a, Vanessa Bailey,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Bertha Gild<strong>on</strong>. These individuals gave me <str<strong>on</strong>g>the</str<strong>on</strong>g> opportunity to join <str<strong>on</strong>g>the</str<strong>on</strong>g> NASA family <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

provided me access to facilities <str<strong>on</strong>g>and</str<strong>on</strong>g> advice that allowed me to develop in new ways that<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise would not have been possible. My hat is <str<strong>on</strong>g>of</str<strong>on</strong>g>f to <str<strong>on</strong>g>the</str<strong>on</strong>g> NASA family. Thank you for<br />

making my time with you such a w<strong>on</strong>derful memory!<br />

vi


Finally, I would like to express my deepest respect for my family. With <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r chapter in my life coming, it would be selfish to imagine accomplishing all that I have<br />

without <str<strong>on</strong>g>the</str<strong>on</strong>g> unc<strong>on</strong>diti<strong>on</strong>al support from Mama, Daddy, Andy, Laura Beth, Jessie, Granny, <str<strong>on</strong>g>and</str<strong>on</strong>g> so<br />

many o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs that have <str<strong>on</strong>g>of</str<strong>on</strong>g>fered <str<strong>on</strong>g>the</str<strong>on</strong>g>ir advice <str<strong>on</strong>g>and</str<strong>on</strong>g> support. Their teachings have kept me grounded<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> remind me to treat every<strong>on</strong>e with <str<strong>on</strong>g>the</str<strong>on</strong>g> same respect that I strive to obtain in life.<br />

“We must become <str<strong>on</strong>g>the</str<strong>on</strong>g> change we want to see in <str<strong>on</strong>g>the</str<strong>on</strong>g> world.”<br />

-G<str<strong>on</strong>g>and</str<strong>on</strong>g>hi<br />

“O God your sea is so great <str<strong>on</strong>g>and</str<strong>on</strong>g> my boat is so small”<br />

“Die when I may, I want it said <str<strong>on</strong>g>of</str<strong>on</strong>g> me by those who knew me best, that I always plucked a thistle<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> planted a flower where I thought a flower would grow.”<br />

-Abraham Lincoln<br />

vii


TABLE OF CONTENTS<br />

ABSTRACT.................................................................................................................................... ii<br />

LIST OF ABBREVIATIONS........................................................................................................ iv<br />

ACKNOWLEDGEMENTS........................................................................................................... vi<br />

LIST OF TABLES........................................................................................................................ xii<br />

LIST OF FIGURES ..................................................................................................................... xiii<br />

CHAPTER I GENERAL INTRODUCTION .................................................................................1<br />

1.1. General Background ........................................................................................................1<br />

1.2. Motivati<strong>on</strong>.............................................................................................................................2<br />

1.3. Dissertati<strong>on</strong> Layout...............................................................................................................2<br />

CHAPTER II LITERATURE REVIEW 3<br />

2.1. Thermal Barrier Coatings .....................................................................................................3<br />

2.1.1. C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> TBC Layers 3<br />

2.1.2. Failure Mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> TBC system 4<br />

2.2. Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl.................................................................................................................7<br />

2.2.1. Phase Equilibria <str<strong>on</strong>g>and</str<strong>on</strong>g> Crystal Structure 7<br />

2.2.2. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Ternary Alloying Additi<strong>on</strong>s 8<br />

2.1.2.1. Mechanical Properties 9<br />

2.1.2.2. Oxidati<strong>on</strong> Resistance 10<br />

2.1.3. NiAl alloys as TBC b<strong>on</strong>d coats 13<br />

2.1.4. High strength NiAl alloys as TBC b<strong>on</strong>d coats 16<br />

CHAPTER III EXPERIMENTAL PROCEDURE 18<br />

viii


3.1. Sample Preparati<strong>on</strong>.............................................................................................................18<br />

3.1.1. Target <str<strong>on</strong>g>and</str<strong>on</strong>g> substrate preparati<strong>on</strong> 18<br />

3.1.2. Depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coatings 19<br />

3.1.3. Structural <str<strong>on</strong>g>and</str<strong>on</strong>g> Chemical Characterizati<strong>on</strong> 20<br />

3.1.4. Heat Treatment 22<br />

3.2. Iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal <str<strong>on</strong>g>and</str<strong>on</strong>g> Cyclic Oxidati<strong>on</strong> Tests...............................................................................22<br />

CHAPTER IV INFLUENCES OF ANNEALING AND HAFNIUM CONCENTRATION ON<br />

THE MICROSTRUCTURES OF SPUTTER DEPOSITED β-NIAL COATINGS ON<br />

SUPERALLOY SUBSTRATES 23<br />

4.1. Introducti<strong>on</strong>.........................................................................................................................24<br />

4.2. Experimental.......................................................................................................................25<br />

4.3. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> .......................................................................................................27<br />

4.3.1. As-Deposited Coatings 27<br />

4.3.2. Annealed Coatings 29<br />

4.3.3. Three-Dimensi<strong>on</strong>al Atom Probe Tomography (3D-APT) 34<br />

4.4. C<strong>on</strong>clusi<strong>on</strong>s.........................................................................................................................36<br />

Acknowledgements....................................................................................................................36<br />

References..................................................................................................................................37<br />

CHAPTER V INFLUENCES OF CHROMIUM AND HAFNIUM ADDITIONS ON THE<br />

MICROSTRUCTURES OF β-NIAL COATINGS DEPOSITED ON SUPERALLOY<br />

SUBSTRATES 56<br />

5.1. Introducti<strong>on</strong>.........................................................................................................................57<br />

5.2. Experimental.......................................................................................................................59<br />

ix


5.3. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> ......................................................................................................60<br />

5.3.1. Microstructure 60<br />

5.3.2. Chemistry 62<br />

5.4. C<strong>on</strong>clusi<strong>on</strong>s.........................................................................................................................66<br />

Acknowledgements....................................................................................................................67<br />

References..................................................................................................................................68<br />

CHAPTER VI MORPHOLOGICAL AND CHEMICAL EVOLUTION OF NIAL, NIAL-HF,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> NIAL-CR-HF BOND COATS DURING SHORT TERM ISOTHERMAL OXIDATION82<br />

Abstract:.....................................................................................................................................82<br />

6.1 Introducti<strong>on</strong>:.........................................................................................................................83<br />

6.2. Experimental Procedures:...................................................................................................85<br />

6.3. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong>: ......................................................................................................87<br />

6.3.1. Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> as-deposited <str<strong>on</strong>g>and</str<strong>on</strong>g> annealed coatings 87<br />

6.4. Iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal oxidati<strong>on</strong> behavior <str<strong>on</strong>g>and</str<strong>on</strong>g> microstructures............................................................87<br />

6.4.1. Oxidati<strong>on</strong> test results 87<br />

6.4.2. Microstructural changes during oxidati<strong>on</strong> 89<br />

6.5. Elemental Mapping <str<strong>on</strong>g>of</str<strong>on</strong>g> Coatings Iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmally Oxidized for 96 hours................................96<br />

6.6. TEM Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxidized Coatings..................................................................................98<br />

6.7. General Discussi<strong>on</strong> .............................................................................................................99<br />

6.8. Summary...........................................................................................................................102<br />

Acknowledgements..................................................................................................................106<br />

x


CHAPTER VI FACTORS INFLUENCING INTERDIFFUSION BETWEEN SPUTTERED<br />

NIAL OVERLAY COATINGS AND Ni-BASED SUPERALLOY SUBSTRATES<br />

SUBJECTED TO HIGH TEMPERATURES 137<br />

7.1 INTRODUCTION ............................................................................................................137<br />

7.2 DISCUSSION OF RESULTS ...........................................................................................138<br />

7.3 REFERENCES .................................................................................................................141<br />

CHAPTER VIII SUMMARY AND CONCLUSIONS 144<br />

CHAPTER IX FUTURE WORK 148<br />

REFERENCES 149<br />

APPENDIX A METALLOGRAPHIC SPECIMEN PREPARATION 162<br />

APPENDIX B TEM SAMPLE PREPARATION USING A FOCUSED ION BEAM 163<br />

APPENDIX C APT SAMPLE PREPARATION USING A FOCUSED ION BEAM 168<br />

xi


LIST OF TABLES<br />

CHAPTER III<br />

Table 3.1. Nominal Target Chemical Compositi<strong>on</strong>s in Atomic Percent ......................................19<br />

Table 3.2. Chemical compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CMSX-4 ® <str<strong>on</strong>g>and</str<strong>on</strong>g> Rene N5 superalloys.................................19<br />

Table 3.3. Depositi<strong>on</strong> parameters for NiAl-X coatings ................................................................19<br />

CHAPTER IV<br />

Table 1. Nominal chemical compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sputtering targets....................................................43<br />

Table 2. Lattice parameters for <str<strong>on</strong>g>the</str<strong>on</strong>g> β-NiAl phase.........................................................................43<br />

CHAPTER V<br />

Table 1. Nominal chemical compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sputtering targets....................................................73<br />

CHAPTER VI<br />

Table 1. Nominal target c<strong>on</strong>centrati<strong>on</strong>s in atomic percent .........................................................109<br />

Table 2. Nominal chemical compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> coatings after oxidati<strong>on</strong>........................................110<br />

Table 3. Nominal chemical compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> coatings after oxidati<strong>on</strong> for 96h at 1050°C..........110<br />

APPENDIX A<br />

Table A.1. General polishing method for Ni-based superalloys.................................................158<br />

xii


LIST OF FIGURES<br />

CHAPTER II<br />

Fig. 2.1. Schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a multi-layer <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coating system. .................... 4<br />

Fig. 2.2. Phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> Ni-Al [79]. .......................................................................................... 8<br />

Fig. 2.3. NiAl B2 (CsCl) structure................................................................................................. 9<br />

Fig. 2.4. Ni-Al-Hf ternary phase diagram [84]. ........................................................................... 11<br />

Fig. 2.5. Crystal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Heusler phase................................................................................. 12<br />

CHAPTER IV<br />

Figure 1. Representative SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> as-deposited coatings: (a) NiAl <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) NiAl-<br />

1Hf. ....................................................................................................................................... 44<br />

Figure 2. Plan view TEM images collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl coatings: (a) as-deposited, (b)<br />

annealing at 1000°C for two hours, <str<strong>on</strong>g>and</str<strong>on</strong>g> (c) annealing at 1000°C for four hours. ................ 45<br />

Figure 3. Elemental compositi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles for as-deposited coatings: (a) NiAl <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) NiAl-1Hf.<br />

............................................................................................................................................... 46<br />

Figure 4. X-ray diffracti<strong>on</strong> patterns for as-deposited coatings. ................................................... 47<br />

Figure 5. Representative SEM micrographs for: (a) NiAl annealed for two hours, (b) NiAl<br />

annealed for four hours, (c) NiAl-1Hf annealed for two hours, <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) NiAl-1Hf annealed<br />

for four hours. ....................................................................................................................... 48<br />

xiii


Figure 6. Backscattered SEM image <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-1Hf showing <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g>-rich<br />

precipitates after annealing. .................................................................................................. 49<br />

Figure 7. Plain view TEM images from coatings after annealing for four hours: (a) NiAl <str<strong>on</strong>g>and</str<strong>on</strong>g> (b)<br />

NiAl-1Hf. .............................................................................................................................. 50<br />

Figure 8. STEM-HAADF image <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-1Hf after annealing for four hours at 1000°C. .......... 51<br />

Figure 9. Elemental compositi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles for annealed coatings: (a) Nickel, (b) Chromium, (c)<br />

Aluminum, <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) Hafnium................................................................................................. 52<br />

Figure 10. X-ray diffracti<strong>on</strong> patterns for annealed coatings: (a) NiAl annealed two hours, (b)<br />

NiAl annealed four hours, (c) NiAl-1Hf annealed two hours, <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) NiAl-1Hf annealed<br />

four hours. ............................................................................................................................. 53<br />

Figure 11. 3D-APT data for NiAl-1Hf after annealing for four hours: (a) all elements within <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sample <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) <strong>on</strong>ly <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> carb<strong>on</strong>.............................................................................. 54<br />

Figure 12. (a) Two-dimensi<strong>on</strong>al isosurface rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a NiAl-1Hf coating that was<br />

analyzed using 3D-APT, <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) corresp<strong>on</strong>ding c<strong>on</strong>centrati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitate. ... 55<br />

CHAPTER V<br />

Figure 1. Representative SEM micrographs showing <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited <str<strong>on</strong>g>and</str<strong>on</strong>g> annealed NiAl-1Hf (a,<br />

b) <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAlCrHf (c, d) coatings. .......................................................................................... 73<br />

Figure 2. XRD patterns collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited <str<strong>on</strong>g>and</str<strong>on</strong>g> annealed NiAl-1Hf (a) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

NiAlCrHf (b)......................................................................................................................... 74<br />

Figure 3. Plan view TEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> (a) NiAl-1Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) NiAlCrHf coatings<br />

following annealing at 1000°C for four hours. ..................................................................... 75<br />

xiv


Figure 4. EPMA line pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited <str<strong>on</strong>g>and</str<strong>on</strong>g> annealed NiAl-1Hf <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

NiAlCrHf coatings showing (a) Al, (b) Cr, (c) Ni, <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) Hf. ............................................ 76<br />

Figure 5. Cross-secti<strong>on</strong>al SEM-EDS element maps for <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coating after annealing for<br />

four hours. ............................................................................................................................. 77<br />

Figure 6. Cross-secti<strong>on</strong>al SEM-EDS element maps for <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coating after annealing for<br />

four hours. ............................................................................................................................. 78<br />

Figure 7. STEM-HAADF image collected from a NiAlCrHf coating that was annealed for four<br />

hours at 1000°C with EDS spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> β’-Ni 2 AlHf precipitate. ............................................. 79<br />

Figure 8. 3D-APT data for NiAlCrHf after annealing for four hours at 1000°C: (a) full<br />

rec<strong>on</strong>structi<strong>on</strong> displaying all elements in sample <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) 2D-isosurface rec<strong>on</strong>structi<strong>on</strong><br />

showing features that are rich in Cr. ..................................................................................... 80<br />

Figure 9. Corresp<strong>on</strong>ding c<strong>on</strong>centrati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile for <str<strong>on</strong>g>the</str<strong>on</strong>g> large Cr-rich precipitate in Figure 8b. ... 81<br />

CHAPTER VI<br />

Figure 1. Specific mass changes measured with iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal oxidati<strong>on</strong> (I) at 1050°C for NiAl-X<br />

coatings <strong>on</strong> René N5. Additi<strong>on</strong>al samples were subjected to l<strong>on</strong>g cycle cyclic oxidati<strong>on</strong> (C)<br />

at 1050°C. ........................................................................................................................... 115<br />

Figure 2. X-ray diffracti<strong>on</strong> spectra collected from samples that were iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmally oxidized at<br />

1050°C for 96 hours. Samples are divided according to annealing time with two <str<strong>on</strong>g>and</str<strong>on</strong>g> four<br />

hours shown in parts (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) respectively. .................................................................... 116<br />

Figure 3. SEM images collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-0.5Hf samples that were annealed for<br />

(a) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) four hours <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n oxidized for 96 hours. ................................................ 117<br />

xv


Figure 4. SEM images collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-1Hf samples that were annealed for<br />

(a) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) four hours <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n oxidized for 96 hours. ................................................ 118<br />

Figure 5. SEM images collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAlCrHf samples that were annealed for<br />

(a) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) four hours <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n oxidized for 96 hours. ................................................ 119<br />

Figure 6. Cross-secti<strong>on</strong>al SEM images <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-0.5Hf samples: annealed for (a) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) four<br />

hours <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidized for 96 hours.......................................................................................... 120<br />

Figure 7. Cross-secti<strong>on</strong>al SEM images <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-1Hf samples: annealed for (a) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) four<br />

hours <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidized for 96 hours.......................................................................................... 121<br />

Figure 8. Cross-secti<strong>on</strong>al SEM images <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAlCrHf samples: annealed for (a) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) four<br />

hours <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidized for 96 hours.......................................................................................... 122<br />

Figure 9. Elemental compositi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf samples that were<br />

annealed for (a) two hours (b) four hours <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidized for 96 hours. ................................ 123<br />

Figure 10. Elemental compositi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf samples that were<br />

annealed for (a) two hours (b) four hours <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidized for 96 hours. ................................ 124<br />

Figure 11. Elemental compositi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf samples that were<br />

annealed for (a) two hours (b) four hours <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidized for 96 hours. ................................ 125<br />

Figure 12. Elemental maps <str<strong>on</strong>g>and</str<strong>on</strong>g> SEM cross-secti<strong>on</strong>al images collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf<br />

samples that were annealed for (a-d) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (e-h) four hours <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidized for 96 hours.126<br />

Figure 13. Elemental maps <str<strong>on</strong>g>and</str<strong>on</strong>g> SEM cross-secti<strong>on</strong>al images collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf<br />

samples that were annealed for (a-d) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (e-h) four hours <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidized for 96 hours.128<br />

Figure 14. Elemental maps <str<strong>on</strong>g>and</str<strong>on</strong>g> SEM cross-secti<strong>on</strong>s collected from NiAlCrHf coatings after<br />

annealing for: two hours (a-e) <str<strong>on</strong>g>and</str<strong>on</strong>g> four hours (f-j) four hours followed by oxidizing for 96<br />

hours.................................................................................................................................... 130<br />

xvi


Figure 15. Plan view TEM images <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-0.5Hf iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmally oxidized for 96 hours imaged<br />

using bright field <str<strong>on</strong>g>and</str<strong>on</strong>g> STEM-HAADF techniques respectively: annealed for (a,b) two <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

(c,d) four hours. The boxes in (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) highlight <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong>s imaged in (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b). .... 134<br />

Figure 16. Plan view TEM images <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-1Hf iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmally oxidized for 96 hours imaged using<br />

bright field <str<strong>on</strong>g>and</str<strong>on</strong>g> STEM-HAADF techniques respectively: annealed for (a,b) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (c,d)<br />

four hours. The boxes in (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) highlight <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong>s imaged in (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (c).............. 135<br />

Figure 17. Plan view TEM samples <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAlCrHf iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmally oxidized for 96 hours imaged<br />

using bright field <str<strong>on</strong>g>and</str<strong>on</strong>g> STEM-HAADF techniques: annealed for (a,b) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (b,c) four<br />

hours. The box in (a) highlights <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> imaged in (b). ................................................ 136<br />

xvii


CHAPTER I<br />

GENERAL INTRODUCTION<br />

1.1. General Background<br />

Gas turbine engines typically utilize combustor <str<strong>on</strong>g>and</str<strong>on</strong>g> turbine superalloys with melting<br />

points ranging from 1230°C to 1315°C. They are applied in combusti<strong>on</strong> gas envir<strong>on</strong>ments where<br />

temperatures can exceed 1480°C for brief times, making <str<strong>on</strong>g>the</str<strong>on</strong>g>m susceptible to incipient melting<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental damage due to oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>/or hot corrosi<strong>on</strong> [1-9]. As a c<strong>on</strong>sequence,<br />

current combustor <str<strong>on</strong>g>and</str<strong>on</strong>g> turbine engine comp<strong>on</strong>ents must be actively cooled with discharge air<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> compressor. An obvious approach to maximize efficiency is to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cooling air. One way to accomplish this is to design more <str<strong>on</strong>g>effect</str<strong>on</strong>g>ive heat transfer geometries.<br />

This can be achieved by drilling holes through <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent to bleed in air, which cools <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

combusti<strong>on</strong> gas path surface [3, 10]. However, more significant benefits can be obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thin <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally insulating layers known as <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coatings or TBCs [1-13].<br />

TBCs protect turbine engine comp<strong>on</strong>ents by acting as <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal insulators between <str<strong>on</strong>g>the</str<strong>on</strong>g> base<br />

metal <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hot gases to which <str<strong>on</strong>g>the</str<strong>on</strong>g>y are exposed. Thermal barrier coatings based <strong>on</strong> zirc<strong>on</strong>ium<br />

oxide have been used for nearly three decades to extend <str<strong>on</strong>g>the</str<strong>on</strong>g> lives <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft turbines <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

moving <str<strong>on</strong>g>and</str<strong>on</strong>g> stati<strong>on</strong>ary comp<strong>on</strong>ents operating in hostile <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal <str<strong>on</strong>g>and</str<strong>on</strong>g> corrosive envir<strong>on</strong>ments [14,<br />

15]. To facilitate <str<strong>on</strong>g>the</str<strong>on</strong>g>ir success, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal c<strong>on</strong>ductivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ceramic coating is usually a<br />

couple <str<strong>on</strong>g>of</str<strong>on</strong>g> orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude lower than <str<strong>on</strong>g>the</str<strong>on</strong>g> base metal. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> ceramic usually has a<br />

higher reflectivity than <str<strong>on</strong>g>the</str<strong>on</strong>g> metal to take advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> radiative heat transfer [16]. Generally,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se systems are c<strong>on</strong>servatively designed (i.e., over-designed) as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly partial<br />

1


underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> materials fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> TBC macro-, micro-c<strong>on</strong>stituent<br />

systems within <str<strong>on</strong>g>the</str<strong>on</strong>g> overall designs.<br />

1.2. Motivati<strong>on</strong><br />

Various durability <str<strong>on</strong>g>and</str<strong>on</strong>g> reliability issues <str<strong>on</strong>g>of</str<strong>on</strong>g> TBCs have prevented <str<strong>on</strong>g>the</str<strong>on</strong>g>m from achieving<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir full potential. Thus, a study was initiated <str<strong>on</strong>g>the</str<strong>on</strong>g> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> which was to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

properties <str<strong>on</strong>g>and</str<strong>on</strong>g> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> model, high-strength NiAl overlay b<strong>on</strong>d coatings c<strong>on</strong>taining up to<br />

1.0 at.% Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> up to 5.0 at.% Cr as alloying <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g>. The coatings were produced via DC<br />

magnetr<strong>on</strong> sputtering under c<strong>on</strong>diti<strong>on</strong>s designed to produce different microstructural<br />

morphologies. The goal was to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> influences <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

microstructure <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se model coating alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> to provide baseline<br />

informati<strong>on</strong> useful for <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> more advanced TBC b<strong>on</strong>d coats.<br />

1.3. Dissertati<strong>on</strong> Layout<br />

This dissertati<strong>on</strong> will start with a brief introducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> research background. A literature<br />

review related to this study will be provided in Chapter II. Experimental procedures will be<br />

detailed in Chapter ΙΙI. Chapter IV discusses <str<strong>on</strong>g>the</str<strong>on</strong>g> influences <str<strong>on</strong>g>of</str<strong>on</strong>g> depositi<strong>on</strong> parameters <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> sputtered NiAl-Hf coatings. Chapter V presents <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Cr <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> to NiAl-Hf coatings. Chapter VI c<strong>on</strong>centrates <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal oxidati<strong>on</strong><br />

performance <str<strong>on</strong>g>and</str<strong>on</strong>g> resulting microstructures. C<strong>on</strong>clusi<strong>on</strong>s from this research will be summarized<br />

in Chapter VII. Directi<strong>on</strong>s for future research will be provided in Chapter VIII.<br />

2


CHAPTER II<br />

LITERATURE REVIEW<br />

2.1. Thermal Barrier Coatings<br />

2.1.1. C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> TBC Layers<br />

Thermal barrier coatings (TBCs) have been used to extend <str<strong>on</strong>g>the</str<strong>on</strong>g> lives <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft turbines<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir moving <str<strong>on</strong>g>and</str<strong>on</strong>g> stati<strong>on</strong>ary comp<strong>on</strong>ents operating in hostile <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal <str<strong>on</strong>g>and</str<strong>on</strong>g> corrosive<br />

envir<strong>on</strong>ments for several decades [9, 11-15, 17]. Modern TBC systems typically c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

insulating ceramic topcoat applied ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r by plasma spraying (PS) or electr<strong>on</strong> beam-physical<br />

vapor depositi<strong>on</strong> (EB-PVD) over a metallic b<strong>on</strong>d coat that is deposited directly <strong>on</strong>to a Ni-base<br />

superalloy substrate [9, 12, 13, 17, 18]. Fig. 2.1 shows a schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a typical<br />

TBC cross-secti<strong>on</strong>. The ceramic top coat is typically yttria-stabilized zirc<strong>on</strong>ia (YSZ) due to its<br />

low <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal c<strong>on</strong>ductivity <str<strong>on</strong>g>and</str<strong>on</strong>g> relatively high coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal expansi<strong>on</strong> (CTE) [17, 18].<br />

The primary classes <str<strong>on</strong>g>of</str<strong>on</strong>g> underlying b<strong>on</strong>d coats are: (i) diffusi<strong>on</strong> aluminide coatings (i.e. NiAl,<br />

PtAl, NiPtAl), <str<strong>on</strong>g>and</str<strong>on</strong>g> (ii) plasma sprayed MCrAlY overlay coatings, where “M” is Ni, Co, Fe or a<br />

combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se elements, <str<strong>on</strong>g>and</str<strong>on</strong>g> “Y” is ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r an oxygen-active element (i.e., Y, Si, Ta or Hf),<br />

or a precious metal (i.e., Pt, Pd, Ru, or Re). The underlying b<strong>on</strong>d coat must be resistant to both<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmomechanical fatigue <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidati<strong>on</strong> (as <str<strong>on</strong>g>the</str<strong>on</strong>g> YSZ coating is essentially transparent to oxygen<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> thus does not protect <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate) [18-22]. During high temperature operati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> even<br />

sometimes during <str<strong>on</strong>g>the</str<strong>on</strong>g> preparati<strong>on</strong>, a thin <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally grown oxide (TGO) layer c<strong>on</strong>sisting<br />

predominantly <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2 O 3 forms between <str<strong>on</strong>g>the</str<strong>on</strong>g> top coat <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coat. This layer is <str<strong>on</strong>g>the</str<strong>on</strong>g> basis for<br />

3


<str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> resistance exhibited by <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coat <str<strong>on</strong>g>and</str<strong>on</strong>g> provides adherence between <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d<br />

coat <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ceramic top coat.<br />

The benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> a TBC is not <strong>on</strong>ly in extending comp<strong>on</strong>ent life, but also in facilitating a<br />

significant increase in operating temperatures. These are estimated to be as high as 150°C to<br />

200°C above <str<strong>on</strong>g>the</str<strong>on</strong>g> melting points <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> turbine superalloys. This is approximately equivalent to a<br />

three-fold improvement in comp<strong>on</strong>ent durability <str<strong>on</strong>g>and</str<strong>on</strong>g> an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> 1% in specific fuel<br />

c<strong>on</strong>sumpti<strong>on</strong> [1, 9, 14].<br />

Material<br />

Yttria stabilized<br />

zirc<strong>on</strong>ia<br />

• Plasma Sprayed<br />

• EB-PVD<br />

Al 2 O 3 TGO<br />

• MCrAlY<br />

• Diffusi<strong>on</strong> aluminide<br />

(i.e. NiAl, PtAl,<br />

etc.)<br />

Hot Combusti<strong>on</strong> Gases<br />

Ceramic topcoat<br />

B<strong>on</strong>d coat<br />

Superalloy<br />

Attributes<br />

Provides<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal insulati<strong>on</strong><br />

Provides<br />

oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

corrosi<strong>on</strong><br />

Internal Cooling Air<br />

Fig. 2.1. Schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a multi-layer <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coating system.<br />

2.1.2. Failure Mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> TBC system<br />

Since TBCs have an insulating capability [1, 2, 14, 15, 23], <str<strong>on</strong>g>the</str<strong>on</strong>g> protective <str<strong>on</strong>g>effect</str<strong>on</strong>g>s<br />

supplied by TBCs <strong>on</strong>ly last as l<strong>on</strong>g as <str<strong>on</strong>g>the</str<strong>on</strong>g> ceramic top coat remains intact <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate.<br />

Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> spallati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> topcoat from <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent is always c<strong>on</strong>sidered as <str<strong>on</strong>g>the</str<strong>on</strong>g> sign<br />

4


<str<strong>on</strong>g>of</str<strong>on</strong>g> TBC failure. Therefore, durability <str<strong>on</strong>g>and</str<strong>on</strong>g> reliability are <str<strong>on</strong>g>the</str<strong>on</strong>g> critical requirement in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

developments <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g>ive TBCs.<br />

Different manufacturing methods lead to different TBC microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

corresp<strong>on</strong>dingly different TBC failure modes. PS TBCs have porous <str<strong>on</strong>g>and</str<strong>on</strong>g> microcracked<br />

structures that <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>tain interlocking grains <str<strong>on</strong>g>and</str<strong>on</strong>g> pores oriented parallel to <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate<br />

surface [9, 11, 13, 24, 25]. They are usually applied <strong>on</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> MCrAlY b<strong>on</strong>d coats. EB-PVD<br />

TBCs have columnar microstructures which are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> segmented, freest<str<strong>on</strong>g>and</str<strong>on</strong>g>ing ceramic<br />

columns that extend perpendicular to <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate [9, 11, 24, 26]. Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coat<br />

plays a major role in <str<strong>on</strong>g>the</str<strong>on</strong>g> failure modes <str<strong>on</strong>g>of</str<strong>on</strong>g> both types <str<strong>on</strong>g>of</str<strong>on</strong>g> TBCs because TBC life is limited by<br />

physical loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating (i.e., if <str<strong>on</strong>g>the</str<strong>on</strong>g> coating spalls, protecti<strong>on</strong> is lost).<br />

The <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> TBC spallati<strong>on</strong> is caused by microstructural instabilities at <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d<br />

coat/TGO or TGO/top coat interface, <str<strong>on</strong>g>the</str<strong>on</strong>g> actual nature <str<strong>on</strong>g>of</str<strong>on</strong>g> which varies from <strong>on</strong>e TBC system to<br />

ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r [4, 9, 10, 13, 14, 24, 27-39]. Two c<strong>on</strong>tributors to TBC failure have been identified as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extent <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>d coat oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> strains generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> CTE mismatch between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ceramic topcoat <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> metallic comp<strong>on</strong>ents within <str<strong>on</strong>g>the</str<strong>on</strong>g> system. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>tributing factors<br />

include <str<strong>on</strong>g>the</str<strong>on</strong>g> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coat, microstructural <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical changes that occur within<br />

b<strong>on</strong>d coat during service, surface roughness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent, <str<strong>on</strong>g>and</str<strong>on</strong>g> possible sintering <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> top<br />

coat [18, 20, 26, 40-63]. In reality, it is likely that several mechanisms are operative; <str<strong>on</strong>g>and</str<strong>on</strong>g> all can<br />

influence <str<strong>on</strong>g>the</str<strong>on</strong>g> strain compliance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system.<br />

5


PS b<strong>on</strong>d coatings exhibit higher surface roughness than EB-PVD b<strong>on</strong>d coatings which<br />

initially increases topcoat adherence through mechanical interlocking. In PS TBCs, failure<br />

occurs by delaminati<strong>on</strong> cracking arising from in-plane compressive stresses which cause large<br />

out-<str<strong>on</strong>g>of</str<strong>on</strong>g>-plane tensile stresses. These tensile stresses produce delaminati<strong>on</strong> cracks within <str<strong>on</strong>g>the</str<strong>on</strong>g> TBC<br />

that are parallel to <str<strong>on</strong>g>the</str<strong>on</strong>g> interface <str<strong>on</strong>g>and</str<strong>on</strong>g> near peaks in <str<strong>on</strong>g>the</str<strong>on</strong>g> rough b<strong>on</strong>d coat [2, 4, 11, 13, 64, 65].<br />

In EB-PVD coatings, failures generally occur at <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO/b<strong>on</strong>d coat interface. However,<br />

if substantial b<strong>on</strong>d coat surface rumpling occurs, failures can transfer to <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO/top coat<br />

interface [22, 30, 35, 36, 66-70]. Failure at <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO/b<strong>on</strong>d coat interface results from a<br />

progressive reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> adhesi<strong>on</strong> due to <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> microcracks. Thus, b<strong>on</strong>d<br />

coat oxidati<strong>on</strong> is also a major driving force for failure in EB-PVD TBCs.<br />

MCrAlY <str<strong>on</strong>g>and</str<strong>on</strong>g> diffusi<strong>on</strong> aluminide coatings are all Al 2 O 3 -formers. As such, <str<strong>on</strong>g>the</str<strong>on</strong>g>y exhibit<br />

equivalent oxide growth rates, so l<strong>on</strong>g as an α-Al 2 O 3 TGO forms at <str<strong>on</strong>g>the</str<strong>on</strong>g> top coat/b<strong>on</strong>d coat<br />

interface [13]. Coating performance ultimately depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO to resist<br />

spallati<strong>on</strong> as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> defect formati<strong>on</strong>, microcrack growth <str<strong>on</strong>g>and</str<strong>on</strong>g> adhesi<strong>on</strong> loss. Therefore,<br />

critical issues are <str<strong>on</strong>g>the</str<strong>on</strong>g> ease <str<strong>on</strong>g>of</str<strong>on</strong>g> void formati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO/b<strong>on</strong>d coat interface, how readily less<br />

protective oxides such spinel (NiAl 2 O 4 ) or θ-Al 2 O 3 form beneath <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO, <str<strong>on</strong>g>and</str<strong>on</strong>g> how easily<br />

deb<strong>on</strong>ding occurs at <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO/b<strong>on</strong>d coat interface. All <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se things are dictated by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coat.<br />

6


2.2. Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl<br />

The intermetallic compound NiAl has been used in a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> its high melting point (~1995K), low density (~5.9 g/cm 3 ), good <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal c<strong>on</strong>ductivity<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> excellent envir<strong>on</strong>mental oxidati<strong>on</strong> resistance [71-73]. However, numerous <str<strong>on</strong>g>investigati<strong>on</strong></str<strong>on</strong>g>s<br />

have shown that c<strong>on</strong>venti<strong>on</strong>al NiAl alloys are limited by low ductility <str<strong>on</strong>g>and</str<strong>on</strong>g> low impact resistance<br />

[74, 75] at ambient temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g> poor creep strength at high temperatures [76, 77]. The<br />

following secti<strong>on</strong>s will give a brief overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> general properties <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl.<br />

2.2.1. Phase Equilibria <str<strong>on</strong>g>and</str<strong>on</strong>g> Crystal Structure<br />

The binary Ni-Al phase diagram is shown in Fig. 2.2. There are five intermetallic phases<br />

in this system: NiAl 3 , Ni 2 Al 3 , NiAl, Ni 5 Al 3 , <str<strong>on</strong>g>and</str<strong>on</strong>g> Ni 3 Al. NiAl exhibits a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> solubility<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>, at its stoichiometric compositi<strong>on</strong>, a melting temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 1638°C. Deviati<strong>on</strong>s from<br />

stoichiometry are accommodated by <str<strong>on</strong>g>the</str<strong>on</strong>g> substituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel atoms <strong>on</strong>to aluminum sites in<br />

nickel-rich compositi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> by <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vacancies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> nickel sites in aluminum-rich<br />

compositi<strong>on</strong>s [78].<br />

7


1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

L<br />

NiAl<br />

(β)<br />

L<br />

Ni<br />

(γ)<br />

800<br />

600<br />

Al<br />

400<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Al<br />

At. % Ni<br />

Ni<br />

Fig. 2.2. Phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> Ni-Al [79].<br />

NiAl has a B2 CsCl crystal structure. As shown in Fig. 2.3, <strong>on</strong>e type <str<strong>on</strong>g>of</str<strong>on</strong>g> atom locates at 0,<br />

0, 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r at 1/2, 1/2, 1/2. The lattice parameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stoichiometric compositi<strong>on</strong> at<br />

room temperature is 0.2887 nm [80].<br />

2.2.2. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Ternary Alloying Additi<strong>on</strong>s<br />

The ternary alloying elements <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-X alloys can be categorized into three groups<br />

according to <str<strong>on</strong>g>the</str<strong>on</strong>g> alloy element’s positi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> periodic table (Table 2.1) [81, 82]. Type A<br />

elements, which are those in Groups IIIB, IVB <str<strong>on</strong>g>and</str<strong>on</strong>g> VB, form at least <strong>on</strong>e ternary intermetallic<br />

phase with NiAl, <str<strong>on</strong>g>and</str<strong>on</strong>g> exhibit low solubility. Type B elements, which include those in Group<br />

VIB <str<strong>on</strong>g>and</str<strong>on</strong>g> rhenium from Group VIIB, form pseudobinary eutectics with NiAl. They have limited<br />

solubility in NiAl. Type C elements, which c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> Group VIII elements plus manganese <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

copper, show large solubility in NiAl <str<strong>on</strong>g>and</str<strong>on</strong>g> always form an isostructural B2 intermetallic.<br />

8


Hafnium which is in Group IVB is classified as a type A element. A porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ternary Ni – Al – Hf phase diagram is shown in Fig. 2.4. It shows five intermetallic phases in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Ni-rich corner <str<strong>on</strong>g>of</str<strong>on</strong>g> this system: γ΄-Ni 3 Al, Al 3 Ni, NiAlX (Laves phase), Ni 2 AlX (Heusler phase or<br />

H) <str<strong>on</strong>g>and</str<strong>on</strong>g> Ni 7 (X,Al) 2 [83, 84]. The ternary L2 1 Heusler phase, presented in Fig. 2.5, is a fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

ordering <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> B2 phase to Ni 2 AlX, where <str<strong>on</strong>g>the</str<strong>on</strong>g> element X resides <strong>on</strong> an equivalent Al site. The<br />

NiAlX Laves phase has a C14 hexag<strong>on</strong>al crystal structure.<br />

2.1.2.1. Mechanical Properties<br />

It has been reported that small <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> Zr can be very <str<strong>on</strong>g>effect</str<strong>on</strong>g>ive in improving<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> high-temperature creep strength <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl polycrystals <str<strong>on</strong>g>and</str<strong>on</strong>g> single crystals [71, 85-94]. The<br />

streng<str<strong>on</strong>g>the</str<strong>on</strong>g>ning is believed to be provided by solid soluti<strong>on</strong> hardening due to <str<strong>on</strong>g>the</str<strong>on</strong>g> segregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

solute atoms to <str<strong>on</strong>g>the</str<strong>on</strong>g> dislocati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> grain boundaries [71, 85] <str<strong>on</strong>g>and</str<strong>on</strong>g> precipitati<strong>on</strong> hardening due to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Heusler phase or G-phase (Ni 16 Hf 6 Si 7 or Ni 16 Zr 6 Si 7 ) precipitates<br />

after prol<strong>on</strong>ged aging at high temperatures [91, 94-96].<br />

Ni<br />

Al<br />

Fig. 2.3. NiAl B2 (CsCl) structure.<br />

9


2.1.2.2. Oxidati<strong>on</strong> Resistance<br />

It is widely recognized that small <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> reactive elements (e.g. Hf, Zr,<br />

Y, La, Ce, etc) can significantly improve <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> high temperature alloys<br />

c<strong>on</strong>taining aluminum <str<strong>on</strong>g>and</str<strong>on</strong>g> or <str<strong>on</strong>g>chromium</str<strong>on</strong>g>. This was first called <str<strong>on</strong>g>the</str<strong>on</strong>g> rare-earth <str<strong>on</strong>g>effect</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> more<br />

recently <str<strong>on</strong>g>the</str<strong>on</strong>g> reactive element (RE) <str<strong>on</strong>g>effect</str<strong>on</strong>g> [97-102]. The reactive element <str<strong>on</strong>g>effect</str<strong>on</strong>g> which was first<br />

patented by Pfeil [103] in 1937, was primarily c<strong>on</strong>cerned with cerium <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> to a Ni-Cr alloy.<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g>n, <str<strong>on</strong>g>the</str<strong>on</strong>g> same <str<strong>on</strong>g>effect</str<strong>on</strong>g> has been observed for a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> elements that show a high affinity<br />

for oxygen <str<strong>on</strong>g>and</str<strong>on</strong>g> sulfur, <str<strong>on</strong>g>and</str<strong>on</strong>g> benefits have also been observed for most chromia- <str<strong>on</strong>g>and</str<strong>on</strong>g> alumina-<br />

forming alloys [97, 101].<br />

Table 2.1. Porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic table illustrating <str<strong>on</strong>g>the</str<strong>on</strong>g> three types <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-X phase equilibria [81,<br />

82].<br />

IIIB IVB VB VIB VIIB VIIIB IB IIB<br />

Sc Ti V Cr Mn Fe Co Ni Cu Zn<br />

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd<br />

La Hf Ta W Re Os Ir Pt Au Hg<br />

Ni-Al-X ternary phase(s)<br />

NiAl-X pseudobinary eutectic<br />

High solubility in NiAl <str<strong>on</strong>g>and</str<strong>on</strong>g>/or forms B2 aluminide<br />

Generally, <str<strong>on</strong>g>the</str<strong>on</strong>g> RE <str<strong>on</strong>g>effect</str<strong>on</strong>g>s manifest <str<strong>on</strong>g>the</str<strong>on</strong>g>mselves in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> improved oxide scale<br />

adhesi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> reduced oxide scale growth rate. C<strong>on</strong>siderable work has been d<strong>on</strong>e to try to<br />

explain RE <str<strong>on</strong>g>effect</str<strong>on</strong>g>s over <str<strong>on</strong>g>the</str<strong>on</strong>g> last 30 years. Recently, it has been suggested that <str<strong>on</strong>g>the</str<strong>on</strong>g> RE <str<strong>on</strong>g>effect</str<strong>on</strong>g>s are<br />

likely to be related to <str<strong>on</strong>g>the</str<strong>on</strong>g> following aspects:<br />

10


1. The sulfur <str<strong>on</strong>g>effect</str<strong>on</strong>g>. Studies have shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> sulfur c<strong>on</strong>tent plays an important but<br />

detrimental role in scale spallati<strong>on</strong> [104-109]. However, with a RE additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> detrimental<br />

role <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfur can be minimized or eliminated. This is thought to result from <str<strong>on</strong>g>the</str<strong>on</strong>g> gettering <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

S or some o<str<strong>on</strong>g>the</str<strong>on</strong>g>r operative mechanism. RE <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> eliminate <str<strong>on</strong>g>the</str<strong>on</strong>g> segregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S [100,<br />

110].<br />

40<br />

β<br />

20<br />

Ni 7<br />

Hf 2<br />

Ni 2<br />

AlHf (H)<br />

Ni<br />

Liquid<br />

Ni 5<br />

Hf<br />

20 40<br />

Fig. 2.4. Ni-Al-Hf ternary phase diagram [84].<br />

11


Ni<br />

Al<br />

Hf<br />

Fig. 2.5. Crystal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Heusler phase.<br />

2. Diffusi<strong>on</strong> paths. It has been suggested that grain boundaries are <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly active diffusi<strong>on</strong><br />

paths within <str<strong>on</strong>g>the</str<strong>on</strong>g> oxide scale. The segregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RE <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> to <str<strong>on</strong>g>the</str<strong>on</strong>g> scale grain boundaries<br />

are proposed to decrease elemental diffusi<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>se boundaries since <str<strong>on</strong>g>the</str<strong>on</strong>g> large RE atoms<br />

diffuse more slowly than o<str<strong>on</strong>g>the</str<strong>on</strong>g>r elements (such as Al or Cr) [100]. This causes <str<strong>on</strong>g>the</str<strong>on</strong>g> scale<br />

growth rate to be greatly reduced.<br />

3. Substrate grain size <str<strong>on</strong>g>effect</str<strong>on</strong>g>s. With RE <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g>, a finer substrate grain size can be achieved<br />

due to <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RE-rich precipitates (such as <str<strong>on</strong>g>the</str<strong>on</strong>g> Heusler phase) [97, 101]. The<br />

precipitates can also inhibit alloy grain growth during annealing or extended high<br />

temperature oxidati<strong>on</strong>. A fine alloy grain size promotes protective scale formati<strong>on</strong> by<br />

increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusivity <str<strong>on</strong>g>of</str<strong>on</strong>g> Al or Cr in <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate [100].<br />

12


O<str<strong>on</strong>g>the</str<strong>on</strong>g>r suggesti<strong>on</strong>s include blocking <str<strong>on</strong>g>of</str<strong>on</strong>g> element transportati<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a RE<br />

oxide layer at <str<strong>on</strong>g>the</str<strong>on</strong>g> scale-alloy interface, decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> scale grain size <str<strong>on</strong>g>and</str<strong>on</strong>g> improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> scale<br />

plasticity due to RE oxide particles acting as nucleati<strong>on</strong> sites for <str<strong>on</strong>g>the</str<strong>on</strong>g> first-formed oxides,<br />

stabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crack propagati<strong>on</strong> in scale by <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>d-phase oxide particles,<br />

c<strong>on</strong>densati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vacancies at metal-scale interface due to oxide dispersi<strong>on</strong>s acting as vacancy<br />

sinks [99], <str<strong>on</strong>g>and</str<strong>on</strong>g> etc. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> results from some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se studies were c<strong>on</strong>tradictory, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y still provide a comprehensive explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> RE <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> in high temperature<br />

alloys.<br />

2.1.3. NiAl alloys as TBC b<strong>on</strong>d coats<br />

NiAl <str<strong>on</strong>g>and</str<strong>on</strong>g> its derivatives have been used for more than 30 years as b<strong>on</strong>d coats in TBCs<br />

due to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir excellent oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> corrosi<strong>on</strong> resistance <str<strong>on</strong>g>and</str<strong>on</strong>g> abilities to maintain <str<strong>on</strong>g>the</str<strong>on</strong>g>ir structural<br />

integrity during service. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al NiAl alloys have been hindered by<br />

low ductility <str<strong>on</strong>g>and</str<strong>on</strong>g> low impact resistance [74, 75, 111] at ambient temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g> poor creep<br />

strength at high temperatures [76, 77]. In recent years, platinum-modified diffusi<strong>on</strong> aluminide<br />

coatings, i.e. (Ni,Pt)Al, have emerged as <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coatings <str<strong>on</strong>g>of</str<strong>on</strong>g> choice. It is well established that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y exhibit better high temperature corrosi<strong>on</strong> resistance than <str<strong>on</strong>g>the</str<strong>on</strong>g>ir Pt-free counterparts which<br />

translates into extended service lifetimes for TBCs [18, 57, 112, 113].<br />

As noted above, it is well known that small RE <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g>, generally in solid soluti<strong>on</strong>, can<br />

significantly improve <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2 O 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr 2 O 3 forming alloys by increasing<br />

oxide scale adhesi<strong>on</strong>. In NiAl <str<strong>on</strong>g>and</str<strong>on</strong>g> (Ni,Pt)Al b<strong>on</strong>d coats, RE c<strong>on</strong>tents are maintained around 0.05<br />

at.% which are thought to be near <str<strong>on</strong>g>the</str<strong>on</strong>g>ir solubility limits. RE <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> exceeding this amount<br />

13


have been linked to extensive internal oxidati<strong>on</strong> resulting in <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxide stringers or<br />

pegs [18, 89, 102, 114-118]. It has also been shown that optimal RE c<strong>on</strong>tents can significantly<br />

improve TBC lifetimes. The RE <str<strong>on</strong>g>effect</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g>se alloys have been attributed to improved alumina<br />

scale adhesi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> reduced scale growth rate caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> segregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RE i<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> scale<br />

grain boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> alloy-scale interface [100].<br />

The benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> RE <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> are not limited simply to alloying <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. Several<br />

studies have dem<strong>on</strong>strated that RE <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> to <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying substrates can also lead to<br />

increased oxidati<strong>on</strong> resistance [112, 119-122]. All <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se studies showed that Hf diffused<br />

readily from <str<strong>on</strong>g>the</str<strong>on</strong>g> substrates into <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings <str<strong>on</strong>g>and</str<strong>on</strong>g> to <str<strong>on</strong>g>the</str<strong>on</strong>g> growing oxide films. Tolpygo et al.<br />

[122], who investigated <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> C, Y, <str<strong>on</strong>g>and</str<strong>on</strong>g> Hf <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> to CMSX-4 <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rumpling<br />

resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> platinum aluminide diffusi<strong>on</strong> coatings, argued that Hf incorporated into <str<strong>on</strong>g>the</str<strong>on</strong>g> coating<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> growing oxide increased <str<strong>on</strong>g>the</str<strong>on</strong>g>ir creep resistance <str<strong>on</strong>g>and</str<strong>on</strong>g> thus <str<strong>on</strong>g>the</str<strong>on</strong>g>ir resistance to rumpling.<br />

Pint et al. [123] proposed that <str<strong>on</strong>g>the</str<strong>on</strong>g> creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a pure Hf-doped NiAl coating could<br />

represent a promising approach for improving <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>d coats <str<strong>on</strong>g>and</str<strong>on</strong>g> TBC<br />

lifetime. Over <str<strong>on</strong>g>the</str<strong>on</strong>g> years, several groups have attempted to achieve this goal. Xiang et al. [124-<br />

126] have attempted to use pack cementati<strong>on</strong> to produce Hf-modified coatings. They<br />

dem<strong>on</strong>strated that codepositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> Al by <str<strong>on</strong>g>the</str<strong>on</strong>g> pack cementati<strong>on</strong> was possible from pack<br />

powder mixtures c<strong>on</strong>taining Hf, CrCl 3·6H 2 O <str<strong>on</strong>g>and</str<strong>on</strong>g> Al 2 O 3 ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r with or without <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

elemental Al. The resulting microstructures were found to depend str<strong>on</strong>gly <strong>on</strong> pack compositi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> could be c<strong>on</strong>trollably produced; however, <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting coatings were generally multilayered<br />

