28.12.2013 Views

Shear Forces and Bending Moments

Shear Forces and Bending Moments

Shear Forces and Bending Moments

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4<br />

<strong>Shear</strong> <strong>Forces</strong> <strong>and</strong><br />

<strong>Bending</strong> <strong>Moments</strong><br />

<strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />

800 lb<br />

1600 lb<br />

Problem 4.3-1 Calculate the shear force V <strong>and</strong> bending moment M<br />

at a cross section just to the left of the 1600-lb load acting on the simple<br />

beam AB shown in the figure.<br />

A<br />

30 in. 60 in. 30 in.<br />

120 in.<br />

B<br />

B<br />

R B<br />

Solution 4.3-1 Simple beam<br />

Free-body diagram of segment DB<br />

800 lb<br />

1600 lb<br />

1600 lb<br />

A<br />

D<br />

V<br />

B<br />

M<br />

D<br />

R A ©F VERT 0:V 1600 lb 1400 lb<br />

30 in.<br />

30 in. 60 in. 30 in.<br />

R B<br />

200 lb<br />

M A<br />

0: R B<br />

1400 lb<br />

©M D 0:M (1400 lb)(30 in.)<br />

M B<br />

0: R A<br />

1000 lb<br />

42,000 lb-in.<br />

Problem 4.3-2 Determine the shear force V <strong>and</strong> bending moment M<br />

at the midpoint C of the simple beam AB shown in the figure.<br />

A<br />

6.0 kN<br />

C<br />

2.0 kN/m<br />

B<br />

1.0 m 1.0 m<br />

4.0 m<br />

2.0 m<br />

Solution 4.3-2<br />

Simple beam<br />

A<br />

6.0 kN<br />

C<br />

2.0 kN/m<br />

1.0 m 1.0 m 2.0 m<br />

R A<br />

B<br />

R B<br />

Free-body diagram of segment AC<br />

6.0 kN<br />

A<br />

C<br />

V M<br />

1.0 m 1.0 m<br />

R A<br />

M A<br />

0:<br />

M B<br />

0:<br />

R B<br />

4.5 kN<br />

R A<br />

5.5 kN<br />

©F VERT 0:V 0.5 kN<br />

©M C 0:M 5.0 kN m<br />

259


260 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />

Problem 4.3-3 Determine the shear force V <strong>and</strong> bending moment M at<br />

the midpoint of the beam with overhangs (see figure). Note that one load<br />

acts downward <strong>and</strong> the other upward.<br />

P<br />

P<br />

b<br />

L<br />

b<br />

Solution 4.3-3<br />

Beam with overhangs<br />

P<br />

©M B 0<br />

b<br />

A<br />

R A 1 [P(L b b)]<br />

L<br />

P<br />

L<br />

b<br />

R A RB<br />

P ¢1 2b L ≤(upward)<br />

B<br />

P<br />

©M A 0:R B P ¢1 2b L ≤(downward)<br />

Free-body diagram (C is the midpoint)<br />

©F VERT 0:<br />

V R A P P ¢1 2b L ≤ P<br />

©M C 0:<br />

M<br />

A<br />

C<br />

b L/2<br />

R A V<br />

M P ¢1 2b L ≤ ¢L 2 ≤ P ¢b L 2 ≤<br />

M PL<br />

PL<br />

Pb Pb <br />

2 2 0<br />

2bP<br />

L<br />

Problem 4.3-4 Calculate the shear force V <strong>and</strong> bending moment M at a<br />

cross section located 0.5 m from the fixed support of the cantilever beam<br />

AB shown in the figure.<br />

A<br />

4.0 kN<br />

1.5 kN/m<br />

B<br />

1.0 m 1.0 m 2.0 m<br />

Solution 4.3-4<br />

A<br />

Cantilever beam<br />

4.0 kN<br />

1.5 kN/m<br />

1.0 m 1.0 m 2.0 m<br />

Free-body diagram of segment DB<br />

Point D is 0.5 m from support A.<br />

B<br />

©F VERT 0:<br />

V 4.0 kN (1.5 kNm)(2.0 m)<br />

4.0 kN 3.0 kN 7.0 kN<br />

©M D 0:M (4.0 kN)(0.5 m)<br />

(1.5 kNm)(2.0 m)(2.5 m)<br />

2.0 kN m 7.5 kN m<br />

9.5 kN m<br />

M<br />

V<br />

D<br />

4.0 kN<br />

1.5 kN/m<br />

B<br />

0.5 m<br />

1.0 m<br />

2.0 m


SECTION 4.3 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong> 261<br />

Problem 4.3-5 Determine the shear force V <strong>and</strong> bending moment M<br />

at a cross section located 16 ft from the left-h<strong>and</strong> end A of the beam<br />

with an overhang shown in the figure.<br />

A<br />

400 lb/ft 200 lb/ft<br />

B<br />

C<br />

10 ft 10 ft<br />

6 ft<br />

6 ft<br />

Solution 4.3-5<br />

A<br />

Beam with an overhang<br />

400 lb/ft 200 lb/ft<br />

B<br />

C<br />

A<br />

10 ft 10 ft 6 ft 6 ft<br />

R A R B<br />

Free-body diagram of segment AD<br />

400 lb/ft<br />

R A<br />

10 ft<br />

6 ft<br />

D<br />

V<br />

M<br />

M B<br />

0:<br />

M A<br />

0:<br />

R A<br />

2460 lb<br />

R B<br />

2740 lb<br />

Point D is 16 ft from support A.<br />

©F VERT 0:<br />

V 2460 lb (400 lbft)(10 ft)<br />

1540 lb<br />

©M D 0:M (2460 lb)(16 ft)<br />

(400 lbft)(10 ft)(11 ft)<br />

4640 lb-ft<br />

Problem 4.3-6 The beam ABC shown in the figure is simply<br />

supported at A <strong>and</strong> B <strong>and</strong> has an overhang from B to C. The<br />

loads consist of a horizontal force P 1<br />

4.0 kN acting at the<br />

end of a vertical arm <strong>and</strong> a vertical force P 2<br />

8.0 kN acting at<br />

the end of the overhang.<br />

Determine the shear force V <strong>and</strong> bending moment M at<br />

a cross section located 3.0 m from the left-h<strong>and</strong> support.<br />

(Note: Disregard the widths of the beam <strong>and</strong> vertical arm <strong>and</strong><br />

