28.12.2013 Views

Spin-density distribution of the p-O2 N·C6 F4 ·CNSSN free radical by ...

Spin-density distribution of the p-O2 N·C6 F4 ·CNSSN free radical by ...

Spin-density distribution of the p-O2 N·C6 F4 ·CNSSN free radical by ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

scientifichighlights modelling<br />

<strong>Spin</strong>-<strong>density</strong> <strong>distribution</strong><br />

<strong>of</strong> <strong>the</strong> p-O 2<br />

N·C 6<br />

F 4<strong>·CNSSN</strong><br />

<strong>free</strong> <strong>radical</strong> <strong>by</strong> experiment<br />

and ab initio calculations.<br />

The X·C 6<br />

F 4<br />

CNSSN• <strong>radical</strong>s, where X is an anion, are very promising as<br />

building blocks in <strong>the</strong> search for organic magnets <strong>free</strong> <strong>of</strong> metallic compounds,<br />

a field <strong>of</strong> increasing interest in <strong>the</strong> scientific community. Knowledge<br />

<strong>of</strong> <strong>the</strong> spin-<strong>density</strong> <strong>distribution</strong> in <strong>the</strong> CNSSN• dithiadiazolyl <strong>radical</strong><br />

ring (DTDA for short) constitutes a major step towards <strong>the</strong> understanding<br />

<strong>of</strong> <strong>the</strong> magnetic and electronic properties <strong>of</strong> <strong>the</strong> rich magnetism<br />

<strong>of</strong> DTDA derivatives. The O 2<br />

N·C 6<br />

F 4<br />

CNSSN• <strong>radical</strong> was chosen as <strong>the</strong><br />

most favorable DTDA derivative to study <strong>the</strong> spin <strong>distribution</strong> in this kind<br />

<strong>of</strong> <strong>free</strong> <strong>radical</strong> <strong>by</strong> polarized-neutron diffraction with support <strong>by</strong> ab initio<br />

calculations based on <strong>density</strong> functional <strong>the</strong>ory. Both <strong>the</strong> experiment<br />

and <strong>the</strong> ab initio calculations show that almost all <strong>the</strong> spin <strong>density</strong> is localized<br />

on <strong>the</strong> sulfur and nitrogen atoms <strong>of</strong> <strong>the</strong> DTDA ring with a small negative<br />

spin <strong>density</strong> on <strong>the</strong> carbon atom <strong>of</strong> <strong>the</strong> DTDA ring and negligible<br />

spin <strong>density</strong> over <strong>the</strong> rest <strong>of</strong> <strong>the</strong> <strong>radical</strong>.<br />

In recent years, <strong>the</strong>re has been<br />

considerable interest in <strong>the</strong> study <strong>of</strong> <strong>the</strong><br />

magnetic behaviour <strong>of</strong> <strong>free</strong> <strong>radical</strong>s [1].<br />

Part <strong>of</strong> this interest has focused on <strong>the</strong><br />

development and study <strong>of</strong> organic materials<br />

that exhibit spontaneous magnetization<br />

on decreasing temperature in<br />

order to develop organic magnets <strong>free</strong><br />

<strong>of</strong> metallic elements. Such materials can<br />

exhibit peculiar and probably unprecedented<br />

properties not shown <strong>by</strong> <strong>the</strong> traditional<br />

inorganic magnetic materials<br />

based on metallic or ionic lattices: low<br />

<strong>density</strong>, transparency, photo-responsiveness,<br />

electrical insulation, biocompatibility,<br />

low-temperature fabrication, easy<br />

processability etc. Fur<strong>the</strong>rmore, a most<br />

interesting characteristic <strong>of</strong> <strong>the</strong>se materials<br />