14


c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a series <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf-rich phases <strong>on</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> a NiAl layer. Oxidati<strong>on</strong> resistance was not<br />

studied for <str<strong>on</strong>g>the</str<strong>on</strong>g>se coatings.<br />

Lee et al. [127-129] have investigated ways to produce NiAl-Hf b<strong>on</strong>d coatings via hightemperature,<br />

low-activity chemical vapor depositi<strong>on</strong> (CVD) processes. Although <str<strong>on</strong>g>the</str<strong>on</strong>g>y did<br />

succeed in producing Hf c<strong>on</strong>taining coatings, <str<strong>on</strong>g>the</str<strong>on</strong>g>y found that it was difficult to c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf in <str<strong>on</strong>g>the</str<strong>on</strong>g> coating matrix due in part to interdiffusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> phase<br />

formati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> superalloy substrates <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating layer. These results were essentially<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same as those <str<strong>on</strong>g>of</str<strong>on</strong>g> Warnes [130] who in 2001 published <str<strong>on</strong>g>the</str<strong>on</strong>g> results from an industrial study<br />

c<strong>on</strong>ducted in 1991 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1992.<br />

More recently, Nesbitt et al. [131] produced NiAl-based overlay b<strong>on</strong>d coats c<strong>on</strong>taining<br />

Pt, Hf, <str<strong>on</strong>g>and</str<strong>on</strong>g> Zr <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> via low pressure plasma spraying. One advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> this producti<strong>on</strong><br />

method is that it eliminates any significant processing-induced chemical interacti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coating <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate. Interestingly, <str<strong>on</strong>g>the</str<strong>on</strong>g>y observed that NiAl coatings c<strong>on</strong>taining small<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> Zr or Zr plus 7 to 14 at.% Pt exhibited shorter TBC lifetimes than binary NiAl alloys.<br />

This observati<strong>on</strong>, which c<strong>on</strong>tradicts <str<strong>on</strong>g>the</str<strong>on</strong>g> predicti<strong>on</strong>s that RE <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> would increase <str<strong>on</strong>g>the</str<strong>on</strong>g> service<br />

lifetimes <str<strong>on</strong>g>of</str<strong>on</strong>g> TBC systems, was attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> a thicker aluminum oxide layer<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> oxide stringers inward from <str<strong>on</strong>g>the</str<strong>on</strong>g> aluminum oxide into <str<strong>on</strong>g>the</str<strong>on</strong>g> Zr-c<strong>on</strong>taining<br />

coatings.<br />

15


2.1.4. High strength NiAl alloys as TBC b<strong>on</strong>d coats<br />

It is generally believed that optimal Hf <str<strong>on</strong>g>and</str<strong>on</strong>g>/or Zr c<strong>on</strong>tents are around 0.05 at.% which is<br />

near <str<strong>on</strong>g>the</str<strong>on</strong>g>ir solubility limits in NiAl <str<strong>on</strong>g>and</str<strong>on</strong>g> (Ni,Pt)Al. Prior reports suggest that c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

RE’s in excess <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir solubility limits will lead to catastrophic oxidati<strong>on</strong> [132]. This is because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> less oxidati<strong>on</strong> resistant precipitates at grain boundaries within <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings.<br />

Fisher et al. [133] investigated <str<strong>on</strong>g>the</str<strong>on</strong>g> influences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong> implantati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf or Y to platinum<br />

aluminide diffusi<strong>on</strong> coatings <strong>on</strong> MarM002 substrates <str<strong>on</strong>g>and</str<strong>on</strong>g> reported that Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> Y had no<br />

influence <strong>on</strong> coating performance. Ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>y noted that Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> Y promoted <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oxides that had similar adhesi<strong>on</strong>, growth rates, <str<strong>on</strong>g>and</str<strong>on</strong>g> compositi<strong>on</strong>s as those formed <strong>on</strong> n<strong>on</strong>-i<strong>on</strong><br />

implanted coatings. Hafnium i<strong>on</strong> implantati<strong>on</strong> did promote <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf-rich pegs at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oxide/coating interface which were associated with scale spallati<strong>on</strong>. These observati<strong>on</strong>s differed<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> earlier work <str<strong>on</strong>g>of</str<strong>on</strong>g> Jedlinski <str<strong>on</strong>g>and</str<strong>on</strong>g> co-workers [134-138] who showed that i<strong>on</strong> implanted Y<br />

increased oxide scale formati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> decreased <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidati<strong>on</strong>.<br />

Recently, researchers from <str<strong>on</strong>g>the</str<strong>on</strong>g> General Electric Company have developed a series <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

NiAl-based overlay b<strong>on</strong>d coatings c<strong>on</strong>taining higher RE c<strong>on</strong>centrati<strong>on</strong>s [139-147]. These<br />

coatings, which c<strong>on</strong>tain Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> Zr in excess <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.05 at.% <str<strong>on</strong>g>and</str<strong>on</strong>g> which can c<strong>on</strong>tain between 2 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

15 at.% Cr, are reported to exhibit oxidati<strong>on</strong> resistance that is comparable to modern (Ni,Pt)Albased<br />

coatings, increased resistance to rumpling, <str<strong>on</strong>g>and</str<strong>on</strong>g> improved spallati<strong>on</strong> resistance when<br />

incorporated into TBC systems [147]. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir high RE c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g>se new coatings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>tain metallic α-Cr <str<strong>on</strong>g>and</str<strong>on</strong>g> intermetallic precipitates such as <str<strong>on</strong>g>the</str<strong>on</strong>g> Ni 2 AlHf (β´-Heusler)<br />

phase, which are believed to streng<str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> coating via a precipitati<strong>on</strong> hardening mechanism.<br />

Such streng<str<strong>on</strong>g>the</str<strong>on</strong>g>ning has been reported to occur in bulk Zr <str<strong>on</strong>g>and</str<strong>on</strong>g>/or Hf c<strong>on</strong>taining single crystals<br />

16


from which <str<strong>on</strong>g>the</str<strong>on</strong>g>se coatings were derived [75, 76, 87, 91, 96, 148-150]. These alloys have<br />

additi<strong>on</strong>ally been shown to exhibit favorable oxidati<strong>on</strong> resistance both in bulk <str<strong>on</strong>g>and</str<strong>on</strong>g> coating forms<br />

[118, 147]. Balint <str<strong>on</strong>g>and</str<strong>on</strong>g> Hutchins<strong>on</strong> [151, 152], who developed a mechanics-based model to<br />

describe rumpling in <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coating systems, predict that increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> creep resistance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coat would be more resistant to rumpling resulting in better oxidati<strong>on</strong> resistance.<br />

Spitsberg et al. [146] report that <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> β+β´ coatings can be<br />

improved by applying in-situ or post-depositi<strong>on</strong> processes which cause <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings to<br />

recrystallize, resulting in coatings with lower residual stress, more stable grain structures, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> largest number <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitates occupying grain interiors ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than grain boundaries.<br />

Despite <str<strong>on</strong>g>the</str<strong>on</strong>g> potential advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> such coating schemes, very little published informati<strong>on</strong> exists<br />

c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g>ir properties <str<strong>on</strong>g>and</str<strong>on</strong>g> performance.<br />

Ning et al. [153-157] have produced Hf-c<strong>on</strong>taining β+β´ overlay coatings via direct<br />

current magnetr<strong>on</strong> sputtering from composite sputtering targets. In a more recent study, Guo <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

co-workers [158, 159] produced analogous coatings via EB-PVD from binary NiAl <str<strong>on</strong>g>and</str<strong>on</strong>g> pure Hf<br />

sources. Both studies showed that viable multiphase b<strong>on</strong>d coats could be produced via different<br />

physical vapor depositi<strong>on</strong> processes <str<strong>on</strong>g>and</str<strong>on</strong>g> that those coatings could <str<strong>on</strong>g>effect</str<strong>on</strong>g>ively protect superalloys<br />

from oxidati<strong>on</strong>. Both also showed lower mass gains for coatings c<strong>on</strong>taining less than 0.5 at.%<br />

Hf in comparis<strong>on</strong> to higher Hf c<strong>on</strong>tent b<strong>on</strong>d coats. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> Ning et al., <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings were<br />

found to have sub-micr<strong>on</strong> grain structures with Heusler phase precipitates.<br />

17


CHAPTER III<br />

EXPERIMENTAL PROCEDURE<br />

3.1. Sample Preparati<strong>on</strong><br />

3.1.1. Target <str<strong>on</strong>g>and</str<strong>on</strong>g> substrate preparati<strong>on</strong><br />

The sputtering targets used in this study were provided by ACI Alloys (San Jose, CA)<br />

with nominal compositi<strong>on</strong>s presented in Table 3.1. All targets were prepared via arc melting in<br />

an arg<strong>on</strong> atmosphere, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surfaces were ground flat prior to depositi<strong>on</strong>.<br />

Four types <str<strong>on</strong>g>of</str<strong>on</strong>g> substrates were used with this study: Si (111) wafers, corning 1737 glass,<br />

CMSX-4 ® coup<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> Rene N5 coup<strong>on</strong>s. All substrates were ultras<strong>on</strong>ically cleaned in acet<strong>on</strong>e<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> ethanol prior to depositi<strong>on</strong>. Table 3.2 lists <str<strong>on</strong>g>the</str<strong>on</strong>g> nominal chemical compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CMSX-4 ®<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Rene N5. The CMSX-4® substrates were EDM wire cut to dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 9 mm × 9 mm × 2<br />

mm. Prior to depositi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> substrates were subjected to a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard heat treatment in purified<br />

arg<strong>on</strong> to stabilize <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> chemistry. The st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard heat treatment procedure was<br />

four hours at 1573K, followed by four hours at 1473K, <str<strong>on</strong>g>and</str<strong>on</strong>g> finally eight hours at 1143K. Then,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> substrates were polished to a 1200 grit surface-finish using SiC grinding papers.<br />

18


Table 3.1. Nominal Target Chemical Compositi<strong>on</strong>s in Atomic Percent.<br />

Alloy Ni Al Cr Hf<br />

NiAl 51 49 --- ---<br />

NiAl-0.5Hf 51 48 --- 0.5<br />

NiAl-1.0Hf 51 48 --- 1.0<br />

NiAlCrHf 50 44 5.0 1.0<br />

Table 3.2. Chemical compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CMSX-4 ® <str<strong>on</strong>g>and</str<strong>on</strong>g> Rene N5 superalloys.<br />

Element Ni Al Ti Ta Cr Mo W Co Re<br />

CMSX-4® (wt.%) 61.7. 5.6 1.0 6.5 6.5 0.6 6.0 9.0 3.0<br />

(at.%) 63.8 12.6 1.3 2.2 7.6 0.4 2.0 9.3 1.0<br />

René N5 (wt.%) 63.6 6.14 --- 6.5 7.1 1.4 4.94 7.3 2.9<br />

(at.%) 65.1 13.7 --- 2.2 8.2 0.9 1.6 7.4 0.9<br />

3.1.2. Depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coatings<br />

In general, sputtering processes can be divided into four main categories: DC, RF,<br />

magnetr<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> reactive. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are variants within each category <str<strong>on</strong>g>and</str<strong>on</strong>g> hybrids between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se categories[160]. The coatings developed for this study were manufactured using an AJA<br />

Internati<strong>on</strong>al ORION 4 DC magnetr<strong>on</strong> sputtering system arranged in a sputter-down<br />

c<strong>on</strong>figurati<strong>on</strong>. Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r DC magnetr<strong>on</strong> magnet c<strong>on</strong>figurati<strong>on</strong>s are shown in Fig. 3.1.<br />

The magnet c<strong>on</strong>figurati<strong>on</strong> used with this study was unbalanced high rate. This c<strong>on</strong>diti<strong>on</strong> was<br />

selected because it yields <str<strong>on</strong>g>the</str<strong>on</strong>g> highest depositi<strong>on</strong> rate <str<strong>on</strong>g>and</str<strong>on</strong>g> a dense microstructure. Because <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

target is c<strong>on</strong>nected to <str<strong>on</strong>g>the</str<strong>on</strong>g> negative terminal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> DC or RF power supply, it is known as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cathode. After evacuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sputtering chamber, a working gas, typically arg<strong>on</strong>, is<br />

19


introduced <str<strong>on</strong>g>and</str<strong>on</strong>g> i<strong>on</strong>ized. The i<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plasma are <str<strong>on</strong>g>the</str<strong>on</strong>g>n accelerated towards <str<strong>on</strong>g>the</str<strong>on</strong>g> target <str<strong>on</strong>g>and</str<strong>on</strong>g> eject<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> neutral atoms out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> target through momentum transfer[160]. The atoms being ejected<br />

out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> target finally go through <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber, reach <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate surface, <str<strong>on</strong>g>and</str<strong>on</strong>g> deposit <strong>on</strong> it as a<br />

growing film or coating. The resultant microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating is c<strong>on</strong>trolled by <str<strong>on</strong>g>the</str<strong>on</strong>g> material<br />

itself <str<strong>on</strong>g>and</str<strong>on</strong>g> corresp<strong>on</strong>ding depositi<strong>on</strong> parameters, which will be addressed in <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

chapters. The primary depositi<strong>on</strong> parameters being used with this study are listed in Table 3.3.<br />

Coating morphology was varied by stage height, working gas pressure, <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature. The<br />

substrates were allowed to pre-heat <str<strong>on</strong>g>and</str<strong>on</strong>g> stabilize at <str<strong>on</strong>g>the</str<strong>on</strong>g> depositi<strong>on</strong> temperature for at least 45<br />

minutes prior to depositi<strong>on</strong>.<br />

Table 3.3. Depositi<strong>on</strong> parameters for NiAl-X coatings.<br />

Base Pressure<br />


Detailed microstructural analyses were accomplished using an FEI TECNAI G20 Supertwin<br />

200 keV field emissi<strong>on</strong> gun transmissi<strong>on</strong> electr<strong>on</strong> microscope (FEG-TEM). The TECNAI<br />

is also equipped with a high angle annular dark filed detector (HAADF) <str<strong>on</strong>g>and</str<strong>on</strong>g> nano-Energy<br />

Dispersive X-ray Spectroscopy (EDX) system. Integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> microscope with <str<strong>on</strong>g>the</str<strong>on</strong>g> HAADF<br />

detector allows <strong>on</strong>e to operate <str<strong>on</strong>g>the</str<strong>on</strong>g> TEM in <str<strong>on</strong>g>the</str<strong>on</strong>g> scanning transmissi<strong>on</strong> electr<strong>on</strong> microscopy<br />

(STEM) mode. The STEM mode is able to show c<strong>on</strong>trast from elements with different atomic<br />

numbers. This is useful for precipitati<strong>on</strong> or diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elements with different atomic numbers.<br />

TEM sample preparati<strong>on</strong> was c<strong>on</strong>ducted using an FEI Quanta 200-3D dual-beam focused<br />

i<strong>on</strong> beam (FIB). Plan view samples were prepared using a pre-defined automated script <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

specimens were removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> parent epoxy mounted sample via in-situ liftout. All TEM<br />

samples were plasma cleaned using a Fischi<strong>on</strong>e® Model 1020 plasma cleaner being analyzing in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> TEM. This was d<strong>on</strong>e to remove any c<strong>on</strong>taminati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> samples before analysis.<br />

Chemical analysis was achieved using an Energy Dispersive X-ray Spectrometer (EDX)<br />

attached to <str<strong>on</strong>g>the</str<strong>on</strong>g> JEOL 7000F FEG-SEM <str<strong>on</strong>g>and</str<strong>on</strong>g> Wavelength Dispersive X-ray Spectroscopy (WDX)<br />

in a JEOL 8900 electr<strong>on</strong> probe microanalyzer (EPMA). The EPMA tests used an accelerating<br />

voltage <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 keV with a beam size setting <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately <strong>on</strong>e micrometer.<br />

Precipitate chemistry was investigated by TEM nano-EDX <str<strong>on</strong>g>and</str<strong>on</strong>g> atom probe tomography<br />

(APT). The atom probe tomography was c<strong>on</strong>ducted using an IMAGO 3000-X Si Local<br />

Electrode Atom Probe (LEAP) equipped with a pulsed laser attachment. LEAP samples were<br />

prepared using <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB following procedures outlined by Miller [161-165].<br />

21


3.1.4. Heat Treatment<br />

Post-depositi<strong>on</strong> annealing was c<strong>on</strong>ducted to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> adherence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coating to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> to alleviate sputtering defects (e.g. dislocati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> residual stresses). This<br />

was d<strong>on</strong>e in a Thermal Technology® Astro model 1000-4560-FP20 graphite furnace <str<strong>on</strong>g>and</str<strong>on</strong>g> a<br />

modified Thermolyne® 2100 tube furnace with a quartz tube. The atmosphere in <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace was<br />

arg<strong>on</strong> with 5 wt.% hydrogen to eliminate possible oxidati<strong>on</strong> during annealing. The different<br />

furnaces were used to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> c<strong>on</strong>tent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> coatings during iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal oxidati<strong>on</strong> exposure.<br />

3.2. Iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal <str<strong>on</strong>g>and</str<strong>on</strong>g> Cyclic Oxidati<strong>on</strong> Tests<br />

The iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal <str<strong>on</strong>g>and</str<strong>on</strong>g> cyclic oxidati<strong>on</strong> tests were d<strong>on</strong>e at a c<strong>on</strong>stant temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 1323K<br />

in air for times ranging from 25-100 hours. Specimens, coated <strong>on</strong> <strong>on</strong>e side <strong>on</strong>ly, were placed in<br />

high purity aluminum oxide boats <str<strong>on</strong>g>and</str<strong>on</strong>g> inserted into <str<strong>on</strong>g>the</str<strong>on</strong>g> hot z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> a Thermolyne® 2110 tube<br />

furnace. The samples were covered to collect any spalled oxides during oxidati<strong>on</strong>. SEM <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

EDX were used to analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructural <str<strong>on</strong>g>and</str<strong>on</strong>g> compositi<strong>on</strong>al changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings after<br />

oxidati<strong>on</strong>.<br />

22


CHAPTER IV<br />

INFLUENCES OF ANNEALING AND HAFNIUM CONCENTRATION ON THE<br />

MICROSTRUCTURES OF SPUTTER DEPOSITED β-NIAL COATINGS ON<br />

SUPERALLOY SUBSTRATES<br />

M.A. Bestor 1 , R.L. Martens 1 , <str<strong>on</strong>g>and</str<strong>on</strong>g> M.L. Weaver 1<br />

1- The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alabama, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Metallurgical & Materials Engineering, Box<br />

870202, Tuscaloosa, AL 35487-0202, USA<br />

Keywords: Nickel aluminides, b<strong>on</strong>d coatings, reactive element doping, DC magnetr<strong>on</strong><br />

sputtering<br />

Abstract<br />

This study has investigated <str<strong>on</strong>g>the</str<strong>on</strong>g> influences <str<strong>on</strong>g>of</str<strong>on</strong>g> high <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> high temperature<br />

annealing <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructures <str<strong>on</strong>g>of</str<strong>on</strong>g> β-NiAl coatings. Binary NiAl <str<strong>on</strong>g>and</str<strong>on</strong>g> ternary NiAl-1.0 at.%Hf<br />

coatings were deposited <strong>on</strong>to CMSX-4 superalloy substrates via direct current (DC) magnetr<strong>on</strong><br />

sputtering. Investigati<strong>on</strong>s were c<strong>on</strong>ducted using electr<strong>on</strong> probe microanalysis, transmissi<strong>on</strong><br />

electr<strong>on</strong> microscopy, x-ray diffracti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> three-dimensi<strong>on</strong>al atom probe tomography in an<br />

effort to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> influences <str<strong>on</strong>g>of</str<strong>on</strong>g> annealing <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g> coatingsubstrate<br />

interdiffusi<strong>on</strong>. Post-depositi<strong>on</strong> annealing <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-1.0 at% Hf coatings at 1000°C for<br />

<strong>on</strong>e to four hours produced nanometer-sized Hf-rich precipitates. When in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> high<br />

carb<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s, Hf was found to partiti<strong>on</strong> with C. This sometimes resulted in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HfC precipitates. The results have been analyzed <str<strong>on</strong>g>and</str<strong>on</strong>g> discussed relative to previous<br />

research <strong>on</strong> sputter deposited NiAl-Hf coatings.<br />

23


4.1. Introducti<strong>on</strong><br />

Coatings are a vital part <str<strong>on</strong>g>of</str<strong>on</strong>g> everyday life being used in a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s. They are<br />

essential in many high temperature applicati<strong>on</strong>s, particularly for protecti<strong>on</strong> from potentially<br />

corrosive envir<strong>on</strong>ments [1-7]. Alloyed nickel aluminides are <str<strong>on</strong>g>of</str<strong>on</strong>g> particular interest for use as<br />

b<strong>on</strong>d coats in <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental barrier coating systems due to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir high<br />

strengths <str<strong>on</strong>g>and</str<strong>on</strong>g> abilities to form a protective aluminum oxide layer. It is this aluminum oxide layer<br />

that limits <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen that can diffuse into critical engine comp<strong>on</strong>ents causing<br />

catastrophic failure. This layer is also <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most critical comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier<br />

coating (TBC) system. TBCs are used to protect superalloy engine comp<strong>on</strong>ents from <str<strong>on</strong>g>the</str<strong>on</strong>g> harsh<br />

envir<strong>on</strong>ments that <str<strong>on</strong>g>the</str<strong>on</strong>g>y are exposed to as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> operati<strong>on</strong> in gas turbine engines [1-7].<br />

Temperatures in <str<strong>on</strong>g>the</str<strong>on</strong>g>se engines can exceed 1650°C with metal temperatures reaching as high as<br />

1200°C [8]. TBCs are primarily used to insulate <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying superalloy; thus, allowing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

engines to operate at higher temperatures with higher <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic efficiency.<br />

While TBCs have been studied intently over <str<strong>on</strong>g>the</str<strong>on</strong>g> past three decades, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is still much<br />

that is not understood about <str<strong>on</strong>g>the</str<strong>on</strong>g> design <str<strong>on</strong>g>and</str<strong>on</strong>g> implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cost-<str<strong>on</strong>g>effect</str<strong>on</strong>g>ive coating soluti<strong>on</strong>s.<br />

This is particularly true with regard to <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>d coat alloys [9]. As a result,<br />

manufacturers must compensate by over designing TBCs to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> required properties <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

service lifetimes, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten at <str<strong>on</strong>g>the</str<strong>on</strong>g> expense <str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ent performance <str<strong>on</strong>g>and</str<strong>on</strong>g> efficiency. Throughout<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 1990’s <str<strong>on</strong>g>and</str<strong>on</strong>g> early 2000’s, research efforts increased to engineer new b<strong>on</strong>d coats with<br />

compositi<strong>on</strong>s optimized to improve TBC performance <str<strong>on</strong>g>and</str<strong>on</strong>g> overall comp<strong>on</strong>ent lifetime.<br />

24


Traditi<strong>on</strong>al <str<strong>on</strong>g>investigati<strong>on</strong></str<strong>on</strong>g>s have focused <strong>on</strong> model alloys compositi<strong>on</strong>s or <strong>on</strong> existing<br />

coating compositi<strong>on</strong>s to which relatively small c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> reactive elements (i.e., Y, Zr,<br />

Hf) were added [2, 6, 10-15]. These studies dem<strong>on</strong>strated that reactive element <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coating alloy dramatically improved coating <str<strong>on</strong>g>and</str<strong>on</strong>g> TBC lifetimes [16]. One requirement for <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

improvements was that <str<strong>on</strong>g>the</str<strong>on</strong>g> reactive elements not exceed <str<strong>on</strong>g>the</str<strong>on</strong>g>ir solubility limits in <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coat<br />

alloy, lest <str<strong>on</strong>g>the</str<strong>on</strong>g>y lead to dramatically increased oxidati<strong>on</strong> rates <str<strong>on</strong>g>and</str<strong>on</strong>g> catastrophic internal oxidati<strong>on</strong><br />

[7, 17].<br />

Recent studies suggest that coating alloys c<strong>on</strong>taining far larger reactive element<br />

c<strong>on</strong>centrati<strong>on</strong>s, i.e., overdoped coatings, can exhibit properties that, from a performance<br />

perspective, equal or exceed those <str<strong>on</strong>g>of</str<strong>on</strong>g> state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<str<strong>on</strong>g>the</str<strong>on</strong>g>-art (Ni,Pt)Al diffusi<strong>on</strong> aluminide coatings, in<br />

spite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir higher intrinsic oxidati<strong>on</strong> rates [9, 18-20]. The present study highlights <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Hf overdoping <str<strong>on</strong>g>and</str<strong>on</strong>g> subsequent annealing <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructures <str<strong>on</strong>g>of</str<strong>on</strong>g> β-NiAl based overlay<br />

coatings deposited <strong>on</strong>to sec<strong>on</strong>d generati<strong>on</strong> Ni-based superalloy substrates.<br />

4.2. Experimental<br />

Alloy sputtering targets for this study were purchased from ACI Alloys, Inc., San Jose,<br />

CA. The nominal <str<strong>on</strong>g>and</str<strong>on</strong>g> experimentally determined target compositi<strong>on</strong>s are presented in Table 1.<br />

Coatings ~30μm thick were deposited via direct current (DC) magnetr<strong>on</strong> sputtering <strong>on</strong>to CMSX-<br />

4 ® substrates using an AJA Internati<strong>on</strong>al, Inc. ORION 4 sputtering system with a sputter-down<br />

c<strong>on</strong>figurati<strong>on</strong>. Arg<strong>on</strong> was used as a working gas. The depositi<strong>on</strong> power was 300 W, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

working gas pressure was set at 1.33 Pa. Prior to depositi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> substrates were heated to<br />

400°C. Additi<strong>on</strong>al samples were preheated to 650°C to increase coating adhesi<strong>on</strong>. All <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

25


substrates were coated <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> two primary faces for subsequent microstructural analyses,<br />

annealing, <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidati<strong>on</strong> experiments.<br />

The as-deposited coatings were annealed at 1000°C from <strong>on</strong>e to four hours in a flowing<br />

mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> Ar + 5% H 2 to improve adhesi<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> coating <str<strong>on</strong>g>and</str<strong>on</strong>g> substrate, anneal out<br />

sputtering induced defects, <str<strong>on</strong>g>and</str<strong>on</strong>g> alleviate any processing induced residual stresses. Annealing<br />

was d<strong>on</strong>e ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r in a graphite element annealing furnace or in a horiz<strong>on</strong>tal tube furnace inside <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a quartz tube. This was d<strong>on</strong>e to study <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat treating envir<strong>on</strong>ment <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting<br />

microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g> coating properties.<br />

The chemical compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sputtered coatings were determined via wavelength<br />

dispersive X-ray spectroscopy (WDS) <str<strong>on</strong>g>and</str<strong>on</strong>g> three-dimensi<strong>on</strong>al atom probe tomography (3D-APT).<br />

X-ray diffracti<strong>on</strong> (XRD), scanning electr<strong>on</strong> microscopy (SEM) <str<strong>on</strong>g>and</str<strong>on</strong>g> transmissi<strong>on</strong> electr<strong>on</strong><br />

microscopy (TEM) were used for phase identificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructures <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

select coatings after depositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> annealing. The 3D-APT <str<strong>on</strong>g>and</str<strong>on</strong>g> TEM samples were prepared<br />

using a focused i<strong>on</strong> beam in situ lift-out (FIB-INLO) procedure [21, 22]. The 3D-APT<br />

<str<strong>on</strong>g>investigati<strong>on</strong></str<strong>on</strong>g>s were c<strong>on</strong>ducted with a local electrode atom probe (Imago LEAP 3000X). The<br />

c<strong>on</strong>diti<strong>on</strong>s used for <str<strong>on</strong>g>the</str<strong>on</strong>g> analyses were 70K <str<strong>on</strong>g>and</str<strong>on</strong>g> an evaporati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.7-2.0%. Compositi<strong>on</strong>al<br />

informati<strong>on</strong> was acquired using <str<strong>on</strong>g>the</str<strong>on</strong>g> IVAS s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware package.<br />

26


4.3. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

4.3.1. As-Deposited Coatings<br />

The coatings produced for this study were deposited using sputtering c<strong>on</strong>diti<strong>on</strong>s similar<br />

to those used by Ning et al. [18, 23] to produce NiAl-(0.1-0.6) at.% Hf coatings with columnar<br />

microstructures. One difference was <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> an unbalanced magnetr<strong>on</strong> c<strong>on</strong>figurati<strong>on</strong> as<br />

opposed to <str<strong>on</strong>g>the</str<strong>on</strong>g> balanced c<strong>on</strong>figurati<strong>on</strong> utilized by Ning et al. Figure 1 shows representative<br />

cross-secti<strong>on</strong>al SEM micrographs for as-deposited NiAl <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAl-1Hf coatings. These images<br />

were collected using back-scattered electr<strong>on</strong>s (BSE) to obtain compositi<strong>on</strong>al c<strong>on</strong>trast. In<br />

agreement with prior observati<strong>on</strong>s [18, 24], <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited coatings were dense <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>formal<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying substrates. They were also featureless with regard to variati<strong>on</strong>s in atomic<br />

number c<strong>on</strong>trast suggesting <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a single phase. The existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a single phase was<br />

subsequently c<strong>on</strong>firmed via XRD <str<strong>on</strong>g>and</str<strong>on</strong>g> TEM analyses, both <str<strong>on</strong>g>of</str<strong>on</strong>g> which are presented later in this<br />

document. Occasi<strong>on</strong>al leader defects <str<strong>on</strong>g>and</str<strong>on</strong>g> through thickness cracks, typical <str<strong>on</strong>g>of</str<strong>on</strong>g> thick coatings<br />

deposited by physical vapor depositi<strong>on</strong> processes, were observed [25-29]. Both defect types<br />

were associated with irregularities <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate surfaces or with particles ejected from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sputtering targets during depositi<strong>on</strong>. Figure 2 shows plan view TEM micrographs collected from<br />

as-deposited <str<strong>on</strong>g>and</str<strong>on</strong>g> annealed coatings. Similar to Ning et al. [30], <str<strong>on</strong>g>the</str<strong>on</strong>g> grains in <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited<br />

coatings appeared to be single phase with no evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong>. It was not possible to<br />

accurately assess <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited grain sizes from <str<strong>on</strong>g>the</str<strong>on</strong>g> collected micrographs. However, it was<br />

quite evident that <str<strong>on</strong>g>the</str<strong>on</strong>g> grains were much smaller than those produced by Ning et al. [18, 30]. The<br />

as-deposited coatings sometimes fractured during metallographic sample preparati<strong>on</strong> revealing<br />

columnar grain morphologies that were c<strong>on</strong>sistent with z<strong>on</strong>e T <strong>on</strong> Thornt<strong>on</strong>’s structure z<strong>on</strong>e<br />

model (SZM) [31]. The producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> z<strong>on</strong>e T microstructures with finer grain sizes as opposed<br />

27


to <str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>e 2 microstructures suggested by Ning et al. [18, 30] is attributed to small changes in<br />

depositi<strong>on</strong> parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> depositi<strong>on</strong> hardware, in particular magnet c<strong>on</strong>figurati<strong>on</strong>.<br />

Figure 3 shows compositi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles for Ni, Al, Cr, <str<strong>on</strong>g>and</str<strong>on</strong>g> Hf in <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited coatings.<br />

Average coating compositi<strong>on</strong>s are summarized in Table 1. The Ni/Al ratio for NiAl-1Hf was<br />

calculated by assuming that Hf substituted for Al <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl sublattice. As expected, no<br />

interdiffusi<strong>on</strong> occurred between <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings <str<strong>on</strong>g>and</str<strong>on</strong>g> substrates during sputtering. The compositi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited coatings closely matched those <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sputtering targets <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

corresp<strong>on</strong>ding Ni, Al, <str<strong>on</strong>g>and</str<strong>on</strong>g> Hf c<strong>on</strong>centrati<strong>on</strong>s remained uniform through <str<strong>on</strong>g>the</str<strong>on</strong>g> coating crosssecti<strong>on</strong>s.<br />

The Ni/Al ratios in <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited coatings were near those <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sputtering targets.<br />

Figure 4 shows X-ray diffracti<strong>on</strong> patterns collected from as-deposited NiAl <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAl-<br />

1.0Hf coatings. C<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> prior observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Ning et al. [18, 24], <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited<br />

coatings, regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> compositi<strong>on</strong>, were found to c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> a B2 structured β-NiAl phase. In<br />

general, <str<strong>on</strong>g>the</str<strong>on</strong>g> (110) directi<strong>on</strong> had <str<strong>on</strong>g>the</str<strong>on</strong>g> highest intensity; however, some samples exhibited a str<strong>on</strong>g<br />

intensity al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> (211) directi<strong>on</strong>. At this time, it is certain whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r this change in preferred<br />

orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings will have any impact <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> behavior. Presuming <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

substituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf for Al <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl sublattice in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coating [32-36], <str<strong>on</strong>g>the</str<strong>on</strong>g> lattice<br />

parameters calculated from <str<strong>on</strong>g>the</str<strong>on</strong>g> XRD data (Table 2) are c<strong>on</strong>sistent with values for slightly Ni-rich<br />

NiAl published by <str<strong>on</strong>g>the</str<strong>on</strong>g> Internati<strong>on</strong>al Centre for Diffracti<strong>on</strong> Data (ICDD) [37-39]. Based up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

fact that Hf has a larger atomic radius than Ni <str<strong>on</strong>g>and</str<strong>on</strong>g> Al, it was expected that Hf <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coating would lead to lattice expansi<strong>on</strong> ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than c<strong>on</strong>tracti<strong>on</strong> [32-36]. Kitabjian <str<strong>on</strong>g>and</str<strong>on</strong>g> Nix [40],<br />

who made similar observati<strong>on</strong>s in slightly <str<strong>on</strong>g>of</str<strong>on</strong>g>f stoichiometric NiAl-Ti single crystals, speculated<br />

28


that <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong> was related to <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> trapped c<strong>on</strong>stituti<strong>on</strong>al vacancies. This<br />

argument is c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> processing method used in this study. It is well known that<br />

sputter depositi<strong>on</strong> generally leads to higher c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> lattice defects, vacancies in<br />

particular, than would be observed in a more c<strong>on</strong>venti<strong>on</strong>ally processed materials <str<strong>on</strong>g>and</str<strong>on</strong>g> promotes<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> highly supersaturated metastable alloys [41, 42].<br />

4.3.2. Annealed Coatings<br />

Annealing at 1000°C for two or four hours (Figure 5) resulted in <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

interdiffusi<strong>on</strong> z<strong>on</strong>e (IDZ) between <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> superalloy substrates. Typical <str<strong>on</strong>g>of</str<strong>on</strong>g> B2<br />

diffusi<strong>on</strong> aluminides, <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> globular high atomic number c<strong>on</strong>trast<br />

precipitates dispersed in a lower atomic number c<strong>on</strong>trast matrix. Though detailed analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

IDZ was not c<strong>on</strong>ducted in <str<strong>on</strong>g>the</str<strong>on</strong>g> present study, it is expected to c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> a β-NiAl or γ′-Ni 3 Al<br />

matrix phase <str<strong>on</strong>g>and</str<strong>on</strong>g> refractory metal-rich togologically close-packed (TCP) phase precipitates [8].<br />

Interestingly, for coatings with <str<strong>on</strong>g>the</str<strong>on</strong>g> same thicknesses <str<strong>on</strong>g>and</str<strong>on</strong>g> similar Ni/Al ratios, <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ thickness<br />

qualitatively appeared to depend up<strong>on</strong> coating compositi<strong>on</strong>. For example, in binary NiAl<br />

coatings, annealing at 1000°C/2h produced a 3.69 μm thick IDZ (Figure 5(a)). Annealing at<br />

1000°/4h did not produce any significant increase in IDZ thickness, but did result in coarsening<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructure within <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ (Figure 5(b)). The NiAl-1Hf coatings, when subjected to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same heat treatment c<strong>on</strong>diti<strong>on</strong>s (Figures 5(c) <str<strong>on</strong>g>and</str<strong>on</strong>g> 5(d)) produced noticeably thinner IDZs<br />

(i.e., 1.67 μm after two hours <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.37 μm after four hours <str<strong>on</strong>g>of</str<strong>on</strong>g> annealing). This observati<strong>on</strong> is<br />

similar to those <str<strong>on</strong>g>of</str<strong>on</strong>g> Ning et al. [18] who reported a reducti<strong>on</strong> in IDZ thickness for a NiAl-0.6<br />

at.%Hf coating in comparis<strong>on</strong> to binary NiAl.<br />

29


In <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl coatings, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was an additi<strong>on</strong>al observati<strong>on</strong> after four hours <str<strong>on</strong>g>of</str<strong>on</strong>g> annealing; a<br />

series <str<strong>on</strong>g>of</str<strong>on</strong>g> light gray precipitates within <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. Based up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating<br />

after annealing, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> XRD results (presented in a later secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this document), <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

precipitates were identified as γ′-Ni 3 Al. Closer inspecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coatings also<br />

revealed <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> small precipitates within <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings ranging in size from 10 to 80 nm<br />

after annealing (Figure 6). The precipitates appeared to form both within grain interiors <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

al<strong>on</strong>g grain boundaries. From this figure it also appears <str<strong>on</strong>g>the</str<strong>on</strong>g> columnar grain structure that<br />

developed during sputtering was retained.<br />

Even though <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings were annealed in a reducing envir<strong>on</strong>ment (i.e., Ar + 5%H 2 ), a<br />

thin <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally grown oxide (TGO) layer was observed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> exterior surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

specimens after annealing. This TGO was ~500 nm thick, <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sisted primarily <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum<br />

oxide. In <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coatings, some high atomic number c<strong>on</strong>trast phases were observed near<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> TGO/coating interface. These phases have not been quantitatively identified, but are<br />

presumed to be <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> oxide (HfO 2 ). This oxygen is thought to have entered <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment<br />

through o-rings used to seal <str<strong>on</strong>g>the</str<strong>on</strong>g> annealing furnaces. These observati<strong>on</strong>s are c<strong>on</strong>sistent with those<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Guo et. al [19] <str<strong>on</strong>g>and</str<strong>on</strong>g> Sun et al. [20] who investigated NiAl-Hf coatings produced via electr<strong>on</strong>beam<br />

physical vapor depositi<strong>on</strong> (EB-PVD) <str<strong>on</strong>g>and</str<strong>on</strong>g> Priest [43] who investigated NiAl-Hf coatings<br />

produced via a pack cementati<strong>on</strong> method.<br />

Figure 7 shows plan view TEM micrographs collected from annealed coatings. After<br />

annealing for as little as two hours, <str<strong>on</strong>g>the</str<strong>on</strong>g> grains became more equiaxed in appearance in both<br />

coatings (Figures 7(a) <str<strong>on</strong>g>and</str<strong>on</strong>g> 7(b)) suggesting <str<strong>on</strong>g>the</str<strong>on</strong>g> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> some recovery <str<strong>on</strong>g>and</str<strong>on</strong>g> recrystallizati<strong>on</strong><br />

30


[44]. In <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl coatings annealed for two hours, an average linear intercept grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> 220.1<br />

± 35.1 nm was measured from <str<strong>on</strong>g>the</str<strong>on</strong>g> TEM micrographs. This grain size increased to 267.3 ± 34.3<br />

nm after annealing for four hours. In <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coatings, <str<strong>on</strong>g>the</str<strong>on</strong>g> grains were c<strong>on</strong>siderably<br />

smaller. In <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coating, an average grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> 90.0 ± 20.5 nm was measured after<br />

annealing for four hours. The grain sizes observed in this study were much smaller than <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es<br />

reported by Ning et al. [18, 30, 45]. As noted previously, <str<strong>on</strong>g>the</str<strong>on</strong>g> smaller grain sizes are attributed to<br />

differences in coating compositi<strong>on</strong> plus <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> an unbalanced magnetr<strong>on</strong> c<strong>on</strong>figurati<strong>on</strong>.<br />

Unbalanced magnetr<strong>on</strong>s increase i<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> electr<strong>on</strong> bombardment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> growing film resulting in<br />

more dense coatings <str<strong>on</strong>g>and</str<strong>on</strong>g> higher depositi<strong>on</strong> rates [41, 42].<br />

Figure 8 shows a STEM-HAADF image <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coating after annealing at<br />

1000°C/4h. This image suggests <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two different types <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitates, high atomic<br />

number c<strong>on</strong>trast precipitates located both at grain boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> within grain interiors, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

lower atomic number c<strong>on</strong>trast precipitates <str<strong>on</strong>g>of</str<strong>on</strong>g>ten located al<strong>on</strong>g grain boundaries. EDS spectra<br />

collected in <str<strong>on</strong>g>the</str<strong>on</strong>g> TEM suggested that <str<strong>on</strong>g>the</str<strong>on</strong>g> largest grain boundary precipitates were <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium<br />

Heusler (Ni 2 AlHf) phase, which agrees with published phase equilibria data [46]. However, in<br />

some instances relatively large carb<strong>on</strong> peaks were observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> EDS spectra, suggesting <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some sort <str<strong>on</strong>g>of</str<strong>on</strong>g> carbide phase.<br />

Chemical compositi<strong>on</strong>s were measured <strong>on</strong> cross-secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

annealed coatings. Figure 9 shows compositi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles for Ni, Al, Cr, <str<strong>on</strong>g>and</str<strong>on</strong>g> Hf in <str<strong>on</strong>g>the</str<strong>on</strong>g> annealed<br />

coatings. Annealing for four hours resulted in an increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> Ni c<strong>on</strong>centrati<strong>on</strong>s in both<br />

coatings coupled with decreased Al c<strong>on</strong>tents <str<strong>on</strong>g>and</str<strong>on</strong>g> significant increases in <str<strong>on</strong>g>the</str<strong>on</strong>g> Co <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr c<strong>on</strong>tents.<br />

31


For example, in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl coating <str<strong>on</strong>g>the</str<strong>on</strong>g> Ni c<strong>on</strong>tent increased from an as-deposited level <str<strong>on</strong>g>of</str<strong>on</strong>g> 52.05<br />

at.% to 56.50 at.% after annealing for four hours at 1000°C. Similarly <str<strong>on</strong>g>the</str<strong>on</strong>g> Al c<strong>on</strong>tent decreased<br />

from 48.68 at.% to 40.34 at.% while Co <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr increased to 1.60 at.% <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.53 at.%. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NiAl-1Hf coating, Ni increased from 52.29 at.% to 53.44 at.%, Al decreased from 45.37 at.% to<br />

43.19 at.%, <str<strong>on</strong>g>and</str<strong>on</strong>g> Hf decreased from 1.10 at.% to 0.85 at.%. The Co <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr c<strong>on</strong>tents increased to<br />

1.09 at.% <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.33 at.% respectively. These observati<strong>on</strong>s are analogous to those <str<strong>on</strong>g>of</str<strong>on</strong>g> Ning et al.<br />

[18].<br />

The observed changes in compositi<strong>on</strong> caused by annealing are driven by <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong><br />

gradient that exists between <str<strong>on</strong>g>the</str<strong>on</strong>g> coating <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate. The CMSX-4 substrates used in this<br />

study have lower Al c<strong>on</strong>tents than <str<strong>on</strong>g>the</str<strong>on</strong>g> sputtered coatings. This compositi<strong>on</strong> difference provides<br />

a driving force for interdiffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elements between <str<strong>on</strong>g>the</str<strong>on</strong>g> substrates <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sputtered coatings<br />

during high temperature annealing <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidati<strong>on</strong>. One particularly interesting observati<strong>on</strong> for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coatings was <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a Hf gradient through <str<strong>on</strong>g>the</str<strong>on</strong>g> coating thickness after<br />

annealing. For example, an apparent Hf c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ~0.95 at.% was measured 3 μm from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> free surface versus ~0.8 at.% at <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings center. At <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/IDZ interface a<br />

compositi<strong>on</strong> in excess <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.0 at.% was measured. Similar observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong>s in reactive<br />

element c<strong>on</strong>tent have been made by o<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies [18-20, 24, 43, 47-49]. This is c<strong>on</strong>sistent with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Pint [12] who reported that REs would preferentially segregate to <str<strong>on</strong>g>the</str<strong>on</strong>g> free<br />

surface or coating/substrate interfaces during <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal exposure.<br />

An additi<strong>on</strong>al observati<strong>on</strong> was <str<strong>on</strong>g>the</str<strong>on</strong>g> apparent difference in IDZ thickness, which was<br />

analogous to <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Ning et al. [18]. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced coating <str<strong>on</strong>g>and</str<strong>on</strong>g>/or<br />

32


IDZ thickness have been reported for diffusi<strong>on</strong> aluminide <str<strong>on</strong>g>and</str<strong>on</strong>g> β-NiAl overlay coatings [50-54].<br />

Based up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se observati<strong>on</strong>s, it is tempting to attribute <str<strong>on</strong>g>the</str<strong>on</strong>g> differences in IDZ thickness solely<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf, however, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r factors must be c<strong>on</strong>sidered. In general, <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ forms as a<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> original γ+γ′ microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> superalloy to β-NiAl; a change<br />

that is induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong>al loss <str<strong>on</strong>g>of</str<strong>on</strong>g> Al from <str<strong>on</strong>g>the</str<strong>on</strong>g> coating due to inward diffusi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

substrate or <str<strong>on</strong>g>the</str<strong>on</strong>g> outward diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ni from <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate into <str<strong>on</strong>g>the</str<strong>on</strong>g> coating [8]. The actual<br />

interdiffusi<strong>on</strong> mechanisms associated with coating/substrate interdiffusi<strong>on</strong> remain a subject <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

serious debate [8]; however, this interdiffusi<strong>on</strong> is also accompanied by <str<strong>on</strong>g>the</str<strong>on</strong>g> rapid migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

elements from <str<strong>on</strong>g>the</str<strong>on</strong>g> substrates into <str<strong>on</strong>g>the</str<strong>on</strong>g> coating, most notably Co, Cr, W, <str<strong>on</strong>g>and</str<strong>on</strong>g> Ta. It is also well<br />

known that reactive elements, when present in <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate, also diffuse rapidly to, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

sometimes through, <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings during annealing <str<strong>on</strong>g>and</str<strong>on</strong>g>/or service providing significant lifetime<br />

improvements [55-61]. These elements are additi<strong>on</strong>ally reported to reduce interdiffusi<strong>on</strong> when<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y form discrete RE-c<strong>on</strong>taining phases at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface [50, 51, 62].<br />

Though a detailed, quantitative <str<strong>on</strong>g>investigati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> influences <str<strong>on</strong>g>of</str<strong>on</strong>g> coating compositi<strong>on</strong> <strong>on</strong><br />

coating/substrate interdiffusi<strong>on</strong> has not been undertaken, it is reas<strong>on</strong>able to hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>size that Hf<br />

does in some way influence <str<strong>on</strong>g>the</str<strong>on</strong>g> activities <str<strong>on</strong>g>of</str<strong>on</strong>g> Ni <str<strong>on</strong>g>and</str<strong>on</strong>g> Al in much <str<strong>on</strong>g>the</str<strong>on</strong>g> same way as it does during<br />

oxidati<strong>on</strong>, which in turn alters <str<strong>on</strong>g>the</str<strong>on</strong>g> stoichiometry, phase compositi<strong>on</strong>s, activities <str<strong>on</strong>g>and</str<strong>on</strong>g> diffusivities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements c<strong>on</strong>stituting <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. Indeed Perez et al. [63], who investigated interdiffusi<strong>on</strong><br />

behavior in NiAl/superalloy diffusi<strong>on</strong> couples, showed that superalloys c<strong>on</strong>taining higher<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr, Mo, <str<strong>on</strong>g>and</str<strong>on</strong>g> Ti showed higher <str<strong>on</strong>g>effect</str<strong>on</strong>g>ive Al diffusivity while superalloys<br />

c<strong>on</strong>taining Ta, W <str<strong>on</strong>g>and</str<strong>on</strong>g> Al showed lower <str<strong>on</strong>g>effect</str<strong>on</strong>g>ive Al diffusivity. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, numerous<br />

computati<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> experimental studies have also detailed <str<strong>on</strong>g>the</str<strong>on</strong>g> influences <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl compositi<strong>on</strong><br />

33


<str<strong>on</strong>g>and</str<strong>on</strong>g> stoichiometry <strong>on</strong> Ni <str<strong>on</strong>g>and</str<strong>on</strong>g> Al diffusi<strong>on</strong> coefficients [64, 65]. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r quantitative<br />

<str<strong>on</strong>g>investigati<strong>on</strong></str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> phase chemistries before <str<strong>on</strong>g>and</str<strong>on</strong>g> after annealing are needed to completely establish<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> influences <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf.<br />