use centerline dimensions when making calculations.)<br />

P 1 = 4.0 kN<br />

1.0 m<br />

A<br />

P 2 = 8.0 kN<br />

B<br />

C<br />

4.0 m 1.0 m<br />

Solution 4.3-6 Beam with vertical arm<br />

P 1 = 4.0 kN<br />

P 2 = 8.0 kN<br />

1.0 m<br />

A<br />

B<br />

4.0 m 1.0 m<br />

R A<br />

R B<br />

M B<br />

0: R A<br />

1.0 kN (downward)<br />

M A<br />

0: R B<br />

9.0 kN (upward)<br />

Free-body diagram of segment AD<br />

Point D is 3.0 m from support A.<br />

A<br />

D<br />

M<br />

4.0 kN • m<br />

3.0 m<br />

R A<br />

V<br />

©F VERT 0:V R A 1.0 kN<br />

©M D 0:M R A (3.0 m) 4.0 kN m<br />

7.0 kN m


262 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />

Problem 4.3-7 The beam ABCD shown in the figure has overhangs<br />

at each end <strong>and</strong> carries a uniform load of intensity q.<br />

For what ratio b/L will the bending moment at the midpoint of the<br />

beam be zero?<br />

A<br />

B<br />

q<br />

C<br />

D<br />

b<br />

L<br />

b<br />

Solution 4.3-7 Beam with overhangs<br />

q<br />

Free-body diagram of left-h<strong>and</strong> half of beam:<br />

Point E is at the midpoint of the beam.<br />

A<br />

D<br />

B C<br />

q<br />

b<br />

L<br />

b<br />

R B R A<br />

M = 0 (Given)<br />

C E<br />

b L/2 V<br />

From symmetry <strong>and</strong> equilibrium of vertical forces:<br />

R B<br />

R B R C q ¢b L 2 ≤<br />

©M E 0 <br />

R B ¢ L 2 ≤ q ¢1 2 ≤ ¢b L 2 ≤ 2<br />

0<br />

q ¢b L 2 ≤ ¢L 2 ≤ q ¢1 2 ≤ ¢b L 2 ≤ 2<br />

0<br />

Solve for b/L :<br />

b<br />

L 1 2<br />

Problem 4.3-8 At full draw, an archer applies a pull of 130 N to the<br />

bowstring of the bow shown in the figure. Determine the bending moment<br />

at the midpoint of the bow.<br />

70°<br />

1400 mm<br />

350 mm


SECTION 4.3 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong> 263<br />

Solution 4.3-8<br />

Archer’s bow<br />

B<br />

Free-body diagram of segment BC<br />

B<br />

<br />

P<br />

A<br />

<br />

C<br />

H<br />

T<br />

H<br />

2<br />

b<br />

C<br />

M<br />

©M C 0 <br />

b<br />

P 130 N<br />

70°<br />

H 1400 mm<br />

1.4 m<br />

b 350 mm<br />

0.35 m<br />

Free-body diagram of point A<br />

T(cos H b)¢ ≤ T(sin b)(b) M 0<br />

2<br />

M T H ¢ cosb b sin b≤<br />

2<br />

P 2 ¢H b tan b≤<br />

2<br />

Substitute numerical values:<br />

M 130 N B 1.4 m (0.35 m)(tan 70)R<br />

2 2<br />

M 108 N m<br />

T<br />

<br />

P<br />

A<br />

T<br />

T tensile force in the bowstring<br />

F HORIZ<br />

0: 2T cos P 0<br />

T <br />

P<br />

2 cos b


264 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />

Problem 4.3-9 A curved bar ABC is subjected to loads in the form<br />

of two equal <strong>and</strong> opposite forces P, as shown in the figure. The axis of<br />

the bar forms a semicircle of radius r.<br />

Determine the axial force N, shear force V, <strong>and</strong> bending moment M<br />

acting at a cross section defined by the angle .<br />

P<br />

A<br />

B<br />

<br />

O<br />

r<br />

C<br />

P<br />

P<br />

A<br />

M<br />

<br />

V<br />

N<br />

Solution 4.3-9<br />

Curved bar<br />

P<br />

A<br />

B<br />

<br />

O<br />

r<br />

C<br />

P<br />

P<br />

P cos <br />

P sin <br />

A<br />

B<br />

M<br />

<br />

V<br />

N<br />

O<br />

©F N 0 Q b N P sin u 0<br />

N P sin u<br />

F V 0<br />

<br />

R a V P cos u 0<br />

V P cos u<br />

©M O 0 M Nr 0<br />

M Nr Pr sin u<br />

Problem 4.3-10 Under cruising conditions the distributed load<br />

acting on the wing of a small airplane has the idealized variation<br />

shown in the figure.<br />

Calculate the shear force V <strong>and</strong> bending moment M at the<br />

inboard end of the wing.<br />

1600 N/m<br />

900 N/m<br />

2.6 m<br />

2.6 m<br />

1.0 m<br />

Solution 4.3-10 Airplane wing<br />

1600 N/m<br />

900 N/m<br />

M<br />

V<br />

A<br />

2.6 m<br />

2.6 m<br />

1.0 m<br />

B<br />

Loading (in three parts)<br />

700 N/m 1<br />

900 N/m<br />

2<br />

A<br />

3<br />

B<br />

<strong>Shear</strong> Force<br />

F VERT<br />

0 c T <br />

<strong>Bending</strong><br />

V 1 (700 Nm)(2.6 m) (900 Nm)(5.2 m)<br />

2<br />

1 (900 Nm)(1.0 m) 0<br />

2<br />

V 6040 N 6.04 kN<br />

(Minus means the shear force acts opposite to the<br />

direction shown in the figure.)<br />

Moment<br />

©M A 0 <br />

M 1 2<br />

(900 Nm)(5.2 m)(2.6 m)<br />

1 2<br />

m<br />

(700 Nm)(2.6 m)¢2.6 ≤<br />

3<br />

1.0 m<br />

(900 Nm)(1.0 m)¢5.2 m ≤ 0<br />

3<br />

M 788.67 N • m 12,168 N • m 2490 N • m<br />

15,450 N • m<br />

15.45 kN m


SECTION 4.3 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong> 265<br />

Problem 4.3-11 A beam ABCD with a vertical arm CE is supported as<br />

a simple beam at A <strong>and</strong> D (see figure). A cable passes over a small pulley<br />

