28.12.2013 Views

Protein Folding in the Hydrophobic-Hydrophilic (HP) Model is NP ...

Protein Folding in the Hydrophobic-Hydrophilic (HP) Model is NP ...

Protein Folding in the Hydrophobic-Hydrophilic (HP) Model is NP ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>the</strong> parity problem of <strong>the</strong> cubic lattice. Although our<br />

methods do not rely on parity arguments, <strong>the</strong>y fail because<br />

we cannot utilize as easily <strong>the</strong> different number of<br />

m<strong>is</strong>s<strong>in</strong>g neighbors between edge and face nodes <strong>in</strong> <strong>the</strong><br />

m<strong>in</strong>imum configuration arrangement.<br />

5 Acknowledgements<br />

Many thanks to Serafim Batzoglou, Sor<strong>in</strong> Istrail, Es<strong>the</strong>r<br />

Jesurum, and Lior Pachter for helpful comments, and to<br />

Sor<strong>in</strong> Istrail for po,&ng th<strong>is</strong> problem to us. Thanks are<br />

also due to anonymous referees for <strong>the</strong>ir helpful comments.<br />

B.B. <strong>is</strong> partially supported by an NSF Career<br />

Award B.B. and T-L. are partially supported by ARPA<br />

contract N0001495-1-1246 and AR0 grant DAAH04<br />

95-l-0607.<br />

References<br />

[l] R Agarwala, S. Batzoglou, V. Dam%, S. De<br />

catur, M. Farach, S. Hannenhahi, S. Skiena, and<br />

S. Muthukr<strong>is</strong>hnan. Local rules for prote<strong>in</strong> fold<strong>in</strong>g<br />

on a triangular lattice and generalized hydropho<br />

bicity <strong>in</strong> <strong>the</strong> <strong>HP</strong> model J. Computational BioL,<br />

4(3):2?5-296, Fall 1997.<br />

[2] T. Akutsu and S. Miyano. On <strong>the</strong> approximation<br />

of prote<strong>in</strong> thread<strong>in</strong>g. In Proc. First Annual<br />

Irk Conf. on Computational Molecular Biol. (RE<br />

COMB), pages 3-8, Santa Fe, NM, jan 1997. ACM.<br />

[3] B. Berger and T. Leighton. <strong>Prote<strong>in</strong></strong> fold<strong>in</strong>g <strong>in</strong><br />

<strong>the</strong> hydrophobic-hydrophilic (<strong>HP</strong>) model <strong>is</strong> <strong>NP</strong>complete.<br />

J. Computational BioL, Spr<strong>in</strong>g 1998. In<br />

press.<br />

143 J. D. Bryngelson, J. N- Onuchic, N. D. Socci,<br />

and P. G. T%701ynes. Funnels, pathways, and <strong>the</strong><br />

energy landscape of prote<strong>in</strong> fold<strong>in</strong>g: a syn<strong>the</strong>s<strong>is</strong>.<br />

PROTEINS: Structure, Function, and Genetics,<br />

21:167-195, 1995.<br />

[5] P. Crescenzi. D. Goldman. C. Paoadimitriou.<br />

A. Piccolbom, and M. Y&akak<strong>is</strong>. Cn <strong>the</strong> corn:<br />

plexity of prote<strong>in</strong> fold<strong>in</strong>g. In Proc. 2nd Annual<br />

Int. Conf. on Computational hfolecular Biology<br />

(RECOhfB), New York City, NY, March 1998.<br />

ACM. To appear-<br />

If51<br />

171 K- Dill, S. Bromberg, K. Yue, K. Fiebig, D. Yee,<br />

P. Thomas, and H. Ghan. Pr<strong>in</strong>ciples of prote<strong>in</strong><br />

fold&p A perspective from simple exact models.<br />

<strong>Prote<strong>in</strong></strong> Science, 4561-602, 1995.<br />

181<br />

PI<br />

K. DilL Theory for <strong>the</strong> fold<strong>in</strong>g and stability of glob<br />

nlar prote<strong>in</strong>s. Biochem<strong>is</strong>try, 24:1501-X09, 1985.<br />