Figure 10 shows X-ray diffracti<strong>on</strong> patterns collected from annealed NiAl <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAl-1.0Hf<br />

coatings. After annealing at 1000°C, several additi<strong>on</strong>al XRD peaks were observed. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

specimen coated with NiAl, no additi<strong>on</strong>al peaks were observed after two hours <str<strong>on</strong>g>of</str<strong>on</strong>g> annealing at<br />

1000°C. However, after four hours <str<strong>on</strong>g>of</str<strong>on</strong>g> annealing, small peaks γ′-Ni 3 Al <str<strong>on</strong>g>and</str<strong>on</strong>g> θ-Al 2 O 3 peaks were<br />

observed. In c<strong>on</strong>trast, no γ′ peaks were observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coatings; however, peaks<br />

corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> α-Al 2 O 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> θ-Al 2 O 3 phases were observed after as little as two hours <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

annealing. After annealing, <str<strong>on</strong>g>the</str<strong>on</strong>g> lattice parameters for <str<strong>on</strong>g>the</str<strong>on</strong>g> β-NiAl phase in both coatings<br />

decreased slightly (Table 2).<br />

4.3.3. Three-Dimensi<strong>on</strong>al Atom Probe Tomography (3D-APT)<br />

A series <str<strong>on</strong>g>of</str<strong>on</strong>g> 3D-APT <str<strong>on</strong>g>investigati<strong>on</strong></str<strong>on</strong>g>s were c<strong>on</strong>ducted to investigate <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> solubility<br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> β-NiAl phase <str<strong>on</strong>g>and</str<strong>on</strong>g> in an attempt to identify some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitates that formed in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

annealed NiAl-1Hf coatings. Figure 11 shows representative 3-D atom maps <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-1Hf after<br />

annealing at 1000°C/4h. These images clearly show <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf-rich precipitates within<br />

a β-NiAl matrix. A surprise was <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> specimens. Using <str<strong>on</strong>g>the</str<strong>on</strong>g> IVAS<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware package, <str<strong>on</strong>g>the</str<strong>on</strong>g> average <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> β-NiAl phase was determined to<br />

be 0.23 ± 0.01 at.%, which is c<strong>on</strong>sistent with observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Lars<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Miller [66]. In this<br />

particular specimen, <str<strong>on</strong>g>the</str<strong>on</strong>g> average carb<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> was determined to be 711 ± 42 ppm after<br />

annealing. Figure 12 shows a two-dimensi<strong>on</strong>al isosurface rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> a <strong>on</strong>e-dimensi<strong>on</strong>al<br />

34


(1-D) element c<strong>on</strong>centrati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile analyzed through an isosurface rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

precipitates shown in Figure 11. The c<strong>on</strong>centrati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles showed that <str<strong>on</strong>g>the</str<strong>on</strong>g>re was little or no Ni<br />

or Al within <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitates <str<strong>on</strong>g>and</str<strong>on</strong>g> that <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitates c<strong>on</strong>sisted almost entirely <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> C in<br />

equal proporti<strong>on</strong>s.<br />

To identify <str<strong>on</strong>g>the</str<strong>on</strong>g> potential source <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> specimens, several NiAl-1Hf<br />

specimens were annealed inside <str<strong>on</strong>g>of</str<strong>on</strong>g> a quartz tube in a horiz<strong>on</strong>tal tube furnace under flowing<br />

Ar+5%H 2 . In <str<strong>on</strong>g>the</str<strong>on</strong>g>se specimens, respective Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> C c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.24 ± 0.11 at.% <str<strong>on</strong>g>and</str<strong>on</strong>g> 53 ±<br />

33 ppm were determined which suggests that high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> could be incorporated by<br />

annealing inside <str<strong>on</strong>g>of</str<strong>on</strong>g> a graphite element furnace resulting in <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbide precipitates<br />

provided a suitable c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbide formers is present. This observati<strong>on</strong> is c<strong>on</strong>sistent<br />

with work <str<strong>on</strong>g>of</str<strong>on</strong>g> Darolia et al. [67] who showed that nanometer-sized oxide <str<strong>on</strong>g>and</str<strong>on</strong>g> carbide precipitates<br />

could be formed in NiAl coatings due to residual impurities within <str<strong>on</strong>g>the</str<strong>on</strong>g> depositi<strong>on</strong> chamber.<br />

They additi<strong>on</strong>ally reported that <str<strong>on</strong>g>the</str<strong>on</strong>g>se dispersed carbide <str<strong>on</strong>g>and</str<strong>on</strong>g> oxide particles could improve coating<br />

life by increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating to rumpling [67, 68]. Jha <str<strong>on</strong>g>and</str<strong>on</strong>g> co-workers [69, 70]<br />

have shown that dispersed HfC particles can significantly improve creep resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> bulk NiAl<br />

which would lead to increased resistance to rumpling. However, it is well established that<br />

elevated carb<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s can be detrimental to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g>iveness <str<strong>on</strong>g>of</str<strong>on</strong>g> reactive element<br />

<str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> [10, 59]. Thus, it appears that in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> high carb<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s, higher<br />

reactive element c<strong>on</strong>tents can be used to <str<strong>on</strong>g>of</str<strong>on</strong>g>fset <str<strong>on</strong>g>the</str<strong>on</strong>g> detrimental influences <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> provide<br />

additi<strong>on</strong>al benefits through <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nanometer-sized carbide precipitates.<br />

35


4.4. C<strong>on</strong>clusi<strong>on</strong>s<br />

In this study, NiAl-1.0 at.% Hf b<strong>on</strong>d coatings were produced using DC magnetr<strong>on</strong><br />

sputtering techniques to yield a z<strong>on</strong>e T microstructure. The as-deposited coatings formed a<br />

metastable B2 solid soluti<strong>on</strong>. Up<strong>on</strong> annealing at 1000°C, small precipitates formed al<strong>on</strong>g grain<br />

boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> within grain interiors <strong>on</strong> dislocati<strong>on</strong> lines. Images collected using SEM <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

TEM show <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitates were heterogeneously distributed in <str<strong>on</strong>g>the</str<strong>on</strong>g> coating with <str<strong>on</strong>g>the</str<strong>on</strong>g> larger<br />

precipitates forming within grain interiors. In high carb<strong>on</strong> c<strong>on</strong>tent coatings, 3D-APT studies<br />

suggested <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HfC precipitates with <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> coming from <str<strong>on</strong>g>the</str<strong>on</strong>g> graphite elements<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> annealing furnace. A change to a graphite-free furnace resulted in little pickup <str<strong>on</strong>g>and</str<strong>on</strong>g> in no<br />

observable HfC formati<strong>on</strong>.<br />

Acknowledgements<br />

The authors acknowledge <str<strong>on</strong>g>the</str<strong>on</strong>g> support <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Science Foundati<strong>on</strong> (NSF) under<br />

Award No. DMR-0504950 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Aer<strong>on</strong>autics <str<strong>on</strong>g>and</str<strong>on</strong>g> Space Administrati<strong>on</strong> (NASA)<br />

under c<strong>on</strong>tract NN-X08AT21H. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> facilities supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> Central Analytical<br />

facility at <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alabama <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Materials Diagnostics Laboratory at NASA’s<br />

Marshall Space Flight Center in Huntsville, Alabama is also gratefully acknowledged.<br />

36


References<br />

[1] M. J. D<strong>on</strong>atchie Jr., S. J. D<strong>on</strong>atchie, Superalloys: A Technical Guide, 2nd Ed., ASM<br />

Internati<strong>on</strong>al, Materials Park, OH, 2002, p. 439.<br />

[2] G. W. Goward, "Protective coatings - purpose, role, <str<strong>on</strong>g>and</str<strong>on</strong>g> design," Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Technology 2 (1986) 194-200.<br />

[3] R. L. J<strong>on</strong>es, "Thermal Barrier Coatings," in: K. H. Stern (Ed.) Metallurgical <str<strong>on</strong>g>and</str<strong>on</strong>g> Ceramic<br />

Protective Coatings, Chapman & Hall, L<strong>on</strong>d<strong>on</strong>, 1996, pp. 194-235.<br />

[4] C. G. Levi, "Emerging materials <str<strong>on</strong>g>and</str<strong>on</strong>g> processes for <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier systems," Current<br />

Opini<strong>on</strong> in Solid State <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials Science 8 (2004) 77-91.<br />

[5] Nati<strong>on</strong>al Research Council, Coatings for High-Temperature Structural Materials, in:<br />

Nati<strong>on</strong>al Materials Advisory Board, Washingt<strong>on</strong>, D.C., 1996.<br />

[6] J. R. Nicholls, "Advances in Coating Design for High-Performance Gas Turbines," MRS<br />

Bulletin 28 (2003) 659-670.<br />

[7] B. A. Pint, J. R. DiStefano, I. G. Wright, "Oxidati<strong>on</strong> resistance: One barrier to moving<br />

bey<strong>on</strong>d Ni-base superalloys," Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering: A 415 (2006) 255-263.<br />

[8] S. Bose, High Temperature Coatings, Butterworth-Heinemann, Burlingt<strong>on</strong>, MA, 2007.<br />

[9] B. Hazel, J. Rigney, M. Gorman, B. Boutwell, R. Darolia, Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Improved<br />

B<strong>on</strong>d Coat for Enhanced Turbine Durability, in: R. C. Reed, K. A. Green, P. Car<strong>on</strong>, T. P.<br />

Gabb, M. G. Fahrmann, E. S. Hur<strong>on</strong>, S. R. Woodard (Eds.), Superalloys 2008, TMS,<br />

Warrendale, PA, 2008, pp. 753-760.<br />

[10] B. A. Pint, J. A. Haynes, K. L. More, I. G. Wright, The Use <str<strong>on</strong>g>of</str<strong>on</strong>g> Model Alloys to<br />

Underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Improve <str<strong>on</strong>g>the</str<strong>on</strong>g> Performance <str<strong>on</strong>g>of</str<strong>on</strong>g> Pt-Modified Aluminide Coatings, in: K. A.<br />

Green, T. M. Pollock, H. Harada, T. E. Hows<strong>on</strong>, R. C. Reed, J. J. Schirra, W. S. Walst<strong>on</strong><br />

(Eds.), Superalloys 2004, TMS (The Minerals, Metals & Materials Society), Warrendale,<br />

PA, 2004, pp. 597-606.<br />

[11] G. W. Goward, "Progress in Coatings for Gas Turbine Airfoils," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings<br />

Technology 108-109 (1998) 73-79.<br />

[12] B. A. Pint, "Experimental observati<strong>on</strong>s in support <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic-segregati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory to<br />

explain <str<strong>on</strong>g>the</str<strong>on</strong>g> reactive-element <str<strong>on</strong>g>effect</str<strong>on</strong>g>," Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals 45 (1996) 1-37.<br />

[13] B. A. Pint, J. A. Haynes, K. L. More, I. G. Wright, C. Leyens, Compositi<strong>on</strong>al Effects <strong>on</strong><br />

Aluminide Oxidati<strong>on</strong> Performance: Objectives for Improved B<strong>on</strong>d Coats, in: T. M.<br />

Pollock, R. D. Kissinger, R. R. Bowman, K. A. Green, M. McClean, S. Ols<strong>on</strong>, J. J.<br />

Schirra (Eds.), Superalloys 2000, The Minerals, Metals & Materials Society, Warrendale,<br />

PA, 2000, pp. 629-638.<br />

37


[14] B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prüßner, K. B. Alex<str<strong>on</strong>g>and</str<strong>on</strong>g>er, "Substrate<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> B<strong>on</strong>d Coat Compositi<strong>on</strong>s: Factors Affecting Alumina Scale Adhesi<strong>on</strong>," Materials<br />

Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering A245 (1998) 201-211.<br />

[15] B. M. Warnes, "Reactive element modified chemical vapor depositi<strong>on</strong> low activity<br />

platinum aluminide coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 146-147 (2001) 7-12.<br />

[16] B. A. Pint, Progress in underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>the</str<strong>on</strong>g> reactive element <str<strong>on</strong>g>effect</str<strong>on</strong>g> since <str<strong>on</strong>g>the</str<strong>on</strong>g> Whittle <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Stringer literature review, in: P. F. Tortorelli, I. G. Wright, P. Y. Hou (Eds.), John<br />

Stringer Symposium <strong>on</strong> High Temperature Corrosi<strong>on</strong>, ASM Internati<strong>on</strong>al, Warrendale,<br />

PA, Warrendale, PA, 2001, pp. 9-19.<br />

[17] U. Schulz, M. Menzebach, C. Leyens, Y. Q. Yang, "Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate material <strong>on</strong><br />

oxidati<strong>on</strong> behavior <str<strong>on</strong>g>and</str<strong>on</strong>g> cyclic lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g> EB-PVD TBC systems," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings<br />

Technology 146-147 (2001) 117-123.<br />

[18] B. Ning, M. Shamsuzzoha, M. L. Weaver, "Microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> Property Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> DC<br />

Magnetr<strong>on</strong> Sputtered NiAl-0.6Hf Coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 200<br />

(2005) 1270-1275.<br />

[19] H. Guo, L. Sun, H. Li, S. G<strong>on</strong>g, "High temperature oxidati<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g><br />

modified NiAl b<strong>on</strong>d coat in EB-PVD <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coating system," Thin Solid Films<br />

516 (2008) 5732-5735.<br />

[20] L. Sun, H. Guo, H. Li, S. G<strong>on</strong>g, "Hf modified NiAl B<strong>on</strong>d Coat for Thermal Barrier<br />

Coating Applicati<strong>on</strong>," Materials Science Forum 546-549 (2007) 1777-1780.<br />

[21] K. Thomps<strong>on</strong>, D. Lawrence, D. J. Lars<strong>on</strong>, J. D. Ols<strong>on</strong>, T. F. Kelly, B. Gorman, "In situ<br />

site-specific specimen preparati<strong>on</strong> for atom probe tomography," Ultramicroscopy 107<br />

(2007) 131-139.<br />

[22] B. W. Kempshall, Y. H. Sohn, S. K. Jha, S. Laxman, R. R. Vanfleet, J. Kimmel, "A<br />

microstructural observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> near-failure <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coating: a study by<br />

photostimulated luminescence spectroscopy <str<strong>on</strong>g>and</str<strong>on</strong>g> transmissi<strong>on</strong> electr<strong>on</strong> microscopy," Thin<br />

Solid Films 466 (2004) 128-136.<br />

[23] B. Ning, M. L. Weaver, "A Preliminary Study <str<strong>on</strong>g>of</str<strong>on</strong>g> DC Magnetr<strong>on</strong> Sputtered NiAl-Hf<br />

Coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 177-178 (2004) 113-120.<br />

[24] B. Ning, "Microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g> Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Hafnium C<strong>on</strong>taining NiAl-based Overlay<br />

Coatings," Ph.D. Dissertati<strong>on</strong>, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alabama, 2005.<br />

[25] D. H. Bo<strong>on</strong>e, T. E. Strangman, L. W. Wils<strong>on</strong>, "Some <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> structure <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

compositi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> beam vapor deposited coatings for gas turbine<br />

superalloys," Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Vacuum Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology 11 (1974) 641-646.<br />

[26] D. H. Bo<strong>on</strong>e, S. Shen, R. McKo<strong>on</strong>, "Electr<strong>on</strong> beam evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> low vapor pressure<br />

elements in MCrAl coating compositi<strong>on</strong>s," Thin Solid Films 64 (1979) 299-304.<br />

38


[27] S. J. Shaffer, D. H. Bo<strong>on</strong>e, R. T. Lamberts<strong>on</strong>, D. E. Peacock, "The <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> depositi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> processing variables <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxide structure <str<strong>on</strong>g>of</str<strong>on</strong>g> M-Cr-Al coatings," Thin Solid Films<br />

107 (1983) 463-472.<br />

[28] D. S. Rickerby, M. I. Wood, "Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sputter i<strong>on</strong> plated CoCrAlY <str<strong>on</strong>g>and</str<strong>on</strong>g> NiCrAlTi<br />

coatings for gas turbines," Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Vacuum Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology A 4 (1986) 2557-<br />

2564.<br />

[29] S. R. J. Saunders, J. R. Nicholls, "Coatings <str<strong>on</strong>g>and</str<strong>on</strong>g> surface treatments for high temperature<br />

oxidati<strong>on</strong> resistance," Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology 5 (1989) 780-798.<br />

[30] B. Ning, M. Shamsuzzoha, M. L. Weaver, "Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Processing Variables <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> DC Magnetr<strong>on</strong> Sputtered NiAl Coatings C<strong>on</strong>taining Hf Additi<strong>on</strong>s," Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Vacuum Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology A 23 (2005) 44-54.<br />

[31] J. A. Thornt<strong>on</strong>, "High Rate Thick Film Growth," Annual Reviews <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science 7<br />

(1977) 239-260.<br />

[32] G. Bozzolo, R. D. Noebe, F. H<strong>on</strong>ecy, Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> substituti<strong>on</strong>al site preference in<br />

ordered intermetallic alloys, in: I. Baker, R. D. Noebe, E. P. George (Eds.), Interstitial<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Substituti<strong>on</strong>al Solute Effects in Intermetallics, The Minerals, Metals <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials<br />

Society, Warrendale, PA, 1998, pp. 341-368.<br />

[33] G. Bozzolo, R. D. Noebe, F. H<strong>on</strong>ecy, "Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> ternary element site substituti<strong>on</strong> in<br />

NiAl," Intermetallics 8 (2000) 7-18.<br />

[34] Y. S<strong>on</strong>g, Z. X. Guo, R. Yang, D. Li, "First principles study <str<strong>on</strong>g>of</str<strong>on</strong>g> site substituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ternary<br />

elements in NiAl," Acta Materialia 49 (2001) 1647-1654.<br />

[35] Y. L. Hao, R. Yang, Y. S<strong>on</strong>g, Y. Y. Cui, D. Li, M. Niinomi, "C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> point<br />

defects <str<strong>on</strong>g>and</str<strong>on</strong>g> site occupancy behavior in ternary NiAl alloys," Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Engineering A 365 (2004) 85-89.<br />

[36] C. Jiang, "Site preference <str<strong>on</strong>g>of</str<strong>on</strong>g> transiti<strong>on</strong>-metal elements in B2 NiAl: A comprehensive<br />

study," Acta Materialia 55 (2007) 4799-4806.<br />

[37] AlNi, ICDD file No. 00-044-1188, in: Internati<strong>on</strong>al Centre for Diffracti<strong>on</strong> Data,<br />

Newtown Square, PA 2010.<br />

[38] Al0.9Ni1.1, ICDD file No. 00-044-1185, in: Internati<strong>on</strong>al Centre for Diffracti<strong>on</strong> Data,<br />

Newtown Square, PA 2010.<br />

[39] Al0.96Ni1.04, ICDD file No. 00-044-1186, in: Internati<strong>on</strong>al Centre for Diffracti<strong>on</strong> Data,<br />

Newtown Square, PA 2010.<br />

[40] P. H. Kitabjian, W. D. Nix, "Atomic size <str<strong>on</strong>g>effect</str<strong>on</strong>g>s in Ni-Al based solid soluti<strong>on</strong>s," Acta<br />

Materialia 46 (1998) 701-710.<br />

39


[41] D. M. Mattox, H<str<strong>on</strong>g>and</str<strong>on</strong>g>book <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Vapor Depositi<strong>on</strong> (PVD) Processing, Noyes<br />

Publicati<strong>on</strong>s, Park Ridge, NJ, 1998.<br />

[42] M. Ohring, Materials Science <str<strong>on</strong>g>of</str<strong>on</strong>g> Thin Films, 2nd Ed., Academic Press, San Diego, 2002.<br />

[43] M. Priest, "Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> Reactive Element-Modified Aluminide Coatings <strong>on</strong> Single-<br />

Crystal Ni-Based Superalloys by a Pack Cementati<strong>on</strong> Process," M.S. Thesis, Tennessee<br />

Technological University, 2009.<br />

[44] F. J. Humphreys, M. Ha<str<strong>on</strong>g>the</str<strong>on</strong>g>rly, Recrystallizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Related Annealing Phenomena, 2nd<br />

Ed., Elsevier, New York, 2004.<br />

[45] B. Ning, M. Shamsuzzoha, M. L. Weaver, "Microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> DC<br />

Magnetr<strong>on</strong> Sputtered NiAl-Hf Coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 179 (2004)<br />

201-209.<br />

[46] M. Takeyama, C. T. Liu, "Microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g> Mechanical Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-Ni 2 AlHf<br />

Alloys," Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Research 5 (1990) 1189-1196.<br />

[47] S. Hamadi, M. P. Bacos, M. Poulain, S. Zanna, V. Maurice, P. Marcus, "Short-time<br />

oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a NiAl(Zr) b<strong>on</strong>d coat <str<strong>on</strong>g>the</str<strong>on</strong>g>rmomechanically deposited <strong>on</strong> a nickel-based<br />

superalloy," Materials Science Forum 595-598 (2008) 95-100.<br />

[48] S. Hamadi, M. P. Bacos, M. Poulain, S. Zanna, A. Seyeux, V. Maurice, P. Marcus,<br />

"Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Zr-doped NiAl b<strong>on</strong>dcoat <str<strong>on</strong>g>the</str<strong>on</strong>g>rmochemically deposited <strong>on</strong> a nickel-based<br />

superalloy," Materials at High Temperatures 26 (2009) 195-198.<br />

[49] S. Hamadi, M. P. Bacos, M. Poulain, A. Seyeux, V. Maurice, P. Marcus, "Oxidati<strong>on</strong><br />

resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> a Zr-doped NiAl coating <str<strong>on</strong>g>the</str<strong>on</strong>g>rmochemically deposited <strong>on</strong> a nickel-based<br />

superalloy," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 204 (2009) 756-760.<br />

[50] G. Y. Kim, L. M. He, H. M. Meyer, A. Quintero, J. A. Haynes, W. Y. Lee, "Mechanisms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Hf dopant incorporati<strong>on</strong> during <str<strong>on</strong>g>the</str<strong>on</strong>g> early stage <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical vapor depositi<strong>on</strong> aluminide<br />

coating growth under c<strong>on</strong>tinuous doping c<strong>on</strong>diti<strong>on</strong>s," Metallurgical <str<strong>on</strong>g>and</str<strong>on</strong>g> materials<br />

Transacti<strong>on</strong>s A 35A (2004) 35813593.<br />

[51] J. A. Haynes, Y. Zhang, K. M. Cooley, L. Walker, K. S. Reeves, B. A. Pint, "Hightemperature<br />

diffusi<strong>on</strong> barriers for protective coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology<br />

188-189 (2004) 153-157.<br />

[52] S. H. Kim, M. H. Oh, K. Kishida, T. Hirano, D. M. Wee, "Depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl Coating<br />

for Improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxidati<strong>on</strong> Resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> Cold-Rolled Ni 3 Al Foils," Intermetallics 13<br />

(2005) 129-136.<br />

[53] Z. Yu, K. P. Dharmasena, D. D. Hass, H. N. G. Wadley, "Vapor depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> platinum<br />

alloyed nickel aluminide coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 201 (2006) 2326-<br />

2334.<br />

40


[54] Z. Yu, D. D. Hass, H. N. G. Wadley, "NiAl b<strong>on</strong>d coats made by a directed vapor<br />

depositi<strong>on</strong> approach," Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering A 394 (2005) 43-52.<br />

[55] J. M. N'G<str<strong>on</strong>g>and</str<strong>on</strong>g>u-Muamba, R. Streiff, "The reactive element <str<strong>on</strong>g>effect</str<strong>on</strong>g> (R.E.E.): a tentative<br />

classificati<strong>on</strong>," Journal de Physique IV 3 (1993) 281-290.<br />

[56] J. M. N'G<str<strong>on</strong>g>and</str<strong>on</strong>g>u-Muamba, R. Streiff, D. H. Bo<strong>on</strong>e, "L'influence du <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> du substrat<br />

sur la résistance à l'oxydati<strong>on</strong> des revêtements d'aluminiures sur les superalliages base<br />

nickel," Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering 88 (1987) 111-121.<br />

[57] J. Liu, "Mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> lifetime improvement in <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coatings with <str<strong>on</strong>g>hafnium</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>/or yttrium modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CMSX-4 superalloy substrates," Ph.D. Dissertati<strong>on</strong>,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Central Florida, 2007.<br />

[58] J. Liu, Y. H. Sohn, K. S. Murphy, "Microstructural evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> durable <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier<br />

coatings with Hf <str<strong>on</strong>g>and</str<strong>on</strong>g>/or Y modified CMSX-4 superalloy substrates," Materials Science<br />

Forum 539-543 (2007) 1206-1211.<br />

[59] V. K. Tolpygo, K. S. Murphy, D. R. Clarke, "Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf, Y <str<strong>on</strong>g>and</str<strong>on</strong>g> C in <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying<br />

superalloy <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rumpling <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> aluminide coatings," Acta Materialia 56 (2008)<br />

489-499.<br />

[60] R. T. Wu, K. Kawagishi, H. Harada, R. C. Reed, "The retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier<br />

coating systems <strong>on</strong> single-crystal superalloys: Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate compositi<strong>on</strong>," Acta<br />

Materialia 56 (2008) 3622-3629.<br />

[61] P. Y. Hou, "Segregati<strong>on</strong> behavior at TGO/b<strong>on</strong>dcoat interfaces," Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials<br />

Science 44 (2009) 1711-1725.<br />

[62] L. M. He, J. D. Meyer, W. Y. Lee, "Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Prehafnizing <strong>on</strong> Morphological<br />

Development <str<strong>on</strong>g>of</str<strong>on</strong>g> a Chemical Vapor Depositi<strong>on</strong> Aluminide Coating Formed <strong>on</strong> Single-<br />

Crystal Ni-Based Superalloy," Metallurgical <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials Transacti<strong>on</strong>s A 35 A (2004)<br />

891-897.<br />

[63] E. Perez, T. Patters<strong>on</strong>, Y. Sohn, "Interdiffusi<strong>on</strong> analysis for NiAl versus superalloys<br />

diffusi<strong>on</strong> couples," Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Phase Equilibria <str<strong>on</strong>g>and</str<strong>on</strong>g> Diffusi<strong>on</strong> 27 (2006) 659-664.<br />

[64] C. E. Campbell, "Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> mobilities in <str<strong>on</strong>g>the</str<strong>on</strong>g> γ' <str<strong>on</strong>g>and</str<strong>on</strong>g> B2 phases in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Ni-Al-Cr system," Acta Materialia 56 (2008) 4277-4290.<br />

[65] H. Wei, X. Sun, Q. Zheng, G. Hou, H. Guan, z. Hu, "Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate characteristics<br />

<strong>on</strong> interdiffusi<strong>on</strong> coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> Ni <str<strong>on</strong>g>and</str<strong>on</strong>g> Al atoms in β-NiAl phase <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminide coatings,"<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology 20 (2004) 196-198.<br />

[66] D. J. Lars<strong>on</strong>, M. K. Miller, "Atom Probe Field-I<strong>on</strong> Microscopy Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Nickel <str<strong>on</strong>g>and</str<strong>on</strong>g> Titanium Aluminides," Materials Characterizati<strong>on</strong> 44 (2000) 159-176.<br />

41


[67] R. Darolia, W. S. Walst<strong>on</strong>, J. A. Pfaendtner, B. A. R. Boutwell, I. Spitsberg, J. A. Ruud,<br />

"Nickel Aluminide Coating <str<strong>on</strong>g>and</str<strong>on</strong>g> Coating Systems Formed Therewith," United States<br />

patent # 6,887,589, 2005.<br />

[68] R. Darolia, J. D. Rigney, G. H. Marijnissen, E. R. I. C. Vergeldt, A. B. Kloosterman,<br />

"Streng<str<strong>on</strong>g>the</str<strong>on</strong>g>ned B<strong>on</strong>d Coats for Thermal Barrier Coatings," United States patent #<br />

7,172,820 B2, 2007.<br />

[69] S. C. Jha, R. Ray, J. D. Whittenberger, "Carbide-dispersi<strong>on</strong>-streng<str<strong>on</strong>g>the</str<strong>on</strong>g>ned B2 NiAl,"<br />

Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering A 119 (1989) 103-111.<br />

[70] S. C. Jha, R. Ray, D. J. Gaydosh, "Dispersoids in Rapidly Solidified B2 Nickel<br />

Aluminides," Scripta Metallurgica 23 (1989) 805-810.<br />

42


Table 1. Nominal chemical compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sputtering targets.<br />

Alloy C<strong>on</strong>diti<strong>on</strong> Method Ni Al Cr Co Hf<br />

NiAl Nominal --- 51 49 --- --- ---<br />

As-deposited WDS 52.05 ± 0.95 47.68 ± 0.97 0.14 ± 0.25 0.08 ± 0.04 ± 0.02<br />

1000°C/2h WDS<br />

1000°C/4h WDS 56.50 ± 40.34 ± 1.53 ± 1.598 ± 0.04 ±<br />

NiAl-1.0Hf Nominal --- 51 48 --- --- 1.0<br />

As-deposited WDS 53.29 ± 0.49 45.37 ± 0.51 0.08 ± 0.06 0.08 ± 0.13 1.10 ± 0.05<br />

1000°C/2h WDS 55.99 ± 0.41 38.67 ± 0.59 2.04 ± 0.25 2.57 ± 0.15 0.73 ± 0.16<br />

1000°C/4h WDS 53.44 ± 0.79 43.19 ± 0.72 1.33 ± 0.43 1.09 ± 0.30 0.85 ± 0.14<br />

Table 2. Lattice parameters for <str<strong>on</strong>g>the</str<strong>on</strong>g> β-NiAl phase.<br />

Alloy Annealing Time Lattice Parameter (nm) Grain Size (nm)<br />

NiAl As-deposited 0.2889 ± 0.0007<br />

1000°C/2h 0.2888 ± 0.0007 220.1 ± 35.1<br />

1000°C/4h 0.2884 ± 0.0007 267.3 ± 34.3<br />

NiAl-1Hf As-deposited 0.2882 ± 0.0001<br />

1000°C/2h 0.2879 ± 0.0001<br />

1000°C/4h 0.2879 ± 0.0002 90 ± 20.5<br />

43


Figure 1. Representative SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> as-deposited coatings: (a) NiAl <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) NiAl-<br />

1Hf.<br />

44


Figure 2. Plan view TEM images collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl coatings: (a) as-deposited, (b)<br />

annealing at 1000°C for two hours, <str<strong>on</strong>g>and</str<strong>on</strong>g> (c) annealing at 1000°C for four hours.<br />

45


Figure 3. Elemental compositi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles for as-deposited coatings: (a) NiAl <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) NiAl-1Hf.<br />

46


NiAl<br />

NiAl<br />

NiAl<br />

NiAl<br />

NiAl<br />

NiAl<br />

(100)<br />

(110)<br />

(111)<br />

(200)<br />

(211)<br />

(220)<br />

Intensity (abu)<br />

NiAl-1Hf<br />

NiAl<br />

30 40 50 60 70 80 90 100<br />

Degrees (2θ)<br />

Figure 4. X-ray diffracti<strong>on</strong> patterns for as-deposited coatings.<br />

47


Figure 5. Representative SEM micrographs for: (a) NiAl annealed for two hours, (b) NiAl<br />

annealed for four hours, (c) NiAl-1Hf annealed for two hours, <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) NiAl-1Hf annealed for<br />

four hours.<br />

48


Figure 6. Backscattered SEM image <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-1Hf showing <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g>-rich<br />

precipitates after annealing.<br />

49


Figure 7. Plain view TEM images from coatings after annealing for four hours: (a) NiAl <str<strong>on</strong>g>and</str<strong>on</strong>g> (b)<br />

NiAl-1Hf.<br />

50


Figure 8. STEM-HAADF image <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-1Hf after annealing for four hours at 1000°C.<br />

51


Figure 9. Elemental compositi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles for annealed coatings: (a) Nickel, (b) Chromium, (c)<br />

Aluminum, <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) Hafnium.<br />

52


β-NiAl<br />

θ-Al 2<br />

O 3<br />

γ'-Ni 3<br />

Al<br />

Intensity (abu)<br />

(d)<br />

(c)<br />

(b)<br />

(a)<br />

30 40 50 60 70 80 90 100<br />

Degrees (2θ)<br />

Figure 10. X-ray diffracti<strong>on</strong> patterns for annealed coatings: (a) NiAl annealed two hours, (b)<br />

NiAl annealed four hours, (c) NiAl-1Hf annealed two hours, <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) NiAl-1Hf annealed four<br />

hours.<br />

53


Figure 11. 3D-APT data for NiAl-1Hf after annealing for four hours: (a) all elements within <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sample <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) <strong>on</strong>ly <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> carb<strong>on</strong>.<br />

54


Figure 12. (a) Two-dimensi<strong>on</strong>al isosurface rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a NiAl-1Hf coating that was<br />

analyzed using 3D-APT, <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) corresp<strong>on</strong>ding c<strong>on</strong>centrati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitate.<br />

55


CHAPTER V<br />

INFLUENCES OF CHROMIUM AND HAFNIUM ADDITIONS ON THE<br />

MICROSTRUCTURES OF β-NIAL COATINGS DEPOSITED ON SUPERALLOY<br />

SUBSTRATES<br />

M.A. Bestor 1 , J.P. Alfano 1 , B.T. Hazel 2 , M.L. Weaver 1<br />

1-The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alabama, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Metallurgical & Materials Engineering, Box<br />

870202, Tuscaloosa, AL 35487-0202, USA<br />

2- General Electric Aviati<strong>on</strong>; One Neumann Way; Cincinnati, OH, 45215, USA<br />

Keywords: Nickel aluminides, b<strong>on</strong>d coatings, reactive element doping, DC magnetr<strong>on</strong><br />

sputtering<br />

Abstract<br />

In this study, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> annealing <str<strong>on</strong>g>and</str<strong>on</strong>g> chemistry were investigated for NiAl coatings<br />

c<strong>on</strong>taining 1.0 at% Hf <str<strong>on</strong>g>and</str<strong>on</strong>g>/or 5 at% Cr have been deposited <strong>on</strong>to René N5 substrates via direct<br />

current magnetr<strong>on</strong> sputtering. Investigati<strong>on</strong>s were c<strong>on</strong>ducted using X-ray diffracti<strong>on</strong>, scanning<br />

electr<strong>on</strong> microscopy, electr<strong>on</strong> probe microanalysis, <str<strong>on</strong>g>and</str<strong>on</strong>g> transmissi<strong>on</strong> electr<strong>on</strong> microscopy in<br />

order to study <str<strong>on</strong>g>the</str<strong>on</strong>g> influences <str<strong>on</strong>g>of</str<strong>on</strong>g> annealing <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings.<br />

Post-depositi<strong>on</strong> annealing in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf produced nanometer sized precipitates that were high<br />

in atomic number c<strong>on</strong>trast; however, <str<strong>on</strong>g>the</str<strong>on</strong>g> Cr-c<strong>on</strong>taining coatings also produced large Cr-rich<br />

precipitates after two hours <str<strong>on</strong>g>of</str<strong>on</strong>g> annealing. As annealing time was increased, coarsening <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coating grains <str<strong>on</strong>g>and</str<strong>on</strong>g> precipitates was observed. TEM analyses indicate that most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

precipitates in <str<strong>on</strong>g>the</str<strong>on</strong>g> coating are β′-Ni 2 AlHf with <str<strong>on</strong>g>the</str<strong>on</strong>g> incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al precipitates. Atom<br />

probe tomography results suggest that many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se o<str<strong>on</strong>g>the</str<strong>on</strong>g>r precipitates are α-Cr. The results<br />

56


have been analyzed <str<strong>on</strong>g>and</str<strong>on</strong>g> discussed relative to previous research <strong>on</strong> sputter deposited NiAl-Hf<br />

coatings.<br />

5.1. Introducti<strong>on</strong><br />

Though Ni-based superalloys exhibit high strengths <str<strong>on</strong>g>and</str<strong>on</strong>g> creep resistances, when used in<br />

gas turbine engines, <str<strong>on</strong>g>the</str<strong>on</strong>g>y <str<strong>on</strong>g>of</str<strong>on</strong>g>ten require envir<strong>on</strong>mental barrier (EB) or <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coating<br />

(TBC) systems [1-4]. TBCs are comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> three main parts. The top layer or top coat,<br />

usually a Y-stabilized ZrO 2 , is used to lower <str<strong>on</strong>g>the</str<strong>on</strong>g> surface temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> a comp<strong>on</strong>ent by as much<br />

as 200°C from <str<strong>on</strong>g>the</str<strong>on</strong>g> operating temperature. The ceramic top coat is porous in nature <str<strong>on</strong>g>and</str<strong>on</strong>g> does not<br />

inhibit <str<strong>on</strong>g>the</str<strong>on</strong>g> transport <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen to <str<strong>on</strong>g>the</str<strong>on</strong>g> superalloy. Between <str<strong>on</strong>g>the</str<strong>on</strong>g> superalloy <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ceramic topcoat<br />

is a metallic b<strong>on</strong>d coat. This b<strong>on</strong>d coat provides <str<strong>on</strong>g>the</str<strong>on</strong>g> adhesive properties that are necessary to<br />

attach <str<strong>on</strong>g>the</str<strong>on</strong>g> top coat to <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying superalloy while also providing an oxidati<strong>on</strong> barrier. This is<br />

accomplished by <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a thin <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally grown oxide (TGO) layer between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

metallic b<strong>on</strong>d coat <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ceramic top coat. The thickness <str<strong>on</strong>g>and</str<strong>on</strong>g> growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> this oxide layer<br />

are critical to <str<strong>on</strong>g>the</str<strong>on</strong>g> service lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> TBC [2,4,5]. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>d coat alloys<br />

capable <str<strong>on</strong>g>of</str<strong>on</strong>g> forming slow growing, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally stable TGOs is a high priority.<br />

For years, diffusi<strong>on</strong> aluminides <str<strong>on</strong>g>and</str<strong>on</strong>g> MCrAlY (where M = Fe, Co, <str<strong>on</strong>g>and</str<strong>on</strong>g>/or Ni) overlay<br />

coatings have been used with great success as EBs <str<strong>on</strong>g>and</str<strong>on</strong>g> as b<strong>on</strong>d coats in TBCs [4,5]. Though<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se alloys have generally performed well, <str<strong>on</strong>g>the</str<strong>on</strong>g>y were never really designed or developed to<br />

increase TBC durability, while meeting o<str<strong>on</strong>g>the</str<strong>on</strong>g>r performance requirements [6,7]. As such, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is<br />

great interest in <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> new coating alloys, specifically engineered to meet existing<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> future requirements in advanced turbine systems.<br />

57


Investigati<strong>on</strong>s by Pint et al. [8-10], Nesbitt et al. [11], <str<strong>on</strong>g>and</str<strong>on</strong>g> Warnes [12] suggest that NiAlbased<br />

alloys c<strong>on</strong>taining small quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> so called reactive elements (RE) Y, Hf or Zr<br />

added ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r in c<strong>on</strong>juncti<strong>on</strong> with or in place <str<strong>on</strong>g>of</str<strong>on</strong>g> Pt <str<strong>on</strong>g>of</str<strong>on</strong>g>fer <str<strong>on</strong>g>the</str<strong>on</strong>g> potential for improved TBC lifetimes<br />

in comparis<strong>on</strong> to state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<str<strong>on</strong>g>the</str<strong>on</strong>g> art coatings. The RE <str<strong>on</strong>g>effect</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g>se alloys have been summarized<br />

as an improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> alumina scale adhesi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO growth rate by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

segregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RE i<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> scale grain boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> alloy-scale interface [10]. In general,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> RE <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> to <str<strong>on</strong>g>the</str<strong>on</strong>g> aluminide b<strong>on</strong>d coats are maintained around 0.05 at.% which is near or<br />

well below <str<strong>on</strong>g>the</str<strong>on</strong>g>ir reported solubility limits in β-NiAl <str<strong>on</strong>g>and</str<strong>on</strong>g> (Ni,Pt)Al.<br />

Recently, it was discovered that β-NiAl based b<strong>on</strong>d coats c<strong>on</strong>taining up to 2 at% Hf<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>/or Zr <str<strong>on</strong>g>and</str<strong>on</strong>g> up to 5 at% Cr can exhibit oxidati<strong>on</strong> resistance that is comparable to modern<br />

(Ni,Pt)Al diffusi<strong>on</strong> coatings [13]. Based up<strong>on</strong> c<strong>on</strong>venti<strong>on</strong>al wisdom, it was expected that alloys<br />

c<strong>on</strong>taining such high RE <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr c<strong>on</strong>centrati<strong>on</strong>s would fail catastrophically due to internal<br />

oxidati<strong>on</strong> [14-16]. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, it has been shown in model bulk alloys that Cr, when added to<br />

β-NiAl in c<strong>on</strong>juncti<strong>on</strong> with 0.05 at.% Hf, led to <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>d phase precipitates which<br />

appeared to catalyze scale spallati<strong>on</strong> [17]. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>se new b<strong>on</strong>d coat alloys, which were<br />

largely derived from research <strong>on</strong> m<strong>on</strong>olithic β-NiAl intermetallics in <str<strong>on</strong>g>the</str<strong>on</strong>g> early 1990’s, have been<br />

shown to yield increased TBC spallati<strong>on</strong> life <str<strong>on</strong>g>and</str<strong>on</strong>g> reduced substrate c<strong>on</strong>sumpti<strong>on</strong> rates in<br />

comparis<strong>on</strong> to Pt-c<strong>on</strong>taining diffusi<strong>on</strong> aluminides [13,17-19]. Bennett <str<strong>on</strong>g>and</str<strong>on</strong>g> Slo<str<strong>on</strong>g>of</str<strong>on</strong>g> [20] reported<br />

that <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Y or Zr to a bulk β-NiAl alloy c<strong>on</strong>taining ~4 at.% Cr resulted in improved TGO<br />

adhesi<strong>on</strong> in comparis<strong>on</strong> to RE-free, but Cr c<strong>on</strong>taining alloys.<br />

58


Underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructural evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coating systems is pivotal to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> next generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coating technology. This study focuses <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> influences<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> RE (i.e., Hf or Zr) <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> in excess <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir solubility limits <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructures<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> β-NiAl based overlay coatings deposited <strong>on</strong> superalloy substrates. Previously,<br />

studies have detailed influences <str<strong>on</strong>g>of</str<strong>on</strong>g> high Hf c<strong>on</strong>tents <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidati<strong>on</strong><br />

resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> β-NiAl based coatings produced via balanced <str<strong>on</strong>g>and</str<strong>on</strong>g> unbalanced, direct current (DC)<br />

magnetr<strong>on</strong> sputtering [21-24]. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this short paper is to exp<str<strong>on</strong>g>and</str<strong>on</strong>g> up<strong>on</strong> that previous<br />

work by detailing <str<strong>on</strong>g>the</str<strong>on</strong>g> influences <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr <str<strong>on</strong>g>and</str<strong>on</strong>g> relatively high Hf c<strong>on</strong>tents <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructures <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

β-NiAl based overlay b<strong>on</strong>d coatings produced via unbalanced DC magnetr<strong>on</strong> sputtering.<br />

5.2. Experimental<br />

Alloy sputtering targets for this study were purchased from ACI Alloys, Inc., San Jose,<br />

CA <str<strong>on</strong>g>and</str<strong>on</strong>g> Sophisticated Alloys, Inc., Butler, PA. The nominal <str<strong>on</strong>g>and</str<strong>on</strong>g> experimentally determined<br />

target compositi<strong>on</strong>s are presented in Table 1. Coatings ~30μm thick were deposited via direct<br />

current (DC) magnetr<strong>on</strong> sputtering <strong>on</strong>to René N5 substrates using an AJA Internati<strong>on</strong>al, Inc.<br />

ORION 4 sputtering system with a sputter-down c<strong>on</strong>figurati<strong>on</strong>. Arg<strong>on</strong> was used as a working<br />

gas. The depositi<strong>on</strong> power was set at 300 W, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> working gas pressure was set at 1.33 Pa.<br />

Prior to depositi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> substrates were heated to 400°C or 650°C. These parameters were<br />

optimized to yield a z<strong>on</strong>e T microstructure. All <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substrates were coated <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> two primary<br />

faces for subsequent microstructural analyses, annealing, <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidati<strong>on</strong> experiments.<br />

The as-deposited coatings were annealed at 1000°C from <strong>on</strong>e to four hours in a flowing<br />

mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> Ar + 5% H 2 to improve adhesi<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> coating <str<strong>on</strong>g>and</str<strong>on</strong>g> substrate, reduce sputtering<br />

59


induced defects, <str<strong>on</strong>g>and</str<strong>on</strong>g> alleviate any processing induced residual stresses. Annealing was d<strong>on</strong>e in a<br />

horiz<strong>on</strong>tal tube furnace inside <str<strong>on</strong>g>of</str<strong>on</strong>g> a quartz tube.<br />

The chemical compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sputtered coatings were determined via wavelength<br />

dispersive X-ray spectroscopy (WDS) <str<strong>on</strong>g>and</str<strong>on</strong>g> three-dimensi<strong>on</strong>al atom probe tomography (3D-APT).<br />

X-ray diffracti<strong>on</strong> (XRD), scanning electr<strong>on</strong> microscopy (SEM) <str<strong>on</strong>g>and</str<strong>on</strong>g> transmissi<strong>on</strong> electr<strong>on</strong><br />

microscopy (TEM) were used for phase identificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> to elucidate <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructures <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

select coatings after depositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> annealing. The TEM samples were prepared using a focused<br />

i<strong>on</strong> beam in situ lift-out (FIB-INLO) procedure [25].<br />

5.3. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

5.3.1. Microstructure<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> present study, <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings were deposited using <str<strong>on</strong>g>the</str<strong>on</strong>g> same c<strong>on</strong>diti<strong>on</strong>s that were<br />

used to produce NiAl-1.0Hf at% coatings [24]. Figure 1 presents representative cross-secti<strong>on</strong>al<br />

SEM images showing <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited <str<strong>on</strong>g>and</str<strong>on</strong>g> annealed coatings. Images from <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited<br />

coatings (Figures 1 a. <str<strong>on</strong>g>and</str<strong>on</strong>g> c.) show that <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings are dense <str<strong>on</strong>g>and</str<strong>on</strong>g> adherent to <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying<br />

substrates. These coatings exhibited columnar z<strong>on</strong>e T microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g> were featureless with<br />

regard to variati<strong>on</strong>s in atomic number c<strong>on</strong>trast in both SEM <str<strong>on</strong>g>and</str<strong>on</strong>g> TEM studies. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

XRD spectra <strong>on</strong>ly c<strong>on</strong>tained peaks for β-NiAl suggesting <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a single phase.<br />

Occasi<strong>on</strong>al leader defects <str<strong>on</strong>g>and</str<strong>on</strong>g> through thickness cracks, especially with <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coatings,<br />

were observed [26-30]. Both defect types are typical with physical vapor deposited coatings <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

can attributed to substrate surface irregularities or particles ejected from <str<strong>on</strong>g>the</str<strong>on</strong>g> sputtering targets<br />

during depositi<strong>on</strong>. Post-depositi<strong>on</strong> annealing at 1000°C from <strong>on</strong>e to four hours produced an<br />

interdiffusi<strong>on</strong> z<strong>on</strong>e (IDZ) between <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. The IDZ forms as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

60


difference in chemistries between <str<strong>on</strong>g>the</str<strong>on</strong>g> coating <str<strong>on</strong>g>and</str<strong>on</strong>g> superalloy. Primarily it is <str<strong>on</strong>g>the</str<strong>on</strong>g> large<br />

c<strong>on</strong>centrati<strong>on</strong> gradient with aluminum that provides <str<strong>on</strong>g>the</str<strong>on</strong>g> driving force for diffusi<strong>on</strong> to occur<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> coating. However, this IDZ also aids in providing additi<strong>on</strong>al adhesi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating to <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate through <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a str<strong>on</strong>g physical b<strong>on</strong>d. The IDZ c<strong>on</strong>sists<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> globular high atomic number c<strong>on</strong>trast precipitates in a lower atomic number<br />

c<strong>on</strong>trast matrix. There is no observable difference in <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> NiAl-5Cr-1Hf. The NiAlCrHf (Figure 1 d.) sample c<strong>on</strong>tains lighter phases in <str<strong>on</strong>g>the</str<strong>on</strong>g> coating.<br />

These will be addressed later in <str<strong>on</strong>g>the</str<strong>on</strong>g> paper.<br />

After annealing, a thin <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally grown oxide (TGO) layer was observed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> exterior<br />

surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> specimens. The oxygen source that resulted in TGO formati<strong>on</strong> was traced<br />

to a leak in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace bulkheads. The TGO was typically less than 500 nm in thickness<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> was found to c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> θ-Al 2 O 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> α-Al 2 O 3 . High atomic number c<strong>on</strong>trast<br />

phases were detected near <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO/coating interface. While <str<strong>on</strong>g>the</str<strong>on</strong>g>se phases have not been<br />

quantitatively identified, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are presumed to be <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> oxide (HfO 2 ). These observati<strong>on</strong>s are<br />

c<strong>on</strong>sistent with those <str<strong>on</strong>g>of</str<strong>on</strong>g> Guo et al. [31] <str<strong>on</strong>g>and</str<strong>on</strong>g> Sun et al. [32] who investigate NiAl-Hf coatings<br />

produced via electr<strong>on</strong>-beam physical vapor depositi<strong>on</strong> (EB-PVD).<br />