that is attached to the arm at E. One end of the cable is attached to the<br />

beam at point B.<br />

What is the force P in the cable if the bending moment in the<br />

beam just to the left of point C is equal numerically to 640 lb-ft?<br />

(Note: Disregard the widths of the beam <strong>and</strong> vertical arm <strong>and</strong> use<br />

centerline dimensions when making calculations.)<br />

A<br />

B<br />

Cable<br />

C<br />

E<br />

D<br />

8 ft<br />

P<br />

6 ft 6 ft 6 ft<br />

Solution 4.3-11<br />

Beam with a cable<br />

E<br />

P<br />

Free-body diagram of section AC<br />

P<br />

P<br />

__ 4P<br />

9<br />

A<br />

B<br />

Cable<br />

C<br />

6 ft 6 ft 6 ft<br />

8 ft<br />

D<br />

__ 4P<br />

9<br />

P<br />

__ 4P<br />

9<br />

A<br />

©M C 0 <br />

4P __<br />

5<br />

__ 3P<br />

5<br />

6 ft B 6 ft<br />

C<br />

V<br />

M<br />

N<br />

UNITS:<br />

P in lb<br />

M in lb-ft<br />

M 4P 5 (6 ft) 4P 9<br />

(12 ft) 0<br />

M 8P<br />

15 lb-ft<br />

Numerical value of M equals 640 lb-ft.<br />

∴ 640 lb-ft 8P<br />

15 lb-ft<br />

<strong>and</strong> P 1200 lb<br />

Problem 4.3-12 A simply supported beam AB supports a trapezoidally<br />

distributed load (see figure). The intensity of the load varies linearly<br />

from 50 kN/m at support A to 30 kN/m at support B.<br />

Calculate the shear force V <strong>and</strong> bending moment M at the midpoint<br />

of the beam.<br />

50 kN/m<br />

A<br />

30 kN/m<br />

B<br />

3 m


266 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />

Solution 4.3-12 Beam with trapezoidal load<br />

50 kN/m<br />

Free-body diagram of section CB<br />

30 kN/m<br />

Point C is at the midpoint of the beam.<br />

40 kN/m<br />

A<br />

B<br />

30 kN/m<br />

V<br />

3 m<br />

M<br />

C<br />

B<br />

R A RB<br />

1.5 m<br />

55 kN<br />

Reactions<br />

©M B 0 R A (3 m) (30 kNm)(3 m)(1.5 m)<br />

(20 kNm)(3 m)( 1 2 )(2 m) 0<br />

R A<br />

65 kN<br />

©F VERT 0 c<br />

R A R B 1 2 (50 kNm 30 kNm)(3 m) 0<br />

R B<br />

55 kN<br />

F VERT<br />

0 c <br />

T <br />

V (30 kNm)(1.5 m) 1 2(10 kNm)(1.5 m)<br />

55 kN 0<br />

V 2.5 kN<br />

©M C 0 <br />

M (30 kN/m)(1.5 m)(0.75 m)<br />

1 2 (10 kNm)(1.5 m)(0.5 m)<br />

(55 kN)(1.5 m) 0<br />

M 45.0 kN m<br />

Problem 4.3-13 Beam ABCD represents a reinforced-concrete<br />

foundation beam that supports a uniform load of intensity q 1<br />

3500 lb/ft<br />

(see figure). Assume that the soil pressure on the underside of the beam is<br />

uniformly distributed with intensity q 2<br />

.<br />

(a) Find the shear force V B<br />

<strong>and</strong> bending moment M B<br />

at point B.<br />

(b) Find the shear force V m<br />

<strong>and</strong> bending moment M m<br />

at the midpoint<br />

of the beam.<br />

A<br />

q 1 = 3500 lb/ft<br />

B<br />

C<br />

q 2<br />

3.0 ft 8.0 ft 3.0 ft<br />

D<br />

Solution 4.3-13 Foundation beam<br />

q 1 = 3500 lb/ft<br />

(b) V <strong>and</strong> M at midpoint E<br />

A B C D<br />

3500 lb/ft<br />

A<br />

B<br />

M B M E<br />

0:<br />

F VERT<br />

0:<br />

M m<br />

(2000 lb/ft)(7 ft)(3.5 ft)<br />

2000 lb/ft V B<br />

3 ft<br />

V B 6000 lb<br />

(3500 lb/ft)(4 ft)(2 ft)<br />

A B E M m<br />

q 2<br />

3.0 ft 8.0 ft 3.0 ft<br />

2000 lb/ft<br />

V m<br />

F VERT<br />

0: q 2<br />

(14 ft) q 1<br />

(8 ft)<br />

3 ft<br />

4 ft<br />

∴ q 2 8 14 q 1 2000 lbft<br />

F VERT<br />

0: V m<br />

(2000 lb/ft)(7 ft) (3500 lb/ft)(4 ft)<br />

(a) V <strong>and</strong> M at point B<br />

V m 0<br />

©M B 0:M B 9000 lb-ft<br />

M m 21,000 lb-ft


SECTION 4.3 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong> 267<br />

Problem 4.3-14 The simply-supported beam ABCD is loaded by<br />

a weight W 27 kN through the arrangement shown in the figure.<br />

The cable passes over a small frictionless pulley at B <strong>and</strong> is attached<br />

at E to the end of the vertical arm.<br />

Calculate the axial force N, shear force V, <strong>and</strong> bending moment<br />

M at section C, which is just to the left of the vertical arm.<br />

(Note: Disregard the widths of the beam <strong>and</strong> vertical arm <strong>and</strong> use<br />

centerline dimensions when making calculations.)<br />

A<br />

E<br />

Cable<br />

1.5 m<br />

B C<br />

2.0 m 2.0 m 2.0 m<br />

D<br />

W = 27 kN<br />

Solution 4.3-14<br />

Beam with cable <strong>and</strong> weight<br />

E<br />

Free-body diagram of pulley at B<br />

Cable<br />

1.5 m<br />

27 kN<br />

A<br />

B C<br />

D<br />

21.6 kN<br />

2.0 m 2.0 m 2.0 m<br />

10.8 kN<br />

27 kN<br />

27 kN<br />

R A R D<br />

R A<br />

18 kN<br />

R D<br />

9kN<br />

Free-body diagram of segment ABC of beam<br />

10.8 kN<br />

21.6 kN<br />

A<br />

B<br />

C<br />

2.0 m 2.0 m<br />

V<br />

18 kN<br />

©F HORIZ 0:N 21.6 kN (compression)<br />

©F VERT 0:V 7.2 kN<br />

©M C 0:M 50.4 kN m<br />

M<br />

N


268 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />

Problem 4.3-15 The centrifuge shown in the figure rotates in a horizontal<br />

plane (the xy plane) on a smooth surface about the z axis (which is vertical)<br />