A Fraenkel. Deexponentializ<strong>in</strong>g complex computational<br />

ma<strong>the</strong>matical problems us<strong>in</strong>g physical or biological<br />

systems. Technical Report CS90-30, Weizmann<br />

Inst. of Science, Dept. of Applied Math and<br />

Computer Science, 1990.<br />

A. Fraenkel. Complexity of prote<strong>in</strong> fold<strong>in</strong>g. Bull.<br />

hfath BioL, 55:1199-1210, 1993.<br />

PO1<br />

ml<br />

P21<br />

P31<br />

P41<br />

[I51<br />

[161<br />

1171 T. Leighton. Introduction to Parallel Algorithms<br />

and Architechtures: Arrays . Trees - Hypercubes,<br />

chapter Arrays and Trees, page 190. Morgan Kaufmann,<br />

San Mateo, CA, 1992.<br />

P31<br />

P91<br />

PO1<br />

Pll<br />

A. S. Fraenkel. <strong>Prote<strong>in</strong></strong> fold<strong>in</strong>g, sp<strong>in</strong> glass and computational<br />

complexity. In Third Annual DIMACS<br />

Workshop on DNA Based Computers, Philadelphia,<br />

PA, June 1997. To appear <strong>in</strong> proceed<strong>in</strong>gs<br />

as an <strong>in</strong>vited paper.<br />

M. Garey and D. Johnson. Computers and Intractability.<br />

Freeman, New York, 1979.<br />

W. Hart and S. Istrail. Fast prote<strong>in</strong> fold<strong>in</strong>g<br />

<strong>in</strong> <strong>the</strong> hydrophobic-hydrophilic model with<strong>in</strong><br />

three-eighths of optimal. J. Computational Biol.,<br />

3(1):53-96, Spr<strong>in</strong>g 1996.<br />

W. Hart and S. Istrail. Robust proofs of <strong>NP</strong>hardness<br />

for prote<strong>in</strong> fold<strong>in</strong>g: General lattices and<br />

energy potentials. J. Computationa Biol., 4(1):1-<br />

22, spr<strong>in</strong>g 1997.<br />

W. E. Hart. On <strong>the</strong> computational complexity<br />

of sequence design problems. In Proc. First Annual<br />

Int. Conf. on Computational Molecular Biology<br />

(RECOMB), pages 128-136, Santa Fe, NM, jan<br />

1997. ACM.<br />

W. E. Hart and S. Istrail. Lattice and off-lattice<br />

side cha<strong>in</strong> models of prote<strong>in</strong> fold<strong>in</strong>g: L<strong>in</strong>ear time<br />

structure prediction better than In Proc. First Annual<br />

Int. Conf. on Computational Molecular Biology<br />

(RECOMB), pages 137-146, Santa Fe, NM, jan<br />

1997. ACM.<br />

R. H. Lathrop. The prote<strong>in</strong> thread<strong>in</strong>g problem with<br />

sequence am<strong>in</strong>o acid <strong>in</strong>teraction preferences <strong>is</strong> npcomplete.<br />

<strong>Prote<strong>in</strong></strong> Eng<strong>in</strong>eer<strong>in</strong>g, 7:1059-1068, 1994.<br />

T. Leighton and A. Rosenberg. Three-dimensional<br />

circuit layouts. SIAM J. Comput<strong>in</strong>g, 15(3):793-<br />

813, 1986.<br />

A. Nayak, A. S<strong>in</strong>clair, and U. Zwick. Spatial codes<br />

and <strong>the</strong> hardness of str<strong>in</strong>g fold<strong>in</strong>g problems. In Proceed<strong>in</strong>gs<br />

of <strong>the</strong> N<strong>in</strong>th Annual ACM-SIAM Symposium<br />

on D<strong>is</strong>crete Alg orithms, Philadelphia, January<br />

1998. ACM/SIAM. To appear.<br />

J. Ngo and J. Marks. Computat<strong>in</strong>al complexity of a<br />

problem <strong>in</strong> molecular structure prediction. <strong>Prote<strong>in</strong></strong><br />

Eng<strong>in</strong>eer<strong>in</strong>g, 5:313-321, 1992.<br />

J. Ngo, J. Marks, and M. Karplus. The <strong>Prote<strong>in</strong></strong><br />

<strong>Fold<strong>in</strong>g</strong> Problem and Tertiary Structure Prediction,<br />

chapter Computational complexity, prote<strong>in</strong><br />

structure prediction, and <strong>the</strong> Lev<strong>in</strong>thal paradox.<br />

Birkhauser, Basel, 1994. Edited by K.M. Merz<br />

and S.M. LeGrand.<br />

[22] M. Paterson and T. Przytycka. On <strong>the</strong> complexity<br />

of str<strong>in</strong>g fold<strong>in</strong>g. D<strong>is</strong>crete Applied Ma<strong>the</strong>matics,<br />

71:217-230, 1996.<br />

[23] R Unger and J. Moult. F<strong>in</strong>d<strong>in</strong>g <strong>the</strong> lowest free<br />

energy conformato<strong>in</strong> of a prote<strong>in</strong> <strong>is</strong> an np-hard<br />

prblem:proof and implications. Bull. Math. Biol.,<br />

55:1183-1198, 1993.<br />

39

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!