Figure 2 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> x-ray diffracti<strong>on</strong> (XRD) patterns collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

NiAlCrHf coatings. The as-deposited coatings for both samples appear to be single phase, even<br />

though <str<strong>on</strong>g>the</str<strong>on</strong>g>y are well above <str<strong>on</strong>g>the</str<strong>on</strong>g> solubility limits for Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr. After annealing, both samples<br />

exhibit <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al phases, mainly θ-Al 2 O 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> α-Al 2 O 3 . The θ-Al 2 O 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> α-<br />

Al 2 O 3 (i.e., alumina) peaks appear to increase in size <str<strong>on</strong>g>and</str<strong>on</strong>g> number as annealing time is increased.<br />

61


As aluminum is c<strong>on</strong>sumed to form alumina, <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong> from β-NiAl to γ′-Ni 3 Al is typically<br />

observed; however, no γ’-Ni 3 Al peaks observed with any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> XRD patterns collected for <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

samples.<br />

Figure 3 shows plan view TEM micrographs for <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAlCr1Hf coatings<br />

that were annealed at 1000°C for four hours. After annealing, <str<strong>on</strong>g>the</str<strong>on</strong>g> grains became more equiaxed<br />

in appearance in both coatings (Figures 3 a. <str<strong>on</strong>g>and</str<strong>on</strong>g> b.) suggesting <str<strong>on</strong>g>the</str<strong>on</strong>g> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> some recovery<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> recrystallizati<strong>on</strong> [33]. In <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coatings, a linear intercept grain size measurement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

90.0 ± 20.5 nm. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coatings had a linear intercept grain size measurement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 162.48 ± 25.43 nm after annealing for four hours. The grain sizes observed with this study are<br />

c<strong>on</strong>siderably smaller than <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es reported by Ning et al. [21,22,32,34]. These smaller grain<br />

sizes are attributed to differences in <str<strong>on</strong>g>the</str<strong>on</strong>g> coating compositi<strong>on</strong> plus <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> an unbalanced<br />

magnet c<strong>on</strong>figurati<strong>on</strong> as opposed to <str<strong>on</strong>g>the</str<strong>on</strong>g> balanced c<strong>on</strong>figurati<strong>on</strong> used by Ning [21,22].<br />

Unbalanced magnetr<strong>on</strong>s increase i<strong>on</strong> bombardment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> growing film resulting in more dense<br />

coatings <str<strong>on</strong>g>and</str<strong>on</strong>g> higher depositi<strong>on</strong> rates [35,36].<br />

5.3.2. Chemistry<br />

Chemical compositi<strong>on</strong>s were measured using electr<strong>on</strong> probe microanalysis (EPMA) <strong>on</strong><br />

cross-secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited <str<strong>on</strong>g>and</str<strong>on</strong>g> annealed coatings. SEM spectral maps were also collected<br />

to indicate <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> different elements within <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings. The chemistries measured for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited <str<strong>on</strong>g>and</str<strong>on</strong>g> annealed coatings are presented in Table 1 al<strong>on</strong>g with <str<strong>on</strong>g>the</str<strong>on</strong>g> nominal<br />

sputtering target c<strong>on</strong>centrati<strong>on</strong>s. Figure 4 shows compositi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles for Ni, Al, Cr, <str<strong>on</strong>g>and</str<strong>on</strong>g> Hf<br />

collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited <str<strong>on</strong>g>and</str<strong>on</strong>g> annealed coatings. There was no interdiffusi<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> coating during depositi<strong>on</strong>. The Ni <str<strong>on</strong>g>and</str<strong>on</strong>g> Al c<strong>on</strong>centrati<strong>on</strong>s remain almost c<strong>on</strong>stant<br />

62


throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> coating for both <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAlCrHf samples. The Ni/Al ratios for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NiAl-1Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAlCrHf coatings were found to be close to those <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sputtering targets. After<br />

annealing, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was a noticeable decrease in aluminum c<strong>on</strong>tent with a corresp<strong>on</strong>ding increase in<br />

Cr <str<strong>on</strong>g>and</str<strong>on</strong>g> Co in <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings. The aluminum c<strong>on</strong>centrati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf sample decreased from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited state <str<strong>on</strong>g>of</str<strong>on</strong>g> 45.36 at.% to 43.12 at.% following annealing at 1000°C for four hours<br />

while <str<strong>on</strong>g>the</str<strong>on</strong>g> Cr <str<strong>on</strong>g>and</str<strong>on</strong>g> Co c<strong>on</strong>tents increased to 1.36 at.% <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.10 at.% respectively. The NiAlCrHf<br />

exhibited a more significant loss in aluminum going from 48.53 at.% in <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited case to<br />

40.50 at.% following annealing. The Cr c<strong>on</strong>centrati<strong>on</strong> remained almost c<strong>on</strong>stant from <str<strong>on</strong>g>the</str<strong>on</strong>g> asdeposited<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.8 at.% while <str<strong>on</strong>g>the</str<strong>on</strong>g> Co c<strong>on</strong>centrati<strong>on</strong> increased to 1.16 at.%. The Ni<br />

c<strong>on</strong>centrati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coating was not observed to change appreciably; however, in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NiAlCrHf samples <str<strong>on</strong>g>the</str<strong>on</strong>g> Ni c<strong>on</strong>tent increased from 45.74 at.% to 53.23 at.%.<br />

The compositi<strong>on</strong> changes that occurred during annealing can be explained by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong> gradient that exists between <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> coating. The René N5 superalloy<br />

substrates that were used in this study c<strong>on</strong>tain a much lower c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum<br />

compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> sputter deposited coatings. This difference in compositi<strong>on</strong> provides <str<strong>on</strong>g>the</str<strong>on</strong>g> driving<br />

force for interdiffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elements from <str<strong>on</strong>g>the</str<strong>on</strong>g> coating <str<strong>on</strong>g>and</str<strong>on</strong>g> substrate to occur during exposure to<br />

high temperatures during annealing <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidati<strong>on</strong>. Also, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are a couple <str<strong>on</strong>g>of</str<strong>on</strong>g> interesting<br />

observati<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles. The Hf pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile shown in Figure 4 (d) collected<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coating after annealing for four hours shows a variati<strong>on</strong> through <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. It appears that <str<strong>on</strong>g>the</str<strong>on</strong>g> Hf enriches <str<strong>on</strong>g>the</str<strong>on</strong>g> interfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating <str<strong>on</strong>g>and</str<strong>on</strong>g> depletes <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> Hf c<strong>on</strong>centrati<strong>on</strong>s near <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>and</str<strong>on</strong>g> coating/substrate<br />

interfaces respectively were found to be ~0.75 at.% Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> ~1.0 at.% Hf; however, <str<strong>on</strong>g>the</str<strong>on</strong>g> Hf<br />

63


c<strong>on</strong>centrati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating was determined to be approximately 0.6 at.%. This<br />

behavior was observed in several specimens <str<strong>on</strong>g>and</str<strong>on</strong>g> is similar to those reported by o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs<br />

[22,31,32,37-39]. This is c<strong>on</strong>sistent with dynamic segregati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory as described by Pint et al.<br />

[10] which states that reactive elements should preferentially segregate to <str<strong>on</strong>g>the</str<strong>on</strong>g> free surface or<br />

coating/substrate interfaces during <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal exposure, particularly under an oxygen potential<br />

gradient. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coatings, an apparent increase in Hf c<strong>on</strong>centrati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coating/substrate interface was observed. The Hf c<strong>on</strong>centrati<strong>on</strong> at this interface was found to be<br />

near ~1.1 at.% after annealing for two or four hours, while <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coatings remained near ~0.8 at.%, which was equivalent to that observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited<br />

coatings.<br />

Additi<strong>on</strong>al elemental diffusi<strong>on</strong> informati<strong>on</strong> was collected from annealed cross-secti<strong>on</strong>al<br />

samples using SEM-EDS mapping. Figure 5 displays <str<strong>on</strong>g>the</str<strong>on</strong>g> spectral maps collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-<br />

1Hf coating for aluminum, oxygen, <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>chromium</str<strong>on</strong>g>. The decorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coating/substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> coating/TGO interfaces is clearly visible. The TGO is primarily composed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum oxide, which c<strong>on</strong>firms <str<strong>on</strong>g>the</str<strong>on</strong>g> XRD results from Figure 2. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ has a high Al c<strong>on</strong>tent mixed with Cr-rich phases also being present. While <str<strong>on</strong>g>the</str<strong>on</strong>g> Cr<br />

extends upward through <str<strong>on</strong>g>the</str<strong>on</strong>g> coating, it appears to have a higher c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ than in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> coating. The phases in <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ also appear to be small in size <str<strong>on</strong>g>and</str<strong>on</strong>g> globular in nature.<br />

However, <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coating (Figure 6) c<strong>on</strong>tains larger precipitates dispersed<br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix that appear to be Cr-rich. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> maps show that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a large<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr-rich precipitates within <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. This supports <str<strong>on</strong>g>the</str<strong>on</strong>g> evidence from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

EPMA c<strong>on</strong>centrati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles that <str<strong>on</strong>g>the</str<strong>on</strong>g> Cr is retained in <str<strong>on</strong>g>the</str<strong>on</strong>g> coating following annealing. The<br />

64


segregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf to <str<strong>on</strong>g>the</str<strong>on</strong>g> interfaces is not as clear with this coating as with <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf. This<br />

suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hf is also retained in <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. The implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

observati<strong>on</strong>s are potentially quite significant in that <str<strong>on</strong>g>the</str<strong>on</strong>g>y suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g> incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

substrate elements into <str<strong>on</strong>g>the</str<strong>on</strong>g> coating can be inhibited by <str<strong>on</strong>g>the</str<strong>on</strong>g> simultaneous additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr <str<strong>on</strong>g>and</str<strong>on</strong>g> Hf.<br />

This observati<strong>on</strong> is in agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> recent reports <str<strong>on</strong>g>of</str<strong>on</strong>g> Hazel et al. [13] who reported<br />

reduced wall c<strong>on</strong>sumpti<strong>on</strong> in superalloy comp<strong>on</strong>ents coated with NiAl+Cr+Zr overlay coatings<br />

in comparis<strong>on</strong> to platinum aluminides. Such a reducti<strong>on</strong> could have a significant impact <strong>on</strong><br />

superalloy <str<strong>on</strong>g>and</str<strong>on</strong>g> TBC service lifetimes <str<strong>on</strong>g>and</str<strong>on</strong>g> comp<strong>on</strong>ent repairability. More thorough analyses<br />

focusing <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> phase makeup within <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ <str<strong>on</strong>g>and</str<strong>on</strong>g> underlying<br />

superalloy substrate coupled with diffusi<strong>on</strong> modeling are needed to quantatively identify <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

operative mechanisms.<br />

Figure 7 shows a STEM-HAADF image <str<strong>on</strong>g>and</str<strong>on</strong>g> EDS spectrum collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf<br />

coating after annealing at 1000°C/4h. The EDS results c<strong>on</strong>firmed <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf-rich<br />

precipitates with compositi<strong>on</strong>s c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> β′- Ni 2 AlHf phase. Additi<strong>on</strong>al lower atomic<br />

number c<strong>on</strong>trast precipitates were also observed, however, it was not possible to obtain EDS<br />

results from <str<strong>on</strong>g>the</str<strong>on</strong>g>m.<br />

3D-APT <str<strong>on</strong>g>investigati<strong>on</strong></str<strong>on</strong>g>s were c<strong>on</strong>ducted to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>chromium</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>hafnium</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> β-NiAl phase <str<strong>on</strong>g>and</str<strong>on</strong>g> to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitates that formed following annealing.<br />

Figure 8 shows a representative 3-D atom map <str<strong>on</strong>g>and</str<strong>on</strong>g> isosurface rec<strong>on</strong>structi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf<br />

coating after annealing at 1000°C/4h. The images clearly show <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr-rich<br />

precipitates within <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl matrix. The precipitates ranged from ~7 nm to 50 nm in size with<br />

65


<str<strong>on</strong>g>the</str<strong>on</strong>g> smaller <strong>on</strong>es exhibiting almost spherical shapes. These observati<strong>on</strong>s are similar to those <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Cott<strong>on</strong> et al. [40] <str<strong>on</strong>g>and</str<strong>on</strong>g> Tian et al. [41]. Figure 9 shows a <strong>on</strong>e-dimensi<strong>on</strong>al element c<strong>on</strong>centrati<strong>on</strong><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile analyzed through <str<strong>on</strong>g>the</str<strong>on</strong>g> large precipitate shown in Figure 8. From this pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

precipitates were found to c<strong>on</strong>sist almost entirely <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr, which is c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

α-Cr. The NiAl matrix surrounding <str<strong>on</strong>g>the</str<strong>on</strong>g> Cr-rich precipitates, was found to c<strong>on</strong>tain 36.79 ± 0.74<br />

at.% Al, 59.9 ± 0.92 at.% Ni, 0.44 ± 0.12 at.% Hf, 2.87 ± 0.62 at.% Cr, 0.007 ± 0.013 C. The Hf<br />

c<strong>on</strong>centrati<strong>on</strong> is higher than <str<strong>on</strong>g>the</str<strong>on</strong>g> results reported by Lars<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Miller [42] <str<strong>on</strong>g>and</str<strong>on</strong>g> Bestor et al. [24].<br />

It is noted however that <str<strong>on</strong>g>the</str<strong>on</strong>g> materials examined in those studies were more stoichiometric <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

did not c<strong>on</strong>tain any significant c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr or Co. No Heusler phase precipitates were<br />

detected in <str<strong>on</strong>g>the</str<strong>on</strong>g> samples areas.<br />

5.4. C<strong>on</strong>clusi<strong>on</strong>s<br />

In this study, NiAl-1Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAl-5Cr-1Hf coatings were produced using DC magnetr<strong>on</strong><br />

sputtering techniques which yielded a z<strong>on</strong>e T microstructure. The as-deposited coatings formed<br />

a metastable B2 solid soluti<strong>on</strong>. After annealing, small precipitates formed at grain boundaries<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> within grain interiors. The majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitates were found to be Hf-rich with<br />

compositi<strong>on</strong>s c<strong>on</strong>sistent with a β′- Ni 2 AlHf phase. In <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coating, additi<strong>on</strong>al Cr-rich<br />

precipitates were observed. SEM, TEM, <str<strong>on</strong>g>and</str<strong>on</strong>g> 3D-APT analysis c<strong>on</strong>firmed <str<strong>on</strong>g>the</str<strong>on</strong>g>m to be α-Cr.<br />

EPMA line pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles indicated Hf segregati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> coating interfaces with <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

substrate. Elemental mapping using SEM-EDS supported <str<strong>on</strong>g>the</str<strong>on</strong>g> EPMA data showing that Hf<br />

segregates to <str<strong>on</strong>g>and</str<strong>on</strong>g> enriches <str<strong>on</strong>g>the</str<strong>on</strong>g> interfaces while Cr-rich precipitates form within <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf<br />

coatings.<br />

66


Acknowledgements<br />

The authors acknowledge <str<strong>on</strong>g>the</str<strong>on</strong>g> support <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Science Foundati<strong>on</strong> (NSF) under Award<br />

No. DMR-0504950 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Aer<strong>on</strong>autics <str<strong>on</strong>g>and</str<strong>on</strong>g> Space Administrati<strong>on</strong> (NASA) under<br />

c<strong>on</strong>tract NN-X08AT21H. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> facilities supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> Central Analytical facility at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alabama <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Materials Diagnostics Laboratory at NASA’s Marshall Space<br />

Flight Center in Huntsville, Alabama is also gratefully acknowledged.<br />

67


References<br />

[1] C. T. Sims, N. S. Stol<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>and</str<strong>on</strong>g> W. C. Hagel, eds., Superalloys II (John Wiley <str<strong>on</strong>g>and</str<strong>on</strong>g> S<strong>on</strong>s,<br />

New York, 1987).<br />

[2] M. J. D<strong>on</strong>atchie Jr. <str<strong>on</strong>g>and</str<strong>on</strong>g> S. J. D<strong>on</strong>atchie, Superalloys: A Technical Guide, 2nd editi<strong>on</strong><br />

(ASM Internati<strong>on</strong>al, Materials Park, OH, 2002).<br />

[3] R. C. Reed, Superalloys, (Cambridge University Press, Cambridge, 2006).<br />

[4] S. Bose, High Temperature Coatings, (Butterworth-Heinemann, Burlingt<strong>on</strong>, MA, 2007).<br />

[5] J. R. Nicholls, "Advances in Coating Design for High-Performance Gas Turbines," MRS<br />

Bulletin 28 (2003) 659-670.<br />

[6] A. Maricocchi, A. Bartz <str<strong>on</strong>g>and</str<strong>on</strong>g> D. Wortman, "PVD TBC experience <strong>on</strong> GE aircraft<br />

engines," Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Thermal Spray Technology 6 (1997) 193-198.<br />

[7] S. Bose <str<strong>on</strong>g>and</str<strong>on</strong>g> J. DeMasi-Marcin, "Thermal barrier coating experience in gas turbine<br />

engines at Pratt Whitney," Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Thermal Spray Technology 6 (1997) 99-104.<br />

[8] B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prüßner <str<strong>on</strong>g>and</str<strong>on</strong>g> K. B. Alex<str<strong>on</strong>g>and</str<strong>on</strong>g>er,<br />

"Substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> B<strong>on</strong>d Coat Compositi<strong>on</strong>s: Factors Affecting Alumina Scale Adhesi<strong>on</strong>,"<br />

Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering A245 (1998) 201-211.<br />

[9] B. A. Pint, J. A. Haynes, K. L. More, I. G. Wright <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Leyens, "Compositi<strong>on</strong>al Effects<br />

<strong>on</strong> Aluminide Oxidati<strong>on</strong> Performance: Objectives for Improved B<strong>on</strong>d Coats," in<br />

Superalloys 2000, edited by T. M. Pollock, R. D. Kissinger, R. R. Bowman, K. A. Green,<br />

M. McClean, S. Ols<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> J. J. Schirra (The Minerals, Metals & Materials Society,<br />

Warrendale, PA, 2000) p. 629-638.<br />

[10] B. A. Pint, "Experimental observati<strong>on</strong>s in support <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic-segregati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory to<br />

explain <str<strong>on</strong>g>the</str<strong>on</strong>g> reactive-element <str<strong>on</strong>g>effect</str<strong>on</strong>g>," Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals 45 (1996) 1-37.<br />

[11] J. A. Nesbitt, B. Nagaraj <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Williams, "Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf Additi<strong>on</strong>s to Pt Aluminide B<strong>on</strong>d<br />

Coats <strong>on</strong> EB-PVD TBC Life," in Elevated Temperature Coatings: Science <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Technology IV, edited by N. B. Dahotre, J. M. Hampikian <str<strong>on</strong>g>and</str<strong>on</strong>g> J. E. Morral (TMS (The<br />

Minerals, Metals & Materials Society), Warrendale, PA, 2001) p. 78-92.<br />

[12] B. M. Warnes, "Reactive element modified chemical vapor depositi<strong>on</strong> low activity<br />

platinum aluminide coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 146-147 (2001) 7-12.<br />

[13] B. Hazel, J. Rigney, M. Gorman, B. Boutwell <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Darolia, "Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Improved<br />

B<strong>on</strong>d Coat for Enhanced Turbine Durability," in Superalloys 2008, edited by R. C. Reed,<br />

K. A. Green, P. Car<strong>on</strong>, T. P. Gabb, M. G. Fahrmann, E. S. Hur<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> S. R. Woodard<br />

(TMS, Warrendale, PA, 2008) p. 753-760.<br />

68


[14] I. Rommerskirchen <str<strong>on</strong>g>and</str<strong>on</strong>g> V. Kolarik, "Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> β-NiAl, Undoped <str<strong>on</strong>g>and</str<strong>on</strong>g> Doped with Ce,<br />

Y, Hf," Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Corrosi<strong>on</strong> 47 (1996) 625-630.<br />

[15] I. Rommerskirchen <str<strong>on</strong>g>and</str<strong>on</strong>g> V. Kolarik, "Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> β-NiAl, undoped <str<strong>on</strong>g>and</str<strong>on</strong>g> doped with Ce,<br />

Y, Hf," in "Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Intermetallics", edited by H. J. Grabke <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Schütze (Wiley-<br />

VCH, New York, 1998) p. 109-120.<br />

[16] B. A. Pint, J. R. DiStefano <str<strong>on</strong>g>and</str<strong>on</strong>g> I. G. Wright, "Oxidati<strong>on</strong> resistance: One barrier to moving<br />

bey<strong>on</strong>d Ni-base superalloys," Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering: A 415 (2006) 255-263.<br />

[17] B. A. Pint, K. L. More <str<strong>on</strong>g>and</str<strong>on</strong>g> I. G. Wright, "Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> quaternary <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong><br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf-doped NiAl," Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals 59 (2003) 257-283.<br />

[18] J. A. Nesbitt, C. S. Barrett <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Darolia, "Cyclic Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Single-Crystal NiAl-X<br />

Alloys," in Per K<str<strong>on</strong>g>of</str<strong>on</strong>g>stad Memorial Symposium <strong>on</strong> High Temperature Corrosi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Materials Chemistry, edited by M. McNallan, E. Opila, T. Maruyama <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Narita (The<br />

Electrochemical Society, Inc., H<strong>on</strong>olulu, HI, 1999) p. 192-203.<br />

[19] J. A. Nesbitt, Hot corrosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> single-crystal NiAl-X alloys, (1998).<br />

[20] I. J. Bennett <str<strong>on</strong>g>and</str<strong>on</strong>g> W. G. Slo<str<strong>on</strong>g>of</str<strong>on</strong>g>, "The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> reactive element <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> to β-NiAlCr<br />

alloys <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally grown oxides," Materials at High Temperatures<br />

20 (2003) 395-403.<br />

[21] B. Ning, M. Shamsuzzoha <str<strong>on</strong>g>and</str<strong>on</strong>g> M. L. Weaver, "Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Processing Variables <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> DC Magnetr<strong>on</strong> Sputtered NiAl Coatings C<strong>on</strong>taining Hf Additi<strong>on</strong>s," Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Vacuum Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology A 23 (2005) 44-54.<br />

[22] B. Ning, M. Shamsuzzoha <str<strong>on</strong>g>and</str<strong>on</strong>g> M. L. Weaver, "Microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> Property Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

DC Magnetr<strong>on</strong> Sputtered NiAl-0.6Hf Coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 200<br />

(2005) 1270-1275.<br />

[23] M. A. Bestor, A. L. Brown, R. L. Martens, B. Ning, M. K. Miller <str<strong>on</strong>g>and</str<strong>on</strong>g> M. L. Weaver,<br />

"Microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersi<strong>on</strong> streng<str<strong>on</strong>g>the</str<strong>on</strong>g>ned b<strong>on</strong>d coats," Microscopy <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Microanalysis 13 (2007) 1652CD-1653CD.<br />

[24] M. A. Bestor, R. L. Martens <str<strong>on</strong>g>and</str<strong>on</strong>g> M. L. Weaver, "Influences <str<strong>on</strong>g>of</str<strong>on</strong>g> annealing <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructures <str<strong>on</strong>g>of</str<strong>on</strong>g> sputter deposited β-NiAl coatings <strong>on</strong> superalloys<br />

substrates," submitted to Intermetallics (2010).<br />

[25] B. W. Kempshall, Y. H. Sohn, S. K. Jha, S. Laxman, R. R. Vanfleet <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Kimmel, "A<br />

microstructural observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> near-failure <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coating: a study by<br />

photostimulated luminescence spectroscopy <str<strong>on</strong>g>and</str<strong>on</strong>g> transmissi<strong>on</strong> electr<strong>on</strong> microscopy," Thin<br />

Solid Films 466 (2004) 128-136.<br />

[26] D. H. Bo<strong>on</strong>e, S. Shen <str<strong>on</strong>g>and</str<strong>on</strong>g> R. McKo<strong>on</strong>, "Electr<strong>on</strong> beam evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> low vapor pressure<br />

elements in MCrAl coating compositi<strong>on</strong>s," Thin Solid Films 64 (1979) 299-304.<br />

69


[27] D. H. Bo<strong>on</strong>e, T. E. Strangman <str<strong>on</strong>g>and</str<strong>on</strong>g> L. W. Wils<strong>on</strong>, "Some <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> structure <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

compositi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> beam vapor deposited coatings for gas turbine<br />

superalloys," Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Vacuum Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology 11 (1974) 641-646.<br />

[28] D. S. Rickerby <str<strong>on</strong>g>and</str<strong>on</strong>g> M. I. Wood, "Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sputter i<strong>on</strong> plated CoCrAlY <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

NiCrAlTi coatings for gas turbines," Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Vacuum Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology A 4<br />

(1986) 2557-2564.<br />

[29] S. R. J. Saunders <str<strong>on</strong>g>and</str<strong>on</strong>g> J. R. Nicholls, "Coatings <str<strong>on</strong>g>and</str<strong>on</strong>g> surface treatments for high<br />

temperature oxidati<strong>on</strong> resistance," Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology 5 (1989) 780-798.<br />

[30] S. J. Shaffer, D. H. Bo<strong>on</strong>e, R. T. Lamberts<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> D. E. Peacock, "The <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

depositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> processing variables <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxide structure <str<strong>on</strong>g>of</str<strong>on</strong>g> M-Cr-Al coatings," Thin<br />

Solid Films 107 (1983) 463-472.<br />

[31] H. Guo, L. Sun, H. Li <str<strong>on</strong>g>and</str<strong>on</strong>g> S. G<strong>on</strong>g, "High temperature oxidati<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g><br />

modified NiAl b<strong>on</strong>d coat in EB-PVD <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coating system," Thin Solid Films<br />

516 (2008) 5732-5735.<br />

[32] L. Sun, H. Guo, H. Li <str<strong>on</strong>g>and</str<strong>on</strong>g> S. G<strong>on</strong>g, "Hf modified NiAl B<strong>on</strong>d Coat for Thermal Barrier<br />

Coating Applicati<strong>on</strong>," Materials Science Forum 546-549 (2007) 1777-1780.<br />

[33] F. J. Humphreys <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Ha<str<strong>on</strong>g>the</str<strong>on</strong>g>rly, Recrystallizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Related Annealing Phenomena,<br />

2nd editi<strong>on</strong> (Elsevier, New York, 2004).<br />

[34] B. Ning, M. Shamsuzzoha <str<strong>on</strong>g>and</str<strong>on</strong>g> M. L. Weaver, "Microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> DC<br />

Magnetr<strong>on</strong> Sputtered NiAl-Hf Coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 179 (2004)<br />

201-209.<br />

[35] M. Ohring, Materials Science <str<strong>on</strong>g>of</str<strong>on</strong>g> Thin Films, 2nd editi<strong>on</strong> (Academic Press, San Diego,<br />

2002).<br />

[36] D. M. Mattox, H<str<strong>on</strong>g>and</str<strong>on</strong>g>book <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Vapor Depositi<strong>on</strong> (PVD) Processing, (Noyes<br />

Publicati<strong>on</strong>s, Park Ridge, NJ, 1998).<br />

[37] S. Hamadi, M. P. Bacos, M. Poulain, S. Zanna, V. Maurice <str<strong>on</strong>g>and</str<strong>on</strong>g> P. Marcus, "Short-time<br />

oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a NiAl(Zr) b<strong>on</strong>d coat <str<strong>on</strong>g>the</str<strong>on</strong>g>rmomechanically deposited <strong>on</strong> a nickel-based<br />

superalloy," Materials Science Forum 595-598 (2008) 95-100.<br />

[38] S. Hamadi, M. P. Bacos, M. Poulain, S. Zanna, A. Seyeux, V. Maurice <str<strong>on</strong>g>and</str<strong>on</strong>g> P. Marcus,<br />

"Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Zr-doped NiAl b<strong>on</strong>dcoat <str<strong>on</strong>g>the</str<strong>on</strong>g>rmochemically deposited <strong>on</strong> a nickel-based<br />

superalloy," Materials at High Temperatures 26 (2009) 195-198.<br />

[39] B. Ning, Microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g> Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Hafnium C<strong>on</strong>taining NiAl-based Overlay<br />

Coatings, Ph.D. Dissertati<strong>on</strong>, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alabama, Tuscaloosa, AL, 2005.<br />

[40] J. D. Cott<strong>on</strong>, R. D. Noebe <str<strong>on</strong>g>and</str<strong>on</strong>g> M. J. Kaufman, "The Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Chromium <strong>on</strong> NiAl<br />

Intermetallic Alloys: Part II. Slip Systems," Intermetallics 1 (1993) 117-126.<br />

70


[41] W. H. Tian, C. S. Han <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Nemoto, "Precipitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> α-Cr in B2 ordered NiAl,"<br />

Intermetallics 7 (1999) 59-67.<br />

[42] D. J. Lars<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> M. K. Miller, "Atom Probe Field-I<strong>on</strong> Microscopy Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Nickel <str<strong>on</strong>g>and</str<strong>on</strong>g> Titanium Aluminides," Materials Characterizati<strong>on</strong> 44 (2000) 159-176.<br />

71


Table 1. Nominal chemical compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sputtering targets.<br />

Alloy C<strong>on</strong>diti<strong>on</strong> Method Ni Al Cr Co Hf<br />

NiAl-1.0Hf Nominal --- 51 48 --- --- 1<br />

As-deposited WDS 53.29 ± 0.49 45.37 ± 0.51 0.08 ± 0.06 0.08 ± 0.13 1.10 ± 0.05<br />

1000°C/2h WDS 55.99 ± 0.41 38.67 ± 0.59 2.04 ± 0.25 2.57 ± 0.15 0.73 ± 0.16<br />

1000°C/4h WDS 53.44 ± 0.79 43.19 ± 0.72 1.33 ± 0.43 1.09 ± 0.30 0.85± 0.14<br />

NiAlCrHf Nominal --- 50 44 5 --- 1<br />

As-deposited WDS 48.53 ± 0.39 45.74 ± 0.41 4.80 ± 0.14 0.12 ± 0.22 0.86 ± 0.04<br />

1000°C/2h WDS 51.73 ± 1.64 41.60 ± 0.81 4.65 ± 0.74 1.21 ± 0.23 0.81 ± 0.06<br />

1000°C/4h WDS 53.23 ± 1.42 40.50 ± 1..29 4.28 ± 0.92 1.16 ± 0.21 0.81 ± 0.10<br />

72


Figure 1. Representative SEM micrographs showing <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited <str<strong>on</strong>g>and</str<strong>on</strong>g> annealed NiAl-1Hf (a,<br />

b) <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAlCrHf (c, d) coatings.<br />

73


Figure 2. XRD patterns collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited <str<strong>on</strong>g>and</str<strong>on</strong>g> annealed NiAl-1Hf (a) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

NiAlCrHf (b).<br />

74


Figure 3. Plan view TEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> (a) NiAl-1Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) NiAlCrHf coatings<br />

following annealing at 1000°C for four hours.<br />

75


Figure 4. EPMA line pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited <str<strong>on</strong>g>and</str<strong>on</strong>g> annealed NiAl-1Hf <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

NiAlCrHf coatings showing (a) Al, (b) Cr, (c) Ni, <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) Hf.<br />

76


Figure 5. Cross-secti<strong>on</strong>al SEM-EDS element maps for <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coating after annealing for<br />

four hours.<br />

77


Figure 6. Cross-secti<strong>on</strong>al SEM-EDS element maps for <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coating after annealing for<br />

four hours.<br />

78


Figure 7. STEM-HAADF image collected from a NiAlCrHf coating that was annealed for four<br />

hours at 1000°C with EDS spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> β’-Ni 2 AlHf precipitate.<br />

79


Figure 8. 3D-APT data for NiAlCrHf after annealing for four hours at 1000°C: (a) full<br />

rec<strong>on</strong>structi<strong>on</strong> displaying all elements in sample <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) 2D-isosurface rec<strong>on</strong>structi<strong>on</strong> showing<br />

features that are rich in Cr.<br />

80


Figure 9. Corresp<strong>on</strong>ding c<strong>on</strong>centrati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile for <str<strong>on</strong>g>the</str<strong>on</strong>g> large Cr-rich precipitate in Figure 8b.<br />

81


CHAPTER VI<br />

MORPHOLOGICAL AND CHEMICAL EVOLUTION OF NIAL, NIAL-HF, <str<strong>on</strong>g>and</str<strong>on</strong>g> NIAL-<br />

CR-HF BOND COATS DURING SHORT TERM ISOTHERMAL OXIDATION<br />

M.A. Bestor*, J.P. Alfano*, <str<strong>on</strong>g>and</str<strong>on</strong>g> M.L. Weaver*<br />

*The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alabama, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Metallurgical <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials Engineering,<br />

Box 870202, Tuscaloosa, Alabama 35487<br />

Key Words: β-NiAl, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coatings, oxidati<strong>on</strong>, b<strong>on</strong>d coats, sputtering<br />

Abstract:<br />

Thermal barrier coatings play a major role in protecting turbine blades from extreme<br />

operating envir<strong>on</strong>ments <str<strong>on</strong>g>and</str<strong>on</strong>g> extending service lifetimes. Reactive elements (e.g. Zr, Hf, Y, Si,<br />

etc.) have been shown to enhance <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> such coating systems when<br />

added in appropriate amounts to overlay b<strong>on</strong>d coats. This study investigated <str<strong>on</strong>g>the</str<strong>on</strong>g> influences <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Cr <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> short-term oxidati<strong>on</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> β-NiAl based coatings deposited via<br />

DC magnetr<strong>on</strong> sputtering. The results indicate that small <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr added in c<strong>on</strong>juncti<strong>on</strong><br />

with supersaturati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf can have a dramatic <str<strong>on</strong>g>effect</str<strong>on</strong>g> in reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> mass gains during<br />

iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal exposure at 1050°C up to 100 hours. This indicates that this coating forms a thin,<br />

stable aluminum oxide scale that does not coarsen as rapidly as a similar coating without <str<strong>on</strong>g>the</str<strong>on</strong>g> Cr<br />

additi<strong>on</strong>. Additi<strong>on</strong>al work was d<strong>on</strong>e to compare <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> performance with varying post-<br />

82


depositi<strong>on</strong> heat treatments. Increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> annealing time from two to four hours at 1000°C<br />

appears to lower <str<strong>on</strong>g>the</str<strong>on</strong>g> mass gains with <str<strong>on</strong>g>the</str<strong>on</strong>g> samples. This suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings with l<strong>on</strong>ger<br />

annealing times form a thin, protective oxide faster than <str<strong>on</strong>g>the</str<strong>on</strong>g> samples with a shorter annealing<br />

time. Small <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr to <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf samples produced a thinner TGO <str<strong>on</strong>g>and</str<strong>on</strong>g> a decrease in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> observed mass gains.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings was d<strong>on</strong>e to study <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemistry <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oxidati<strong>on</strong> performance <str<strong>on</strong>g>and</str<strong>on</strong>g> resulting microstructures. The NiAl-Hf coatings oxidized at both <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmally grown oxide <str<strong>on</strong>g>and</str<strong>on</strong>g> substrate interfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. It was also determined by TEM<br />

analyses that <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings oxidized internally al<strong>on</strong>g grain boundaries. The small grain sizes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> coatings c<strong>on</strong>firm a large grain boundary volume is available for oxygen transport from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

TGO to <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface. The z<strong>on</strong>e T microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings c<strong>on</strong>tains a<br />

large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> pinhole defects, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se serve as direct pathways for oxygen transport to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coating/substrate interface. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, Hf migrates to <str<strong>on</strong>g>the</str<strong>on</strong>g> coating interfaces <str<strong>on</strong>g>and</str<strong>on</strong>g> enriches <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oxide. Increasing preoxidati<strong>on</strong> annealing time appears to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> severity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface with <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf coatings. However, oxidati<strong>on</strong> was not observed<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface with <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coatings. This may be due to <str<strong>on</strong>g>the</str<strong>on</strong>g> larger<br />

grain sizes <str<strong>on</strong>g>and</str<strong>on</strong>g> lower Hf c<strong>on</strong>centrati<strong>on</strong> observed at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface compared to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf coatings.<br />

6.1 Introducti<strong>on</strong>:<br />

Over <str<strong>on</strong>g>the</str<strong>on</strong>g> last three decades, significant advances in <str<strong>on</strong>g>the</str<strong>on</strong>g> high temperature capabilities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gas turbines have been realized through <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> new Ni-based superalloys, improved<br />

83


cooling technologies, <str<strong>on</strong>g>and</str<strong>on</strong>g> better manufacturing methods [1-7]. Modern gas turbines typically<br />

use combustor <str<strong>on</strong>g>and</str<strong>on</strong>g> turbine superalloys that have melting points ranging from ~1230°C to<br />

~1315°C [2,8]. However, when <str<strong>on</strong>g>the</str<strong>on</strong>g>se alloys are used to form comp<strong>on</strong>ents in <str<strong>on</strong>g>the</str<strong>on</strong>g> turbine,<br />

combustor, <str<strong>on</strong>g>and</str<strong>on</strong>g>/or augmentor secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> gas turbines, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are vulnerable to envir<strong>on</strong>mental<br />

damage due to oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>/or hot corrosi<strong>on</strong> (see refs. [1-3,9-11]). Because <str<strong>on</strong>g>of</str<strong>on</strong>g> this, <str<strong>on</strong>g>the</str<strong>on</strong>g> surfaces<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> superalloy comp<strong>on</strong>ents are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten protected with envir<strong>on</strong>mental- <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal-protecti<strong>on</strong><br />

coatings, such as diffusi<strong>on</strong> aluminides, overlay coatings, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coatings (TBC).<br />

A TBC is designed to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk <str<strong>on</strong>g>and</str<strong>on</strong>g> surface temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> a comp<strong>on</strong>ent, thus<br />

increasing its service lifetime [5,12]. Typical TBC systems are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> an insulating<br />

ceramic top coat (<str<strong>on</strong>g>the</str<strong>on</strong>g> actual TBC), a metallic b<strong>on</strong>d coat, a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally growth oxide (TGO)<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> top <str<strong>on</strong>g>and</str<strong>on</strong>g> b<strong>on</strong>d coats, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying superalloy substrate. The TGO<br />

simultaneously improves adhesi<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> top coat <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coat while providing<br />

resistance to oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> hot corrosi<strong>on</strong>. The performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coat, in particular <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> TGO growth, have been shown to play <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> largest roles in determining TBC<br />

lifetime [2,10]. This is because TGO growth kinetics <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stresses within <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coating system are dependent up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coat. As such <str<strong>on</strong>g>the</str<strong>on</strong>g>re is significant<br />

interest in <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> improved b<strong>on</strong>d coat systems specifically designed to improve<br />

TBC life.<br />

Modern TBCs typically utilize metallic MCrAlX overlay coatings (where “M” is Fe, Co,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>/or Ni, <str<strong>on</strong>g>and</str<strong>on</strong>g> “X” is ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r an oxygen-active element or precious metal) or diffusi<strong>on</strong> aluminide<br />

coatings such as β-NiAl or β-(Ni,Pt)Al as b<strong>on</strong>d coats [3,4,10]. It is well known that small<br />

84


amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> reactive elements (RE) such as Hf or Zr yield significant improvements in TBC<br />

lifetime [13-17]. In <str<strong>on</strong>g>the</str<strong>on</strong>g>se studies, RE c<strong>on</strong>centrati<strong>on</strong>s were maintained near <str<strong>on</strong>g>the</str<strong>on</strong>g>ir solubility limits<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> aluminide coatings, which is reportedly around 0.05 at.% for Hf, to avoid excessive<br />

internal oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RE-rich phases.<br />

General Electric Aviati<strong>on</strong> has developed a series <str<strong>on</strong>g>of</str<strong>on</strong>g> novel multiphase coating<br />

compositi<strong>on</strong>s c<strong>on</strong>taining significantly higher RE c<strong>on</strong>centrati<strong>on</strong>s [18-24]. Based up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

β-phase aluminides menti<strong>on</strong>ed above, <str<strong>on</strong>g>the</str<strong>on</strong>g>se new alloys, which can c<strong>on</strong>tain up to 2 at% Hf <str<strong>on</strong>g>and</str<strong>on</strong>g>/or<br />

Zr <str<strong>on</strong>g>and</str<strong>on</strong>g> as much as 5 at% Cr, exhibit higher strengths <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidati<strong>on</strong> resistance in furnace cycle<br />

tests comparable to state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<str<strong>on</strong>g>the</str<strong>on</strong>g>-art diffusi<strong>on</strong> coatings. In a recent series <str<strong>on</strong>g>of</str<strong>on</strong>g> documents, we have<br />

detailed <str<strong>on</strong>g>the</str<strong>on</strong>g> influences <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr <str<strong>on</strong>g>and</str<strong>on</strong>g> Hf <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> in excess <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir solubility limits <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

microstructures <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-based coatings produced via magnetr<strong>on</strong> sputtering [25-28]. The present<br />

paper highlights <str<strong>on</strong>g>the</str<strong>on</strong>g> influences <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g> short-term<br />

oxidati<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-based overlay coatings.<br />

6.2. Experimental Procedures:<br />

Alloy sputtering targets, 50.8 mm diameter × 6.4 mm thickness, were purchased from<br />

ACI Alloys, Inc. (San Jose, CA) <str<strong>on</strong>g>and</str<strong>on</strong>g> Sophisticated Alloys, Inc. (Butler, PA). The nominal target<br />

compositi<strong>on</strong>s are shown in Table 2.1. Coatings ranging from ~25 μm to ~40 μm thick were<br />

deposited via DC magnetr<strong>on</strong> sputtering using an unbalanced high rate magnet c<strong>on</strong>figurati<strong>on</strong> <strong>on</strong>to<br />

sec<strong>on</strong>d generati<strong>on</strong> Ni-based superalloy substrates (i.e., René N5). Arg<strong>on</strong> was used as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

working gas for depositi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> samples were preheated to a temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 650°C prior to<br />

85


depositi<strong>on</strong>. The depositi<strong>on</strong> power <str<strong>on</strong>g>and</str<strong>on</strong>g> working gas pressure were set to 300W <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.33 Pa<br />

respectively. Coatings were deposited <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> two major faces <str<strong>on</strong>g>of</str<strong>on</strong>g> each substrate.<br />

Selected as-deposited coatings were annealed at 1000°C for <strong>on</strong>e to four hours in Ar with<br />

5% H 2 to improve adhesi<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> coating <str<strong>on</strong>g>and</str<strong>on</strong>g> substrate, to remove sputtering induced<br />

defects, <str<strong>on</strong>g>and</str<strong>on</strong>g> to reduce any residual stresses from depositi<strong>on</strong>. This resulted in <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

thin interdiffusi<strong>on</strong> z<strong>on</strong>e (IDZ) between <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying substrates. Iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

oxidati<strong>on</strong> tests were c<strong>on</strong>ducted <strong>on</strong> annealed specimens at 1050°C for times ranging from 24 to 96<br />

hours. As <str<strong>on</strong>g>the</str<strong>on</strong>g> focus <str<strong>on</strong>g>of</str<strong>on</strong>g> this research was to investigate microstructural evoluti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> experiments were c<strong>on</strong>ducted <strong>on</strong> individual specimens, however, select specimens<br />

were removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace every 24 hours to measure mass change.<br />

Phase identificati<strong>on</strong>, microstructural evaluati<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> chemistries were assessed via light<br />

optical microscopy, X-ray diffracti<strong>on</strong> (XRD), scanning electr<strong>on</strong> microscopy (SEM), <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

transmissi<strong>on</strong> electr<strong>on</strong> microscopy (TEM). Chemistry was assessed using wavelength dispersive<br />

X-ray spectroscopy (WDS), energy dispersive X-ray spectroscopy (EDS), <str<strong>on</strong>g>and</str<strong>on</strong>g> atom probe<br />

tomography (APT). APT specimens were extracted from <str<strong>on</strong>g>the</str<strong>on</strong>g> coated substrates via <str<strong>on</strong>g>the</str<strong>on</strong>g> focusedi<strong>on</strong>-beam<br />

(FIB) lift out technique [29,30]. The XRD patterns were generated using Cu Kα<br />

radiati<strong>on</strong> in a Philips APD 3720 XRD system. Operating c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> diffractometer were<br />

set at 40 kV <str<strong>on</strong>g>and</str<strong>on</strong>g> 30 mA with a scan rate <str<strong>on</strong>g>of</str<strong>on</strong>g> ~1.4 deg/min with 0.02 deg steps.<br />

86


6.3. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong>:<br />

6.3.1. Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> as-deposited <str<strong>on</strong>g>and</str<strong>on</strong>g> annealed coatings<br />

Details c<strong>on</strong>cerning coating depositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> influences <str<strong>on</strong>g>of</str<strong>on</strong>g> annealing have been reported<br />

in references [27,28]. The experimentally measured coating compositi<strong>on</strong>s are included in Table<br />

3.1 for <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited <str<strong>on</strong>g>and</str<strong>on</strong>g> annealed c<strong>on</strong>diti<strong>on</strong>s. All <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited coatings were found to<br />

be single phase c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a B2 β-NiAl. Annealing at 1000°C resulted in <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

interdiffusi<strong>on</strong> z<strong>on</strong>e (IDZ) between <str<strong>on</strong>g>the</str<strong>on</strong>g> coating <str<strong>on</strong>g>and</str<strong>on</strong>g> substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitates<br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-(Hf, Cr) coatings. The IDZ generally c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> a β-NiAl matrix with<br />

precipitates c<strong>on</strong>taining refractory metal rich precipitates. During annealing, compositi<strong>on</strong><br />

changes also occurred driven by <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> gradient existing between <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

underlying substrates. In general <str<strong>on</strong>g>the</str<strong>on</strong>g> coating Ni c<strong>on</strong>tents increased <str<strong>on</strong>g>and</str<strong>on</strong>g> Al c<strong>on</strong>tents decreased<br />

due to Al diffusi<strong>on</strong> towards <str<strong>on</strong>g>the</str<strong>on</strong>g> exterior surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating <str<strong>on</strong>g>and</str<strong>on</strong>g> towards <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate<br />

interface. In additi<strong>on</strong>, Co, Cr <str<strong>on</strong>g>and</str<strong>on</strong>g> Ta were found at low levels within <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings after annealing<br />

(generally around 2 at.% or less for Co <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr <str<strong>on</strong>g>and</str<strong>on</strong>g> below 1 at.% for Ta). One excepti<strong>on</strong> was <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coatings doped with Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr. These coatings still picked up Co from <str<strong>on</strong>g>the</str<strong>on</strong>g> substrates, however,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Cr <str<strong>on</strong>g>and</str<strong>on</strong>g> Hf c<strong>on</strong>tents (~4 at.% Cr <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.8 at.% Hf respectively) remained c<strong>on</strong>stant. The<br />

precipitates that formed within <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf coatings were found to be Hf-rich whereas in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NiAlCrHf coatings, Hf-rich <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr-rich precipitates were observed.<br />

6.4. Iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal oxidati<strong>on</strong> behavior <str<strong>on</strong>g>and</str<strong>on</strong>g> microstructures<br />

6.4.1. Oxidati<strong>on</strong> test results<br />

Annealed samples were subjected to iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal oxidati<strong>on</strong> at 1050°C for as l<strong>on</strong>g as 96<br />

hours in laboratory air. The oxidati<strong>on</strong> experiments were c<strong>on</strong>ducted for <str<strong>on</strong>g>the</str<strong>on</strong>g> sole purpose <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

87


investigating microstructural evoluti<strong>on</strong> during oxidati<strong>on</strong>, not to ga<str<strong>on</strong>g>the</str<strong>on</strong>g>r kinetic data c<strong>on</strong>cerning<br />

oxidati<strong>on</strong>. The specific specimen mass changes for <str<strong>on</strong>g>the</str<strong>on</strong>g> alloys investigated in this study are<br />

presented in Figure 1. As expected, all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> specimens exhibited rapid mass gains during <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

first 24 hours <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidati<strong>on</strong> indicating <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> an oxide scale or TGO. For most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

specimens, <str<strong>on</strong>g>the</str<strong>on</strong>g> mass gain increased with iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal oxidati<strong>on</strong> time implying <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinued<br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> a protective TGO. Figure 1a shows specimen mass changes for <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings<br />

investigated in this study after annealing for two hours at 1000°C. All <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> specimens<br />

exhibited mass gains through 96 h <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidati<strong>on</strong>; however, after 24 h <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidati<strong>on</strong>, mass losses<br />

were observed in binary NiAl indicating oxide scale spallati<strong>on</strong>, which is c<strong>on</strong>sistent with<br />

published literature [31,32]. Higher mass gains were observed with increasing Hf c<strong>on</strong>centrati<strong>on</strong>.<br />

The decreased rate <str<strong>on</strong>g>of</str<strong>on</strong>g> mass gains with increasing time implies that <str<strong>on</strong>g>the</str<strong>on</strong>g> samples are forming a<br />

protective oxide layer <str<strong>on</strong>g>and</str<strong>on</strong>g> its growth rate is decreasing with time. Adding 5 at.% Cr to <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-<br />