with an angular acceleration . Each of the two arms has weight w per unit<br />

length <strong>and</strong> supports a weight W 2.0 wL at its end.<br />

Derive formulas for the maximum shear force <strong>and</strong> maximum bending<br />

moment in the arms, assuming b L/9 <strong>and</strong> c L/10.<br />

y<br />

b L c<br />

W<br />

x<br />

W<br />

<br />

Solution 4.3-15<br />

Rotating centrifuge<br />

L<br />

b c<br />

W<br />

g<br />

__ (L + b + c)<br />

x<br />

wx __<br />

g<br />

Tangential acceleration r<br />

Substitute numerical data:<br />

W<br />

Inertial force Mr <br />

g r<br />

Maximum V <strong>and</strong> M occur at x b.<br />

V max W g (L b c) Lb w<br />

g x dx<br />

W<br />

g<br />

(L b c)<br />

wL (L 2b)<br />

2g<br />

M max W (L b c)(L c)<br />

g<br />

Lb<br />

w<br />

x(x b)dx<br />

g<br />

b<br />

W (L b c)(L c)<br />

g<br />

w L2 <br />

(2L 3b)<br />

6g<br />

b<br />

W 2.0 wLb L 9<br />

91wL 2 <br />

V max <br />

30g<br />

M max <br />

229wL 3 <br />

75g<br />

c L 10


SECTION 4.5 <strong>Shear</strong>-Force <strong>and</strong> <strong>Bending</strong>-Moment Diagrams 269<br />

<strong>Shear</strong>-Force <strong>and</strong> <strong>Bending</strong>-Moment Diagrams<br />

When solving the problems for Section 4.5, draw the shear-force <strong>and</strong><br />

bending-moment diagrams approximately to scale <strong>and</strong> label all critical<br />

ordinates, including the maximum <strong>and</strong> minimum values.<br />

Probs. 4.5-1 through 4.5-10 are symbolic problems <strong>and</strong> Probs. 4.5-11<br />

through 4.5-24 are numerical problems. The remaining problems (4.5-25<br />

through 4.5-30) involve specialized topics, such as optimization, beams<br />

with hinges, <strong>and</strong> moving loads.<br />

Problem 4.5-1 Draw the shear-force <strong>and</strong> bending-moment diagrams for<br />

a simple beam AB supporting two equal concentrated loads P (see figure).<br />

A<br />

a<br />

P<br />

P<br />

a<br />

B<br />

L<br />

Solution 4.5-1<br />

Simple beam<br />

a<br />

P<br />

P<br />

a<br />

A<br />

B<br />

R A = P<br />

L<br />

R B = P<br />

V<br />

0<br />

P<br />

P<br />

Pa<br />

M<br />

0


270 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />

Problem 4.5-2 A simple beam AB is subjected to a counterclockwise<br />

couple of moment M 0<br />

acting at distance a from the left-h<strong>and</strong> support<br />

(see figure).<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />

A<br />

a<br />

L<br />

M 0<br />

B<br />

Solution 4.5-2<br />

Simple beam<br />

A<br />

B<br />

R A = M 0<br />

L<br />

a<br />

L<br />

R B = M 0<br />

L<br />

V<br />

0<br />

M 0<br />

M 0<br />

L<br />

M<br />

0<br />

M 0 (1 a L )<br />

M 0 a<br />

L<br />

Problem 4.5-3 Draw the shear-force <strong>and</strong> bending-moment diagrams<br />

for a cantilever beam AB carrying a uniform load of intensity q over<br />

one-half of its length (see figure).<br />

A<br />

q<br />

L<br />

— 2<br />

L —2<br />

B<br />

Solution 4.5-3<br />

Cantilever beam<br />

M A = 3qL2<br />

8<br />

A<br />

q<br />

B<br />

R A = qL<br />

2<br />

L<br />

— 2<br />

L —2<br />

qL —2<br />

V<br />

0<br />

M<br />

0<br />

<br />

3qL 2<br />

8<br />

qL<br />

<br />

2<br />

8


SECTION 4.5 <strong>Shear</strong>-Force <strong>and</strong> <strong>Bending</strong>-Moment Diagrams 271<br />

Problem 4.5-4 The cantilever beam AB shown in the figure<br />

is subjected to a concentrated load P at the midpoint <strong>and</strong> a<br />

counterclockwise couple of moment M 1<br />

PL/4 at the free end.<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for<br />

this beam.<br />

A<br />

P<br />

M 1 = —–<br />

PL<br />

4<br />

B<br />

—<br />

L<br />

—2<br />

L<br />

2<br />

Solution 4.5-4<br />

Cantilever beam<br />

P<br />

M A<br />

A<br />

B<br />

M 1 PL 4<br />

R A P<br />

R A<br />

L/2 L/2<br />

M A PL<br />

4<br />

V<br />

M<br />

0<br />

0<br />

P<br />

PL<br />

4<br />

PL 4<br />

Problem 4.5-5 The simple beam AB shown in the figure is subjected to<br />

a concentrated load P <strong>and</strong> a clockwise couple M 1<br />

PL/4 acting at the<br />

third points.<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />

A<br />

P<br />

M 1 = PL —–<br />

4<br />

L<br />

— 3<br />

L —3<br />

L —3<br />

B<br />

Solution 4.5-5<br />

Simple beam<br />

A<br />

P<br />

M 1 = PL —–<br />

4<br />

B<br />

R A = 5P —–<br />

12<br />

L<br />

— 3<br />

L —3<br />

L —3<br />

R B = 7P —–<br />

12<br />

V<br />

0<br />

5P/12<br />

7P/12<br />

5PL/36<br />

7PL/36<br />

M<br />

0<br />

PL/18


272 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />

Problem 4.5-6 A simple beam AB subjected to clockwise couples M 1<br />

<strong>and</strong> 2M 1<br />

acting at the third points is shown in the figure.<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />

A<br />

M 1 2M 1<br />

B<br />

L<br />

— 3<br />

L —3<br />

L —3<br />

Solution 4.5-6<br />

Simple beam<br />

M 1 2M 1<br />

A<br />

B<br />

R A = 3M —– 1<br />

L<br />

—<br />

L —3<br />

L —3<br />

L<br />

R 3 B = 3M —– 1<br />

L<br />

0<br />

V 3M —– 1<br />

L<br />

M 0 M 1<br />

M 1 M 1<br />

Problem 4.5-7 A simply supported beam ABC is loaded by a vertical<br />

load P acting at the end of a bracket BDE (see figure).<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for beam ABC.<br />

A<br />

B<br />

D<br />

E<br />

C<br />

P<br />

—<br />

L —4<br />

L —2<br />

L<br />

4<br />

L<br />

Solution 4.5-7<br />

Beam with bracket<br />

A<br />

P<br />

B<br />

PL<br />

—–<br />

4<br />

C<br />

R A = P —–<br />

2<br />

—<br />

L<br />

3L<br />

— 4 4<br />

R C = P —–<br />

2<br />

V<br />

0<br />

P<br />

—–<br />

2<br />

—–<br />

P<br />

<br />

2<br />

M<br />

0<br />

PL<br />

—–<br />

8<br />

3PL<br />

—–<br />

8


SECTION 4.5 <strong>Shear</strong>-Force <strong>and</strong> <strong>Bending</strong>-Moment Diagrams 273<br />

Problem 4.5-8 A beam ABC is simply supported at A <strong>and</strong> B <strong>and</strong><br />

has an overhang BC (see figure). The beam is loaded by two forces<br />

P <strong>and</strong> a clockwise couple of moment Pa that act through the<br />

arrangement shown.<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for<br />

beam ABC.<br />

A<br />

P P Pa<br />

C<br />

B<br />

a a a a<br />

Solution 4.5-8<br />

Beam with overhang<br />

upper<br />

beam:<br />

P<br />

P<br />

C<br />

a a a<br />

Pa<br />

P<br />

P<br />

lower<br />

beam:<br />

P<br />

B<br />

a a a<br />

P<br />

C<br />

2P<br />

V 0<br />

P<br />

P<br />

M 0<br />

Pa<br />

Problem 4.5-9 Beam ABCD is simply supported at B <strong>and</strong> C <strong>and</strong> has<br />

overhangs at each end (see figure). The span length is L <strong>and</strong> each<br />

overhang has length L/3. A uniform load of intensity q acts along the<br />

entire length of the beam.<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />

A<br />

L<br />

3<br />

B<br />

q<br />

L<br />

C<br />

L<br />

3<br />

D<br />

Solution 4.5-9<br />

Beam with overhangs<br />

q<br />

A<br />

L/3<br />

B<br />

L<br />

C<br />

L/3<br />

__ 5qL<br />

R B = __ 5qL<br />

R 6<br />

C = 6<br />

__ qL<br />

qL/3<br />

V 0<br />

2<br />

__ qL<br />

– __ qL<br />

– 3 __ 5qL 2 2<br />

72<br />

M<br />

0<br />

–qL 2 /18 X 1 –qL 2 /18<br />

D<br />

x 1 L 5<br />

6<br />

0.3727L


274 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />

Problem 4.5-10 Draw the shear-force <strong>and</strong> bending-moment diagrams<br />

for a cantilever beam AB supporting a linearly varying load of maximum<br />

intensity q 0<br />

(see figure).<br />

A<br />

L<br />

B<br />

q 0<br />

Solution 4.5-10<br />

Cantilever beam<br />

__ x<br />

q=q 0<br />

L<br />

q 0<br />

q__<br />

0 L<br />

M 2<br />

B = 6<br />

A<br />

x<br />

L<br />

B<br />

__ q 0 L<br />

R B = 2<br />

V<br />

0<br />

q__<br />

0 x<br />

V = – 2<br />

2L<br />

__ q 0 L<br />

– 2<br />

M<br />

0<br />

q__<br />

0 x<br />

M = – 3<br />

6L<br />

__ q 0 L<br />

– 2<br />

6<br />

Problem 4.5-11 The simple beam AB supports a uniform load of<br />

intensity q 10 lb/in. acting over one-half of the span <strong>and</strong> a concentrated<br />

load P 80 lb acting at midspan (see figure).<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />

A<br />

P = 80 lb<br />

q = 10 lb/in.<br />

B<br />

—<br />

L<br />

= 40 in. —<br />

L<br />

= 40 in.<br />

2 2<br />

Solution 4.5-11<br />

Simple beam<br />

P = 80 lb<br />

10 lb/in.<br />

A<br />

B<br />

R A =140 lb<br />

40 in.<br />

40 in.<br />

R B = 340 lb<br />

140<br />

V<br />

(lb)<br />

0<br />

60<br />

6 in.<br />

–340<br />

M<br />

(lb/in.)<br />

0<br />

5600<br />

M max = 5780<br />

46 in.


SECTION 4.5 <strong>Shear</strong>-Force <strong>and</strong> <strong>Bending</strong>-Moment Diagrams 275<br />

Problem 4.5-12 The beam AB shown in the figure supports a uniform<br />

load of intensity 3000 N/m acting over half the length of the beam. The<br />

beam rests on a foundation that produces a uniformly distributed load<br />

over the entire length.<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />

A<br />

3000 N/m<br />

B<br />

0.8 m<br />

1.6 m<br />

0.8 m<br />

Solution 4.5-12<br />

Beam with distributed loads<br />

3000 N/m<br />

A<br />

B<br />

1500 N/m<br />

0.8 m<br />

1200<br />

1.6 m<br />

0.8 m<br />

V<br />

(N)<br />

0<br />

960<br />

–1200<br />

M<br />

(N . m) 0<br />

480<br />

480<br />

Problem 4.5-13 A cantilever beam AB supports a couple <strong>and</strong> a<br />

concentrated load, as shown in the figure.<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />

A<br />

400 lb-ft<br />

200 lb<br />

B<br />

5 ft 5 ft<br />

Solution 4.5-13<br />

Cantilever beam<br />

M A = 1600 lb-ft<br />

A<br />

400 lb-ft<br />

200 lb<br />

B<br />

R A = 200 lb<br />

5 ft 5 ft<br />

+200<br />

V<br />

(lb)<br />

0<br />

0<br />

M<br />

(lb-ft)<br />

–1600<br />

–600<br />

–1000


276 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />

Problem 4.5-14 The cantilever beam AB shown in the figure is<br />

subjected to a uniform load acting throughout one-half of its length <strong>and</strong> a<br />

concentrated load acting at the free end.<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />

A<br />

2.0 kN/m<br />

2 m 2 m<br />

2.5 kN<br />

B<br />

Solution 4.5-14<br />

Cantilever beam<br />

2.0 kN/m<br />

2.5 kN<br />

M A = 14 kN . m<br />

R A = 6.5 kN<br />

V<br />

(kN)<br />

0<br />

0<br />

M<br />

(kN . m)<br />

A<br />

2 m 2 m<br />

6.5<br />

2.5<br />

–5.0<br />

–14.0<br />

B<br />

Problem 4.5-15 The uniformly loaded beam ABC has simple supports at<br />

A <strong>and</strong> B <strong>and</strong> an overhang BC (see figure).<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />

A<br />

25 lb/in.<br />

B<br />

C<br />

72 in.<br />

48 in.<br />

Solution 4.5-15<br />

Beam with an overhang<br />

25 lb/in.<br />

A<br />

B<br />

C<br />

72 in.<br />

R A = 500 lb<br />

500<br />

V<br />

0<br />

(lb) 20 in.<br />

5000<br />

M 0<br />

(lb-in.)<br />

20 in.<br />

40 in.<br />

1200<br />

48 in.<br />

R B = 2500 lb<br />

–1300<br />

–28,800


SECTION 4.5 <strong>Shear</strong>-Force <strong>and</strong> <strong>Bending</strong>-Moment Diagrams 277<br />

Problem 4.5-16 A beam ABC with an overhang at one end supports a<br />

uniform load of intensity 12 kN/m <strong>and</strong> a concentrated load of magnitude<br />

2.4 kN (see figure).<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />

A<br />

12 kN/m<br />

B<br />

2.4 kN<br />

C<br />

1.6 m 1.6 m 1.6 m<br />

Solution 4.5-16<br />

Beam with an overhang<br />

12 kN/m<br />

2.4 kN<br />

A<br />

B<br />

C<br />

V<br />

(kN)<br />

M<br />

(kN . m)<br />

0<br />

0<br />

1.6 m 1.6 m 1.6 m<br />

R A = 13.2 kN<br />

R B = 8.4 kN<br />

13.2<br />

2.4<br />

1.1m<br />

M max<br />

–6.0<br />

5.76<br />

0.64 m<br />

M max = 7.26<br />

1.1m<br />

–3.84<br />

Problem 4.5-17 The beam ABC shown in the figure is simply<br />

supported at A <strong>and</strong> B <strong>and</strong> has an overhang from B to C. The<br />

loads consist of a horizontal force P 1<br />

400 lb acting at the end<br />

of the vertical arm <strong>and</strong> a vertical force P 2<br />

900 lb acting at the<br />

end of the overhang.<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this<br />

beam. (Note: Disregard the widths of the beam <strong>and</strong> vertical arm<br />

<strong>and</strong> use centerline dimensions when making calculations.)<br />

P 1 = 400 lb<br />

1.0 ft<br />

A<br />

P 2 = 900 lb<br />

B<br />

C<br />

4.0 ft 1.0 ft<br />

Solution 4.5-17<br />

Beam with vertical arm<br />

1.0 ft<br />

A<br />

P 1 = 400 lb<br />

A<br />

R A = 125 lb<br />

400 lb-ft<br />

125 lb<br />

P 2 = 900 lb<br />

B<br />

C<br />

4.0 ft 1.0 ft<br />

R B = 1025 lb<br />

900 lb<br />

B<br />

C<br />

1025 lb<br />

V<br />

(lb)<br />

M<br />

(lb)<br />

0<br />

0<br />

400<br />

125<br />

900<br />

900


278 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />

Problem 4.5-18 A simple beam AB is loaded by two segments of<br />

uniform load <strong>and</strong> two horizontal forces acting at the ends of a vertical<br />

arm (see figure).<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />

A<br />

4 kN/m<br />

1 m<br />

8 kN<br />

1 m<br />

4 kN/m<br />

B<br />

8 kN<br />

2 m 2 m<br />

2 m<br />

2 m<br />

Solution 4.5-18 Simple beam<br />

4 kN/m<br />

16 kN . m<br />

A<br />

2 m 2 m 2 m<br />

R A = 6 kN<br />

4 kN/m<br />

2 m<br />

B<br />

R B = 10 kN<br />

V<br />

(kN)<br />

M<br />

(kN . m)<br />

0<br />

0<br />

6.0<br />

1.5 m<br />

1.5 m<br />

2.0<br />

4.5 4.0<br />

16.0<br />

12.0<br />

10.0<br />

Problem 4.5-19 A beam ABCD with a vertical arm CE is supported as a<br />

simple beam at A <strong>and</strong> D (see figure). A cable passes over a small pulley<br />

that is attached to the arm at E. One end of the cable is attached to the<br />

beam at point B. The tensile force in the cable is 1800 lb.<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for beam ABCD.<br />

(Note: Disregard the widths of the beam <strong>and</strong> vertical arm <strong>and</strong> use centerline<br />

dimensions when making calculations.)<br />

A<br />

B<br />

Cable<br />

C<br />

E<br />

D<br />

1800 lb<br />

8 ft<br />

6 ft 6 ft 6 ft<br />

Solution 4.5-19<br />

Beam with a cable<br />

E<br />

1800 lb<br />

Free-body diagram of beam ABCD<br />

1800 lb<br />

A<br />

Cable<br />

B<br />

C<br />

D<br />

8 ft<br />

1800<br />

1440<br />

1800<br />

1440<br />

5760 lb-ft<br />

A C D<br />

B<br />

800<br />

1080 720<br />

800<br />

6 ft 6 ft 6 ft<br />

R D = 800 lb<br />

R D = 800 lb<br />

640<br />

Note: All forces have units of pounds.<br />

4800<br />

V<br />

(lb)<br />

0<br />

M<br />

(lb-ft)<br />

0<br />

960<br />

800<br />

800<br />

4800


SECTION 4.5 <strong>Shear</strong>-Force <strong>and</strong> <strong>Bending</strong>-Moment Diagrams 279<br />