1Hf coating yields a similar oxidati<strong>on</strong> behavior, but with lower mass gains than <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf<br />

coatings. The NiAl-0.5Hf sample has <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest mass gain <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hf-doped coatings annealed<br />

for two hours. Similar observati<strong>on</strong>s have been reported by Pint et al. [31].<br />

Figure 1b shows specimen mass changes after annealing for four hours at 1000°C. The<br />

results were similar to those collected <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> two hour annealed specimens; however, <str<strong>on</strong>g>the</str<strong>on</strong>g> mass<br />

gains where larger than those observed in samples annealed for two hours. Interestingly, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NiAlCrHf coating exhibited virtually no mass change for exposures <str<strong>on</strong>g>of</str<strong>on</strong>g> greater than 24 hours,<br />

which indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coating forms a thin, protective oxide that does not thicken up<br />

to 96 hours <str<strong>on</strong>g>of</str<strong>on</strong>g> iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal oxidati<strong>on</strong>.<br />

88


To investigate unexpected variati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> mass change data, single coating specimens<br />

were subjected to a series <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 hour oxidati<strong>on</strong> cycles. More specifically NiAl-1Hf annealed for<br />

two hours <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAlCrHf annealed for four hours. The resulting mass gains are shown as open<br />

symbols c<strong>on</strong>nected by dotted lines in Figures 1a <str<strong>on</strong>g>and</str<strong>on</strong>g> 1b. The results indicate c<strong>on</strong>tinuous TGO<br />

growth <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coating with increasing oxidati<strong>on</strong> time but lower scale growth rates <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coating.<br />

The gradual increase in specific mass change for <str<strong>on</strong>g>the</str<strong>on</strong>g> Hf-c<strong>on</strong>taining coatings has been<br />

attributed to excellent scale adhesi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> has been observed without <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pt to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coating [13,14,24,33-38]. The reduced rate <str<strong>on</strong>g>of</str<strong>on</strong>g> mass gain for optimized NiAl-Hf alloys <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

coatings has been attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Al grain boundary transport by <str<strong>on</strong>g>the</str<strong>on</strong>g> segregati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> reactive element i<strong>on</strong>s to α-Al 2 O 3 grain boundaries [13,15]. The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr to β-NiAl<br />

coatings is typically d<strong>on</strong>e to achieve enhanced hot corrosi<strong>on</strong> protecti<strong>on</strong>. It has been reported by<br />

Leyens et al. [39] that as little as 2 at.% Cr is necessary to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> attack from hot corrosi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> coating performance increases with <str<strong>on</strong>g>chromium</str<strong>on</strong>g> c<strong>on</strong>tent. However, Cr has also been shown to<br />

degrade <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl, even in alloys c<strong>on</strong>taining “optimal” amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf<br />

[31].<br />

6.4.2. Microstructural changes during oxidati<strong>on</strong><br />

After oxidati<strong>on</strong> for 96 hours, samples were examined by XRD to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> phases that<br />

were present. The results, which are shown in Figure 2, revealed combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> β-NiAl, γ′-<br />

Ni 3 Al, θ-Al 2 O 3 , <str<strong>on</strong>g>and</str<strong>on</strong>g> α-Al 2 O 3 phases in all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> specimens, with <str<strong>on</strong>g>the</str<strong>on</strong>g> final c<strong>on</strong>tent being<br />

dependent up<strong>on</strong> coating chemistry. In <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coatings for example, no γ′-Ni 3 Al peaks<br />

were observed which supports <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis from <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> data (Figure 1) that a thin,<br />

89


protective TGO layer forms <str<strong>on</strong>g>and</str<strong>on</strong>g> grows slowly preserving <str<strong>on</strong>g>the</str<strong>on</strong>g> aluminum reservoir within <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

b<strong>on</strong>d coat. In c<strong>on</strong>trast, <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> γ′-Ni 3 Al peaks in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAl-1Hf coatings<br />

suggests c<strong>on</strong>tinuous TGO growth, depleting <str<strong>on</strong>g>the</str<strong>on</strong>g> coating <str<strong>on</strong>g>of</str<strong>on</strong>g> Al. Similar observati<strong>on</strong>s were made<br />

by Yang et al. who investigated <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> sputter deposited binary NiAl<br />

coatings [40,41].<br />

In general, it was difficult to distinguish between many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> α-Al 2 O 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> θ-Al 2 O 3<br />

peaks; however, for <str<strong>on</strong>g>the</str<strong>on</strong>g> ternary NiAl-Hf coatings, it was determined that <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings preannealed<br />

for two hours had higher α-Al 2 O 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> θ-Al 2 O 3 c<strong>on</strong>tents than coatings annealed for four<br />

hours. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> time to transiti<strong>on</strong> from θ-Al 2 O 3 to α-Al 2 O 3 is expected to be <strong>on</strong>ly a few hours<br />

[42,43]; <str<strong>on</strong>g>the</str<strong>on</strong>g>se observati<strong>on</strong>s suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g> oxide spalls <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n re-grows. It is well established<br />

that tremendous compressive stresses, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> several GPa, arise within <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO during<br />

its formati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> growth [44-47]. These stresses can lead to crack formati<strong>on</strong>, spalling, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

additi<strong>on</strong>al oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying metal, in this case <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coat [44-46]. This increase in<br />

area <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidati<strong>on</strong> would account for <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong>al θ-Al 2 O 3 X-ray intensity observed in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ternary NiAl-Hf coatings. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> low intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Al 2 O 3 peaks combined with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> any γ′-Ni 3 Al peaks in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf samples supports <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis that <str<strong>on</strong>g>the</str<strong>on</strong>g> oxides for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se samples are much thinner than <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es observed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf coatings.<br />

Figures 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4 show <str<strong>on</strong>g>the</str<strong>on</strong>g> surface morphologies <str<strong>on</strong>g>of</str<strong>on</strong>g> scales formed <strong>on</strong> NiAl-0.5Hf <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

NiAl-1Hf coatings respectively. The surfaces were completely covered with a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> bladelike<br />

θ-Al 2 O 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> more equiaxed α-Al 2 O 3 . Cracks were observed <strong>on</strong> some regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxide<br />

surfaces al<strong>on</strong>g with wrinkling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scale. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such features has been summarized<br />

90


y Jedlinsky [48]. Over time, θ-Al 2 O 3 which forms first will transform to α-Al 2 O 3 , which is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamically stable at 1050°C. The volume c<strong>on</strong>tracti<strong>on</strong> resulting from <str<strong>on</strong>g>the</str<strong>on</strong>g> θ-α phase<br />

transformati<strong>on</strong> can lead to localized cracking <str<strong>on</strong>g>and</str<strong>on</strong>g> scale wrinkling [48-51]. Additi<strong>on</strong>al<br />

c<strong>on</strong>tributors to this process are <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO growth stresses described in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous paragraph [44-<br />

46]. These stresses, which are compressive in nature, curl <str<strong>on</strong>g>the</str<strong>on</strong>g> oxide causing <str<strong>on</strong>g>the</str<strong>on</strong>g> metastable θ-<br />

Al 2 O 3 to spall from <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying α-Al 2 O 3 . Similar observati<strong>on</strong>s were reported by Ning [37] in<br />

his <str<strong>on</strong>g>investigati<strong>on</strong></str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sputter deposited NiAl-Hf coatings. It is likely that <str<strong>on</strong>g>the</str<strong>on</strong>g>se cracks propagate<br />

al<strong>on</strong>g grain boundaries. Chemical analyses using SEM-EDS showed that <str<strong>on</strong>g>the</str<strong>on</strong>g>re was no<br />

preferential segregati<strong>on</strong> around <str<strong>on</strong>g>the</str<strong>on</strong>g> cracks <str<strong>on</strong>g>and</str<strong>on</strong>g> no formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transient oxides (e.g. HfO 2 , NiO,<br />

spinel, etc.).<br />

The surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coatings were similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf coatings in that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surfaces were covered with a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> blade-like θ-Al 2 O 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> more equiaxed α-Al 2 O 3 , <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

exhibited some cracking. Differently, however, <str<strong>on</strong>g>the</str<strong>on</strong>g> cracks observed with <str<strong>on</strong>g>the</str<strong>on</strong>g>se samples tended<br />

to be much l<strong>on</strong>ger <str<strong>on</strong>g>and</str<strong>on</strong>g> less tortuous than those observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf samples. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se cracks appeared to heal, after formati<strong>on</strong>. Elemental maps did not reveal any evidence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>hafnium</str<strong>on</strong>g> or <str<strong>on</strong>g>chromium</str<strong>on</strong>g> segregati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO or cracks, which suggests that <str<strong>on</strong>g>and</str<strong>on</strong>g> it was<br />

completely comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2 O 3 .<br />

Cross-secti<strong>on</strong>al SEM images that were collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> samples that were oxidized for<br />

96 hours are shown in Figures 6-8. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> specimens were sputter coated with Cu<br />

following oxidati<strong>on</strong> to protect <str<strong>on</strong>g>the</str<strong>on</strong>g> oxide scales from damage during metallographic sample<br />

preparati<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAl-1Hf coatings (Figures 6 <str<strong>on</strong>g>and</str<strong>on</strong>g> 7), γ′-Ni 3 Al was observed<br />

91


within <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings al<strong>on</strong>g with a number <str<strong>on</strong>g>of</str<strong>on</strong>g> low <str<strong>on</strong>g>and</str<strong>on</strong>g> high atomic number (Z) c<strong>on</strong>trast spots<br />

superimposed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating, <str<strong>on</strong>g>the</str<strong>on</strong>g> volume fracti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> which increased with Hf<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> annealing time. The low Z spots appeared to have <str<strong>on</strong>g>the</str<strong>on</strong>g> same atomic number<br />

c<strong>on</strong>trast as <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO, but were too small for quantitative chemical analysis via EMPA. Elemental<br />

maps collected in <str<strong>on</strong>g>the</str<strong>on</strong>g> vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> low Z spots (presented later in this document) did reveal <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

preferential segregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Al, suggesting <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2 O 3 . Similar features have been<br />

reported by Guo et al. in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>investigati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2 O 3 -dispersed NiAl coatings deposited via<br />

electr<strong>on</strong> beam physical vapor depositi<strong>on</strong> (EB-PVD) [52].<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coating, a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> high Z c<strong>on</strong>trast precipitates were also<br />

observed within <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings, where <str<strong>on</strong>g>the</str<strong>on</strong>g>y appeared to form al<strong>on</strong>g columnar grain<br />

boundaries, near <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> coating/TGO interfaces <str<strong>on</strong>g>and</str<strong>on</strong>g> in some cases within <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

TGO. Such interfacial segregati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> associated precipitati<strong>on</strong> has been extensively reported for<br />

RE-c<strong>on</strong>taining coatings [31,33,34,53-57]. Based up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se observati<strong>on</strong>s, it is most likely that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dark spots are Al 2 O 3 while <str<strong>on</strong>g>the</str<strong>on</strong>g> bright spots are ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r equilibrium Heusler phase or HfO 2 ,<br />

which forms as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> internal oxidati<strong>on</strong>. Some surprising observati<strong>on</strong>s included <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> voids <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> occurrence oxidati<strong>on</strong> in some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interfaces.<br />

Doubling <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> coating produced larger precipitates <str<strong>on</strong>g>and</str<strong>on</strong>g> also a<br />

mixed oxide c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2 O 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> HfO 2 with a layer <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2 O 3 <strong>on</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mixed oxide.<br />

Similar observati<strong>on</strong>s were reported by Guo et al. <str<strong>on</strong>g>and</str<strong>on</strong>g> Sun et al. [33,34]. Oxidati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

interface between <str<strong>on</strong>g>the</str<strong>on</strong>g> coating <str<strong>on</strong>g>and</str<strong>on</strong>g> substrate was observed with <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf as well. Like <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NiAl-0.5Hf, <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating substrate interface appeared to become more severe with<br />

increased annealing time. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> γ′ phase was less significant in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf<br />

92


sample which is in agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> XRD results shown Figure 2. This indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

aluminum is being c<strong>on</strong>sumed at a faster rate in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf coating. Surprisingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO<br />

thickness remained relatively unchanged as <str<strong>on</strong>g>the</str<strong>on</strong>g> Hf c<strong>on</strong>centrati<strong>on</strong> was increased from 0.5-1.0<br />

at.% Hf.<br />

The NiAlCrHf coatings, presented in Figure 8a <str<strong>on</strong>g>and</str<strong>on</strong>g> 8b, have completely different<br />

microstructures than <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf coatings. The TGO is about half as thick as compared to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NiAl-0.5Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAl-1Hf samples. For example, in <str<strong>on</strong>g>the</str<strong>on</strong>g> specimen that was annealed for four<br />

hours prior to oxidati<strong>on</strong>, a 2.11 μm thick TGO formed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coating; whereas 3.96<br />

μm <str<strong>on</strong>g>and</str<strong>on</strong>g> 4.18 μm thick TGOs formed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAl-1Hf coatings respectively.<br />

The interdiffusi<strong>on</strong> z<strong>on</strong>e (IDZ) was also fully retained in <str<strong>on</strong>g>the</str<strong>on</strong>g>se coatings, but no oxidati<strong>on</strong> was<br />

observed at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface. Although <str<strong>on</strong>g>the</str<strong>on</strong>g>se coatings c<strong>on</strong>tained <str<strong>on</strong>g>the</str<strong>on</strong>g> same amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> as <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coatings, <str<strong>on</strong>g>the</str<strong>on</strong>g> preferential segregati<strong>on</strong> Hf was not observed to be as<br />

significant with ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r heat treatment. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, no mixed oxide was present. Low Z spots,<br />

similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAl-1Hf coatings, were also observed in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NiAlCrHf coatings indicating <str<strong>on</strong>g>the</str<strong>on</strong>g> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> some internal oxidati<strong>on</strong>; however <str<strong>on</strong>g>the</str<strong>on</strong>g> volume<br />

fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se spots was significantly lower indicating a higher intrinsic resistance to<br />

oxidati<strong>on</strong>. The high Z precipitates observed within <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coatings appeared to coarsen<br />

with increased annealing time. Similar observati<strong>on</strong>s were made in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAl-1Hf<br />

samples.<br />

EPMA line pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles collected from samples that were oxidized for 96 hours are shown in<br />

Figure 9-11. The average chemistries <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAl-Cr-Hf coatings after oxidati<strong>on</strong><br />

93


are summarized in Table 3.2. Only Ni, Al, Cr, Co, <str<strong>on</strong>g>and</str<strong>on</strong>g> Hf are shown to indicate <str<strong>on</strong>g>the</str<strong>on</strong>g> trends in<br />

elemental diffusi<strong>on</strong>.<br />

Figures 9a <str<strong>on</strong>g>and</str<strong>on</strong>g> 9b were collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf coatings that were annealed for<br />

two <str<strong>on</strong>g>and</str<strong>on</strong>g> four hours respectively prior to oxidati<strong>on</strong>. The Ni <str<strong>on</strong>g>and</str<strong>on</strong>g> Al c<strong>on</strong>centrati<strong>on</strong>s were observed<br />

to be approximately 58 at.% <str<strong>on</strong>g>and</str<strong>on</strong>g> 37 at.% respectively <str<strong>on</strong>g>and</str<strong>on</strong>g> did not vary appreciably within <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coating for ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r sample. As noted previously, <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO evident at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating<br />

was found to be composed primarily <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2 O 3 , most likely α-Al 2 O 3 , as was shown in <str<strong>on</strong>g>the</str<strong>on</strong>g> XRD<br />

results (Figure 2). Interdiffusi<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying substrate is str<strong>on</strong>gly<br />

indicated by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles, which show gradients in <str<strong>on</strong>g>the</str<strong>on</strong>g> Al, Co <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr going from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> coating into <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate. The TGO thickness al<strong>on</strong>g with <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ thickness was reported to<br />

increase with increased annealing time. As discussed earlier, this result c<strong>on</strong>firms that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

increased annealing time tends to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> interdiffusi<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> coating prior<br />

to service <str<strong>on</strong>g>and</str<strong>on</strong>g> this trend c<strong>on</strong>tinues with <str<strong>on</strong>g>the</str<strong>on</strong>g> short-term oxidati<strong>on</strong> results as evidenced by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

higher mass gains observed with <str<strong>on</strong>g>the</str<strong>on</strong>g> samples with l<strong>on</strong>ger pre-oxidati<strong>on</strong> annealing times. As<br />

noted previously, both coatings did show <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> voids at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface<br />

al<strong>on</strong>g with <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2 O 3 . This phenomen<strong>on</strong> was attributed to oxygen<br />

transport al<strong>on</strong>g grain boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> when present cracks in <str<strong>on</strong>g>the</str<strong>on</strong>g> coating that penetrated to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coating/substrate interface. These features appear in Figures 9a <str<strong>on</strong>g>and</str<strong>on</strong>g> 9b as significant drops in Ni<br />

c<strong>on</strong>centrati<strong>on</strong> accompanied by a slight enrichment in Al. The interdiffusi<strong>on</strong> z<strong>on</strong>e (IDZ) follows<br />

this for 20-30 μm before <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate c<strong>on</strong>centrati<strong>on</strong>s are observed. The Hf c<strong>on</strong>centrati<strong>on</strong> within<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> coating was determined to be ~0.2-0.7 at.% after annealing.<br />

94


Figure 10 shows results from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coating after oxidati<strong>on</strong>. The Ni <str<strong>on</strong>g>and</str<strong>on</strong>g> Al<br />

c<strong>on</strong>centrati<strong>on</strong>s remained stable throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> coating, similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> results for <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf<br />

coatings; however, <str<strong>on</strong>g>the</str<strong>on</strong>g> Al c<strong>on</strong>centrati<strong>on</strong> decreased drastically in <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ <str<strong>on</strong>g>and</str<strong>on</strong>g> substrate. This was<br />

expected because <str<strong>on</strong>g>the</str<strong>on</strong>g> coating had a higher Al c<strong>on</strong>centrati<strong>on</strong> than <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate. The <str<strong>on</strong>g>hafnium</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> coating was c<strong>on</strong>sistently observed to be around 0.5 at% with larger<br />

amounts found at <str<strong>on</strong>g>the</str<strong>on</strong>g> interfaces due to <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HfO 2 . Enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf at interfaces<br />

was reported to be as high as 10 at.% near <str<strong>on</strong>g>the</str<strong>on</strong>g> oxide voids indicating that a mixed oxide could be<br />

present. Chromium <str<strong>on</strong>g>and</str<strong>on</strong>g> cobalt are comm<strong>on</strong>ly observed to diffuse upward into <str<strong>on</strong>g>the</str<strong>on</strong>g> coating during<br />

annealing <str<strong>on</strong>g>and</str<strong>on</strong>g> service, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>y also exhibit a c<strong>on</strong>centrati<strong>on</strong> gradient up to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir respective values<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate. They are typically found at c<strong>on</strong>centrati<strong>on</strong>s near 2-3 at% within <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. The<br />

sharp peaks with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>chromium</str<strong>on</strong>g> result from <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> refractory metal rich topographically<br />

close packed (TCP) phases within <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ. There is a sharp peak in <str<strong>on</strong>g>the</str<strong>on</strong>g> aluminum c<strong>on</strong>centrati<strong>on</strong><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile near <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ that was taken through an Al 2 O 3 pocket in <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. The <strong>on</strong>ly elements<br />

that were c<strong>on</strong>tained within <str<strong>on</strong>g>the</str<strong>on</strong>g>se areas were aluminum <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g>; supporting <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a mixed oxide with <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf images presented in Figure 7.<br />

Analyses were c<strong>on</strong>ducted <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf samples oxidized for 96 hours at 1050°C.<br />

Although <str<strong>on</strong>g>the</str<strong>on</strong>g> aluminum c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> as-deposited state is 5 at.% lower in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf<br />

samples than <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf samples, <str<strong>on</strong>g>the</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles in <str<strong>on</strong>g>the</str<strong>on</strong>g> coating are very similar. There is some<br />

<str<strong>on</strong>g>hafnium</str<strong>on</strong>g> enrichment at <str<strong>on</strong>g>the</str<strong>on</strong>g> interfaces, similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf coatings. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large<br />

Cr-rich phases is evident within <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ. Sharp peaks in <str<strong>on</strong>g>the</str<strong>on</strong>g> Ni <str<strong>on</strong>g>and</str<strong>on</strong>g> corresp<strong>on</strong>ding Cr pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

suggest that Ni substitutes for Cr in <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ. Chromium <str<strong>on</strong>g>and</str<strong>on</strong>g> cobalt c<strong>on</strong>centrati<strong>on</strong>s do not vary<br />

significantly in <str<strong>on</strong>g>the</str<strong>on</strong>g> coating with <str<strong>on</strong>g>chromium</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s near 4 at.% <str<strong>on</strong>g>and</str<strong>on</strong>g> cobalt near 3 at.%.<br />

95


The IDZ thickness, as determined from <str<strong>on</strong>g>the</str<strong>on</strong>g> EPMA data, is approximately 28-30 μm for both<br />

samples. This is in c<strong>on</strong>trast to <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM cross-secti<strong>on</strong>al images <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se coatings which<br />

suggested that annealing time had an <str<strong>on</strong>g>effect</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> interdiffusi<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> coating<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> substrate. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se have been identified as γ′-Ni 3 Al with dissolved <str<strong>on</strong>g>chromium</str<strong>on</strong>g>.<br />

6.5. Elemental Mapping <str<strong>on</strong>g>of</str<strong>on</strong>g> Coatings Iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmally Oxidized for 96 hours.<br />

Figures 12-14 show EDS spectral maps from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf, NiAl-1Hf, <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAlCrHf<br />

samples respectively. High resoluti<strong>on</strong> maps for aluminum, oxygen, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> are shown for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf samples <str<strong>on</strong>g>and</str<strong>on</strong>g> aluminum, oxygen, <str<strong>on</strong>g>hafnium</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>chromium</str<strong>on</strong>g> are displayed for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NiAlCrHf samples. Corresp<strong>on</strong>ding SEM images are shown with <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf samples.<br />

Both samples exhibit <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> segregati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> interfaces, but <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no evidence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hafnia formati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO interface. However, with <str<strong>on</strong>g>the</str<strong>on</strong>g> Al 2 O 3 that forms at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coating/substrate interface does have <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> surrounding <str<strong>on</strong>g>the</str<strong>on</strong>g> oxides. It is likely that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a<br />

mixed oxide at this interface. The dark regi<strong>on</strong>s within <str<strong>on</strong>g>the</str<strong>on</strong>g> Al maps indicate <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> γ′-<br />

Ni 3 Al. This is also observed with <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding light phases in <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coat with both<br />

samples. Al 2 O 3 formati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface is more significant with <str<strong>on</strong>g>the</str<strong>on</strong>g> sample<br />

that was annealed for four hours while <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO thickness is approximately <str<strong>on</strong>g>the</str<strong>on</strong>g> same for both<br />

samples. The Hf was found to segregate to <str<strong>on</strong>g>the</str<strong>on</strong>g> γ′ phase in small amounts. This is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> γ′<br />

phase having a higher Hf solubility than <str<strong>on</strong>g>the</str<strong>on</strong>g> β phase [58].<br />

Similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf samples, <str<strong>on</strong>g>the</str<strong>on</strong>g> spectral maps show that <str<strong>on</strong>g>the</str<strong>on</strong>g> oxide is primarily<br />

composed <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2 O 3 with additi<strong>on</strong>al segregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> to <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/oxide interface.<br />

96


Oxides are found at both interfaces with leaders growing into <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. The leaders are<br />

clearly visible as vertical <str<strong>on</strong>g>hafnium</str<strong>on</strong>g>-rich features that extend through <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. Doubling <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>hafnium</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> leads to increased degree <str<strong>on</strong>g>of</str<strong>on</strong>g> decorati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> interfaces <str<strong>on</strong>g>and</str<strong>on</strong>g> presumably a<br />

mixed oxide. This is more significant with <str<strong>on</strong>g>the</str<strong>on</strong>g> samples that were annealed for four hours. This<br />

is evidenced by <str<strong>on</strong>g>the</str<strong>on</strong>g> brighter spots <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> image indicating a larger c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g><br />

atoms. The <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> maps for both samples show segregati<strong>on</strong> to interfaces while also enriching<br />

grain boundaries within <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. This is expected because Hf typically diffuses to free<br />

surfaces via high transport paths such as grain boundaries.<br />

The TGO <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coatings was roughly half <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NiAl-1Hf coatings (Figure 13). The <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> map for <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf sample after annealed for<br />

two hours (Figure 13a) shows little segregati<strong>on</strong> to interfaces, but precipitates observed within <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coating appear to form vertically al<strong>on</strong>g grain boundaries. These precipitates coarsen with<br />

increased annealing time. The Cr-rich phases in <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ were found to be ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r γ′-Ni 3 Al with<br />

dissolved Cr or α-Cr within a β-NiAl matrix c<strong>on</strong>firming <str<strong>on</strong>g>the</str<strong>on</strong>g> results in Figure 11. As annealing<br />

time was increased to four hours (b), <str<strong>on</strong>g>the</str<strong>on</strong>g>se phases are c<strong>on</strong>fined closer to <str<strong>on</strong>g>the</str<strong>on</strong>g> coating interface <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

are also smaller in size. The IDZ was found to be almost completely devoid <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> in both<br />

samples, in c<strong>on</strong>trast to <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf samples that were presented in Figures 12 <str<strong>on</strong>g>and</str<strong>on</strong>g> 13. There is<br />

also no evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> void formati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface or internal oxidati<strong>on</strong>. The<br />

bright spots in <str<strong>on</strong>g>the</str<strong>on</strong>g> Al map indicate sites where internal oxidati<strong>on</strong> occurred.<br />

97


6.6. TEM Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxidized Coatings.<br />

Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructures was also c<strong>on</strong>ducted using <str<strong>on</strong>g>the</str<strong>on</strong>g> TEM. Samples were<br />

prepared using a focused i<strong>on</strong> beam <str<strong>on</strong>g>and</str<strong>on</strong>g> were attached to a copper grid for analysis. The samples<br />

were collected following oxidati<strong>on</strong> at 96 hours. Bright field <str<strong>on</strong>g>and</str<strong>on</strong>g> corresp<strong>on</strong>ding STEM-HAADF<br />

images were collected to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidati<strong>on</strong> <strong>on</strong> grain size <str<strong>on</strong>g>and</str<strong>on</strong>g> precipitati<strong>on</strong>.<br />

Figure 15 shows images collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf sample. Bright regi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

bright field images corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> dark phases in <str<strong>on</strong>g>the</str<strong>on</strong>g> STEM-HAADF images. These phases<br />

have been identified as Al 2 O 3 . The Al 2 O 3 primarily forms at grain boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> not within <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

grain interiors. This supports <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> observed at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate<br />

interface occurs by grain boundary transport <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen through <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. However,<br />

coarsening <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se phases to grain sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 350 nm has been observed. The bright phases<br />

in Figure 15 have been identified as Heusler-Ni 2 AlHf <str<strong>on</strong>g>and</str<strong>on</strong>g> were found to be ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r block-like or<br />

spherical in nature. These precipitates form at grain boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> within grain interiors with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> larger precipitates forming at grain boundaries.<br />

Figure 16 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> results from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf samples that were oxidized for 96 hours.<br />

The precipitates appear to coarsen with <str<strong>on</strong>g>the</str<strong>on</strong>g> increase in Hf c<strong>on</strong>centrati<strong>on</strong>. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2 O 3<br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> coating decreases dramatically from <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf samples;<br />

however, <str<strong>on</strong>g>the</str<strong>on</strong>g> Al 2 O 3 precipitates do appear to be larger than those reported for <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf.<br />

The majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Al 2 O 3 phases have a rod-like structure with some also appearing spherical.<br />

The bright phases in <str<strong>on</strong>g>the</str<strong>on</strong>g> STEM-HAADF images were determined to be Heusler-Ni 2 AlHf. This<br />

is similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> results reported by Hazel et al.[24]. The precipitates that form within grains are<br />

98


smaller than those found at grain boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> this is attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> high diffusivity that<br />

exists at grain boundaries. Precipitates within <str<strong>on</strong>g>the</str<strong>on</strong>g> two hour annealed samples were also smaller<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> more uniformly dispersed than those in <str<strong>on</strong>g>the</str<strong>on</strong>g> four hour samples. It was additi<strong>on</strong>ally observed<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> four hour annealed specimens exhibited larger grain sizes than <str<strong>on</strong>g>the</str<strong>on</strong>g> two hour annealed<br />

specimens.<br />

Figure 17 presents <str<strong>on</strong>g>the</str<strong>on</strong>g> images collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coatings that were oxidized<br />

for 96 hours. The precipitates were much larger <str<strong>on</strong>g>and</str<strong>on</strong>g> less dispersed than those observed in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NiAl-Hf coatings. Increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> annealing time did lead to precipitate coarsening with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

largest precipitates forming at grain boundaries. Interestingly, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was almost no precipitati<strong>on</strong><br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> grain interiors. Hafnium enrichment at <str<strong>on</strong>g>the</str<strong>on</strong>g> grain boundaries was also evident.<br />

However, <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> grain growth observed going from <str<strong>on</strong>g>the</str<strong>on</strong>g> two hour to <str<strong>on</strong>g>the</str<strong>on</strong>g> four hour<br />

annealed coatings was not as noticeable as compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf samples. This supports <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory that <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf samples exhibit slower diffusi<strong>on</strong> kinetics than <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf samples.<br />

6.7. General Discussi<strong>on</strong><br />

The results presented in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous secti<strong>on</strong>s showed that compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

microstructural morphology can have significant influences <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sputtered NiAl coatings. The as-deposited coatings were single phase z<strong>on</strong>e T<br />

microstructures with no evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> [27,28]. The microstructures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> assputtered<br />

coatings c<strong>on</strong>tained a high volume <str<strong>on</strong>g>of</str<strong>on</strong>g> defects (excess vacancies, dislocati<strong>on</strong>s, etc.),<br />

which represent preferential sites for solute segregati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitates<br />

[59,60]. The issue <str<strong>on</strong>g>of</str<strong>on</strong>g> elemental segregati<strong>on</strong> in NiAl has been addressed by Jayaram <str<strong>on</strong>g>and</str<strong>on</strong>g> Miller<br />

99


[61] <str<strong>on</strong>g>and</str<strong>on</strong>g> Lars<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Miller [62] who showed evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> preferential segregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Zr to<br />

dislocati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> grain boundaries in NiAl-Zr,Mo <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAl-Hf alloys.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> present coatings, Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr were observed to have a significant influence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coating microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> interdiffusi<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> coating <str<strong>on</strong>g>and</str<strong>on</strong>g> substrate. Hf <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.5 at.% <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.0 at.% into NiAl was found to result in significantly decreased coating grain sizes<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> in thinner interdiffusi<strong>on</strong> z<strong>on</strong>es in coatings <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalent thickness. It was also observed that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate elements, such as Co <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr, incorporated into <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings after<br />

post-depositi<strong>on</strong> annealing decreased as <str<strong>on</strong>g>the</str<strong>on</strong>g> Hf c<strong>on</strong>tent was increased. These observati<strong>on</strong>s are<br />

c<strong>on</strong>sistent with prior reports <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced coating <str<strong>on</strong>g>and</str<strong>on</strong>g>/or IDZ thickness have been reported for<br />

diffusi<strong>on</strong> aluminide <str<strong>on</strong>g>and</str<strong>on</strong>g> β-NiAl overlay coatings [36,63-66]. The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 at.% Cr in<br />

additi<strong>on</strong> to 1 at.% Hf, produced no obvious changes in IDZ thickness from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coating<br />

after annealing. However, it did exhibit a high number <str<strong>on</strong>g>of</str<strong>on</strong>g> α-Cr precipitates in additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Heusler phase.<br />

Analogous to <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Ning et al. [25], <str<strong>on</strong>g>the</str<strong>on</strong>g> Hf <str<strong>on</strong>g>and</str<strong>on</strong>g>, when present, Cr <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g><br />

also tended to precipitate out during <str<strong>on</strong>g>the</str<strong>on</strong>g> post-depositi<strong>on</strong> annealing al<strong>on</strong>g grain boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong><br />

dislocati<strong>on</strong>s. It was observed that under same depositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> similar post-depositi<strong>on</strong> annealing<br />

c<strong>on</strong>diti<strong>on</strong>s, that <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coatings exhibited lower mass gains than <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf coatings. In<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ternary NiAl-Hf coatings, this is attributed to “over doping” as has been reported<br />

by Pint et al. [13,15,67]. The apparent increase in oxidati<strong>on</strong> resistance provided by <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cr was not expected, but is tentatively attributed, in part, to larger grain sizes <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

100


The oxidati<strong>on</strong> observed at <str<strong>on</strong>g>the</str<strong>on</strong>g> interface between <str<strong>on</strong>g>the</str<strong>on</strong>g> coating <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate can be<br />

explained by a two-step mechanism. As shown with <str<strong>on</strong>g>the</str<strong>on</strong>g> EPMA data earlier in <str<strong>on</strong>g>the</str<strong>on</strong>g> document,<br />

aluminum is depleted from <str<strong>on</strong>g>the</str<strong>on</strong>g> coating into <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying superalloy. As <str<strong>on</strong>g>the</str<strong>on</strong>g> aluminum is<br />

depleted, it leads to a transiti<strong>on</strong> from β-NiAl to γ’-Ni 3 Al <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coating to<br />

form Al 2 O 3 is greatly reduced with increased exposure. As oxygen is c<strong>on</strong>tinually transported to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface via <str<strong>on</strong>g>the</str<strong>on</strong>g> pinhole defects <str<strong>on</strong>g>and</str<strong>on</strong>g> grain boundary transport, transient<br />

oxides (e.g. NiO x , spinel, etc.) will begin to form at this interface eventually leading to coating<br />

failure.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> increased c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf at <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate/coating interface shown in<br />

Figure 10 has been shown to lead to severe internal oxidati<strong>on</strong>. Hafnium c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

grain boundary density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating can have a dramatic <str<strong>on</strong>g>effect</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> speed at which this<br />

process progresses. This is evidenced clearly in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAl-1Hf samples. As <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>hafnium</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> was increased, <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface became<br />

more severe. The c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> at <str<strong>on</strong>g>the</str<strong>on</strong>g> interfaces increased from 2.5 at% in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-<br />

0.5Hf sample to 11.89 at% in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1.0Hf sample. It has been shown that reactive elements<br />

such as <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> change <str<strong>on</strong>g>the</str<strong>on</strong>g> growth mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> oxides in Al 2 O 3 formers by switching <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

outward diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum i<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> inward diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen i<strong>on</strong>s [68].<br />

Grain boundaries are high diffusi<strong>on</strong> pathways for elements. Increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

grain boundaries can lead to an increase in diffusi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> coating interfaces. This would<br />

explain <str<strong>on</strong>g>the</str<strong>on</strong>g> dramatic increase in <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface. The<br />

preoxidati<strong>on</strong> grain sizes observed with this study are approximately <strong>on</strong>e third <str<strong>on</strong>g>of</str<strong>on</strong>g> those reported in<br />

101


similar coatings produced by Ning et al. [25]. In <str<strong>on</strong>g>the</str<strong>on</strong>g>ir study, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coating/substrate interface with NiAl-0.6Hf coatings was reported to be <strong>on</strong>ly 0.5 at% after<br />

annealing for four hours, approximately 1.0 at% lower than those observed with <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf<br />

coatings. This difference in c<strong>on</strong>centrati<strong>on</strong> indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a higher diffusi<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>hafnium</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings developed in this study compared to previous results. This increased<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> combined with <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen transported through pinhole defects <str<strong>on</strong>g>and</str<strong>on</strong>g> al<strong>on</strong>g<br />

grain boundaries to <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface could lead to rapid oxidati<strong>on</strong> al<strong>on</strong>g this<br />

interface. These features were not observed with <str<strong>on</strong>g>the</str<strong>on</strong>g> larger grained coatings oxidized by Ning et<br />

al. [25]. Also, <str<strong>on</strong>g>the</str<strong>on</strong>g> specific mass gains reported in that study were much lower than <str<strong>on</strong>g>the</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>es measured in <str<strong>on</strong>g>the</str<strong>on</strong>g> present study (Figure 1). From this it can be c<strong>on</strong>cluded that reduced<br />

<str<strong>on</strong>g>hafnium</str<strong>on</strong>g> c<strong>on</strong>tent al<strong>on</strong>g with <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced grain boundary area in <str<strong>on</strong>g>the</str<strong>on</strong>g> coating (i.e., larger coating<br />

grain sizes) appears to lead to enhanced oxidati<strong>on</strong> performance.<br />

6.8. Summary<br />

A series <str<strong>on</strong>g>of</str<strong>on</strong>g> β-NiAl-Cr-Hf coatings were prepared using DC magnetr<strong>on</strong> sputtering to<br />

investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr c<strong>on</strong>centrati<strong>on</strong> coupled with preoxidati<strong>on</strong> annealing time <strong>on</strong><br />

short-term iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal oxidati<strong>on</strong> behavior at 1050°C for times up to 96 hours. Specific mass<br />

gains generally increased with Hf c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> annealing time, however, <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> highest Hf c<strong>on</strong>tent alloy resulted in significantly lower mass gains, which suggest that it<br />

lowers its diffusi<strong>on</strong> rate within <str<strong>on</strong>g>the</str<strong>on</strong>g> coating [27]. This hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis is c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> recent<br />

work <str<strong>on</strong>g>of</str<strong>on</strong>g> Rigney et al. [69] <str<strong>on</strong>g>and</str<strong>on</strong>g> Hazel et al. [24].<br />

102


Following oxidati<strong>on</strong>, a detailed characterizati<strong>on</strong> was c<strong>on</strong>ducted to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> phases<br />

that evolve <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. XRD spectra collected from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coating surfaces showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> β-NiAl phase was prevalent with a (110) preferred orientati<strong>on</strong>.<br />

Small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> θ-Al 2 O 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> α-Al 2 O 3 were also detected from <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO al<strong>on</strong>g with γ′-Ni 3 Al<br />

which forms as <str<strong>on</strong>g>the</str<strong>on</strong>g> aluminum is c<strong>on</strong>sumed from <str<strong>on</strong>g>the</str<strong>on</strong>g> coating to form <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO. The NiAlCrHf<br />

samples did not c<strong>on</strong>tain any γ′ peaks suggesting that <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum <str<strong>on</strong>g>and</str<strong>on</strong>g>/or oxygen is<br />

limited with <str<strong>on</strong>g>the</str<strong>on</strong>g>se coatings <str<strong>on</strong>g>and</str<strong>on</strong>g> retains <str<strong>on</strong>g>the</str<strong>on</strong>g> parent β-NiAl phase.<br />

The surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxides were also imaged using an SEM to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> morphology<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO. The TGO was observed to c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> blade-like θ-Al 2 O 3<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> more equiaxed α-Al 2 O 3 . The scales formed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ternary NiAl-Hf samples c<strong>on</strong>tained a<br />

large number <str<strong>on</strong>g>of</str<strong>on</strong>g> cracks. These cracks were more numerous in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf samples compared<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf samples. While <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO thickness did not increase dramatically when <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>hafnium</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> was increased from 0.5 at.% to 1.0 at.%, <str<strong>on</strong>g>the</str<strong>on</strong>g> decrease in crack density<br />

with increased <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> c<strong>on</strong>tent suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO adherence to <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coat increases with<br />

<str<strong>on</strong>g>hafnium</str<strong>on</strong>g> c<strong>on</strong>tent for <str<strong>on</strong>g>the</str<strong>on</strong>g> samples studied in this <str<strong>on</strong>g>investigati<strong>on</strong></str<strong>on</strong>g>. The NiAlCrHf coatings also<br />

c<strong>on</strong>tained cracks following oxidati<strong>on</strong>. The cracks were wider <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>ger than those observed in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf coatings; however, <str<strong>on</strong>g>the</str<strong>on</strong>g>y appear to form a uniform Al 2 O 3 layer that protected <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

underlying b<strong>on</strong>d coat. No HfO 2 or Cr 2 O 3 formati<strong>on</strong> was detected with any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> samples using<br />

SEM-EDS elemental mapping.<br />

Cross-secti<strong>on</strong>al SEM images <str<strong>on</strong>g>and</str<strong>on</strong>g> SEM-EDS elemental maps were also collected. Small<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> γ′ were observed in all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> samples as was <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> segregati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

103


TGO/coating <str<strong>on</strong>g>and</str<strong>on</strong>g> coating substrate interfaces. In <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf samples, <str<strong>on</strong>g>the</str<strong>on</strong>g> oxides formed at both<br />

interfaces were found to be decorated with <str<strong>on</strong>g>hafnium</str<strong>on</strong>g>-rich precipitates, presumably HfO 2 .<br />

Interestingly, internal oxidati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> a disc<strong>on</strong>tinuous Al 2 O 3 layer was observed at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coating/substrate interface in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf samples. The severity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> at this interface<br />

was found to increase with <str<strong>on</strong>g>the</str<strong>on</strong>g> annealing time.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf samples, <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ was completely retained <str<strong>on</strong>g>and</str<strong>on</strong>g> was accompanied by<br />

<str<strong>on</strong>g>chromium</str<strong>on</strong>g> enrichment. The TGO observed in <str<strong>on</strong>g>the</str<strong>on</strong>g>se coatings was much thinner than in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-<br />

Hf coatings. Hafnium segregati<strong>on</strong> was not as significant in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf samples. In <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

coatings, precipitates formed al<strong>on</strong>g grain boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> appeared to coarsen with increased<br />

annealing time. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, while <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coatings c<strong>on</strong>tain larger cracks that extend to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> substrate, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was no oxidati<strong>on</strong> observed at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface. As noted above,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf coatings showed significant oxidati<strong>on</strong> near <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate/coating interface<br />

accompanied by significant <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> segregati<strong>on</strong>. Hafnium-rich precipitates were readily<br />

observed within cracks in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf coatings; however, no <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> or <str<strong>on</strong>g>chromium</str<strong>on</strong>g> segregati<strong>on</strong><br />

was detected in or near cracks in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coatings, which were found to form <strong>on</strong>ly Al 2 O 3 .<br />

The oxidati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface can be explained simply by examining <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

nature <str<strong>on</strong>g>of</str<strong>on</strong>g> z<strong>on</strong>e T microstructures. Z<strong>on</strong>e T microstructures have extremely fine grain sizes <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten exhibit voids or pinhole type defects (sometimes referred to as leader defects in thick<br />

coatings) at grain boundaries. Both represent rapid diffusi<strong>on</strong> pathways for oxygen in to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

substrate while allowing for a corresp<strong>on</strong>ding diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elements out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

coating. This results in oxidati<strong>on</strong> al<strong>on</strong>g grain boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating substrate interfaces.<br />

104


The coatings developed by Ning et al. had denser z<strong>on</strong>e 2 microstructures, which have<br />

significantly larger grain sizes, <str<strong>on</strong>g>and</str<strong>on</strong>g> thus fewer intergranular voids [25,37,70-72]. Ning’s<br />

coatings had grain sizes that were approximately four times larger than those produced in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

present study. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g>y were more resistant to grain boundary diffusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> did not exhibit<br />

oxidati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> interface. It is possible to reduce or eliminate <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate oxidati<strong>on</strong><br />

layer by peening <str<strong>on</strong>g>the</str<strong>on</strong>g> coating surfaces. The deformati<strong>on</strong> induced by peening will close any<br />

boundaries open to <str<strong>on</strong>g>the</str<strong>on</strong>g> free surface [73-75]. This technique is widely used to close up leaders<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> EB-PVD overlay coatings.<br />

EPMA line pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles for <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> nickel <str<strong>on</strong>g>and</str<strong>on</strong>g> aluminum c<strong>on</strong>centrati<strong>on</strong>s<br />

do not change appreciably within <str<strong>on</strong>g>the</str<strong>on</strong>g> coating; however, <str<strong>on</strong>g>the</str<strong>on</strong>g> results for <str<strong>on</strong>g>hafnium</str<strong>on</strong>g>, cobalt, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>chromium</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fer greater insight into <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamics in <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings. Hafnium was found to<br />

decorate <str<strong>on</strong>g>the</str<strong>on</strong>g> interfaces at c<strong>on</strong>centrati<strong>on</strong>s as high as 10 at.% while cobalt <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>chromium</str<strong>on</strong>g> diffuse<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate to a c<strong>on</strong>stant c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> between 2-3 at.% for both elements. With <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NiAlCrHf coatings, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>chromium</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> stabilizes near 4 at.% throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> coating<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> was not observed to enrich at boundaries. Large jumps in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>chromium</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ were determined to be γ′ with <str<strong>on</strong>g>chromium</str<strong>on</strong>g> enrichment <str<strong>on</strong>g>and</str<strong>on</strong>g> also α-Cr with β-NiAl.<br />

Plan view TEM images <str<strong>on</strong>g>and</str<strong>on</strong>g> corresp<strong>on</strong>ding STEM analyses were also collected from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oxidized coatings. The average grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf increases from 178 to 229 μm<br />

following oxidati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> two <str<strong>on</strong>g>and</str<strong>on</strong>g> four hour annealed samples respectively. This increase is<br />

suspected to be caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> increased amount <str<strong>on</strong>g>of</str<strong>on</strong>g> recrystallizati<strong>on</strong> as <str<strong>on</strong>g>the</str<strong>on</strong>g> annealing time was<br />

105


increased. The precipitates were heterogeneously distributed with larger precipitates forming at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> grain boundaries. Chemical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se precipitates determined that <str<strong>on</strong>g>the</str<strong>on</strong>g>y are Heusler<br />

β′-Ni 2 AlHf. The NiAlCrHf samples have a much larger grain size <str<strong>on</strong>g>and</str<strong>on</strong>g> exhibit little change in<br />

grain size with annealing c<strong>on</strong>diti<strong>on</strong>s. The average grain size is almost twice that observed with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf samples. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitates that formed with <str<strong>on</strong>g>the</str<strong>on</strong>g>se samples are c<strong>on</strong>fined<br />

primarily to <str<strong>on</strong>g>the</str<strong>on</strong>g> grain boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> coarsen in excess <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 nm. These large precipitates are<br />

thought to provide enhanced barriers to diffusi<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> grain boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> inhibit <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coat. It is also possible that <str<strong>on</strong>g>the</str<strong>on</strong>g> smaller grain size plays a significant role<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coating through increased grain boundary volume.<br />

Acknowledgements<br />

The authors acknowledge <str<strong>on</strong>g>the</str<strong>on</strong>g> support <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Science Foundati<strong>on</strong> (NSF) under<br />

Award No. DMR-0504950 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Aer<strong>on</strong>autics <str<strong>on</strong>g>and</str<strong>on</strong>g> Space Administrati<strong>on</strong> (NASA)<br />

under c<strong>on</strong>tract NN-X08AT21H. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> facilities supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> Central Analytical<br />

facility at <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alabama <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Materials Diagnostics Laboratory at NASA’s<br />

Marshall Space Flight Center in Huntsville, Alabama is also gratefully acknowledged.<br />

106


Cited References<br />

[1] Nati<strong>on</strong>al Research Council, Coatings for High-Temperature Structural Materials,<br />

(Nati<strong>on</strong>al Materials Advisory Board, Washingt<strong>on</strong>, D.C., 1996).<br />

[2] M. J. D<strong>on</strong>atchie Jr. <str<strong>on</strong>g>and</str<strong>on</strong>g> S. J. D<strong>on</strong>atchie, Superalloys: A Technical Guide, 2nd editi<strong>on</strong><br />

(ASM Internati<strong>on</strong>al, Materials Park, OH, 2002).<br />

[3] G. W. Goward, "Protective coatings - purpose, role, <str<strong>on</strong>g>and</str<strong>on</strong>g> design," Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Technology 2 (1986) 194-200.<br />

[4] G. W. Goward, "Progress in Coatings for Gas Turbine Airfoils," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings<br />

Technology 108-109 (1998) 73-79.<br />

[5] R. C. Reed, Superalloys, (Cambridge University Press, Cambridge, 2006).<br />

[6] W. S. Walst<strong>on</strong>, A. Cetel, R. MacKay, K. O'Hara, D. Duhl <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Dreshfield, "Joint<br />

Development <str<strong>on</strong>g>of</str<strong>on</strong>g> a Fourth Generati<strong>on</strong> Single Crystal Superalloy," in Superalloys 2004,<br />

edited by K. A. Green, T. M. Pollock, H. Harada, T. E. Hows<strong>on</strong>, R. C. Reed, J. J. Schirra<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> S. Walst<strong>on</strong> (TMS (The Minerals, Metals & Materials Society), Warrendale, PA,<br />

2004) p. 15-24.<br />

[7] W. S. Walst<strong>on</strong>, "Coating <str<strong>on</strong>g>and</str<strong>on</strong>g> Surface Technologies for Turbine Airfoils," in Superalloys<br />

2004, edited by K. A. Green, T. M. Pollock, H. Harada, T. E. Hows<strong>on</strong>, R. C. Reed, J. J.<br />

Schirra <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Walst<strong>on</strong> (TMS (The Minerals, Metals & Materials Society), Warrendale,<br />

PA, 2004) p. 579-588.<br />

[8] C. T. Sims, N. S. Stol<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>and</str<strong>on</strong>g> W. C. Hagel, eds., Superalloys II (John Wiley <str<strong>on</strong>g>and</str<strong>on</strong>g> S<strong>on</strong>s,<br />

New York, 1987).<br />

[9] R. L. J<strong>on</strong>es, "Thermal Barrier Coatings," in "Metallurgical <str<strong>on</strong>g>and</str<strong>on</strong>g> Ceramic Protective<br />

Coatings", edited by K. H. Stern (Chapman & Hall, L<strong>on</strong>d<strong>on</strong>, 1996) p. 194-235.<br />

[10] J. R. Nicholls, "Advances in Coating Design for High-Performance Gas Turbines," MRS<br />

Bulletin 28 (2003) 659-670.<br />

[11] C. G. Levi, "Emerging materials <str<strong>on</strong>g>and</str<strong>on</strong>g> processes for <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier systems," Current<br />

Opini<strong>on</strong> in Solid State <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials Science 8 (2004) 77-91.<br />

[12] S. Bose, High Temperature Coatings, (Butterworth-Heinemann, Burlingt<strong>on</strong>, MA, 2007).<br />

[13] B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prüßner <str<strong>on</strong>g>and</str<strong>on</strong>g> K. B. Alex<str<strong>on</strong>g>and</str<strong>on</strong>g>er,<br />

"Substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> B<strong>on</strong>d Coat Compositi<strong>on</strong>s: Factors Affecting Alumina Scale Adhesi<strong>on</strong>,"<br />

Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering A245 (1998) 201-211.<br />

107


[14] B. A. Pint, J. A. Haynes, K. L. More, I. G. Wright <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Leyens, "Compositi<strong>on</strong>al Effects<br />

<strong>on</strong> Aluminide Oxidati<strong>on</strong> Performance: Objectives for Improved B<strong>on</strong>d Coats," in<br />

Superalloys 2000, edited by T. M. Pollock, R. D. Kissinger, R. R. Bowman, K. A. Green,<br />

M. McClean, S. Ols<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> J. J. Schirra (The Minerals, Metals & Materials Society,<br />

Warrendale, PA, 2000) p. 629-638.<br />

[15] B. A. Pint, "Experimental observati<strong>on</strong>s in support <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic-segregati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory to<br />

explain <str<strong>on</strong>g>the</str<strong>on</strong>g> reactive-element <str<strong>on</strong>g>effect</str<strong>on</strong>g>," Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals 45 (1996) 1-37.<br />

[16] J. A. Nesbitt, B. Nagaraj <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Williams, "Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf Additi<strong>on</strong>s to Pt Aluminide B<strong>on</strong>d<br />

Coats <strong>on</strong> EB-PVD TBC Life," in Elevated Temperature Coatings: Science <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Technology IV, edited by N. B. Dahotre, J. M. Hampikian <str<strong>on</strong>g>and</str<strong>on</strong>g> J. E. Morral (TMS (The<br />

Minerals, Metals & Materials Society), Warrendale, PA, 2001) p. 78-92.<br />

[17] B. M. Warnes, "Reactive element modified chemical vapor depositi<strong>on</strong> low activity<br />

platinum aluminide coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 146-147 (2001) 7-12.<br />

[18] R. Darolia, United States Patent Number 6,255,001, (2001).<br />

[19] R. Darolia, J. D. Rigney <str<strong>on</strong>g>and</str<strong>on</strong>g> R. J. Grylls, U. S. Patent Number 6,291,084, (2001).<br />

[20] R. Darolia, J. D. Rigney <str<strong>on</strong>g>and</str<strong>on</strong>g> J. L. Miller, United States Patent Number 6,344,282,<br />

(2002).<br />

[21] J. D. Rigney, R. Darolia, W. S. Walst<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Corderman, U. S. Patent Number<br />

6,153,313, (2000).<br />

[22] I. Spitsberg, J. D. Rigney, R. Darolia, E. H.-K. Lee <str<strong>on</strong>g>and</str<strong>on</strong>g> J. A. Pfaendtner, U. S. Patent<br />

Number 7,150,922 B2, (2006).<br />

[23] T. R. Grossman, R. Darolia <str<strong>on</strong>g>and</str<strong>on</strong>g> J. D. Rigney, U. S. Patent Number 7,244,467 B2,<br />

(2007).<br />

[24] B. Hazel, J. Rigney, M. Gorman, B. Boutwell <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Darolia, "Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Improved<br />

B<strong>on</strong>d Coat for Enhanced Turbine Durability," in Superalloys 2008, edited by R. C. Reed,<br />

K. A. Green, P. Car<strong>on</strong>, T. P. Gabb, M. G. Fahrmann, E. S. Hur<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> S. R. Woodard<br />

(TMS, Warrendale, PA, 2008) p. 753-760.<br />

[25] B. Ning, M. Shamsuzzoha <str<strong>on</strong>g>and</str<strong>on</strong>g> M. L. Weaver, "Microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> Property Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

DC Magnetr<strong>on</strong> Sputtered NiAl-0.6Hf Coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 200<br />

(2005) 1270-1275.<br />

[26] M. A. Bestor, A. L. Brown, R. L. Martens, B. Ning, M. K. Miller <str<strong>on</strong>g>and</str<strong>on</strong>g> M. L. Weaver,<br />

"Microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersi<strong>on</strong> streng<str<strong>on</strong>g>the</str<strong>on</strong>g>ned b<strong>on</strong>d coats," Microscopy <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Microanalysis 13 (2007) 1652CD-1653CD.<br />

108


[27] M. A. Bestor, J. P. Alfano, B. T. Hazel <str<strong>on</strong>g>and</str<strong>on</strong>g> M. L. Weaver, "Influences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>chromium</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>hafnium</str<strong>on</strong>g> <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructures <str<strong>on</strong>g>of</str<strong>on</strong>g> β-NiAl coatings deposited <strong>on</strong> superalloy<br />

substrates," submitted to Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering A (2010).<br />

[28] M. A. Bestor, R. L. Martens <str<strong>on</strong>g>and</str<strong>on</strong>g> M. L. Weaver, "Influences <str<strong>on</strong>g>of</str<strong>on</strong>g> annealing <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructures <str<strong>on</strong>g>of</str<strong>on</strong>g> sputter deposited β-NiAl coatings <strong>on</strong> superalloys<br />

substrates," submitted to Intermetallics (2010).<br />

[29] M. K. Miller, K. F. Russell <str<strong>on</strong>g>and</str<strong>on</strong>g> G. B. Thomps<strong>on</strong>, "Strategies for fabricating atom probe<br />

specimens with dual beam FIB," Ultramicroscopy 102 (2005) 287-298.<br />

[30] K. Thomps<strong>on</strong>, D. Lawrence, D. J. Lars<strong>on</strong>, J. D. Ols<strong>on</strong>, T. F. Kelly <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Gorman, "In<br />

situ site-specific specimen preparati<strong>on</strong> for atom probe tomography," Ultramicroscopy<br />

107 (2007) 131-139.<br />

[31] B. A. Pint, K. L. More <str<strong>on</strong>g>and</str<strong>on</strong>g> I. G. Wright, "Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> quaternary <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong><br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf-doped NiAl," Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals 59 (2003) 257-283.<br />

[32] B. A. Pint, J. A. Haynes, K. L. More <str<strong>on</strong>g>and</str<strong>on</strong>g> I. G. Wright, "The Use <str<strong>on</strong>g>of</str<strong>on</strong>g> Model Alloys to<br />

Underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Improve <str<strong>on</strong>g>the</str<strong>on</strong>g> Performance <str<strong>on</strong>g>of</str<strong>on</strong>g> Pt-Modified Aluminide Coatings," in<br />

Superalloys 2004, edited by K. A. Green, T. M. Pollock, H. Harada, T. E. Hows<strong>on</strong>, R. C.<br />

Reed, J. J. Schirra <str<strong>on</strong>g>and</str<strong>on</strong>g> W. S. Walst<strong>on</strong> (TMS (The Minerals, Metals & Materials Society),<br />

Warrendale, PA, 2004) p. 597-606.<br />

[33] L. Sun, H. Guo, H. Li <str<strong>on</strong>g>and</str<strong>on</strong>g> S. G<strong>on</strong>g, "Hf modified NiAl B<strong>on</strong>d Coat for Thermal Barrier<br />

Coating Applicati<strong>on</strong>," Materials Science Forum 546-549 (2007) 1777-1780.<br />

[34] H. Guo, L. Sun, H. Li <str<strong>on</strong>g>and</str<strong>on</strong>g> S. G<strong>on</strong>g, "High temperature oxidati<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g><br />

modified NiAl b<strong>on</strong>d coat in EB-PVD <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coating system," Thin Solid Films<br />

516 (2008) 5732-5735.<br />

[35] J. A. Haynes, B. A. Pint, Y. Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> I. G. Wright, "Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cyclic oxidati<strong>on</strong><br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> β-NiAl, β-NiPtAl <str<strong>on</strong>g>and</str<strong>on</strong>g> γ-γ' NiPtAl coatings <strong>on</strong> various superalloys," Surface<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 202 (2007) 730-734.<br />

[36] J. A. Haynes, Y. Zhang, K. M. Cooley, L. Walker, K. S. Reeves <str<strong>on</strong>g>and</str<strong>on</strong>g> B. A. Pint, "Hightemperature<br />

diffusi<strong>on</strong> barriers for protective coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology<br />

188-189 (2004) 153-157.<br />

[37] B. Ning, Microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g> Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Hafnium C<strong>on</strong>taining NiAl-based Overlay<br />

Coatings, Ph.D. Dissertati<strong>on</strong>, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alabama, Tuscaloosa, AL, 2005.<br />

[38] B. A. Pint, "The role <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical compositi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminide<br />

coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 188-189 (2004) 71-78.<br />

109


[39] C. Leyens, B. A. Pint <str<strong>on</strong>g>and</str<strong>on</strong>g> I. G. Wright, "Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Compositi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Hot<br />

Corrosi<strong>on</strong> Resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl Doped With Precious Metals," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings<br />

Technology 133-134 (2000) 15-22.<br />

[40] S. Yang, F. Wang <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Wu, "Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Microcrystallizati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Cyclic Oxidati<strong>on</strong><br />

Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> β-NiAl Intermetallics at 1000°C in Air," Intermetallics 9 (2001) 741-744.<br />

[41] S. L. Yang, F. H. Wang, Y. Niu <str<strong>on</strong>g>and</str<strong>on</strong>g> W. T. Wu, "Iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> β-NiAl Alloys<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Sputtered Coating at 1000°C in Air," Materials Science Forum 369-372 (2001) 361-<br />

368.<br />

[42] T. F. An, H. R. Guan, X. F. Sun <str<strong>on</strong>g>and</str<strong>on</strong>g> Z. Q. Hu, "Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> θ-α-Al 2 O 3 transformati<strong>on</strong> in<br />

scales <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> a nickel-base superalloy with an aluminide diffusi<strong>on</strong><br />

coating," Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals 54 (2000) 301-316.<br />

[43] S. Xia<str<strong>on</strong>g>of</str<strong>on</strong>g>eng, G. Hengr<strong>on</strong>g, J. Tao, A. Ta<str<strong>on</strong>g>of</str<strong>on</strong>g>eng <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Zhuangqi, "Abnormal oxidati<strong>on</strong><br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> β-NiAl base aluminide coating <strong>on</strong> a nickel-base superalloy," Internati<strong>on</strong>al<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Product Technology (2001) 734-739.<br />

[44] J. S. Wang <str<strong>on</strong>g>and</str<strong>on</strong>g> A. G. Evans, "Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> strain cycling <strong>on</strong> bucking, cracking <str<strong>on</strong>g>and</str<strong>on</strong>g> spalling<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally grown alumina <strong>on</strong> a nickel-based b<strong>on</strong>d coat," Acta Materialia 47 (1999)<br />

699-710.<br />

[45] V. K. Tolpygo <str<strong>on</strong>g>and</str<strong>on</strong>g> D. R. Clarke, "Spalling failure <str<strong>on</strong>g>of</str<strong>on</strong>g> α-alumina films grown by<br />

oxidati<strong>on</strong>. II. Decohesi<strong>on</strong> nucleati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> growth," Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering A<br />

278 (2000) 151-161.<br />

[46] A. G. Evans, D. R. Mumm, J. W. Hutchins<strong>on</strong>, G. H. Meier <str<strong>on</strong>g>and</str<strong>on</strong>g> F. S. Pettit, "Mechanism<br />

C<strong>on</strong>trolling <str<strong>on</strong>g>the</str<strong>on</strong>g> Durability <str<strong>on</strong>g>of</str<strong>on</strong>g> Thermal Barrier Coatings," Progress in Materials Science<br />

46 (2001) 505-553.<br />

[47] N. P. Padture, M. Gell <str<strong>on</strong>g>and</str<strong>on</strong>g> E. H. Jordan, "Thermal Barrier Coatings for Gas-Turbine<br />

Engine Applicati<strong>on</strong>s," Science 296 (2002) 280-284.<br />

[48] J. Jedlinski, "High temperature oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidati<strong>on</strong>-induced degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> alumina<br />

formers," Materials Science Forum 595-598 (2008) 995-1003.<br />

[49] V. K. Tolpygo <str<strong>on</strong>g>and</str<strong>on</strong>g> D. R. Clarke, "Tensile cracking during <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal cycling <str<strong>on</strong>g>of</str<strong>on</strong>g> alumina<br />

films formed by high-temperature oxidati<strong>on</strong>," Acta Materialia 47 (1999) 3589-3605.<br />

[50] V. K. Tolpygo <str<strong>on</strong>g>and</str<strong>on</strong>g> D. R. Clarke, "On <str<strong>on</strong>g>the</str<strong>on</strong>g> rumpling mechanism in nickel-aluminide<br />

coatings part I: An experimental assessment," Acta Materialia 52 (2004) 5115-5127.<br />

[51] V. K. Tolpygo <str<strong>on</strong>g>and</str<strong>on</strong>g> D. R. Clarke, "On <str<strong>on</strong>g>the</str<strong>on</strong>g> rumpling mechanism in nickel-aluminide<br />

coatings part II: Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface undulati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> b<strong>on</strong>d coat swelling," Acta<br />

Materialia 52 (2004) 5129-5141.<br />

110


[52] H. Guo, Y. Cui, H. Peng <str<strong>on</strong>g>and</str<strong>on</strong>g> S. G<strong>on</strong>g, "Improved cyclic oxidati<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong><br />

beam physical vapor deposited nano-oxide dispersed β-NiAl coatings for Hf-c<strong>on</strong>taining<br />

superalloy," Corrosi<strong>on</strong> Science In Press, Corrected Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

[53] S. Hamadi, M. P. Bacos, M. Poulain, A. Seyeux, V. Maurice <str<strong>on</strong>g>and</str<strong>on</strong>g> P. Marcus, "Oxidati<strong>on</strong><br />

resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> a Zr-doped NiAl coating <str<strong>on</strong>g>the</str<strong>on</strong>g>rmochemically deposited <strong>on</strong> a nickel-based<br />

superalloy," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 204 (2009) 756-760.<br />

[54] S. Hamadi, M. P. Bacos, M. Poulain, S. Zanna, V. Maurice <str<strong>on</strong>g>and</str<strong>on</strong>g> P. Marcus, "Short-time<br />

oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a NiAl(Zr) b<strong>on</strong>d coat <str<strong>on</strong>g>the</str<strong>on</strong>g>rmomechanically deposited <strong>on</strong> a nickel-based<br />

superalloy," Materials Science Forum 595-598 (2008) 95-100.<br />

[55] S. Hamadi, M. P. Bacos, M. Poulain, S. Zanna, A. Seyeux, V. Maurice <str<strong>on</strong>g>and</str<strong>on</strong>g> P. Marcus,<br />

"Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Zr-doped NiAl b<strong>on</strong>dcoat <str<strong>on</strong>g>the</str<strong>on</strong>g>rmochemically deposited <strong>on</strong> a nickel-based<br />

superalloy," Materials at High Temperatures 26 (2009) 195-198.<br />

[56] B. A. Pint <str<strong>on</strong>g>and</str<strong>on</strong>g> K. L. More, "Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Alumina Interfaces in TBC Systems,"<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science 44 (2009) 1676-1686.<br />

[57] M. Priest, Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> Reactive Element-Modified Aluminide Coatings <strong>on</strong> Single-<br />

Crystal Ni-Based Superalloys by a Pack Cementati<strong>on</strong> Process, M.S. Thesis, Tennessee<br />

Technological University, 2009.<br />

[58] P. Nash <str<strong>on</strong>g>and</str<strong>on</strong>g> D. R. F. West, "Phase equilibria in Ni-rich regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ni-Al-Hf system,"<br />

Metal Science 15 (1981) 347-352.<br />

[59] M. Ohring, Materials Science <str<strong>on</strong>g>of</str<strong>on</strong>g> Thin Films, 2nd editi<strong>on</strong> (Academic Press, San Diego,<br />

2002).<br />

[60] G. P. Zhigal'skii <str<strong>on</strong>g>and</str<strong>on</strong>g> B. K. J<strong>on</strong>es, eds., The Physical Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Thin Metal Films<br />

(Taylor & Francis, L<strong>on</strong>d<strong>on</strong>, UK, 2003).<br />

[61] R. Jayaram <str<strong>on</strong>g>and</str<strong>on</strong>g> M. K. Miller, "Direct Observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Zirc<strong>on</strong>ium Segregati<strong>on</strong> to<br />

Dislocati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Grain Boundaries in NiAl," Scripta Metallurgica et Materialia 33<br />

(1995) 19-26.<br />

[62] D. J. Lars<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> M. K. Miller, "Atom Probe Field-I<strong>on</strong> Microscopy Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Nickel <str<strong>on</strong>g>and</str<strong>on</strong>g> Titanium Aluminides," Materials Characterizati<strong>on</strong> 44 (2000) 159-176.<br />

[63] G. Y. Kim, L. M. He, H. M. Meyer, A. Quintero, J. A. Haynes <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Y. Lee,<br />

"Mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf dopant incorporati<strong>on</strong> during <str<strong>on</strong>g>the</str<strong>on</strong>g> early stage <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical vapor<br />

depositi<strong>on</strong> aluminide coating growth under c<strong>on</strong>tinuous doping c<strong>on</strong>diti<strong>on</strong>s," Metallurgical<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> materials Transacti<strong>on</strong>s A 35A (2004) 35813593.<br />

111


[64] S. H. Kim, M. H. Oh, K. Kishida, T. Hirano <str<strong>on</strong>g>and</str<strong>on</strong>g> D. M. Wee, "Depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl<br />

Coating for Improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxidati<strong>on</strong> Resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> Cold-Rolled Ni 3 Al Foils,"<br />

Intermetallics 13 (2005) 129-136.<br />

[65] Z. Yu, K. P. Dharmasena, D. D. Hass <str<strong>on</strong>g>and</str<strong>on</strong>g> H. N. G. Wadley, "Vapor depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

platinum alloyed nickel aluminide coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 201<br />

(2006) 2326-2334.<br />

[66] Z. Yu, D. D. Hass <str<strong>on</strong>g>and</str<strong>on</strong>g> H. N. G. Wadley, "NiAl b<strong>on</strong>d coats made by a directed vapor<br />

depositi<strong>on</strong> approach," Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering A 394 (2005) 43-52.<br />

[67] B. A. Pint, "The Oxidati<strong>on</strong> Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxide-Dispersed β-NiAl: I. Short-Term<br />

Performance at 1200 o C," Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals 49 (1998) 531-559.<br />

[68] Y. Tamarin, Protective Coatings for Turbine Blades, (ASM Internati<strong>on</strong>al, Materials Park,<br />

OH, 2002).<br />

[69] J. D. Rigney, C.-P. Lee <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Darolia, United States Patent Number 7,094,444 B2,<br />

(2006).<br />

[70] B. Ning, M. Shamsuzzoha <str<strong>on</strong>g>and</str<strong>on</strong>g> M. L. Weaver, "Microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> DC<br />

Magnetr<strong>on</strong> Sputtered NiAl-Hf Coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 179 (2004)<br />

201-209.<br />

[71] B. Ning, M. Shamsuzzoha <str<strong>on</strong>g>and</str<strong>on</strong>g> M. L. Weaver, "Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Processing Variables <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> DC Magnetr<strong>on</strong> Sputtered NiAl Coatings C<strong>on</strong>taining Hf Additi<strong>on</strong>s," Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Vacuum Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology A 23 (2005) 44-54.<br />

[72] B. Ning <str<strong>on</strong>g>and</str<strong>on</strong>g> M. L. Weaver, "A Preliminary Study <str<strong>on</strong>g>of</str<strong>on</strong>g> DC Magnetr<strong>on</strong> Sputtered NiAl-Hf<br />

Coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 177-178 (2004) 113-120.<br />

[73] H. Li, L. Sun, Hesnawi.A, Z. Zhou <str<strong>on</strong>g>and</str<strong>on</strong>g> S. G<strong>on</strong>g, "Three surface modificati<strong>on</strong> methods<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal oxidati<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> EB-PVD NiAl coating,"<br />

Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 201 (2007) 5161-5164.<br />

[74] D. S. Rickerby <str<strong>on</strong>g>and</str<strong>on</strong>g> M. I. Wood, "Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sputter i<strong>on</strong> plated CoCrAlY <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

NiCrAlTi coatings for gas turbines," Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Vacuum Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology A 4<br />

(1986) 2557-2564.<br />

[75] I. T. Spitsberg, D. R. Mumm <str<strong>on</strong>g>and</str<strong>on</strong>g> A. G. Evans, "On <str<strong>on</strong>g>the</str<strong>on</strong>g> failure mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

barrier coatings with diffusi<strong>on</strong> aluminide b<strong>on</strong>d coatings," Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Engineering A 394 (2005) 176-191.<br />

112


Table 1. Nominal target c<strong>on</strong>centrati<strong>on</strong>s in atomic percent.<br />

Alloy Ni Al Cr Hf<br />

NiAl 51 49 --- ---<br />

NiAl-0.5Hf 51 48 --- 0.5<br />

NiAl-1Hf 51 48 --- 1.0<br />

NiAlCrHf 50 44 5.0 1.0<br />

113


Table 2. Nominal chemical compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> coatings after oxidati<strong>on</strong>.<br />

Alloy C<strong>on</strong>diti<strong>on</strong> Method Ni Al Cr Co Hf<br />

NiAl Nominal --- 51 49 --- --- ---<br />

As-deposited WDS 52.05 ± 0.95 47.68 ± 0.97 0.14 ± 0.25 0.08 ± 0.25 0.04 ± 0.02<br />

1000°C/2h EDS 56.66 ± 3.17 40.64 ± 3.56 1.15 ± 0.25 1.61 ± 0.33 0.00 ± 0.00<br />

1000°C/4h WDS 56.50 ± 0.75 40.34 ± 0.99 1.53 ± 0.23 1.60 ± 0.21 0.04 ± 0.02<br />

NiAl-0.5Hf Nominal --- 50 49.5 --- --- 0.5<br />

As-deposited WDS 49.02 ± 1.37 50.32 ± 0.47 0.22 ± 0.58 0.12 ± 0.55 0.31 ± 0.03<br />

1000°C/2h WDS 55.21 ± 0.87 41.76 ± 0.94 1.39 ± 0.47 1.07 ± 0.29 0.57 ± 0.08<br />

1000°C/4h WDS 56.74 ± 1.39 39.57 ± 1.32 1.79 ± 0.20 1.32 ± 0.12 0.58 ± 0.10<br />

NiAl-1Hf Nominal --- 51 48 --- --- 1.0<br />

As-deposited WDS 53.29 ± 0.49 45.37 ± 0.51 0.08 ± 0.06 0.08 ± 0.13 1.10 ± 0.05<br />

1000°C/2h WDS 55.99 ± 0.41 38.67 ± 0.59 2.04 ± 0.25 2.57 ± 0.15 0.73 ± 0.16<br />

1000°C/4h WDS 53.44 ± 0.79 43.19 ± 0.72 1.33 ± 0.43 1.09 ± 0.30 0.85 ± 0.14<br />

NiAlCrHf Nominal --- 50 44 5 --- 1<br />

As-deposited WDS 48.53 ± 0.39 45.74 ± 0.41 4.80 ± 0.14 0.12 ± 0.22 0.86 ± 0.04<br />

1000°C/2h WDS 51.73 ± 1.64 41.60 ± 0.81 4.65 ± 0.74 1.21 ± 0.23 0.81 ± 0.06<br />

1000°C/4h WDS 53.23 ± 1.42 40.50 ± 1.29 4.28 ± 0.92 1.16 ± 0.21 0.81 ± 0.10<br />

Table 3. Nominal chemical compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> coatings after oxidati<strong>on</strong> for 96h at 1050°C.<br />

Alloy C<strong>on</strong>diti<strong>on</strong> Method Ni Al Cr Co Hf<br />

NiAl-0.5Hf 1000°C/2h WDS 58.08 ± 0.45 37.08 ± 0.57 2.31 ± 0.13 2.26 ± 0.15 0.27 ± 0.06<br />

1000°C/4h WDS 56.26 ± 0.73 38.39 ± 0.72 2.66 ± 0.10 2.11 ± 0.28 0.65 ± 0.53<br />

NiAl-1Hf 1000°C/2h WDS 58.46 ± 0.82 36.02 ± 0.66 2.12 ± 0.11 2.19 ± 0.14 1.21 ± 0.44<br />

1000°C/4h WDS 62.00 ± 1.36 32.26 ± 1.25 2.41 ± 0.18 2.64 ± 0.14 0.51 ± 0.15<br />

NiAlCrHf 1000°C/2h WDS 58.24 ± 1.10 33.63 ± 1.22 3.98 ± 0.32 3.04 ± 0.11 1.11 ± 0.51<br />

1000°C/4h WDS 59.49 ± 2.34 31.48 ± 1.01 4.90 ± 2.46 3.13 ± 0.17 1.01 ± 0.52<br />

114


0.8<br />

Specific Mass Change (mg/cm 2 )<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

NiAl-0.5Hf<br />

NiAl-1.0Hf (I)<br />

NiAl-1.0Hf (C)<br />

NiAlCrHf<br />

β-NiAl<br />

0 20 40 60 80 100<br />

Iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal Oxidati<strong>on</strong> Time (h)<br />

(a)<br />

0.7<br />

Specific Mass Change (mg/cm 2 )<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

NiAl-0.5Hf<br />

NiAl-1.0Hf<br />

NiAlCrHf (I)<br />

NiAlCrHf (C)<br />

β-NiAl<br />

0 20 40 60 80 100<br />

Iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal Oxidati<strong>on</strong> Time (h)<br />

(b)<br />

Figure 1. Specific mass changes measured with iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal oxidati<strong>on</strong> (I) at 1050°C for NiAl-X<br />

coatings <strong>on</strong> René N5. Additi<strong>on</strong>al samples were subjected to l<strong>on</strong>g cycle cyclic oxidati<strong>on</strong> (C) at<br />

1050°C.<br />

115


β-NiAl<br />

γ'-Ni 3<br />

Al<br />

α-Al 2<br />

O 3<br />

Normalized Intensity (abu)<br />

θ-Al 2<br />

O 3<br />

20 30 40 50 60 70 80 90 100<br />

Degrees (2θ)<br />

(a)<br />

β-NiAl<br />

γ'-Ni 3<br />

Al<br />

Normalized Intensity (abu)<br />

α-Al 2<br />

O 3<br />

θ-Al 2<br />

O 3<br />

20 30 40 50 60 70 80 90 100<br />

Degrees (2θ)<br />

(b)<br />

Figure 2. X-ray diffracti<strong>on</strong> spectra collected from samples that were iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmally oxidized at<br />

1050°C for 96 hours. Samples are divided according to annealing time with two <str<strong>on</strong>g>and</str<strong>on</strong>g> four hours<br />

shown in parts (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) respectively.<br />

116


(a)<br />

(b)<br />

Figure 3. SEM images collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-0.5Hf samples that were annealed for<br />

(a) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) four hours <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n oxidized for 96 hours.<br />

117


(a)<br />

(b)<br />

Figure 4. SEM images collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-1Hf samples that were annealed for<br />

(a) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) four hours <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n oxidized for 96 hours.<br />

118


(a)<br />

(b)<br />

Figure 5. SEM images collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAlCrHf samples that were annealed for<br />

(a) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) four hours <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n oxidized for 96 hours.<br />

119


(a)<br />

(b)<br />

Figure 6. Cross-secti<strong>on</strong>al SEM images <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-0.5Hf samples: annealed for (a) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) four<br />

hours <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidized for 96 hours.<br />

120


(a)<br />

(b)<br />

Figure 7. Cross-secti<strong>on</strong>al SEM images <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-1Hf samples: annealed for (a) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) four<br />

hours <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidized for 96 hours.<br />

121


(a)<br />

(b)<br />

Figure 8. Cross-secti<strong>on</strong>al SEM images <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAlCrHf samples: annealed for (a) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) four<br />

hours <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidized for 96 hours.<br />

122


70<br />

Coating IDZ Substrate<br />

C<strong>on</strong>centrati<strong>on</strong> (at.%)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Aluminum<br />

Nickel<br />

Chromium<br />

Hafnium<br />

Cobalt<br />

10<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100 110<br />

Depth from Surface (μm)<br />

(a)<br />

70<br />

Coating IDZ Substrate<br />

C<strong>on</strong>centrati<strong>on</strong> (at.%)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Aluminum<br />

Nickel<br />

Chromium<br />

Cobalt<br />

Hafnium<br />

10<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100 110<br />

Depth from Surface (μm)<br />

(b)<br />

Figure 9. Elemental compositi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf samples that were<br />

annealed for (a) two hours (b) four hours <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidized for 96 hours.<br />

123


70<br />

Coating IDZ Substrate<br />

C<strong>on</strong>centrati<strong>on</strong> (at.%)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Aluminum<br />

Nickel<br />

Chromium<br />

Hafnium<br />

Cobalt<br />

10<br />

0<br />

0 10 20 30 40 50 60 70<br />

Depth from Surface (μm)<br />

(a)<br />

70<br />

Coating IDZ Substrate<br />

C<strong>on</strong>centrati<strong>on</strong> (at.%)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Aluminum<br />

Nickel<br />

Chromium<br />

Hafnium<br />

Cobalt<br />

10<br />

0<br />

0 10 20 30 40 50 60 70<br />

Depth from Surface (μm)<br />

(b)<br />

Figure 10. Elemental compositi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf samples that were<br />

annealed for (a) two hours (b) four hours <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidized for 96 hours.<br />

124


70<br />

Coating IDZ Substrate<br />

60<br />

C<strong>on</strong>centrati<strong>on</strong> (at.%)<br />

50<br />

40<br />

30<br />

20<br />

Aluminum<br />

Nickel<br />

Chromium<br />

Hafnium<br />

Cobalt<br />

10<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100 110<br />

Depth from Surface (μm)<br />

(a)<br />

70<br />

Coating IDZ Substrate<br />

60<br />

C<strong>on</strong>centrati<strong>on</strong> (at.%)<br />

50<br />

40<br />

30<br />

20<br />

Aluminum<br />

Nickel<br />

Chromium<br />

Hafnium<br />

Cobalt<br />

10<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100 110<br />

Depth from Surface (μm)<br />

(b)<br />

Figure 11. Elemental compositi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf samples that were<br />

annealed for (a) two hours (b) four hours <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidized for 96 hours.<br />

125


(a)<br />

(c)<br />

Aluminum<br />

10 μm 10 μm<br />

Oxygen<br />

(b)<br />

(d)<br />

TGO<br />

γ′<br />

Epoxy<br />

Hafnium<br />

10 μm<br />

Substrate<br />

SRZ<br />

IDZ<br />

10 μm<br />

Figure 12. Elemental maps <str<strong>on</strong>g>and</str<strong>on</strong>g> SEM cross-secti<strong>on</strong>al images collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-0.5Hf samples that were annealed for (a-d) two<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> (e-h) four hours <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidized for 96 hours.<br />

126


(e)<br />

(g)<br />

Aluminum<br />

10 μm<br />

Oxygen<br />

10 μm<br />

(f)<br />

(h)<br />

Epoxy<br />

γ′<br />

TGO<br />

SRZ<br />

IDZ<br />

Hafnium<br />

10 μm<br />

Substrate<br />

10 μm<br />

Figure 12. C<strong>on</strong>t’d.<br />

127


(a)<br />

(c)<br />

Aluminum<br />

10 μm<br />

Oxygen<br />

10 μm<br />

(b)<br />

(d)<br />

TGO<br />

γ′<br />

IDZ<br />

Hafnium<br />

10 μm<br />

10 μm 10 μm<br />

Substrate<br />

SRZ<br />

Figure 13. Elemental maps <str<strong>on</strong>g>and</str<strong>on</strong>g> SEM cross-secti<strong>on</strong>al images collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf samples that were annealed for (a-d) two<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> (e-h) four hours <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidized for 96 hours.<br />

128


(e)<br />

(g)<br />

Aluminum<br />

10 μm<br />

Oxygen<br />

10 μm<br />

(f)<br />

(h)<br />

Hafnium<br />

10 μm 10 μm<br />

Figure 13. C<strong>on</strong>t’d.<br />

129


(a)<br />

TGO<br />

Cu plating<br />

IDZ<br />

SRZ<br />

10 μm<br />

Figure 14. Elemental maps <str<strong>on</strong>g>and</str<strong>on</strong>g> SEM cross-secti<strong>on</strong>s collected from NiAlCrHf coatings after<br />

annealing for: two hours (a-e) <str<strong>on</strong>g>and</str<strong>on</strong>g> four hours (f-j) four hours followed by oxidizing for 96 hours.<br />

130


(b)<br />

(d)<br />

Aluminum<br />

10 μm<br />

Oxygen<br />

10 μm<br />

(c)<br />

(e)<br />

Hafnium<br />

10 μm 10 μm<br />

Chromium<br />

Figure 14. C<strong>on</strong>’td.<br />

131


(f)<br />

Cu Cu plating plating<br />

TGO TGO<br />

IDZ<br />

SRZ<br />

10 μm<br />

Figure 14. c<strong>on</strong>t’d.<br />

132


(b)<br />

(d)<br />

Aluminum<br />

10 μm<br />

Oxygen<br />

10 μm<br />

(c)<br />

(e)<br />

Hafnium<br />

10 μm 10 μm<br />

Chromium<br />

Figure 14. c<strong>on</strong>t’d.<br />

133


Figure 15. Plan view TEM images <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-0.5Hf iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmally oxidized for 96 hours imaged<br />

using bright field <str<strong>on</strong>g>and</str<strong>on</strong>g> STEM-HAADF techniques respectively: annealed for (a,b) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (c,d)<br />

four hours. The boxes in (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) highlight <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong>s imaged in (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b).<br />

134


(a)<br />

(c)<br />

150 nm<br />

150 nm<br />

(b)<br />

(d)<br />

200 nm<br />

200 nm<br />

Figure 16. Plan view TEM images <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-1Hf iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmally oxidized for 96 hours imaged using<br />

bright field <str<strong>on</strong>g>and</str<strong>on</strong>g> STEM-HAADF techniques respectively: annealed for (a,b) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (c,d) four<br />

hours. The boxes in (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) highlight <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong>s imaged in (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (c).<br />

135


(a)<br />

300 nm<br />

(c)<br />

300 nm<br />

300 nm<br />

(b)<br />

300 nm<br />

(d)<br />

Figure 17. Plan view TEM samples <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAlCrHf iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmally oxidized for 96 hours imaged<br />

using bright field <str<strong>on</strong>g>and</str<strong>on</strong>g> STEM-HAADF techniques: annealed for (a,b) two <str<strong>on</strong>g>and</str<strong>on</strong>g> (b,c) four hours.<br />

The box in (a) highlights <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> imaged in (b).<br />

136


CHAPTER VI<br />

FACTORS INFLUENCING INTERDIFFUSION BETWEEN SPUTTERED NIAL<br />

OVERLAY COATINGS AND Ni-BASED SUPERALLOY SUBSTRATES SUBJECTED<br />

TO HIGH TEMPERATURES<br />

7.1 INTRODUCTION<br />

Overlay coatings generally degrade over time due to oxidative attack <str<strong>on</strong>g>and</str<strong>on</strong>g> interdiffusi<strong>on</strong><br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying substrate [1-4]. Numerous studies have been c<strong>on</strong>ducted <str<strong>on</strong>g>of</str<strong>on</strong>g> interdiffusi<strong>on</strong><br />

between diffusi<strong>on</strong> aluminide <str<strong>on</strong>g>and</str<strong>on</strong>g> overlay coatings <strong>on</strong> superalloy substrates [3-14]. The majority<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se studies have focused <strong>on</strong> modern diffusi<strong>on</strong> aluminide or MCrAlY-type overlay coatings<br />

used for power generati<strong>on</strong> applicati<strong>on</strong>s. These studies have greatly improved our underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> influences <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate compositi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong><br />

aluminide <str<strong>on</strong>g>and</str<strong>on</strong>g> MCrAlY coatings. However, research c<strong>on</strong>ducted over <str<strong>on</strong>g>the</str<strong>on</strong>g> last decade suggests<br />

that a series <str<strong>on</strong>g>of</str<strong>on</strong>g> new overlay coating c<strong>on</strong>cepts could yield significant improvements in<br />

performance over state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<str<strong>on</strong>g>the</str<strong>on</strong>g>-art coatings [15-19]. C<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> potential importance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

advanced β-NiAl-type overlay coatings [19], relatively little informati<strong>on</strong> is available detailing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir resp<strong>on</strong>ses to high temperature annealing or oxidati<strong>on</strong>.<br />

Recently, Perez et al. [20] studied interdiffusi<strong>on</strong> using diffusi<strong>on</strong> couples between β-NiAl<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> a series <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial superalloys, with <str<strong>on</strong>g>the</str<strong>on</strong>g> goal <str<strong>on</strong>g>of</str<strong>on</strong>g> quantifying <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Al interdiffusi<strong>on</strong><br />

as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> initial superalloy compositi<strong>on</strong>. This study showed that increasing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

137


c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr, Mo, <str<strong>on</strong>g>and</str<strong>on</strong>g> Ti in <str<strong>on</strong>g>the</str<strong>on</strong>g> superalloy <str<strong>on</strong>g>effect</str<strong>on</strong>g>ively increased <str<strong>on</strong>g>the</str<strong>on</strong>g> Al <str<strong>on</strong>g>effect</str<strong>on</strong>g>ive<br />

interdiffusi<strong>on</strong> coefficient into <str<strong>on</strong>g>the</str<strong>on</strong>g> superalloy; whereas increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> Al, Ta, <str<strong>on</strong>g>and</str<strong>on</strong>g> W<br />

<str<strong>on</strong>g>effect</str<strong>on</strong>g>ively reduced it. This study, which was c<strong>on</strong>ducted within <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> improving <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

performance <str<strong>on</strong>g>of</str<strong>on</strong>g> β+γ type (i.e., MCrAlY) overlay coatings, suggests that reducing Cr, Mo, or Ti in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> superalloy or increasing Al, Ta, or W can slow coating degradati<strong>on</strong>. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

present note is to c<strong>on</strong>sider how variati<strong>on</strong>s in coating compositi<strong>on</strong> as opposed to substrate<br />

compositi<strong>on</strong> might influence <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> β-NiAl based overlay coatings. The following<br />

note provides a synopsis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong>s that occur when β-NiAl coatings c<strong>on</strong>taining high<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> reactive elements (Hf or Zr) <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr are deposited <strong>on</strong> sec<strong>on</strong>d generati<strong>on</strong> Nibased<br />

superalloy substrates <str<strong>on</strong>g>and</str<strong>on</strong>g> exposed to high temperatures.<br />

7.2 DISCUSSION OF RESULTS<br />

The overlay coatings developed in this study were based up<strong>on</strong> a slightly Ni-rich β-NiAl<br />

phase to which Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr were added. Results for each coating are presented below in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> establishing patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> interdiffusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidati<strong>on</strong>.<br />

In comparis<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> two Ni-based superalloy substrates employed in this study, all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coatings were higher in Al c<strong>on</strong>tent than <str<strong>on</strong>g>the</str<strong>on</strong>g> substrates. As a result, Al diffuses from <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> substrates making <str<strong>on</strong>g>the</str<strong>on</strong>g>m less able to support <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> a protective alumina scale. In<br />

c<strong>on</strong>trast, Ni, Co, <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr in <str<strong>on</strong>g>the</str<strong>on</strong>g> substrates, diffuses into <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings. Reactive elements such as<br />

Zr, Y, <str<strong>on</strong>g>and</str<strong>on</strong>g> Hf str<strong>on</strong>gly influence scale adherence during iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal <str<strong>on</strong>g>and</str<strong>on</strong>g> cyclic oxidati<strong>on</strong>. In most<br />

coatings <str<strong>on</strong>g>the</str<strong>on</strong>g>y are present at such low c<strong>on</strong>centrati<strong>on</strong>s that <str<strong>on</strong>g>the</str<strong>on</strong>g>ir diluti<strong>on</strong> by interdiffusi<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

138


substrate or by diffusi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating is generally not c<strong>on</strong>sidered. However, it is<br />

well known that when <str<strong>on</strong>g>the</str<strong>on</strong>g>se elements are present within <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate, will diffuse rapidly into<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> coating or all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> way through it, particularly when in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an oxygen potential<br />

gradient [4,21-26]. When <str<strong>on</strong>g>the</str<strong>on</strong>g> coating becomes sufficiently depleted <str<strong>on</strong>g>of</str<strong>on</strong>g> Al due to interdiffusi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>/or oxidati<strong>on</strong>, it can lose its ability to form a protective α-Al 2 O 3 scale resulting in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> less protective oxides (e.g., NiO, NiAl 2 O 4 , HfO 2 , etc.) <str<strong>on</strong>g>and</str<strong>on</strong>g> in coating failure.<br />

It is evident that modificati<strong>on</strong>s are necessary to improve coating performance <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

stability <str<strong>on</strong>g>of</str<strong>on</strong>g> β-NiAl coatings. Based up<strong>on</strong> oxidati<strong>on</strong> studies performed <strong>on</strong> model bulk alloys, it<br />

has been proposed that a coating capable <str<strong>on</strong>g>of</str<strong>on</strong>g> maintaining a high reactive element c<strong>on</strong>tent could<br />

exhibit properties comparable to state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<str<strong>on</strong>g>the</str<strong>on</strong>g> art (Ni,Pt)Al diffusi<strong>on</strong> aluminides [15]. This was<br />

attempted in <str<strong>on</strong>g>the</str<strong>on</strong>g> present study.<br />

Additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf produced significant reducti<strong>on</strong>s in coating grain size plus a significant<br />

increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/TGO <str<strong>on</strong>g>and</str<strong>on</strong>g> coating substrate interfaces. This<br />

enrichment was as high as 12 at.% in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coating. The reduced grain size combined<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> high Hf c<strong>on</strong>tent at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface c<strong>on</strong>tributed towards oxidati<strong>on</strong> which<br />

accelerated Al depleti<strong>on</strong> leading to a transformati<strong>on</strong> from β to γ′.<br />

It is well known that reactive element <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> can have a significant impact <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oxidati<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> alumina- <str<strong>on</strong>g>and</str<strong>on</strong>g> chromia-forming alloys. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results generated in<br />

this study str<strong>on</strong>gly support <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic segregati<strong>on</strong> model proposed by Pint [23]. In this model,<br />

it is hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sized that reactive-element i<strong>on</strong>s segregate to scale grain boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> to <str<strong>on</strong>g>the</str<strong>on</strong>g> metal-<br />

139


oxide interface, which <str<strong>on</strong>g>the</str<strong>on</strong>g>y use as pathways for diffusi<strong>on</strong> out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> metal substrate or coating to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> gas interface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scale. The driving force for this diffusi<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen potential gradient<br />

across <str<strong>on</strong>g>the</str<strong>on</strong>g> scale. The enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scale grain boundaries by reactive elements results in<br />

scale growth via <str<strong>on</strong>g>the</str<strong>on</strong>g> inward diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen. Simultaneously, reactive-element enrichment<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> metal-oxide interface inhibits <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> interfacial voids, improving scale adhesi<strong>on</strong>. In<br />

this study, <str<strong>on</strong>g>hafnium</str<strong>on</strong>g>, initially present in solid soluti<strong>on</strong>, was observed to precipitate out at grain<br />

boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> to segregate to <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/TGO <str<strong>on</strong>g>and</str<strong>on</strong>g> coating/substrate interfaces. During<br />

oxidati<strong>on</strong>, this led to <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> a mixed oxide comprised primarily <str<strong>on</strong>g>of</str<strong>on</strong>g> alumina <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

hafnia. When this occurs, <str<strong>on</strong>g>the</str<strong>on</strong>g> hafnia diffuses to grain boundaries within <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO <str<strong>on</strong>g>and</str<strong>on</strong>g> limits <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

inward transport <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen through <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO to <str<strong>on</strong>g>the</str<strong>on</strong>g> coating interface. The major <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

observati<strong>on</strong> was a reducti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO during oxidati<strong>on</strong>. As expected, this<br />

<str<strong>on</strong>g>effect</str<strong>on</strong>g> becomes more significant with increasing <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>. However, this does not<br />

appear to be <str<strong>on</strong>g>the</str<strong>on</strong>g> case when small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>chromium</str<strong>on</strong>g> were added to <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coating.<br />

These coatings appear to rapidly form a thin, protective alumina scale <str<strong>on</strong>g>and</str<strong>on</strong>g> retain <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g><br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> coating with oxidati<strong>on</strong> times up to 100 hours <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure. This observati<strong>on</strong> suggests<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist limits <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic segregati<strong>on</strong> model <str<strong>on</strong>g>and</str<strong>on</strong>g> its applicati<strong>on</strong> to similar coating<br />

systems. Interestingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum depleti<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> coating during annealing or<br />

subsequent oxidati<strong>on</strong> does not appear to be a str<strong>on</strong>g functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> alloying elements used in this<br />

study. The coatings developed with this study have smaller average grain sizes <str<strong>on</strong>g>and</str<strong>on</strong>g> exhibit a<br />

z<strong>on</strong>e T microstructure as opposed to <str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>e 2 coatings prepared by Ning [27-29]. The z<strong>on</strong>e T<br />

microstructures c<strong>on</strong>tain a high c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pinhole defects that provide a direct pathway for<br />

oxygen to diffuse to <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface. This combined with <str<strong>on</strong>g>the</str<strong>on</strong>g> large grain<br />

boundary volume results in <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> that is observed at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface with<br />

140


<str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf coatings. As <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> increases at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating substrate interface,<br />

severe internal oxidati<strong>on</strong> was observed. This is most evident with <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coatings. With<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coatings, <str<strong>on</strong>g>the</str<strong>on</strong>g> rapid initial formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an α-Al 2 O 3 scale dramatically limits <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen through <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO to <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. This switches <str<strong>on</strong>g>the</str<strong>on</strong>g> mass transfer limiting<br />

mechanism for <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxide from <str<strong>on</strong>g>the</str<strong>on</strong>g> transport <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum i<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen i<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d coating. As this occurs, <str<strong>on</strong>g>the</str<strong>on</strong>g> growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxide is<br />

reduced significantly. It was also shown that with <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf coatings <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> does not<br />

migrate to <str<strong>on</strong>g>the</str<strong>on</strong>g> interfaces as observed with <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf coatings. This is thought to be caused by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> increased aluminum diffusi<strong>on</strong> into <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate al<strong>on</strong>g with <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a protective<br />

TGO.<br />

7.3 REFERENCES<br />

[1] J. R. Nicholls, "Designing Oxidati<strong>on</strong>-Resistant Coatings," JOM 52 (2000) 28-35.<br />

[2] J. R. Nicholls, "Advances in Coating Design for High-Performance Gas Turbines," MRS<br />

Bulletin 28 (2003) 659-670.<br />

[3] Y. Tamarin, Protective Coatings for Turbine Blades, (ASM Internati<strong>on</strong>al, Materials Park,<br />

OH, 2002).<br />

[4] S. Bose, High Temperature Coatings, (Butterworth-Heinemann, Burlingt<strong>on</strong>, MA, 2007).<br />

[5] C. S. Richard, G. Beranger, J. Lu <str<strong>on</strong>g>and</str<strong>on</strong>g> J. F. Flavenot, "The influences <str<strong>on</strong>g>of</str<strong>on</strong>g> heat treatments<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> interdiffusi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> adhesi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma-sprayted NiCrAlY coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Coatings Technology 82 (1996) 99-109.<br />

[6] J. H. Chen <str<strong>on</strong>g>and</str<strong>on</strong>g> J. A. Little, "Degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> platinum aluminide coating <strong>on</strong> CMSX4 at<br />

1100 o C," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 92 (1997) 69-77.<br />