Problem 4.5-20 The beam ABCD shown in the figure has<br />

overhangs that extend in both directions for a distance of 4.2 m<br />

from the supports at B <strong>and</strong> C, which are 1.2 m apart.<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this<br />

overhanging beam.<br />

5.1 kN/m<br />

A<br />

B<br />

10.6 kN/m<br />

C<br />

5.1 kN/m<br />

D<br />

4.2 m 4.2 m<br />

1.2 m<br />

Solution 4.5-20<br />

Beam with overhangs<br />

32.97<br />

5.1 kN/m<br />

10.6 kN/m<br />

5.1 kN/m<br />

V<br />

(kN)<br />

0<br />

6.36<br />

6.36<br />

A<br />

B<br />

C<br />

D<br />

32.97<br />

4.2 m 4.2 m<br />

R<br />

1.2 m<br />

B = 39.33 kN R C = 39.33 kN<br />

M 0<br />

(kN . m)<br />

61.15 61.15<br />

59.24<br />

Problem 4.5-21 The simple beam AB shown in the figure supports a<br />

concentrated load <strong>and</strong> a segment of uniform load.<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />

A<br />

4.0 k<br />

C<br />

2.0 k/ft<br />

B<br />

5 ft<br />

20 ft<br />

10 ft<br />

Solution 4.5-21<br />

Simple beam<br />

A<br />

4.0 k<br />

C<br />

2.0 k/ft<br />

B<br />

R A = 8 k<br />

5 ft 5 ft<br />

10 ft<br />

R B = 16 k<br />

V<br />

(k)<br />

0<br />

8<br />

4<br />

12 ft<br />

40<br />

C<br />

60 64<br />

8 ft<br />

16<br />

M max = 64 k-ft<br />

M<br />

(k-ft)<br />

0<br />

12 ft<br />

C<br />

8 ft


280 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />

Problem 4.5-22 The cantilever beam shown in the figure supports<br />

a concentrated load <strong>and</strong> a segment of uniform load.<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this<br />

cantilever beam.<br />

A<br />

3 kN<br />

0.8 m 0.8 m<br />

1.0 kN/m<br />

1.6 m<br />

B<br />

Solution 4.5-22<br />

Cantilever beam<br />

4.6<br />

M A =<br />

6.24 kN . m<br />

A<br />

3 kN<br />

1.0 kN/m<br />

B<br />

V<br />

(kN)<br />

0<br />

1.6<br />

0.8 m 0.8 m<br />

R A = 4.6 kN<br />

1.6 m<br />

M<br />

(kN . m)<br />

0<br />

2.56<br />

1.28<br />

6.24<br />

Problem 4.5-23 The simple beam ACB shown in the figure is subjected<br />

to a triangular load of maximum intensity 180 lb/ft.<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />

180 lb/ft<br />

A<br />

C<br />

B<br />

6.0 ft<br />

7.0 ft<br />

Solution 4.5-23<br />

Simple beam<br />

A<br />

180 lb/ft<br />

C<br />

B<br />

V<br />

(lb)<br />

0<br />

240<br />

x 1 = 4.0 ft<br />

300<br />

390<br />

M max = 640<br />

R A = 240 lb<br />

6.0 ft<br />

1.0 ft<br />

R B = 390 lb<br />

M<br />

(lb-ft)<br />

0<br />

360<br />

Problem 4.5-24 A beam with simple supports is subjected to a<br />

trapezoidally distributed load (see figure). The intensity of the load varies<br />

from 1.0 kN/m at support A to 3.0 kN/m at support B.<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />

A<br />

1.0 kN/m<br />

3.0 kN/m<br />

B<br />

2.4 m


SECTION 4.5 <strong>Shear</strong>-Force <strong>and</strong> <strong>Bending</strong>-Moment Diagrams 281<br />

Solution 4.5-24<br />

A<br />

1.0 kN/m<br />

Simple beam<br />

3.0 kN/m<br />

B<br />

V<br />

(kN)<br />

0<br />

2.0<br />

x 1 = 1.2980 m<br />

x<br />

R A = 2.0 kN<br />

2.4 m<br />

R B = 2.8 kN<br />

Set V 0:<br />

V 2.0 x x2<br />

2.4 (x meters; V kN) M<br />

2.8<br />

M max = 1.450<br />

x 1<br />

1.2980 m<br />

(kN . m)<br />

0<br />

Problem 4.5-25 A beam of length L is being designed to support a uniform load<br />

of intensity q (see figure). If the supports of the beam are placed at the ends,<br />

creating a simple beam, the maximum bending moment in the beam is qL 2 /8.<br />

However, if the supports of the beam are moved symmetrically toward the middle<br />

of the beam (as pictured), the maximum bending moment is reduced.<br />

Determine the distance a between the supports so that the maximum bending<br />

moment in the beam has the smallest possible numerical value.<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this<br />

condition.<br />

A<br />

q<br />

a<br />

L<br />

B<br />

Solution 4.5-25<br />

Beam with overhangs<br />

q<br />

Solve for a: a (2 2)L 0.5858L<br />

M<br />

0<br />

A<br />

(L a)/2 (L a)/2<br />

a<br />

R A = qL/2<br />

R B = qL/2<br />

M 2<br />

M 1 M 1<br />

The maximum bending moment is smallest when<br />

M 1<br />

M 2<br />

(numerically).<br />

q(L a)2<br />

M 1 <br />

8<br />

M 2 R a A ¢<br />

2 ≤ qL2<br />

8 qL (2a L)<br />

8<br />

M 1 M 2 (L a) 2 L(2a L)<br />

B<br />

M 1 M 2 q (L a)2<br />

8<br />

qL2<br />

8<br />

V 0<br />

M 0<br />

(3 22) 0.02145qL2<br />

0.2071L<br />

0.2929 qL<br />

0.2929L<br />

0.2071 qL<br />

0.02145 qL 2<br />

x 1 x 1<br />

0.2071 qL<br />

0.2929 qL<br />

0.02145 qL 2 0.02145 qL 2<br />

x 1 = 0.3536 a<br />

= 0.2071 L


282 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />

Problem 4.5-26 The compound beam ABCDE shown in the figure<br />

consists of two beams (AD <strong>and</strong> DE) joined by a hinged connection at D.<br />