[7] M. Li, X. Sun, W. Hu <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Guan, "Microstructural changes <str<strong>on</strong>g>and</str<strong>on</strong>g> elemental diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sputtered NiCrAlY coating <strong>on</strong> a Ni-base SC superalloy subjected to high temperature,"<br />

Materials Letters 61 (2007) 5169-5172.<br />

141


[8] M. H. Li, Z. Y. Zhang, X. F. Sun, J. G. Li, F. S. Yin, W. Y. Hu, H. R. Guan <str<strong>on</strong>g>and</str<strong>on</strong>g> Z. Q.<br />

Hu, "Oxidati<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> sputter-deposited NiCrAlY coating," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings<br />

Technology 165 (2003) 241-247.<br />

[9] H. Li, A. Hesnawi, X. Fan, S. G<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> X. Huibin, "Inter-diffusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidati<strong>on</strong><br />

behavior in electr<strong>on</strong>-beam evaporated NiAl coatings," Vacuum 81 (2006) 329-337.<br />

[10] L. Sun, H. Guo, H. Li <str<strong>on</strong>g>and</str<strong>on</strong>g> S. G<strong>on</strong>g, "Hf modified NiAl B<strong>on</strong>d Coat for Thermal Barrier<br />

Coating Applicati<strong>on</strong>," Materials Science Forum 546-549 (2007) 1777-1780.<br />

[11] H. Guo, Y. Cui, H. Peng <str<strong>on</strong>g>and</str<strong>on</strong>g> S. G<strong>on</strong>g, "Improved cyclic oxidati<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong><br />

beam physical vapor deposited nano-oxide dispersed β-NiAl coatings for Hf-c<strong>on</strong>taining<br />

superalloy," Corrosi<strong>on</strong> Science 52 (2010) 1440-1446.<br />

[12] H. Guo, L. Sun, H. Li <str<strong>on</strong>g>and</str<strong>on</strong>g> S. G<strong>on</strong>g, "High temperature oxidati<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g><br />

modified NiAl b<strong>on</strong>d coat in EB-PVD <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coating system," Thin Solid Films<br />

516 (2008) 5732-5735.<br />

[13] J. T. Guo <str<strong>on</strong>g>and</str<strong>on</strong>g> C. M. Xu, "Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl microcrystalline coating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> high-temperature<br />

oxidati<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-28Cr-5Mo-1Hf," Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals 58 (2002) 457-468.<br />

[14] R. C. Reed, Superalloys, (Cambridge University Press, Cambridge, 2006).<br />

[15] B. A. Pint, J. A. Haynes, K. L. More, I. G. Wright <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Leyens, "Compositi<strong>on</strong>al Effects<br />

<strong>on</strong> Aluminide Oxidati<strong>on</strong> Performance: Objectives for Improved B<strong>on</strong>d Coats," in<br />

Superalloys 2000, edited by T. M. Pollock, R. D. Kissinger, R. R. Bowman, K. A. Green,<br />

M. McClean, S. Ols<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> J. J. Schirra (The Minerals, Metals & Materials Society,<br />

Warrendale, PA, 2000) p. 629-638.<br />

[16] J. D. Rigney, R. Darolia, W. S. Walst<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Corderman, U. S. Patent Number<br />

6,153,313, (2000).<br />

[17] R. Darolia, J. D. Rigney <str<strong>on</strong>g>and</str<strong>on</strong>g> R. J. Grylls, U. S. Patent Number 6,291,084, (2001).<br />

[18] J. D. Rigney, C.-P. Lee <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Darolia, United States Patent Number 7,094,444 B2,<br />

(2006).<br />

[19] B. Hazel, J. Rigney, M. Gorman, B. Boutwell <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Darolia, "Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Improved<br />

B<strong>on</strong>d Coat for Enhanced Turbine Durability," in Superalloys 2008, edited by R. C. Reed,<br />

K. A. Green, P. Car<strong>on</strong>, T. P. Gabb, M. G. Fahrmann, E. S. Hur<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> S. R. Woodard<br />

(TMS, Warrendale, PA, 2008) p. 753-760.<br />

[20] E. Perez, T. Patters<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Y. Sohn, "Interdiffusi<strong>on</strong> analysis for NiAl versus superalloys<br />

diffusi<strong>on</strong> couples," Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Phase Equilibria <str<strong>on</strong>g>and</str<strong>on</strong>g> Diffusi<strong>on</strong> 27 (2006) 659-664.<br />

[21] J. G. Smeggil <str<strong>on</strong>g>and</str<strong>on</strong>g> N. S. Bornstein, "Hafnium <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> protective aluminide coating<br />

performance," in High Temperature Corrosi<strong>on</strong> in Energy Systems, edited by M. F.<br />

Rothman (The Metallurgical Society <str<strong>on</strong>g>of</str<strong>on</strong>g> AIME, Warrendale, PA, 1985) p. 681-695.<br />

142


[22] B. A. Pint <str<strong>on</strong>g>and</str<strong>on</strong>g> K. L. More, "Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Alumina Interfaces in TBC Systems,"<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science 44 (2009) 1676-1686.<br />

[23] B. A. Pint, "Experimental observati<strong>on</strong>s in support <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic-segregati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory to<br />

explain <str<strong>on</strong>g>the</str<strong>on</strong>g> reactive-element <str<strong>on</strong>g>effect</str<strong>on</strong>g>," Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals 45 (1996) 1-37.<br />

[24] P. Y. Hou, "Segregati<strong>on</strong> behavior at TGO/b<strong>on</strong>dcoat interfaces," Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials<br />

Science 44 (2009) 1711-1725.<br />

[25] J. Liu, Y. H. Sohn <str<strong>on</strong>g>and</str<strong>on</strong>g> K. S. Murphy, "Microstructural evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> durable <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

barrier coatings with Hf <str<strong>on</strong>g>and</str<strong>on</strong>g>/or Y modified CMSX-4 superalloy substrates," Materials<br />

Science Forum 539-543 (2007) 1206-1211.<br />

[26] J. Liu, Mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> lifetime improvement in <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coatings with <str<strong>on</strong>g>hafnium</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>/or yttrium modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CMSX-4 superalloy substrates, Ph.D. Dissertati<strong>on</strong>,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Central Florida, Orl<str<strong>on</strong>g>and</str<strong>on</strong>g>o, FL, 2007.<br />

[27] B. Ning, Microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g> Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Hafnium C<strong>on</strong>taining NiAl-based Overlay<br />

Coatings, Ph.D. Dissertati<strong>on</strong>, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alabama, Tuscaloosa, AL, 2005.<br />

[28] B. Ning, M. Shamsuzzoha <str<strong>on</strong>g>and</str<strong>on</strong>g> M. L. Weaver, "Microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> DC<br />

Magnetr<strong>on</strong> Sputtered NiAl-Hf Coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 179 (2004)<br />

201-209.<br />

[29] B. Ning <str<strong>on</strong>g>and</str<strong>on</strong>g> M. L. Weaver, "A Preliminary Study <str<strong>on</strong>g>of</str<strong>on</strong>g> DC Magnetr<strong>on</strong> Sputtered NiAl-Hf<br />

Coatings," Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology 177-178 (2004) 113-120.<br />

143


CHAPTER VIII<br />

SUMMARY AND CONCLUSIONS<br />

NiAl coatings c<strong>on</strong>taining <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>chromium</str<strong>on</strong>g> have been produced by DC magnetr<strong>on</strong><br />

sputtering <strong>on</strong>to CMSX-4 <str<strong>on</strong>g>and</str<strong>on</strong>g> René N5 superalloy substrates. The depositi<strong>on</strong> variables, including<br />

depositi<strong>on</strong> power, substrate temperature, <str<strong>on</strong>g>and</str<strong>on</strong>g> working gas pressure, were tailored to produce a<br />

z<strong>on</strong>e T microstructure. Following depositi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> samples were annealed at 1000°C for up to<br />

four hours to remove any defects from depositi<strong>on</strong>. During annealing, an IDZ between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating develops <str<strong>on</strong>g>and</str<strong>on</strong>g> coarsens with increased annealing time. The IDZ is<br />

formed due to <str<strong>on</strong>g>the</str<strong>on</strong>g> difference in chemistries <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating; primarily it is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

large c<strong>on</strong>centrati<strong>on</strong> difference in aluminum that provides <str<strong>on</strong>g>the</str<strong>on</strong>g> driving force for diffusi<strong>on</strong> to occur.<br />

As aluminum diffuses from <str<strong>on</strong>g>the</str<strong>on</strong>g> coating, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r elements, mainly <str<strong>on</strong>g>chromium</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> cobalt, diffuse<br />

upward from <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate into <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. Adding small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> to <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings<br />

reduced <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> IDZ after annealing. This indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> reduces <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum from <str<strong>on</strong>g>the</str<strong>on</strong>g> coating <str<strong>on</strong>g>and</str<strong>on</strong>g> nickel, <str<strong>on</strong>g>chromium</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> cobalt from <str<strong>on</strong>g>the</str<strong>on</strong>g> superalloy. It<br />

was also noted that <str<strong>on</strong>g>the</str<strong>on</strong>g> interfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating with <str<strong>on</strong>g>the</str<strong>on</strong>g> free surface <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate were<br />

enriched with <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> after annealing.<br />

TEM analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings are deposited as a solid soluti<strong>on</strong>.<br />

The grains were small <str<strong>on</strong>g>and</str<strong>on</strong>g> irregular in shape; however, <str<strong>on</strong>g>the</str<strong>on</strong>g> grains recover <str<strong>on</strong>g>and</str<strong>on</strong>g> recrystallize<br />

yielding a more equiaxed grain structure after four hours <str<strong>on</strong>g>of</str<strong>on</strong>g> annealing. The NiAl-Hf <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

144


NiAlCrHf coatings are deposited as a supersaturated solid soluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> precipitates form with<br />

<strong>on</strong>ly <strong>on</strong>e hour <str<strong>on</strong>g>of</str<strong>on</strong>g> annealing. As annealing time was increased, <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitates coarsen <str<strong>on</strong>g>and</str<strong>on</strong>g> make<br />

it possible to determine <str<strong>on</strong>g>the</str<strong>on</strong>g>ir chemistry. TEM-EDS measurements indicated that most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

precipitates in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> NiAlCrHf coatings were β’-Ni 2 AlHf. The precipitates were<br />

distributed heterogeneously within <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings with larger precipitates forming at grain<br />

boundaries.<br />

APT experiments <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ternary NiAl-Hf coatings showed that some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitates<br />

were HfC. The formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HfC precipitates was traced to <str<strong>on</strong>g>the</str<strong>on</strong>g> annealing <str<strong>on</strong>g>of</str<strong>on</strong>g> as-deposited<br />

coatings in a graphite furnace which resulted in <str<strong>on</strong>g>the</str<strong>on</strong>g> incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> into<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> coatings. Hafnium readily forms carbides, which is undesirable because it reduces <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g>ive <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> available that is necessary to provide enhanced oxidati<strong>on</strong><br />

protecti<strong>on</strong>. Therefore, a tube furnace was adapted to anneal <str<strong>on</strong>g>the</str<strong>on</strong>g> samples in <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong><br />

to observe <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating properties. APT analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings that were annealed<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> tube furnace showed <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings to c<strong>on</strong>tain <strong>on</strong>ly 53 ppm <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> ~700<br />

ppm with <str<strong>on</strong>g>the</str<strong>on</strong>g> samples annealed in <str<strong>on</strong>g>the</str<strong>on</strong>g> graphite furnace. This provided a more accurate<br />

representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings during<br />

iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal oxidati<strong>on</strong>. Similar analyses c<strong>on</strong>firmed that α-Cr precipitates form within <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NiAlCrHf coatings following annealing.<br />

The annealed samples were subjected to a series <str<strong>on</strong>g>of</str<strong>on</strong>g> short-term iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal oxidati<strong>on</strong> tests<br />

at 1050°C for times up to 96 hours <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure. The samples that were annealed for two hours<br />

had higher normalized mass gains than <str<strong>on</strong>g>the</str<strong>on</strong>g> samples that were annealed for four hours. This<br />

145


indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> TGO forming <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> samples that were annealed for two hours grows at a<br />

higher rate than those annealed for four hours. Increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> from 0.5-<br />

1.0at.% resulted in a corresp<strong>on</strong>ding mass gain with increased exposure. However, adding 5.0at%<br />

Cr to <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-1Hf coatings leads to a decrease in mass gains indicating that <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf<br />

samples form a thin, protective oxide.<br />

SEM images <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings following oxidati<strong>on</strong> for 96 hours revealed a surprising<br />

discovery. During oxidati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings undergo additi<strong>on</strong>al interdiffusi<strong>on</strong> resulting in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> voids at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface. Elemental mapping indicated that <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

voids were Al 2 O 3 with small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> HfO 2 incorporated within <str<strong>on</strong>g>the</str<strong>on</strong>g> Al 2 O 3 . The amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oxidati<strong>on</strong> observed at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface increased with annealing time. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<str<strong>on</strong>g>investigati<strong>on</strong></str<strong>on</strong>g> using backscattered electr<strong>on</strong> imaging revealed that dark spots formed within <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coatings. These were originally attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hf-rich phases being removed during st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard<br />

metallographic sample preparati<strong>on</strong>; however, <str<strong>on</strong>g>the</str<strong>on</strong>g> elemental maps c<strong>on</strong>firmed that <str<strong>on</strong>g>the</str<strong>on</strong>g>se dark spots<br />

were Al-rich. While large cracks extended from <str<strong>on</strong>g>the</str<strong>on</strong>g> free surface to <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate in <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAlCrHf<br />

coatings, <str<strong>on</strong>g>the</str<strong>on</strong>g>y did not exhibit <str<strong>on</strong>g>the</str<strong>on</strong>g> same oxidati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface <str<strong>on</strong>g>and</str<strong>on</strong>g> no voids<br />

were observed with any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se coatings.<br />

The oxidati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface can be explained simply by examining <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

nature <str<strong>on</strong>g>of</str<strong>on</strong>g> z<strong>on</strong>e T microstructures. Z<strong>on</strong>e T microstructures exhibit voids at grain boundaries<br />

which represent rapid diffusi<strong>on</strong> pathways for oxygen in to <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate while allowing for a<br />

corresp<strong>on</strong>ding diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elements out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> coating. This results in oxidati<strong>on</strong><br />

al<strong>on</strong>g grain boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating substrate interfaces. In previous studies, coatings were<br />

146


developed with z<strong>on</strong>e 2 microstructures which were more dense with fewer intergranular voids.<br />

Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g>y were more resistant to grain boundary diffusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> did not exhibit oxidati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

interface. It is possible to eliminate oxidati<strong>on</strong> by peening <str<strong>on</strong>g>the</str<strong>on</strong>g> surfaces to produce a compressed<br />

layer. The deformati<strong>on</strong> will close any boundaries open to <str<strong>on</strong>g>the</str<strong>on</strong>g> free surface. This has been shown<br />

to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> resistance in EB-PVD coatings.<br />

TEM analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings revealed <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2 O 3 within <str<strong>on</strong>g>the</str<strong>on</strong>g> coating grains<br />

for all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> samples. This suggests that oxygen is diffusing from <str<strong>on</strong>g>the</str<strong>on</strong>g> free surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2 O 3 in <str<strong>on</strong>g>the</str<strong>on</strong>g> coatings appeared to decrease with increasing <str<strong>on</strong>g>hafnium</str<strong>on</strong>g>. The<br />

NiAlCrHf coatings had a larger grain size after oxidati<strong>on</strong>, formed larger precipitates <str<strong>on</strong>g>and</str<strong>on</strong>g> also<br />

appeared to c<strong>on</strong>tain smaller amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2 O 3 within <str<strong>on</strong>g>the</str<strong>on</strong>g> samples. The smaller grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NiAl-Hf coatings would lead to a dramatic increase in grain boundary volume which could<br />

provide a direct pathway for oxygen to diffuse from <str<strong>on</strong>g>the</str<strong>on</strong>g> free surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coating to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

interface leading to oxidati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface. The high c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf<br />

observed at <str<strong>on</strong>g>the</str<strong>on</strong>g> coating/substrate interface with <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf coatings has been shown to lead to<br />

severe internal oxidati<strong>on</strong>. This is thought to be <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanism that leads to <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coating/substrate interface reported with <str<strong>on</strong>g>the</str<strong>on</strong>g> NiAl-Hf coatings.<br />

147


CHAPTER IX<br />

FUTURE WORK<br />

While great strides were made with this <str<strong>on</strong>g>investigati<strong>on</strong></str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are still several areas <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

research that should be c<strong>on</strong>tinued. This project focused <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> short-term iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

oxidati<strong>on</strong> experiments <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting microstructures. Additi<strong>on</strong>al work must be c<strong>on</strong>ducted to<br />

study <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se coating systems during l<strong>on</strong>g-term iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal <str<strong>on</strong>g>and</str<strong>on</strong>g> cyclic oxidati<strong>on</strong>.<br />

This may also <str<strong>on</strong>g>of</str<strong>on</strong>g>fer an opportunity to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> phases that result with increased exposure.<br />

An obvious piece <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> missing is TEM microdiffracti<strong>on</strong> patterns from precipitates in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> coatings to accompany <str<strong>on</strong>g>the</str<strong>on</strong>g> APT results. This was found to be too difficult with this study<br />

due to <str<strong>on</strong>g>the</str<strong>on</strong>g> small size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitates <str<strong>on</strong>g>and</str<strong>on</strong>g> interference with <str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding matrix.<br />

The sec<strong>on</strong>d largest impact would be to c<strong>on</strong>tinue <str<strong>on</strong>g>the</str<strong>on</strong>g> efforts <str<strong>on</strong>g>of</str<strong>on</strong>g> investigating <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chemistry <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-X coatings. This would include systems with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Zr, <str<strong>on</strong>g>and</str<strong>on</strong>g> Zr/Hf blends al<strong>on</strong>g with extending this to include Cr c<strong>on</strong>taining<br />

coatings. Also, additi<strong>on</strong>al work is needed to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> interstitial elements <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

microstructures.<br />

148


REFERENCES<br />

1. Meier, S.M., D.K. Gupta, <str<strong>on</strong>g>and</str<strong>on</strong>g> K.D. Sheffler, Ceramic Thermal Barrier Coatings for<br />

Commercial Gas Turbine Engines. JOM, 1991. 43(3): p. 50-53.<br />

2. J<strong>on</strong>es, R.L., Thermal Barrier Coatings, in Metallurgical <str<strong>on</strong>g>and</str<strong>on</strong>g> Ceramic Protective<br />

Coatings, K.H. Stern, Editor. 1996, Chapman & Hall: L<strong>on</strong>d<strong>on</strong>. p. 194-235.<br />

3. Reed, R.C., Superalloys. 2006, Cambridge: Cambridge University Press.<br />

4. D<strong>on</strong>atchie Jr., M.J. <str<strong>on</strong>g>and</str<strong>on</strong>g> S.J. D<strong>on</strong>atchie, Superalloys: A Technical Guide. 2nd ed. 2002,<br />

Materials Park, OH: ASM Internati<strong>on</strong>al. 439.<br />

5. Sims, C.T. <str<strong>on</strong>g>and</str<strong>on</strong>g> W.C. Hagel, eds. The Superalloys. 1972, John Wiley <str<strong>on</strong>g>and</str<strong>on</strong>g> S<strong>on</strong>s: New<br />

York.<br />

6. Sims, C.T., N.S. Stol<str<strong>on</strong>g>of</str<strong>on</strong>g>f, <str<strong>on</strong>g>and</str<strong>on</strong>g> W.C. Hagel, eds. Superalloys II. 1987, John Wiley <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

S<strong>on</strong>s: New York. 615.<br />

7. Birks, N., G.H. Meier, <str<strong>on</strong>g>and</str<strong>on</strong>g> F.S. Pettit, High-Temperature Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals. 2nd ed.<br />

2006, Cambridge, UK: Cambridge University Press.<br />

8. K<str<strong>on</strong>g>of</str<strong>on</strong>g>stad, P., High Temperature Corrosi<strong>on</strong>. 1988, New York: Elsevier Applied Science.<br />

9. Bose, S., High Temperature Coatings. 2007, Burlingt<strong>on</strong>, MA: Butterworth-Heinemann.<br />

10. Soechting, F.O. A Design Perspective <strong>on</strong> Thermal Barrier Coatings. in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Thermal Barrier Coating Workshop. 1995. Clevel<str<strong>on</strong>g>and</str<strong>on</strong>g>, OH: NASA Lewis Research<br />

Center, Clevel<str<strong>on</strong>g>and</str<strong>on</strong>g>, OH.<br />

11. Tamarin, Y., Protective Coatings for Turbine Blades. 2002, Materials Park, OH: ASM<br />

Internati<strong>on</strong>al. 247.<br />

12. Glees<strong>on</strong>, B., Thermal barrier coatings for aeroengine applicati<strong>on</strong>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Propulsi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Power, 2006. 22(2): p. 375-83.<br />

13. Nicholls, J.R., Advances in Coating Design for High-Performance Gas Turbines. MRS<br />

Bulletin, 2003. 28(9): p. 659-670.<br />

14. Meier, S.M. <str<strong>on</strong>g>and</str<strong>on</strong>g> D.K. Gupta, The Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Thermal Barrier Coatings in Gas Turbine<br />

Engine Applicati<strong>on</strong>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering for Gas Turbines <str<strong>on</strong>g>and</str<strong>on</strong>g> Power, 1994. 116(1):<br />

p. 250-257.<br />

149


15. Grünling, H.W. <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Mannsmann, Plasma sprayed <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coatings for<br />

industrial gas turbines: morphology, processing <str<strong>on</strong>g>and</str<strong>on</strong>g> properties. Journal De Physique IV,<br />

1993. 3(11): p. 903-912.<br />

16. Liebert, C.H., Emittance <str<strong>on</strong>g>and</str<strong>on</strong>g> Absorptance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Aer<strong>on</strong>autics <str<strong>on</strong>g>and</str<strong>on</strong>g> Space<br />

Administrati<strong>on</strong> Ceramic Thermal Barrier Coating. Thin Solid Films, 1978. 53(2): p. 235-<br />

240.<br />

17. Stiger, M.J., et al., Thermal Barrier Coatings for <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st Century. Zeitschrift fur<br />

Metallkunde, 1999. 90: p. 1069-1078.<br />

18. Pint, B.A., et al., Substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> B<strong>on</strong>d Coat Compositi<strong>on</strong>s: Factors Affecting Alumina<br />

Scale Adhesi<strong>on</strong>. Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering, 1998. A245: p. 201-211.<br />

19. Leyens, C., et al., C<strong>on</strong>temporary Materials Issues for Advanced EB-PVD Thermal<br />

Barrier Coating Systems. Zeitschrift fur Metallkunde, 2001. 92: p. 762-772.<br />

20. Stiger, M.J., et al. Mechanisms for <str<strong>on</strong>g>the</str<strong>on</strong>g> Failure <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong> Beam Physical Vapor<br />

Deposited Thermal Barrier Coatings Induced by High Temperature Oxidati<strong>on</strong>. in<br />

Elevated Temperature Coatings: Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology III. 1999. Warrendale, PA: The<br />

Minerals, Metals & Materials Society.<br />

21. Evans, A., J. Wang, <str<strong>on</strong>g>and</str<strong>on</strong>g> D. Mumm. Mechanism-Based Life Predicti<strong>on</strong> Issues for Thermal<br />

Barrier Coatings. in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Thermal Barrier Coating Workshop. 1995.<br />

Clevel<str<strong>on</strong>g>and</str<strong>on</strong>g>, OH: NASA Lewis Research Center.<br />

22. Evans, A.G., et al., Mechanism C<strong>on</strong>trolling <str<strong>on</strong>g>the</str<strong>on</strong>g> Durability <str<strong>on</strong>g>of</str<strong>on</strong>g> Thermal Barrier Coatings.<br />

Progress in Materials Science, 2001. 46: p. 505-553.<br />

23. Brindley, W.J. <str<strong>on</strong>g>and</str<strong>on</strong>g> R.A. Miller, TBCs for better engine efficiency. Advanced Materials &<br />

Processes, 1989. 138(8): p. 29-33.<br />

24. Levi, C.G., Emerging materials <str<strong>on</strong>g>and</str<strong>on</strong>g> processes for <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier systems. Current<br />

Opini<strong>on</strong> in Solid State <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials Science, 2004. 8(1): p. 77-91.<br />

25. DeMasi-Marcin, J.T., K.D. Sheffler, <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Bose, Mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> Degradati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Failure in a Plasma-Deposited Thermal Barrier Coating. ASME Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering<br />

for Gas Turbines <str<strong>on</strong>g>and</str<strong>on</strong>g> Power, 1990. 112: p. 521-526.<br />

26. Sohn, Y.H., R.R. Biederman, <str<strong>on</strong>g>and</str<strong>on</strong>g> R.D. Siss<strong>on</strong>, Microstructural Development in Physical<br />

Vapour-Deposited Partially Stabilized Zirc<strong>on</strong>ia Thermal Barrier Coatings. Thin Solid<br />

Films, 1994. 250: p. 1-7.<br />

27. Nati<strong>on</strong>al Research Council, Coatings for High-Temperature Structural Materials. 1996,<br />

Nati<strong>on</strong>al Materials Advisory Board: Washingt<strong>on</strong>, D.C.<br />

28. Miller, R.A., Current Status <str<strong>on</strong>g>of</str<strong>on</strong>g> Thermal Barrier Coatings -- An Overview. Surface <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Coatings Technology, 1987. 30: p. 1-11.<br />

150


29. Bose, S. <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Demasi-Marcin. Thermal Barrier Coating Experience in Gas Turbine<br />

Engine at Pratt & Whitney. in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Thermal Barrier Coating Workshop.<br />

1995. Clevel<str<strong>on</strong>g>and</str<strong>on</strong>g>, OH: NASA Lewis Research Center.<br />

30. Tolpygo, V.K., D.R. Clarke, <str<strong>on</strong>g>and</str<strong>on</strong>g> K.S. Murphy, Oxidati<strong>on</strong>-induced failure <str<strong>on</strong>g>of</str<strong>on</strong>g> EB-PVD<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coatings. Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology, 2001. 146-147: p. 124-131.<br />

31. Tolpygo, V.K. <str<strong>on</strong>g>and</str<strong>on</strong>g> D.R. Clarke, Microstructural study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ta-alpha transformati<strong>on</strong><br />

in alumina scales formed <strong>on</strong> nickel-aluminides. Materials at High Temperatures, 2000.<br />

17(1): p. 59-70.<br />

32. Freborg, A.M., et al., Modeling Oxidati<strong>on</strong> Induced Stresses in Thermal Barrier Coatings.<br />

Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering, 1998. A245: p. 182-190.<br />

33. Evans, H.E., et al., Creep <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> spallati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an alumina layer from a NiCrAlY<br />

coating. Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering A, 1997. 225(1-2): p. 1-8.<br />

34. Brindley, W.J. Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Plasma Sprayed B<strong>on</strong>d Coats. in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Thermal<br />

Barrier Coating Workshop. 1995. Clevel<str<strong>on</strong>g>and</str<strong>on</strong>g>, OH: NASA Lewis Research Center.<br />

35. Tolpygo, V.K. <str<strong>on</strong>g>and</str<strong>on</strong>g> D.R. Clarke, Morphological evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coatings<br />

induced by cyclic oxidati<strong>on</strong>. Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology, 2003. 163-164: p. 81-86.<br />

36. Tolpygo, V.K. <str<strong>on</strong>g>and</str<strong>on</strong>g> D.R. Clarke, Rumpling induced by <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal cycling <str<strong>on</strong>g>of</str<strong>on</strong>g> an overlay<br />

coating: The <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> coating thickness. Acta Materialia, 2004. 52(3): p. 615-621.<br />

37. Mumm, D.R., A.G. Evans, <str<strong>on</strong>g>and</str<strong>on</strong>g> I.T. Spitsberg, Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a cyclic displacement<br />

instability for a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally grown oxide in a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier system. Acta Materialia,<br />

2001. 49(12): p. 2329-2340.<br />

38. Cheng, J., et al., Thermal/Residual Stress in an Electr<strong>on</strong> Beam Physical Vapor Deposited<br />

Thermal Barrier Coating System. Acta Materialia, 1998. 46(16): p. 5839-5850.<br />

39. Evans, A.G., J.W. Hutchins<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> M.Y. He, Micromechanics model for <str<strong>on</strong>g>the</str<strong>on</strong>g> detachment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> residually compressed brittle films <str<strong>on</strong>g>and</str<strong>on</strong>g> coatings. Acta Materialia, 1999. 47(5): p.<br />

1513-1522.<br />

40. Heuer, A.H., Transformati<strong>on</strong> Toughening in ZrO 2 -C<strong>on</strong>taining Ceramics. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

American Ceramics Society, 1987. 70(10): p. 689-698.<br />

41. Ibégazène, H., S. Alpérine, <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Diot, Yttria Stabilized Hafnia-Zirc<strong>on</strong>ia Thermal<br />

Barrier Coatings: Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Hafnia Additi<strong>on</strong> <strong>on</strong> TBC Structure <str<strong>on</strong>g>and</str<strong>on</strong>g> High Temperature<br />

Behavior, in Ceramic Coatings, K. Kokini, Editor. 1993, The American Society <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mechanical Engineers: New York. p. 173-195.<br />

42. Miller, R.A., R.G. Garlick, <str<strong>on</strong>g>and</str<strong>on</strong>g> J.L. Smialek, Phase Distributi<strong>on</strong>s in Plasma-Sprayed<br />

Zirc<strong>on</strong>ia-Yttria. American Ceramic Society Bulletin, 1983. 62(12): p. 1355-1358.<br />

151


43. Hillery, R.V., et al., Thermal Barrier Coating Life Predicti<strong>on</strong> Model Development. 1988,<br />

General Electric Company, Aircraft Engine Business Group.<br />

44. Quadakkers, W.J., et al. The Significance <str<strong>on</strong>g>of</str<strong>on</strong>g> B<strong>on</strong>d Coat Oxidati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> Life <str<strong>on</strong>g>of</str<strong>on</strong>g> TBC<br />

Coatings. in Elevated Temperature Coatings: Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology III. 1999.<br />

Warrendale, PA: The Minerals, Metals & Materials Society.<br />

45. Tawancy, H.M., N. Sridhar, <str<strong>on</strong>g>and</str<strong>on</strong>g> N.M. Abbas, Comparative Thermal Stability<br />

Characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> Iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal Oxidati<strong>on</strong> Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> An Aluminized <str<strong>on</strong>g>and</str<strong>on</strong>g> a Pt-<br />

Aluminized Ni-Base Superalloy. Scripta Metallurgica et Materialia, 1995. 33(9): p. 1431-<br />

1438.<br />

46. Brindley, W.J. <str<strong>on</strong>g>and</str<strong>on</strong>g> R.A. Miller, Thermal Barrier Coating Life <str<strong>on</strong>g>and</str<strong>on</strong>g> Iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal Oxidati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Low-Pressure Plasma Sprayed B<strong>on</strong>d Coat Alloys. Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology,<br />

1990. 43/44: p. 446-457.<br />

47. Basuki, E., A. Crosky, <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Glees<strong>on</strong>, Interdiffusi<strong>on</strong> Behavior in Aluminide-Coated<br />

René 80H at 1150°C. Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering, 1997. A224: p. 27-32.<br />

48. Haynes, J.A., Oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Thermal Barrier Coating Systems, in<br />

Materials Engineering. 1997, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alabama at Birmingham: Birmingham, AL.<br />

49. Kaden, U., et al. Thermal Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> an EB-PVD Thermal Barrier Coating System <strong>on</strong> a<br />

Single Crystal Nickel-Base Superalloy. in Elevated Temperature Coatings: Science <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Technology III. 1999. Warrendale, PA: The Minerals, Metals & Materials Society.<br />

50. Meisenko<str<strong>on</strong>g>the</str<strong>on</strong>g>n, F. <str<strong>on</strong>g>and</str<strong>on</strong>g> J.E. Morral. Microstructures Resulting from MCrAlY<br />

Coating/Superalloy Interdiffusi<strong>on</strong>. in Elevated Temperature Coatings: Science <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Technology III. 1999. Warrendale, PA: The Minerals, Metals & Materials Society.<br />

51. Morral, J.E. <str<strong>on</strong>g>and</str<strong>on</strong>g> R.H. Barkalow, Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Coating/Substrate Interdiffusi<strong>on</strong> with<br />

Normalized Distance <str<strong>on</strong>g>and</str<strong>on</strong>g> Time. Scripta Metallurgica, 1982. 16(5): p. 593-594.<br />

52. Nesbitt, J.A. <str<strong>on</strong>g>and</str<strong>on</strong>g> J.-F. Lei. Diffusi<strong>on</strong> Barriers to Increase <str<strong>on</strong>g>the</str<strong>on</strong>g> Oxidative Life <str<strong>on</strong>g>of</str<strong>on</strong>g> Overlay<br />

Coatings. in Elevated Temperature Coatings: Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology III. 1999.<br />

Warrendale, PA: The Minerals, Metals & Materials Society.<br />

53. Zhang, Y.H., D.M. Knowles, <str<strong>on</strong>g>and</str<strong>on</strong>g> P.J. Wi<str<strong>on</strong>g>the</str<strong>on</strong>g>rs, Microstructural Development in Pt-<br />

Aluminide Coating <strong>on</strong> CMSX-4 Superalloy During TMF. Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings<br />

Technology, 1998. 107: p. 76-83.<br />

54. Page, R.A. <str<strong>on</strong>g>and</str<strong>on</strong>g> G.R. Leverant, Inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Interdiffusi<strong>on</strong> From MCrAlY Overlay<br />

Coatings by Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Ni-Re Interlayer. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering for Gas Turbines<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Power, 1999. 121: p. 313-319.<br />

55. Chen, H.C., E. Pfender, <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Heberlein, Structural Changes in Plasma-Sprayed ZrO 2<br />

Coatings After Hot Isostatic Pressing. Thin Solid Films, 1997. 293: p. 227-235.<br />

152


56. Chen, H.C., J. Heberlein, <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Pfender, TEM Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Plasma-Sprayed<br />

Thermal Barrier Coatings <str<strong>on</strong>g>and</str<strong>on</strong>g> Ceramic-Metal Interfaces After Hot Isostatic Pressing.<br />

Thin Solid Films, 1997. 301: p. 105-114.<br />

57. Haynes, J.A., et al. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Platinum Additi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Sulfur Impurities <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> Scale Adhesi<strong>on</strong> Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Single-Phase CVD Aluminide B<strong>on</strong>d<br />

Coatings. in Elevated Temperature Coatings: Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology III. 1999.<br />

Warrendale, PA: The Minerals, Metals & Materials Society.<br />

58. Totemeier, T.C., W.F. Gale, <str<strong>on</strong>g>and</str<strong>on</strong>g> J.E. King, Microstructural Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an Overlay<br />

Coating <strong>on</strong> a Single-Crystal Nickel-Base Superalloy. Metallurgical <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials<br />

Transacti<strong>on</strong>s A, 1994. 25A(12): p. 2837-2840.<br />

59. Chaudhury, Z.A., et al., Interfacial Damage in EB-PVD Thermal Barrier Coatings Due<br />

to Thermal Cycling. Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering, 1997. A231: p. 34-41.<br />

60. Chaudhury, Z.A., G.M. Newaz, <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Ahmed, Interfacial Cracking due to Iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

Heating in Thermal Barrier Coatings (TBCs). Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science Letters, 1998.<br />

17: p. 85-87.<br />

61. Goedjen, J.G. <str<strong>on</strong>g>and</str<strong>on</strong>g> G.P. Wagner. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Commercial Coatings <str<strong>on</strong>g>of</str<strong>on</strong>g> MarM-002, IN-<br />

939 <str<strong>on</strong>g>and</str<strong>on</strong>g> CM-247 Substrates. in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1996 Internati<strong>on</strong>al Gas Turbine <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Aeroengine C<strong>on</strong>gress & Exhibiti<strong>on</strong> Jun 10-13 1996, Paper 96-GT-458. 1996.<br />

Birmingham, UK: The American Society for Mechanical Engineers, New York.<br />

62. Schaeffer, J. The Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Alumina Phase Transformati<strong>on</strong>s <strong>on</strong> Thermal Barrier Coating<br />

Durability. in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1997 Thermal Barrier Coating Workshop. 1997.<br />

Cincinnati, OH: TBC Interagency Coordinati<strong>on</strong> Committee.<br />

63. Baxter, D.J., et al., The Oxidative <str<strong>on</strong>g>and</str<strong>on</strong>g> Corrosive Degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Vacuum Plasma<br />

Sprayed Coatings in Industrial Gas Turbine Envir<strong>on</strong>ments. Materials Science Forum,<br />

1997. 251-254: p. 801-808.<br />

64. Nicholls, J.R., Designing Oxidati<strong>on</strong>-Resistant Coatings. JOM, 2000. 52(1): p. 28-35.<br />

65. Goward, G.W., Progress in Coatings for Gas Turbine Airfoils. Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings<br />

Technology, 1998. 108-109: p. 73-79.<br />

66. Tolpygo, V.K. <str<strong>on</strong>g>and</str<strong>on</strong>g> D.R. Clarke, Spalling Failure <str<strong>on</strong>g>of</str<strong>on</strong>g> α-Alumina Films Grown by<br />

Oxidati<strong>on</strong>: I. Dependence <strong>on</strong> Cooling Rate <str<strong>on</strong>g>and</str<strong>on</strong>g> Metal Thickness. Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Engineering, 2000. A278(1-2): p. 142-150.<br />

67. Tolpygo, V.K. <str<strong>on</strong>g>and</str<strong>on</strong>g> D.R. Clarke, Surface rumpling <str<strong>on</strong>g>of</str<strong>on</strong>g> a (Ni, Pt)Al b<strong>on</strong>d coat induced by<br />

cyclic oxidati<strong>on</strong>. Acta Materialia, 2000. 48(13): p. 3283-3293.<br />

68. Tolpygo, V.K., D.R. Clarke, <str<strong>on</strong>g>and</str<strong>on</strong>g> K.S. Murphy, Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interface degradati<strong>on</strong><br />

during cyclic oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> EB-PVD <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coatings <str<strong>on</strong>g>and</str<strong>on</strong>g> correlati<strong>on</strong> with TGO<br />

luminescence. Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology, 2004. 188-189: p. 62-70.<br />

153


69. Wright, P.K. <str<strong>on</strong>g>and</str<strong>on</strong>g> A.G. Evans, Mechanisms governing <str<strong>on</strong>g>the</str<strong>on</strong>g> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier<br />

coatings. Current Opini<strong>on</strong> in Solid State <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials Science, 1999. 4(3): p. 255-265.<br />

70. Mumm, D.R. <str<strong>on</strong>g>and</str<strong>on</strong>g> A.G. Evans, On <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> imperfecti<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> failure <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

barrier coating made by electr<strong>on</strong> beam depositi<strong>on</strong>. Acta Materialia, 2000. 48(8): p. 1815-<br />

1827.<br />

71. Darolia, R., NiAl Alloys for High-Temperature Structural Applicati<strong>on</strong>s. JOM, 1991.<br />

43(3): p. 44-49.<br />

72. Miracle, D.B., The Physical <str<strong>on</strong>g>and</str<strong>on</strong>g> Mechanical Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl. Acta Metallurgica et<br />

Materialia, 1993. 41: p. 649-684.<br />

73. Noebe, R.D., R.R. Bowman, <str<strong>on</strong>g>and</str<strong>on</strong>g> M.V. Nathal, Review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Physical <str<strong>on</strong>g>and</str<strong>on</strong>g> Mechanical<br />

Properties <str<strong>on</strong>g>and</str<strong>on</strong>g> Potential Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> B2 Compound NiAl. Internati<strong>on</strong>al Materials<br />

Reviews, 1993. 38: p. 193-232.<br />

74. Walst<strong>on</strong>, W.S. <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Darolia. Impact Resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl Alloys. in Structural<br />

Intermetallics 1997. 1997. Warrendale, PA: The Minerals, Metals <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials Society.<br />

75. Walst<strong>on</strong>, W.S. <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Darolia. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Alloying <strong>on</strong> Physical Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl. in High-<br />

Temperature Ordered Intermetallic Alloys V. 1993. Pittsburgh, PA: Materials Research<br />

Society.<br />

76. Garg, A., et al., Plastic Instability During Creep Deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a NiAl-Hf Single-Crystal<br />

Alloy -- A Case Study. Metallurgical <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials Transacti<strong>on</strong>s, 1998. 29A(1): p. 179-<br />

189.<br />

77. Noebe, R.D. <str<strong>on</strong>g>and</str<strong>on</strong>g> W.S. Walst<strong>on</strong>. Prospects for Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Structural NiAl Alloys. in<br />

Structural Intermetallics 1997. 1997. Warrendale, PA: The Minerals, Metals & Materials<br />

Society.<br />

78. Bradley, A.J. <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Taylor, An X-Ray Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nickel-Aluminum System.<br />

Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Royal Society, L<strong>on</strong>d<strong>on</strong>, 1937. A159: p. 66-72.<br />

79. Okamoto, H., Al-Ni (aluminum-nickel). Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Phase Equilibria <str<strong>on</strong>g>and</str<strong>on</strong>g> Diffusi<strong>on</strong>, 2004.<br />

25(4): p. 394.<br />

80. Taylor, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> N.J. Doyle, Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r Studies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nickel-Aluminum System. I. The β-NiAl<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> δ-Ni2Al3 Phase Fields. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Crystallography, 1972. 5: p. 201-209.<br />

81. Cott<strong>on</strong>, J.D., The Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Chromium <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Structure <str<strong>on</strong>g>and</str<strong>on</strong>g> Mechanical Properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

B2 Nickel Aluminide Alloys. 1992, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Florida.<br />

82. Cott<strong>on</strong>, J.D., R.D. Noebe, <str<strong>on</strong>g>and</str<strong>on</strong>g> M.J. Kaufman. Ternary Alloying Effects in Polycrystalline<br />

β-NiAl. in Structural Intermetallics. 1993. Warrendale, PA: The Minerals, Metals &<br />

Materials Society.<br />

154


83. Kumar, K.S., Ternary intermetallics in aluminium-refractory metal-X systems (X=V, Cr,<br />

Mn, Fe, Co, Ni, Cu, Zn). Internati<strong>on</strong>al Materials Reviews, 1990. 35(6): p. 293.<br />

84. Nash, P. <str<strong>on</strong>g>and</str<strong>on</strong>g> D.R.F. West, Phase equilibria in Ni-rich regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ni-Al-Hf system. Metal<br />

Science, 1981. 15: p. 347-352.<br />

85. Liu, C.T. <str<strong>on</strong>g>and</str<strong>on</strong>g> J.A. Hort<strong>on</strong>, Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> refractory alloying <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> mechanical<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> near-stoichiometric NiAl. Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering A, 1995. 192-<br />

193(Part 1): p. 170-178.<br />

86. Whittenberger, J.D., et al. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, Microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> Orientati<strong>on</strong> <strong>on</strong> 1100 -<br />

1400 K Plastic Flow Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf-Doped NiAl Single Crystals. in Structural<br />

Intermetallics 1997. 1997. Warrendale, PA: The Minerals, Metals <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials Society.<br />

87. Whittenberger, J.D., et al., 1300 K creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> [001] oriented Ni-49Al-1Hf (at.%)<br />

single crystals. Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering A, 1999. A268(1-2): p. 165-183.<br />

88. Whittenberger, J.D., et al., Slow strain rate 1200-1400K compressive properties <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl-<br />

1Hf. Materials Letters, 1991. 11(8-9): p. 267-272.<br />

89. Whittenberger, J.D. <str<strong>on</strong>g>and</str<strong>on</strong>g> R.D. Noebe, Elevated Temperature Compressive Properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Zr-Modified NiAl, in Metallurgical Transacti<strong>on</strong>s A. 1996. p. 2628-2641.<br />

90. Locci, I.E., et al. Microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> Mechanical Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Cast, Homogenized <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Aged NiAl Single Crystal C<strong>on</strong>taining Hf. in High Temperature Ordered Intermetallic<br />

Alloys V. 1993. Pittsburgh, PA: Materials Research Society.<br />

91. Locci, I.E., et al., Microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> Phase Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Single Crystal NiAl Alloyed with<br />

Hf <str<strong>on</strong>g>and</str<strong>on</strong>g> Zr. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Research, 1996. 11(12): p. 3024-3038.<br />

92. Locci, I.E. <str<strong>on</strong>g>and</str<strong>on</strong>g> R.D. Noebe, Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Sec<strong>on</strong>d-Phase Particles in NiAl-<br />

C<strong>on</strong>taining Trace Additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Zr, in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 47th Annual Meeting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Electr<strong>on</strong> Microscopy Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America, G.W. Bailey, Editor. 1989, San Francisco Press,<br />

Inc.: San Francisco, CA. p. 308-309.<br />

93. Locci, I.E., et al. Microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> Mechanical Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> a Single Crystal NiAl<br />

Alloy With Zr or Hf Rich G-Phase Precipitates. in High-Temperature Ordered<br />

Intermetallic Alloys IV. 1991. Pittsburgh, PA: Materials Research Society.<br />

94. Lim, Y., Microstructure, Phase Stability, <str<strong>on</strong>g>and</str<strong>on</strong>g> Mechanical Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl Alloys<br />

C<strong>on</strong>taining Zr <str<strong>on</strong>g>and</str<strong>on</strong>g> Si, in Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering. 1997, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Florida:<br />

Gainesville, FL. p. 134.<br />

95. Garg, A., R.D. Noebe, <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Darolia. Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> a Hf-<br />

Doped NiAl Single Crystal Alloy C<strong>on</strong>taining Different Levels <str<strong>on</strong>g>of</str<strong>on</strong>g> Si C<strong>on</strong>taminant. in<br />

HITEMP Review-1995. 1995. Clevel<str<strong>on</strong>g>and</str<strong>on</strong>g>, OH: NASA.<br />

155


96. Garg, A., R.D. Noebe, <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Darolia, Crystallography <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NiHfSi Phase in a<br />

NiAl(0.5Hf) Single-Crystal Alloy. Acta Materialia, 1996. 44(7): p. 2809-2820.<br />

97. Pint, B.A. Progress in underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>the</str<strong>on</strong>g> reactive element <str<strong>on</strong>g>effect</str<strong>on</strong>g> since <str<strong>on</strong>g>the</str<strong>on</strong>g> Whittle <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Stringer literature review. in John Stringer Symposium <strong>on</strong> High Temperature Corrosi<strong>on</strong>.<br />

2001. Warrendale, PA: ASM Internati<strong>on</strong>al, Warrendale, PA.<br />

98. Whittle, D.P., D.H. Bo<strong>on</strong>e, <str<strong>on</strong>g>and</str<strong>on</strong>g> I.M. Allam. Morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> Al2O3 scales <strong>on</strong> doped Co-<br />

Cr-Al coatings. 1980. Switzerl<str<strong>on</strong>g>and</str<strong>on</strong>g>.<br />

99. Stringer, J., The Reactive Element Effect in High-Temperature Corrosi<strong>on</strong>. Materials<br />

Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering A, 1989. 120: p. 129-137.<br />

100. Pint, B.A., Experimental observati<strong>on</strong>s in support <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic-segregati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory to<br />

explain <str<strong>on</strong>g>the</str<strong>on</strong>g> reactive-element <str<strong>on</strong>g>effect</str<strong>on</strong>g>. Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals, 1996. 45(1-2): p. 1.<br />

101. Pint, B.A., K.L. More, <str<strong>on</strong>g>and</str<strong>on</strong>g> I.G. Wright, Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> quaternary <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong><br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf-doped NiAl. Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals, 2003. 59(3-4): p. 257-283.<br />

102. Pint, B.A., Design strategies for new oxidati<strong>on</strong>-resistant high temperature alloys, in<br />

Developments in high-temperature corrosi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> materials, W. Gao <str<strong>on</strong>g>and</str<strong>on</strong>g> Z.<br />

Li, Editors. 2008, CRC Press: Boca Rat<strong>on</strong>, FL. p. 398-432.<br />

103. Pfeil, L.B. 1937: UK.<br />

104. Ikeda, Y., K. Nii, <str<strong>on</strong>g>and</str<strong>on</strong>g> K. Yoshihara, High Temperature Oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Surface<br />

Segregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Sulfur. Transacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Japan Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals, Supplement, 1982.<br />

24: p. 207-214.<br />

105. Smeggil, J.G., A.W. Funkenbusch, <str<strong>on</strong>g>and</str<strong>on</strong>g> N.S. Bornstein, Relati<strong>on</strong>ship Between Indigenous<br />

Impurity Elements <str<strong>on</strong>g>and</str<strong>on</strong>g> Protective Oxide Scale Adherence Characteristics. Metallurgical<br />

Transacti<strong>on</strong>s A, 1986. 17A(6): p. 923-932.<br />

106. Smeggil, J.G., Some comments <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> yttrium in protective oxide scale adherence.<br />

Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering, 1987. 87: p. 261-265.<br />

107. Smialek, J.L., Adherent Al 2 O 3 Scales Formed <strong>on</strong> Undoped NiCrAl Alloys. Metallurgical<br />

Transacti<strong>on</strong>s A, 1987. 18A: p. 164-167.<br />

108. Smialek, J.L., Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfur removal <strong>on</strong> Al 2 O 3 scale adhesi<strong>on</strong>. Metallurgical<br />

Transacti<strong>on</strong>s A, 1991. 22A: p. 739-752.<br />

109. Funkenbusch, A.W., J.G. Smeggil, <str<strong>on</strong>g>and</str<strong>on</strong>g> N.S. Bornstein, Reactive Element-Sulfur<br />

Interacti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Oxide Scale Adherence. Metallurgical Transacti<strong>on</strong>s A, 1985. 16A(6): p.<br />

1164-1166.<br />

110. Hou, P.Y., Bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> sulfur <str<strong>on</strong>g>effect</str<strong>on</strong>g>. Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals, 1999. 52(3): p. 337-351.<br />

156


111. Darolia, R., Ductility <str<strong>on</strong>g>and</str<strong>on</strong>g> fracture toughness issues related to implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl for<br />

gas turbine applicati<strong>on</strong>s. Intermetallics, 2000. 8(9-11): p. 1321-1327.<br />

112. Purvis, A.L. <str<strong>on</strong>g>and</str<strong>on</strong>g> B.M. Warnes, The <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> platinum c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong><br />

resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> superalloys coated with single-phase platinum aluminide. Surface <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Coatings Technology, 2001. 146-147: p. 1-6.<br />

113. Zhang, Y., et al., Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Pt Incorporati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal Oxidati<strong>on</strong> Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Chemical Vapor Deposited Aluminide Coatings. Metallurgical <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials<br />

Transacti<strong>on</strong>s, 2001. 32A(7): p. 1727-1741.<br />

114. Barrett, C.A., A.S. Khan, <str<strong>on</strong>g>and</str<strong>on</strong>g> C.E. Lowell, Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> zirc<strong>on</strong>ium <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> cyclic oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

NiCrAl alloys. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Electrochemical Society, 1981. 128(1): p. 25-32.<br />

115. Kahn, A.S., C.E. Lowell, <str<strong>on</strong>g>and</str<strong>on</strong>g> C.A. Barrett, Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> zirc<strong>on</strong>ium <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nominal Ni-14Cr-24Al alloys. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Electrochemical Society, 1980.<br />

127(3): p. 670-679.<br />

116. Bennett, I.J. <str<strong>on</strong>g>and</str<strong>on</strong>g> W.G. Slo<str<strong>on</strong>g>of</str<strong>on</strong>g>, The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> reactive element <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> to β-NiAlCr<br />

alloys <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally grown oxides. Materials at High Temperatures,<br />

2003. 20(3): p. 395-403.<br />

117. Hwang, G.-H., J.-W. Choi, <str<strong>on</strong>g>and</str<strong>on</strong>g> S.-G. Kang, The <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> zirc<strong>on</strong>ium <strong>on</strong> corrosi<strong>on</strong><br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAl intermetallic compound in molten carb<strong>on</strong>ate salt. Zeitschrift fuer<br />

Metallkunde, 2005. 96(3): p. 269-275.<br />

118. Nesbitt, J.A., C.S. Barrett, <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Darolia. Cyclic Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Single-Crystal NiAl-X<br />

Alloys. in Per K<str<strong>on</strong>g>of</str<strong>on</strong>g>stad Memorial Symposium <strong>on</strong> High Temperature Corrosi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Materials Chemistry. 1999. H<strong>on</strong>olulu, HI: The Electrochemical Society, Inc.<br />

119. N'G<str<strong>on</strong>g>and</str<strong>on</strong>g>u Muamba, J.M., R. Streiff, <str<strong>on</strong>g>and</str<strong>on</strong>g> D.H. Bo<strong>on</strong>e, L'influence du <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> du substrat<br />

sur la résistance à l'oxydati<strong>on</strong> des revêtements d'aluminiures sur les superalliages base<br />

nickel. Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering, 1987. 88: p. 111-121.<br />

120. Purvis, A.L. <str<strong>on</strong>g>and</str<strong>on</strong>g> B.M. Warnes, A study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong>al resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> refractory <str<strong>on</strong>g>and</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

elements in superalloy systems during diffusi<strong>on</strong> coating. Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings<br />

Technology, 2000. 133-134: p. 23-27.<br />

121. Liu, J., Mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> lifetime improvement in <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coatings with <str<strong>on</strong>g>hafnium</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>/or yttrium modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CMSX-4 superalloy substrates. 2007, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Central Florida: Orl<str<strong>on</strong>g>and</str<strong>on</strong>g>o, FL. p. 209.<br />

122. Tolpygo, V.K., K.S. Murphy, <str<strong>on</strong>g>and</str<strong>on</strong>g> D.R. Clarke, Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf, Y <str<strong>on</strong>g>and</str<strong>on</strong>g> C in <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying<br />

superalloy <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rumpling <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> aluminide coatings. Acta Materialia, 2008. 56: p.<br />

489-499.<br />

157


123. Pint, B.A., et al. Compositi<strong>on</strong>al Effects <strong>on</strong> Aluminide Oxidati<strong>on</strong> Performance: Objectives<br />

for Improved B<strong>on</strong>d Coats. in Superalloys 2000. 2000. Warrendale, PA: The Minerals,<br />

Metals & Materials Society.<br />

124. Xiang, Z.D. <str<strong>on</strong>g>and</str<strong>on</strong>g> P.K. Datta, Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf- <str<strong>on</strong>g>and</str<strong>on</strong>g> W-modified aluminide coatings <strong>on</strong><br />

nickel-base superalloys by <str<strong>on</strong>g>the</str<strong>on</strong>g> pack cementati<strong>on</strong> process. Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Engineering A, 2003. 363(1-2): p. 185-192.<br />

125. Xiang, Z.D. <str<strong>on</strong>g>and</str<strong>on</strong>g> P.K. Datta, Pack cementati<strong>on</strong> process for <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> refractory<br />

metal modified aluminide coatings <strong>on</strong> nickel-base superalloys. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials<br />

Science, 2003. 38(18): p. 3721-3728.<br />

126. Xiang, Z.D. <str<strong>on</strong>g>and</str<strong>on</strong>g> P.K. Datta, C<strong>on</strong>diti<strong>on</strong>s for pack codepositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Al <str<strong>on</strong>g>and</str<strong>on</strong>g> Hf <strong>on</strong> nickel-base<br />

superalloys. Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology, 2004. 179(1): p. 95-102.<br />

127. Lee, W.Y. <str<strong>on</strong>g>and</str<strong>on</strong>g> G.Y. Kim. Kinetic C<strong>on</strong>siderati<strong>on</strong>s for Processing a Diffusi<strong>on</strong> NiAl<br />

Coating Uniformly Doped with a Reactive Element by Chemical Vapor Depositi<strong>on</strong>. in<br />

Elevated Temperature Coatings: Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology III. 1999. Warrendale, PA: The<br />

Minerals, Metals & Materials Society.<br />

128. Kim, G.Y., et al., Morphological evoluti<strong>on</strong> during <str<strong>on</strong>g>the</str<strong>on</strong>g> early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminide coating<br />

growth <strong>on</strong> a single-crystal nickel superalloy surface. Metallurgical <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials<br />

Transacti<strong>on</strong>s A, 2001. 32(3): p. 615-624.<br />

129. Kim, G.Y., et al. Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> Hf-Doped CVD β-NiAl Coating By C<strong>on</strong>tinuous Doping<br />

Procedure. in Elevated Temperature Coatings: Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology IV. 2001.<br />

Warrendale, PA: TMS (The Minerals, Metals & Materials Society).<br />

130. Warnes, B.M., Reactive element modified chemical vapor depositi<strong>on</strong> low activity<br />

platinum aluminide coatings. Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology, 2001. 146-147: p. 7-12.<br />

131. Nesbitt, J.A., et al., Pt <str<strong>on</strong>g>and</str<strong>on</strong>g> Hf <str<strong>on</strong>g>additi<strong>on</strong>s</str<strong>on</strong>g> to NiAl b<strong>on</strong>d coats <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>effect</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> lifetime<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coatings. Materials Science Forum, 2003. 426-432: p. 209-214.<br />

132. Pint, B.A., The Oxidati<strong>on</strong> Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxide-Dispersed β-NiAl: I. Short-Term<br />

Performance at 1200 o C. Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals, 1998. 49(5/6): p. 531-559.<br />

133. Fisher, G., et al., The Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Active Element Additi<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Oxidati<strong>on</strong> Performance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Platinum aluminide coating at 1100 o C. Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology, 1998. 110:<br />

p. 24-30.<br />

134. Jedlinski, J., G. Borchardt, <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Mrowec, Transport properties <str<strong>on</strong>g>of</str<strong>on</strong>g> alumina scales <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

[beta]-NiAl intermetallic. Solid State I<strong>on</strong>ics, 1992. 50(1-2): p. 67-74.<br />

135. Jedlinski, J., K. Godlewski, <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Mrowec, Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> implanted yttrium <str<strong>on</strong>g>and</str<strong>on</strong>g> cerium <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> protective properties <str<strong>on</strong>g>of</str<strong>on</strong>g> a β-NiAl coating <strong>on</strong> a nickel-base superalloy. Materials<br />

Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering A, 1989. 120-121(1-2 pt 2): p. 539-543.<br />

158


136. Jedlinski, J. <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Mrowec, The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> implanted yttrium <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong><br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> [beta]-NiAl. Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering, 1987. 87: p. 281-287.<br />

137. Mrowec, S. <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Jedlinski. The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> implated yttrium <str<strong>on</strong>g>and</str<strong>on</strong>g> lanthanum <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

kinetics <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> high-temperature oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> β-NiAl intermetallic compound.<br />

in Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> High-Temperature Intermetallics. 1989. Warrendale, PA: The Minerals,<br />

Metals & Materials Society.<br />

138. Mrowec, S., J. Jedlinski, <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Gil, The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> certain reactive elements <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oxidati<strong>on</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> chromia- <str<strong>on</strong>g>and</str<strong>on</strong>g> alumina-forming alloys. Materials Science <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Engineering: A, 1989. 120-121(Part 1): p. 169-173.<br />

139. Rigney, J.D., et al., Nickel Aluminide Coating <str<strong>on</strong>g>and</str<strong>on</strong>g> Coating Systems Formed Therewith.<br />

2000, General Electric Company: U. S.<br />

140. Darolia, R., B<strong>on</strong>d Coat for a Thermal Barrier Coating System <str<strong>on</strong>g>and</str<strong>on</strong>g> Method Therefor.<br />

2001, General Electric Company: U. S.<br />

141. Darolia, R., J.D. Rigney, <str<strong>on</strong>g>and</str<strong>on</strong>g> R.J. Grylls, Nickel Aluminide Coating <str<strong>on</strong>g>and</str<strong>on</strong>g> Coating Systems<br />

Formed Therewith. 2001, General Electric Company: U. S.<br />

142. Darolia, R., J.D. Rigney, <str<strong>on</strong>g>and</str<strong>on</strong>g> J.L. Miller, Graded Reactive Element C<strong>on</strong>taining Aluminide<br />

Coatings for Improved High Temperature Performance <str<strong>on</strong>g>and</str<strong>on</strong>g> Method for Producing. 2002,<br />

General Electric Company: United States.<br />

143. Darolia, R., J.D. Rigney, <str<strong>on</strong>g>and</str<strong>on</strong>g> J.A. Pfaendtner, Nickel Aluminide Coating <str<strong>on</strong>g>and</str<strong>on</strong>g> Coating<br />

Systems Formed Therewith. 2004, General Electric Company: U. S.<br />

144. Darolia, R. <str<strong>on</strong>g>and</str<strong>on</strong>g> W.S. Walst<strong>on</strong>, Fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Superalloy Articles Having Hafnium-or<br />

Zirc<strong>on</strong>ium-Enriched Protective Layer. 2001, General Electric Company: U. S.<br />

145. Pfaendtner, J.A., et al., Nickel aluminide coating <str<strong>on</strong>g>and</str<strong>on</strong>g> coating systems formed <str<strong>on</strong>g>the</str<strong>on</strong>g>rewith.<br />

2003, General Electric Company: U. S.<br />

146. Spitsberg, I., et al., Beta-Phase Nickel Aluminide Overlay Coatings <str<strong>on</strong>g>and</str<strong>on</strong>g> Process<br />

Therefor. 2006, General Electric Company: U. S.<br />

147. Hazel, B., et al. Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Improved B<strong>on</strong>d Coat for Enhanced Turbine Durability.<br />

in Superalloys 2008. 2008. Warrendale, PA: TMS.<br />

148. Darolia, R., et al., NiAl intermetallic alloy <str<strong>on</strong>g>and</str<strong>on</strong>g> article with improved high temperature<br />

strength. 2006, General Electric Company: US.<br />

149. Darolia, R. <str<strong>on</strong>g>and</str<strong>on</strong>g> W.S. Walst<strong>on</strong>. Development <str<strong>on</strong>g>and</str<strong>on</strong>g> Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> High Strength NiAl<br />

Single Crystal Alloys. in Structural Intermetallics 1997. 1997. Warrendale, PA: The<br />

Minerals, Metals <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials Society.<br />

159


150. Darolia, R., W.S. Walst<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> M.V. Nathal. NiAl Alloys for Turbine Airfoils. in<br />

Superalloys 1996. 1996. Warrendale, PA: The Minerals, Metals & Materials Society.<br />

151. Balint, D.S. <str<strong>on</strong>g>and</str<strong>on</strong>g> J.W. Hutchins<strong>on</strong>, An analytical model <str<strong>on</strong>g>of</str<strong>on</strong>g> rumpling in <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier<br />

coatings. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Mechanics <str<strong>on</strong>g>and</str<strong>on</strong>g> Physics <str<strong>on</strong>g>of</str<strong>on</strong>g> Solids, 2005. 53(4): p. 949-973.<br />

152. Balint, D.S., et al., Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>d coat thickness <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> cyclic rumpling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally<br />

grown oxides. Acta Materialia, 2006. 54(7): p. 1815-1820.<br />

153. Ning, B., Microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g> Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Hafnium C<strong>on</strong>taining NiAl-based Overlay<br />

Coatings, in Metallurgical <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials Engineering. 2005, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alabama:<br />

Tuscaloosa, AL.<br />

154. Ning, B., M. Shamsuzzoha, <str<strong>on</strong>g>and</str<strong>on</strong>g> M.L. Weaver, Microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> DC<br />

Magnetr<strong>on</strong> Sputtered NiAl-Hf Coatings. Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology, 2004. 179: p.<br />

201-209.<br />

155. Ning, B., M. Shamsuzzoha, <str<strong>on</strong>g>and</str<strong>on</strong>g> M.L. Weaver, Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Processing Variables <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> DC Magnetr<strong>on</strong> Sputtered NiAl Coatings C<strong>on</strong>taining Hf Additi<strong>on</strong>s. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Vacuum Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology A, 2005. 23(1): p. 44-54.<br />

156. Ning, B., M. Shamsuzzoha, <str<strong>on</strong>g>and</str<strong>on</strong>g> M.L. Weaver, Microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> Property Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

DC Magnetr<strong>on</strong> Sputtered NiAl-0.6Hf Coatings. Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology, 2005.<br />

200: p. 1270-1275.<br />

157. Ning, B. <str<strong>on</strong>g>and</str<strong>on</strong>g> M.L. Weaver, A Preliminary Study <str<strong>on</strong>g>of</str<strong>on</strong>g> DC Magnetr<strong>on</strong> Sputtered NiAl-Hf<br />

Coatings. Surface <str<strong>on</strong>g>and</str<strong>on</strong>g> Coatings Technology, 2004. 177-178: p. 113-120.<br />

158. Guo, H., et al., High temperature oxidati<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hafnium</str<strong>on</strong>g> modified NiAl b<strong>on</strong>d coat<br />

in EB-PVD <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal barrier coating system. Thin Solid Films, 2008. 516(16): p. 5732-<br />

5735.<br />

159. Sun, L., et al., Hf modified NiAl B<strong>on</strong>d Coat for Thermal Barrier Coating Applicati<strong>on</strong>.<br />

Materials Science Forum, 2007. 546-549: p. 1777-80.<br />

160. Ohring, M., Materials Science <str<strong>on</strong>g>of</str<strong>on</strong>g> Thin Films. 2nd ed. 2002, San Diego: Academic Press.<br />

161. Miller, M.K., Atom Probe Field I<strong>on</strong> Microscopy. Vacuum, 1994. 45(6/7): p. 819-831.<br />

162. Miller, M.K., Atom Probe Tomography: Analysis at <str<strong>on</strong>g>the</str<strong>on</strong>g> Atomic Level. 2000, New York,<br />

NY: Kluwer Academic/Plenum Press.<br />

163. Miller, M.K. <str<strong>on</strong>g>and</str<strong>on</strong>g> M.G. Burke, APFIM/TEM Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Precipitati<strong>on</strong> in Alloy<br />

718. Journal de Physique, 1989. 50-C8: p. 395-400.<br />

164. Miller, M.K., et al., Atom Probe Field I<strong>on</strong> Microscopy. M<strong>on</strong>ographs <strong>on</strong> The Physics <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials, ed. R.J. Brook, et al. Vol. 52. 1996, Oxford: Oxford University<br />

Press. 239.<br />

160


165. Miller, M.K., K.F. Russell, <str<strong>on</strong>g>and</str<strong>on</strong>g> G.B. Thomps<strong>on</strong>, Strategies for fabricating atom probe<br />

specimens with dual beam FIB. Ultramicroscopy, 2005. 102: p. 287-298.<br />

161


APPENDIX A<br />

METALLOGRAPHIC SPECIMEN PREPARATION<br />

Samples for this study were prepared for inspecti<strong>on</strong> following <str<strong>on</strong>g>the</str<strong>on</strong>g> guidelines<br />

recommended for Ni-based superalloys by Struers, Inc. The autopolisher that was used for this<br />

<str<strong>on</strong>g>investigati<strong>on</strong></str<strong>on</strong>g> was a Struers Rotopol 2 with a multidoser. The multidoser allows <str<strong>on</strong>g>the</str<strong>on</strong>g> user to<br />

automatically apply <str<strong>on</strong>g>the</str<strong>on</strong>g> correct amount <str<strong>on</strong>g>of</str<strong>on</strong>g> polishing soluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> lubricant to <str<strong>on</strong>g>the</str<strong>on</strong>g> polishing pad.<br />

While grinding pads are available, SiC papers were used to grind <str<strong>on</strong>g>the</str<strong>on</strong>g> samples to a 4000 grit<br />

finish prior to final polishing. The Rotopol 2 is equipped with a variable speed c<strong>on</strong>trol with<br />

opti<strong>on</strong>s for 150 <str<strong>on</strong>g>and</str<strong>on</strong>g> 300 rpm. Only a setting <str<strong>on</strong>g>of</str<strong>on</strong>g> 150 rpm was used with this study to preserve <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oxides that formed. Table A.1 presents <str<strong>on</strong>g>the</str<strong>on</strong>g> outline used for sample preparati<strong>on</strong> with this study.<br />

Table A.1. General polishing method for Ni-based superalloys.<br />

Grinding/<br />

Polishing Pad Grit Media Load Flow<br />

SiC paper 500 Water 35 N Moderate<br />

SiC paper 1200 Water 35 N Moderate<br />

SiC paper 4000 Water 35 N Moderate<br />

1 μm Diam<strong>on</strong>d<br />

with<br />

6-Diam<strong>on</strong>d/<br />

MD-DUR 1 μm Blue Lubricant 35 N 6-Lub.<br />

Add with<br />

MD-CHEM 0.02 μm OP-AA or OP-A 35 N beaker<br />

Directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Time<br />

Rotati<strong>on</strong> (min)<br />

Counter-<br />

Clockwise 1:00<br />

Counter-<br />

Clockwise 1:00<br />

Counter-<br />

Clockwise 1:00<br />

Counter-<br />

Clockwise 3:00<br />

Counter-<br />

Clockwise 2:00<br />

162


APPENDIX B<br />

TEM SAMPLE PREPARATION USING A FOCUSED ION BEAM<br />

As discussed previously in <str<strong>on</strong>g>the</str<strong>on</strong>g> document, TEM samples were prepared using an FEI<br />

Company Quanta 3D dual beam-focused i<strong>on</strong> beam (FIB). This affords <str<strong>on</strong>g>the</str<strong>on</strong>g> user <str<strong>on</strong>g>the</str<strong>on</strong>g> ability to site<br />

specifically prepare TEM specimen while minimizing <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> damage to <str<strong>on</strong>g>the</str<strong>on</strong>g> original<br />

sample. Fortunately, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a script that was developed by FEI Company. This automatic<br />

script is designed to prepare <str<strong>on</strong>g>the</str<strong>on</strong>g> specimen with <str<strong>on</strong>g>the</str<strong>on</strong>g> intent <str<strong>on</strong>g>of</str<strong>on</strong>g> being directly applied to a TEM grid<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> choice (e.g. st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard copper grids or specialty grids depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong>) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

can be examined in <str<strong>on</strong>g>the</str<strong>on</strong>g> TEM without <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r instruments. This reduces <str<strong>on</strong>g>the</str<strong>on</strong>g> amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> time necessary for sample preparati<strong>on</strong> from days to approximately <strong>on</strong>e hour. One fault with<br />

this program is that it routinely crashes <str<strong>on</strong>g>and</str<strong>on</strong>g> requires <str<strong>on</strong>g>the</str<strong>on</strong>g> user to intervene <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tinue with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

final milling manually. The following is an outline that I developed with <str<strong>on</strong>g>the</str<strong>on</strong>g> aid <str<strong>on</strong>g>of</str<strong>on</strong>g> Robb Morris<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Rich Martens to accomplish this goal.<br />

1. Log into <str<strong>on</strong>g>the</str<strong>on</strong>g> instrument.<br />

2. Vent <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber <str<strong>on</strong>g>and</str<strong>on</strong>g> align <str<strong>on</strong>g>the</str<strong>on</strong>g> sample height appropriately.<br />

3. Pump <str<strong>on</strong>g>the</str<strong>on</strong>g> system.<br />

4. Wake <str<strong>on</strong>g>the</str<strong>on</strong>g> system up. This should turn <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM <str<strong>on</strong>g>and</str<strong>on</strong>g> FIB columns for analysis.<br />

5. While <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM/FIB columns warm-up, turn <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> platinum gas injecti<strong>on</strong> system (GIS) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

allow it to properly warm-up.<br />

163


6. After <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM column is operati<strong>on</strong>al, find <str<strong>on</strong>g>the</str<strong>on</strong>g> eucentric locati<strong>on</strong>. Typically, this value is<br />

close to 15 mm.<br />

7. After <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB column is ready, set <str<strong>on</strong>g>the</str<strong>on</strong>g> beam c<strong>on</strong>diti<strong>on</strong>s to 30 kV <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.3 nA. Use <str<strong>on</strong>g>the</str<strong>on</strong>g> beam<br />

shifts to move <str<strong>on</strong>g>the</str<strong>on</strong>g> image into coincidence with <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM image. This may be difficult, but<br />

get it as close as possible.<br />

8. Tilt <str<strong>on</strong>g>the</str<strong>on</strong>g> sample to 52° or parallel with <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB column.<br />

9. Go to <str<strong>on</strong>g>the</str<strong>on</strong>g> Start Menu <str<strong>on</strong>g>and</str<strong>on</strong>g> select <str<strong>on</strong>g>the</str<strong>on</strong>g> TEM autoscript functi<strong>on</strong>.<br />

10. Select <str<strong>on</strong>g>the</str<strong>on</strong>g> Open functi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> select <str<strong>on</strong>g>the</str<strong>on</strong>g> TEM.wsp file.<br />

11. Press <str<strong>on</strong>g>the</str<strong>on</strong>g> Play opti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> window.<br />

12. Select to make a new sample (i.e. 15 x 4 μm rot).<br />

13. Follow <str<strong>on</strong>g>the</str<strong>on</strong>g> instructi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> allow <str<strong>on</strong>g>the</str<strong>on</strong>g> script to run.<br />

14. When <str<strong>on</strong>g>the</str<strong>on</strong>g> program gets to a point that it tilts <str<strong>on</strong>g>the</str<strong>on</strong>g> stage to 7°, it will try to cut a U-shaped<br />

figure through <str<strong>on</strong>g>the</str<strong>on</strong>g> foil. This is to remove <str<strong>on</strong>g>the</str<strong>on</strong>g> sample later <str<strong>on</strong>g>and</str<strong>on</strong>g> usually where <str<strong>on</strong>g>the</str<strong>on</strong>g> program<br />

crashes. Stop <str<strong>on</strong>g>the</str<strong>on</strong>g> program after this cut is made by pressing <str<strong>on</strong>g>the</str<strong>on</strong>g> “R” symbol.<br />

15. Tilt <str<strong>on</strong>g>the</str<strong>on</strong>g> stage back to 52°. The image in <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB is scan rotated 180° to allow <str<strong>on</strong>g>the</str<strong>on</strong>g> user to<br />

observe <str<strong>on</strong>g>the</str<strong>on</strong>g> sample as it is actually oriented.<br />

16. Cut <str<strong>on</strong>g>the</str<strong>on</strong>g> LEFT side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foil free using <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB.<br />

17. Tilt back to 0°.<br />

18. Insert <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe micromanipulator <str<strong>on</strong>g>and</str<strong>on</strong>g> use <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM <str<strong>on</strong>g>and</str<strong>on</strong>g> FIB to move it down over <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

left-side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample. This should be directly over <str<strong>on</strong>g>the</str<strong>on</strong>g> cut you just milled in <str<strong>on</strong>g>the</str<strong>on</strong>g> sample.<br />

BE CAREFUL NOT TO RUN THE OMIPROBE INTO THE SPECIMEN!<br />

19. When <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe is just touching <str<strong>on</strong>g>the</str<strong>on</strong>g> specimen, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trast in <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB image will<br />

change.<br />

164


20. Using <str<strong>on</strong>g>the</str<strong>on</strong>g> Patterning menu, place a box <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe <str<strong>on</strong>g>and</str<strong>on</strong>g> specimen for depositing<br />

platinum with <str<strong>on</strong>g>the</str<strong>on</strong>g> GIS, but be careful not to overlap with <str<strong>on</strong>g>the</str<strong>on</strong>g> cuts in <str<strong>on</strong>g>the</str<strong>on</strong>g> foil. Deposit about<br />

500 nm <str<strong>on</strong>g>of</str<strong>on</strong>g> platinum to make sure that you have good adhesi<strong>on</strong>.<br />

21. Cut <str<strong>on</strong>g>the</str<strong>on</strong>g> right-side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foil, use <str<strong>on</strong>g>the</str<strong>on</strong>g> beam shifts to move <str<strong>on</strong>g>the</str<strong>on</strong>g> sample in <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB image.<br />

22. Gently, lower <str<strong>on</strong>g>the</str<strong>on</strong>g> stage manually (Z) to remove <str<strong>on</strong>g>the</str<strong>on</strong>g> foil.<br />

23. Retract <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trols manually until it is just <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB image (zoomed<br />

out) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n retract it fully.<br />

24. Retract <str<strong>on</strong>g>the</str<strong>on</strong>g> GIS.<br />

25. Turn <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM, FIB, <str<strong>on</strong>g>and</str<strong>on</strong>g> GIS.<br />

26. Vent <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber <str<strong>on</strong>g>and</str<strong>on</strong>g> remove <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk sample.<br />

27. Remove <str<strong>on</strong>g>the</str<strong>on</strong>g> sample holder used to hold Omniprobe grids. It will have a slot to place <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

grids into <str<strong>on</strong>g>the</str<strong>on</strong>g> holder vertically <str<strong>on</strong>g>and</str<strong>on</strong>g> has two hex screws to secure <str<strong>on</strong>g>the</str<strong>on</strong>g> grid. It is recommended<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> three-pr<strong>on</strong>g Omnigrids be used.<br />

28. Load <str<strong>on</strong>g>the</str<strong>on</strong>g> holder into <str<strong>on</strong>g>the</str<strong>on</strong>g> system <str<strong>on</strong>g>and</str<strong>on</strong>g> pump <str<strong>on</strong>g>the</str<strong>on</strong>g> system down.<br />

29. Repeat <str<strong>on</strong>g>the</str<strong>on</strong>g> Steps 4-7 to reinitialize <str<strong>on</strong>g>the</str<strong>on</strong>g> system. Scan rotate <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB image by 180°.<br />

30. Find <str<strong>on</strong>g>the</str<strong>on</strong>g> Ominprobe grid with a smooth finger-like feature. One side will be rounded while<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r will have a flat edge. The flat edge is preferable to attach <str<strong>on</strong>g>the</str<strong>on</strong>g> sample to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Omniprobe grid <str<strong>on</strong>g>and</str<strong>on</strong>g> should be located with <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB at 0°.<br />

31. When <str<strong>on</strong>g>the</str<strong>on</strong>g> system is at eucentric <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM <str<strong>on</strong>g>and</str<strong>on</strong>g> FIB are observing EXACTLY <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

locati<strong>on</strong>, insert <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe <str<strong>on</strong>g>and</str<strong>on</strong>g> GIS.<br />

32. Use <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM to align <str<strong>on</strong>g>the</str<strong>on</strong>g> foil <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> proper side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe grid using <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe<br />

X-Y c<strong>on</strong>trols.<br />

165


33. Lower <str<strong>on</strong>g>the</str<strong>on</strong>g> sample with <str<strong>on</strong>g>the</str<strong>on</strong>g> Z-functi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe c<strong>on</strong>trols while observing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

progress in <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB. It is recommended that periodic checks be made <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> X-Y positi<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> SEM while lowering <str<strong>on</strong>g>the</str<strong>on</strong>g> sample.<br />

34. When <str<strong>on</strong>g>the</str<strong>on</strong>g> sample is at <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate height, move <str<strong>on</strong>g>the</str<strong>on</strong>g> sample using <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe X-Y<br />

c<strong>on</strong>trols until <str<strong>on</strong>g>the</str<strong>on</strong>g> sample is touching <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe grid.<br />

35. Attach <str<strong>on</strong>g>the</str<strong>on</strong>g> sample to <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe grid using <str<strong>on</strong>g>the</str<strong>on</strong>g> GIS.<br />

36. Cut <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe from <str<strong>on</strong>g>the</str<strong>on</strong>g> sample.<br />

37. Retract <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe manually using <str<strong>on</strong>g>the</str<strong>on</strong>g> Z-c<strong>on</strong>trol.<br />

38. Fully retract <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe.<br />

39. Tilt <str<strong>on</strong>g>the</str<strong>on</strong>g> sample where <str<strong>on</strong>g>the</str<strong>on</strong>g> top is perpendicular to <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB.<br />

40. Lower <str<strong>on</strong>g>the</str<strong>on</strong>g> beam energy to 0.1 nA with <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB.<br />

41. Move <str<strong>on</strong>g>the</str<strong>on</strong>g> sample in <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM, using <str<strong>on</strong>g>the</str<strong>on</strong>g> Z-c<strong>on</strong>trol knob <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> system, into coincidence with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> FIB. Focus both <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM <str<strong>on</strong>g>and</str<strong>on</strong>g> FIB.<br />

42. The sample is typically 7-8 μm l<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> 1 μm thick.<br />

43. Place a box to mill <str<strong>on</strong>g>the</str<strong>on</strong>g> sample at <str<strong>on</strong>g>the</str<strong>on</strong>g> top <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample that is 3-5 μm l<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> 250 nm thick.<br />

Use <str<strong>on</strong>g>the</str<strong>on</strong>g> Integrate viewing functi<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB image to check <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> beam drift.<br />

The beam typically drifts away from <str<strong>on</strong>g>the</str<strong>on</strong>g> milling locati<strong>on</strong>.<br />

44. OBSERVE MILLING WITH SEM TO MAKE SURE NO BEAM DRIFT OCCURS<br />

DURING MILLING. THIS WILL RESULT IN SAMPLE LOSS OR NO THINNING.<br />

45. Repeat <str<strong>on</strong>g>the</str<strong>on</strong>g> same mill al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> specimen.<br />

46. Tilt <str<strong>on</strong>g>the</str<strong>on</strong>g> sample +2° <str<strong>on</strong>g>and</str<strong>on</strong>g> wait for <str<strong>on</strong>g>the</str<strong>on</strong>g> beam drift to stabilize.<br />

47. Reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> milling box to 3 μm by 150 nm.<br />

48. Mill <str<strong>on</strong>g>the</str<strong>on</strong>g> top <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample as before.<br />

166


49. Tilt <str<strong>on</strong>g>the</str<strong>on</strong>g> sample -4° <str<strong>on</strong>g>and</str<strong>on</strong>g> wait for <str<strong>on</strong>g>the</str<strong>on</strong>g> beam drift to stabilize.<br />

50. Mill <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample.<br />

51. Tilt <str<strong>on</strong>g>the</str<strong>on</strong>g> sample +4° <str<strong>on</strong>g>and</str<strong>on</strong>g> wait for <str<strong>on</strong>g>the</str<strong>on</strong>g> beam drift to stabilize.<br />

52. Mill <str<strong>on</strong>g>the</str<strong>on</strong>g> top <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample.<br />

53. Repeat Steps 49-52 as needed until <str<strong>on</strong>g>the</str<strong>on</strong>g> sample is ~100 nm or less.<br />

54. MAKE SURE TO CHECK THE MILLING PROGRESS USING THE SEM!<br />

55. Reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB beam energy to 5.0 kV <str<strong>on</strong>g>and</str<strong>on</strong>g> 49 nA.<br />

56. Tilt to 0°.<br />

57. Image <str<strong>on</strong>g>the</str<strong>on</strong>g> sample with <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB for 30-45 sec<strong>on</strong>ds to remove beam damage.<br />

58. Rotate <str<strong>on</strong>g>the</str<strong>on</strong>g> sample compeucentrically <str<strong>on</strong>g>and</str<strong>on</strong>g> image <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample for 30-45<br />

sec<strong>on</strong>ds.<br />

59. Turn <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>the</str<strong>on</strong>g> HT to <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM <str<strong>on</strong>g>and</str<strong>on</strong>g> FIB.<br />

60. Turn <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>the</str<strong>on</strong>g> GIS.<br />

61. Vent <str<strong>on</strong>g>the</str<strong>on</strong>g> system.<br />

62. Remove <str<strong>on</strong>g>the</str<strong>on</strong>g> sample <str<strong>on</strong>g>and</str<strong>on</strong>g> place it in a holder, noting its locati<strong>on</strong> carefully.<br />

63. Pump <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber.<br />

64. Home <str<strong>on</strong>g>the</str<strong>on</strong>g> stage.<br />

65. Replace all tools <str<strong>on</strong>g>and</str<strong>on</strong>g> holders used in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir proper storage locati<strong>on</strong>s.<br />

66. Clean up any gloves, tissue paper, etc.<br />

67. Log out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system.<br />

167


APPENDIX C<br />

APT SAMPLE PREPARATION USING A FOCUSED ION BEAM<br />

As discussed previously in <str<strong>on</strong>g>the</str<strong>on</strong>g> document, TEM samples were prepared using an FEI<br />

Company Quanta 3D dual beam-focused i<strong>on</strong> beam (FIB). This technique can be used in lieu <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

traditi<strong>on</strong>al methods like electropolishing. Similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> TEM sample preparati<strong>on</strong>, APT samples<br />

can be selected site specifically. An outline for <str<strong>on</strong>g>the</str<strong>on</strong>g> procedures used for this porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>investigati<strong>on</strong></str<strong>on</strong>g> was adapted from those provided by Rich Martens <str<strong>on</strong>g>and</str<strong>on</strong>g> are presented below.<br />

1. Log into <str<strong>on</strong>g>the</str<strong>on</strong>g> instrument.<br />

2. Vent <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber <str<strong>on</strong>g>and</str<strong>on</strong>g> align <str<strong>on</strong>g>the</str<strong>on</strong>g> sample height appropriately.<br />

3. Pump <str<strong>on</strong>g>the</str<strong>on</strong>g> system.<br />

4. Wake <str<strong>on</strong>g>the</str<strong>on</strong>g> system up. This should turn <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM <str<strong>on</strong>g>and</str<strong>on</strong>g> FIB columns for analysis.<br />

5. While <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM/FIB columns warm-up, turn <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> platinum gas injecti<strong>on</strong> system (GIS) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

allow it to properly warm-up.<br />

6. After <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM column is operati<strong>on</strong>al, find <str<strong>on</strong>g>the</str<strong>on</strong>g> eucentric locati<strong>on</strong>. Typically, this value is<br />

close to 15 mm.<br />

7. After <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB column is ready, set <str<strong>on</strong>g>the</str<strong>on</strong>g> beam c<strong>on</strong>diti<strong>on</strong>s to 30 kV <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.1 nA. Use <str<strong>on</strong>g>the</str<strong>on</strong>g> beam<br />

shifts to move <str<strong>on</strong>g>the</str<strong>on</strong>g> image into coincidence with <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM image. This may be difficult, but<br />

get it as close as possible.<br />

8. Scan rotate <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB image by 180°.<br />

168


9. Find a locati<strong>on</strong> to retrieve an APT sample.<br />

10. Tilt to 52° <str<strong>on</strong>g>and</str<strong>on</strong>g> insert <str<strong>on</strong>g>the</str<strong>on</strong>g> GIS.<br />

11. Deposit a layer <str<strong>on</strong>g>of</str<strong>on</strong>g> platinum that is 22 μm x 2 μm x 500 nm. This will help preserve <str<strong>on</strong>g>the</str<strong>on</strong>g> APT<br />

tips while milling.<br />

12. Retract <str<strong>on</strong>g>the</str<strong>on</strong>g> GIS.<br />

13. Tilt to 22°. The intent is to make an isosceles triangle with <str<strong>on</strong>g>the</str<strong>on</strong>g> sample.<br />

14. Adjust <str<strong>on</strong>g>the</str<strong>on</strong>g> beam c<strong>on</strong>diti<strong>on</strong>s to 30 kV <str<strong>on</strong>g>and</str<strong>on</strong>g> 3.0 nA <str<strong>on</strong>g>and</str<strong>on</strong>g> change <str<strong>on</strong>g>the</str<strong>on</strong>g> depth for milling to 4 μm.<br />

15. Focus <str<strong>on</strong>g>the</str<strong>on</strong>g> beam <strong>on</strong> an area that is not <strong>on</strong> your sample. This is easily accomplished using <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

small adjustable viewing window. Be careful not to image <str<strong>on</strong>g>the</str<strong>on</strong>g> sample with <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB as this<br />

will mill <str<strong>on</strong>g>the</str<strong>on</strong>g> sample away very quickly.<br />

16. Place <str<strong>on</strong>g>the</str<strong>on</strong>g> milling box at <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> platinum deposit.<br />

17. Start <str<strong>on</strong>g>the</str<strong>on</strong>g> milling <str<strong>on</strong>g>and</str<strong>on</strong>g> watch <str<strong>on</strong>g>the</str<strong>on</strong>g> live time m<strong>on</strong>itor for beam drift. This should take a little<br />

more than six minutes. If <str<strong>on</strong>g>the</str<strong>on</strong>g> time is not right, <str<strong>on</strong>g>the</str<strong>on</strong>g> beam current is not correct.<br />

18. Compeucentrically rotate <str<strong>on</strong>g>the</str<strong>on</strong>g> sample 180° to mill <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r side.<br />

19. Check for beam drift <str<strong>on</strong>g>and</str<strong>on</strong>g> focus as in Step 15.<br />

20. Mill <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample to complete <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle.<br />

21. Compeucentrically rotate <str<strong>on</strong>g>the</str<strong>on</strong>g> sample 180°.<br />

22. Check for beam drift <str<strong>on</strong>g>and</str<strong>on</strong>g> refocus.<br />

23. Change <str<strong>on</strong>g>the</str<strong>on</strong>g> milling depth to 2 μm.<br />

24. Tilt to 52°.<br />

25. Reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB beam current to 0.1 nA <str<strong>on</strong>g>and</str<strong>on</strong>g> refocus.<br />

26. Mill <str<strong>on</strong>g>the</str<strong>on</strong>g> left side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> TEM sample preparati<strong>on</strong> in Appendix B.<br />

27. Tilt to 0°.<br />

169


28. Insert <str<strong>on</strong>g>the</str<strong>on</strong>g> GIS <str<strong>on</strong>g>and</str<strong>on</strong>g> Omniprobe.<br />

29. Insert <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe micromanipulator <str<strong>on</strong>g>and</str<strong>on</strong>g> use <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM <str<strong>on</strong>g>and</str<strong>on</strong>g> FIB to move it down over <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

left-side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample. This should be directly over <str<strong>on</strong>g>the</str<strong>on</strong>g> cut you just milled in <str<strong>on</strong>g>the</str<strong>on</strong>g> sample.<br />

BE CAREFUL NOT TO RUN THE OMIPROBE INTO THE SPECIMEN!<br />

30. When <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe is just touching <str<strong>on</strong>g>the</str<strong>on</strong>g> specimen, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trast in <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB image will<br />

change.<br />

31. Using <str<strong>on</strong>g>the</str<strong>on</strong>g> Patterning menu, place a box <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe <str<strong>on</strong>g>and</str<strong>on</strong>g> specimen for depositing<br />

platinum with <str<strong>on</strong>g>the</str<strong>on</strong>g> GIS, but be careful not to overlap with <str<strong>on</strong>g>the</str<strong>on</strong>g> cuts in <str<strong>on</strong>g>the</str<strong>on</strong>g> foil. Deposit about<br />

500 nm <str<strong>on</strong>g>of</str<strong>on</strong>g> platinum to make sure that you have good adhesi<strong>on</strong>.<br />

32. Cut <str<strong>on</strong>g>the</str<strong>on</strong>g> right-side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foil, use <str<strong>on</strong>g>the</str<strong>on</strong>g> beam shifts to move <str<strong>on</strong>g>the</str<strong>on</strong>g> sample in <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB image.<br />

33. Gently, lower <str<strong>on</strong>g>the</str<strong>on</strong>g> stage manually (Z) to remove <str<strong>on</strong>g>the</str<strong>on</strong>g> foil.<br />

34. Retract <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trols manually until it is just <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB image (zoomed<br />

out) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n retract it fully.<br />

35. Retract <str<strong>on</strong>g>the</str<strong>on</strong>g> GIS.<br />

36. Turn <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM, FIB, <str<strong>on</strong>g>and</str<strong>on</strong>g> GIS.<br />

37. Vent <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber <str<strong>on</strong>g>and</str<strong>on</strong>g> remove <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk sample.<br />

*The next step will require <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a sample coup<strong>on</strong> suitable for use in <str<strong>on</strong>g>the</str<strong>on</strong>g> LEAP. Check<br />

with Rich Martens if you are not sure what this means.<br />

38. Load <str<strong>on</strong>g>the</str<strong>on</strong>g> sample holder with <str<strong>on</strong>g>the</str<strong>on</strong>g> LEAP coup<strong>on</strong>.<br />

39. Adjust <str<strong>on</strong>g>the</str<strong>on</strong>g> height <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample to <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate level.<br />

40. Pump <str<strong>on</strong>g>the</str<strong>on</strong>g> system.<br />

41. Repeat <str<strong>on</strong>g>the</str<strong>on</strong>g> Steps 4-7 to reinitialize <str<strong>on</strong>g>the</str<strong>on</strong>g> system. Scan rotate <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB image by 180°.<br />

42. Find <str<strong>on</strong>g>the</str<strong>on</strong>g> sample locati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> coup<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB at 0°.<br />

170


43. When <str<strong>on</strong>g>the</str<strong>on</strong>g> system is at eucentric <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM <str<strong>on</strong>g>and</str<strong>on</strong>g> FIB are observing EXACTLY <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

locati<strong>on</strong>, insert <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe <str<strong>on</strong>g>and</str<strong>on</strong>g> GIS.<br />

44. Use <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM to align <str<strong>on</strong>g>the</str<strong>on</strong>g> foil <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> proper side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe grid using <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe<br />

X-Y c<strong>on</strong>trols.<br />

45. Lower <str<strong>on</strong>g>the</str<strong>on</strong>g> sample with <str<strong>on</strong>g>the</str<strong>on</strong>g> Z-functi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe c<strong>on</strong>trols while observing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

progress in <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB. It is recommended that periodic checks be made <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> X-Y positi<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> SEM while lowering <str<strong>on</strong>g>the</str<strong>on</strong>g> sample.<br />

46. When <str<strong>on</strong>g>the</str<strong>on</strong>g> sample is <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> coup<strong>on</strong> post, use <str<strong>on</strong>g>the</str<strong>on</strong>g> GIS to deposit 500 nm <str<strong>on</strong>g>of</str<strong>on</strong>g> platinum to attach<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sample to <str<strong>on</strong>g>the</str<strong>on</strong>g> post.<br />

47. Cut <str<strong>on</strong>g>the</str<strong>on</strong>g> sample <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> post free from <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining sample <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe. Make sure to<br />

c<strong>on</strong>serve as much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe as possible.<br />

48. Move <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe away from <str<strong>on</strong>g>the</str<strong>on</strong>g> post slowly <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n raise it slightly so as to not hit <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coup<strong>on</strong> when moving to <str<strong>on</strong>g>the</str<strong>on</strong>g> next sample.<br />

49. Locate <str<strong>on</strong>g>the</str<strong>on</strong>g> next post <str<strong>on</strong>g>and</str<strong>on</strong>g> move <str<strong>on</strong>g>the</str<strong>on</strong>g> stage manually to align <str<strong>on</strong>g>the</str<strong>on</strong>g> sample.<br />

50. Repeat Steps 45-48 until <str<strong>on</strong>g>the</str<strong>on</strong>g> sample is c<strong>on</strong>sumed or posts are full. Each sample should make<br />

exactly six posts.<br />

51. Retract <str<strong>on</strong>g>the</str<strong>on</strong>g> Omniprobe manually until <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>the</str<strong>on</strong>g> FIB screen <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n retract fully.<br />

52. Retract <str<strong>on</strong>g>the</str<strong>on</strong>g> GIS.<br />

53. Rotate <str<strong>on</strong>g>the</str<strong>on</strong>g> sample 180° to deposit platinum <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite side.<br />

54. Deposit 500 nm <str<strong>on</strong>g>of</str<strong>on</strong>g> platinum to attach <str<strong>on</strong>g>the</str<strong>on</strong>g> sample to <str<strong>on</strong>g>the</str<strong>on</strong>g> post <str<strong>on</strong>g>and</str<strong>on</strong>g> repeat for <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining<br />

posts.<br />

55. Tilt to 52°.<br />

56. Move to <str<strong>on</strong>g>the</str<strong>on</strong>g> first post to be milled.<br />

171


57. Select <str<strong>on</strong>g>the</str<strong>on</strong>g> circle milling object.<br />

58. Make <str<strong>on</strong>g>the</str<strong>on</strong>g> circle 3.5-4 μm.<br />

59. Drag <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> circle to make an annulus that touches as many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sample as possible.<br />

60. Adjust <str<strong>on</strong>g>the</str<strong>on</strong>g> milling depth to be 1 μm <str<strong>on</strong>g>and</str<strong>on</strong>g> start <str<strong>on</strong>g>the</str<strong>on</strong>g> milling.<br />

61. Watch <str<strong>on</strong>g>the</str<strong>on</strong>g> progress in <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM. This will require <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> auto brightness <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trast<br />

feature.<br />

62. When <str<strong>on</strong>g>the</str<strong>on</strong>g> post appears to be a cylinder from <str<strong>on</strong>g>the</str<strong>on</strong>g> silic<strong>on</strong> through <str<strong>on</strong>g>the</str<strong>on</strong>g> coating, stop <str<strong>on</strong>g>the</str<strong>on</strong>g> milling<br />

program.<br />

63. Reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> inner circle by half <str<strong>on</strong>g>and</str<strong>on</strong>g> move <str<strong>on</strong>g>the</str<strong>on</strong>g> out circle in by 1 μm.<br />

64. Watch <str<strong>on</strong>g>the</str<strong>on</strong>g> progress in <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM again until <str<strong>on</strong>g>the</str<strong>on</strong>g> tip begins to become c<strong>on</strong>ical in nature.<br />

65. Repeat Step 63.<br />

66. C<strong>on</strong>tinue reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter until <str<strong>on</strong>g>the</str<strong>on</strong>g> tip diameter is >100 nm.<br />

67. Repeat Steps 56-66 for all posts.<br />

68. Reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> beam c<strong>on</strong>diti<strong>on</strong>s to 5.0 kV <str<strong>on</strong>g>and</str<strong>on</strong>g> image each tip for 30-45 sec<strong>on</strong>ds.<br />

69. Tilt back to 0°.<br />

70. Turn <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>the</str<strong>on</strong>g> HT to <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM <str<strong>on</strong>g>and</str<strong>on</strong>g> FIB.<br />

71. Vent <str<strong>on</strong>g>the</str<strong>on</strong>g> system.<br />

72. Pump <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber.<br />

73. Home <str<strong>on</strong>g>the</str<strong>on</strong>g> stage.<br />

74. Replace all tools <str<strong>on</strong>g>and</str<strong>on</strong>g> holders used in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir proper storage locati<strong>on</strong>s.<br />

75. Clean up any gloves, tissue paper, etc.<br />

76. Log out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system.<br />

172

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!