The hinge can transmit a shear force but not a bending moment. The<br />

loads on the beam consist of a 4-kN force at the end of a bracket attached<br />

at point B <strong>and</strong> a 2-kN force at the midpoint of beam DE.<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this<br />

compound beam.<br />

4 kN<br />

A<br />

1 m<br />

2 kN 1 m<br />

B C D<br />

E<br />

2 m<br />

2 m<br />

2 m<br />

2 m<br />

Solution 4.5-26<br />

Compound beam<br />

4 kN<br />

4 kN . m Hinge<br />

2 kN<br />

A<br />

B C D<br />

E<br />

2 m<br />

2 m<br />

2 m<br />

1 m 1 m<br />

R A = 2.5 kN<br />

R C = 2.5 kN<br />

R E = 1 kN<br />

V<br />

(kN) 0<br />

2.5<br />

1.5<br />

1.0<br />

D<br />

1.0<br />

5.0<br />

M<br />

(kN . m)<br />

0<br />

2.67 m<br />

1.0<br />

2.0<br />

D<br />

1.0<br />

Problem 4.5-27 The compound beam ABCDE shown in the figure<br />

consists of two beams (AD <strong>and</strong> DE) joined by a hinged connection at D.<br />

The hinge can transmit a shear force but not a bending moment. A force P<br />

acts upward at A <strong>and</strong> a uniform load of intensity q acts downward on<br />

beam DE.<br />

Draw the shear-force <strong>and</strong> bending-moment diagrams for this<br />

compound beam.<br />

A<br />

P<br />

B C<br />

L L L<br />

D<br />

q<br />

2L<br />

E<br />

Solution 4.5-27<br />

Compound beam<br />

A<br />

P<br />

B<br />

C<br />

D<br />

q<br />

E<br />

Hinge<br />

L L L<br />

R B = 2P + qL R C = P + 2qL<br />

V<br />

P<br />

qL<br />

0<br />

D<br />

2L<br />

R E = qL<br />

–qL<br />

M<br />

0<br />

PL<br />

−P−qL<br />

D<br />

−qL 2<br />

L<br />

L<br />

qL<br />

2


SECTION 4.5 <strong>Shear</strong>-Force <strong>and</strong> <strong>Bending</strong>-Moment Diagrams 283<br />

Problem 4.5-28 The shear-force diagram for a simple beam<br />

is shown in the figure.<br />

Determine the loading on the beam <strong>and</strong> draw the bendingmoment<br />

diagram, assuming that no couples act as loads on<br />

the beam.<br />

V<br />

0<br />

12 kN<br />

–12 kN<br />

2.0 m<br />

1.0 m<br />

1.0 m<br />

Solution 4.5-28<br />

Simple beam (V is given)<br />

6.0 kN/m 12 kN<br />

A<br />

B<br />

R A = 12kN<br />

2 m 1 m 1 m<br />

R B = 12kN<br />

V<br />

(kN)<br />

0<br />

12<br />

12<br />

−12<br />

M<br />

(kN . m)<br />

0<br />

Problem 4.5-29 The shear-force diagram for a beam is shown<br />

in the figure. Assuming that no couples act as loads on the beam,<br />

determine the forces acting on the beam <strong>and</strong> draw the bendingmoment<br />

diagram.<br />

V<br />

652 lb<br />

0<br />

572 lb<br />

580 lb<br />

500 lb<br />

–128 lb<br />

–448 lb<br />

4 ft 16 ft<br />

4 ft<br />

Solution 4.5-29<br />

Force diagram<br />

<strong>Forces</strong> on a beam (V is given)<br />

20 lb/ft<br />

V<br />

(lb)<br />

652<br />

0<br />

572<br />

580<br />

500<br />

–128<br />

4 ft 16 ft<br />

4 ft<br />

652 lb 700 lb 1028 lb 500 lb<br />

M<br />

(lb-ft)<br />

2448<br />

–448<br />

0<br />

14.50 ft<br />

–2160


284 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />

Problem 4.5-30 A simple beam AB supports two connected wheel loads P<br />

<strong>and</strong> 2P that are distance d apart (see figure). The wheels may be placed at<br />

any distance x from the left-h<strong>and</strong> support of the beam.<br />

(a) Determine the distance x that will produce the maximum shear force<br />

in the beam, <strong>and</strong> also determine the maximum shear force V max<br />

.<br />

(b) Determine the distance x that will produce the maximum bending<br />

moment in the beam, <strong>and</strong> also draw the corresponding bendingmoment<br />

diagram. (Assume P 10 kN, d 2.4 m, <strong>and</strong> L 12 m.)<br />

A<br />

x<br />

P<br />

d<br />

L<br />

2P<br />

B<br />

Solution 4.5-30<br />

A<br />

x<br />

Moving loads on a beam<br />

P<br />

d<br />

L<br />

2P<br />

P 10 kN<br />

d 2.4 m<br />

L 12 m<br />

B<br />

Reaction at support B:<br />

R B P L x 2P L (x d) P (2d 3x)<br />

L<br />

<strong>Bending</strong> moment at D:<br />

M D R B (L x d)<br />

P<br />

(2d 3x)(L x d)<br />

L<br />

(a) Maximum shear force<br />

By inspection, the maximum shear force occurs at<br />

support B when the larger load is placed close to, but<br />

not directly over, that support.<br />

dM D<br />

dx<br />

P L [3x2 (3L 5d)x 2d(L d)]<br />

<br />

P<br />

(6x 3L 5d) 0<br />

L<br />

Eq.(1)<br />

A<br />

R A = L<br />

Pd<br />

x L d 9.6 m<br />

x = L − d<br />

V max R B P ¢3 d ≤ 28 kN<br />

L<br />

P<br />

d<br />

R B = P(3 −<br />

d<br />

L)<br />

2P<br />

B<br />

Solve for x: x L 6 ¢3 5d L ≤ 4.0 m<br />

Substitute x into Eq (1):<br />

M max <br />

(b) Maximum bending moment<br />

64<br />

M max = 78.4<br />

By inspection, the maximum bending moment occurs<br />

M<br />

at point D, under the larger load 2P.<br />

(kN . m)<br />

P 2P<br />

0<br />

4.0 m 2.4 m 5.6 m<br />

x d<br />

A<br />

D<br />

B<br />

P<br />

Note:R A <br />

2 ¢3 d<br />

≤ 16 kN<br />

L<br />

L<br />

R<br />

P<br />

R B <br />

2 ¢3 d<br />

B ≤ 14 kN<br />

L<br />

<br />

P<br />

L B 3¢L 6 ≤ 2<br />

¢3 5d L ≤ 2<br />

(3L 5d)<br />

L ¢<br />

6 ≤ ¢3 5d ≤ 2d(L d)R<br />

L<br />

PL<br />

12 ¢3 d L ≤ 2<br />

78.4 kN m

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!