is <strong>the</strong> possibility <strong>of</strong> performing<br />

slight chemical modifications to change<br />

<strong>the</strong>se physical properties.<br />

The dithiadiazolyl <strong>radical</strong>s X·C 6<br />

F 4<br />

CNSSN•<br />

(X = Br, O 2<br />

N, CN,…) present a very interesting<br />

variety <strong>of</strong> magnetic behaviours.<br />

The p-NC-C 6<br />

F 4<br />

CNSSN• <strong>radical</strong> has been<br />

reported as a weak ferromagnet with<br />

an ordering temperature <strong>of</strong> 36 K [2], <strong>the</strong><br />

highest observed in a purely organic<br />

N1<br />

N1<br />

O1<br />

C1<br />

F1<br />

F1<br />

C2<br />

C2<br />

C3<br />

C3<br />

F2<br />

F2<br />

C4<br />

J. Luzon, G.J. McIntyre<br />

and M.R. Johnson (ILL)<br />

J. Campo and F. Palacio<br />

(ICMA, Zaragoza)<br />

C.M. Pask and J.M. Rawson<br />

(University <strong>of</strong> Cambridge, UK)<br />

magnet to date. By replacing <strong>the</strong> CN<br />

group <strong>by</strong> Br a paramagnetic system<br />

possessing very weak antiferromagnetic<br />

interactions is obtained. And,<br />

finally, if <strong>the</strong> CN group is substituted <strong>by</strong><br />

NO 2<br />

to give <strong>the</strong> p-O 2<br />

N·C 6<br />

F 4<br />

CNSSN• <strong>radical</strong>,<br />

ferromagnetic ordering is observed<br />

below T c<br />

= 1.3 K [3].<br />

These different magnetic behaviours<br />

are due to <strong>the</strong> change in <strong>the</strong> molecular<br />

packing and, consequently, a substantial<br />

modification <strong>of</strong> <strong>the</strong> magnetic<br />

interaction pathways. Knowledge <strong>of</strong><br />

<strong>the</strong> spin-<strong>density</strong> <strong>distribution</strong> in <strong>the</strong><br />

dithiadiazolyl <strong>radical</strong> ring allows us a<br />

better understanding <strong>of</strong> <strong>the</strong> rich magnetism<br />

<strong>of</strong> DTDA derivatives and hence<br />

helps in <strong>the</strong> design <strong>of</strong> new organic ferromagnets<br />

with higher T C<br />

based on <strong>the</strong><br />

DTDA ring.<br />

In <strong>the</strong> work reported here we have<br />

studied <strong>the</strong> spin-<strong>density</strong> <strong>distribution</strong><br />

in <strong>the</strong> p-O 2<br />

N·C 6<br />

F 4<br />

CNSSN• <strong>radical</strong> <strong>by</strong> <strong>the</strong><br />

complementary techniques <strong>of</strong> polarized-neutron<br />

diffraction and ab initio<br />

calculations.<br />

-1.20<br />

Figure 1: Experimental spin-<strong>density</strong> reconstruction <strong>of</strong> <strong>the</strong> p-O 2<br />

N·C 6<br />

F 4<br />

CNSSN• <strong>radical</strong> projected<br />

along <strong>the</strong> perpendicular to <strong>the</strong> CNSSN mean plane.<br />

C5<br />

N2<br />

N2<br />

S1<br />

S1<br />

µ B<br />

/A 2<br />

2.00<br />

1.20<br />

0.40<br />

0.09<br />

0.06<br />

0.05<br />

0.03<br />

0.00<br />

-0.03<br />

-0.05<br />

-0.06<br />

-0.09<br />

-0.40<br />

102 one hundred and two | one hundred and three


µB N2 S1 C5 C1 C2 C3 C4 F2<br />

BLYP-molecule 0.226 0.308 0.065 -0.003 0.001 -0.004 0.005 0.000<br />

PW91-molecule 0.220 0.312 -0.061 -0.003 0.001 -0.004 0.002 0.000<br />

VWM-molecule 0.225 0.310 -0.062 -0.003 0.001 -0.004 0.002 0.000<br />

BLYP-crystal 0.214 0.317 -0.061 -0.003 0.002 -0.004 0.004 0.001<br />

This experiment 0.247 0.281 -0.055<br />

Table 1: Ab initio spin-<strong>density</strong> populations in <strong>the</strong> p-O 2<br />

N·C 6<br />

F 4<br />

CNSSN• <strong>radical</strong>. See figure 1 for <strong>the</strong><br />

atomic labelling.<br />

The polarized-neutron diffraction<br />

experiment was performed on <strong>the</strong> D3<br />

lifting-counter diffractometer at <strong>the</strong><br />

ILL at 1.5 K in an applied field <strong>of</strong> 9 T.<br />

A multipolar model <strong>of</strong> <strong>the</strong> spin <strong>density</strong><br />

(figure 1) was fitted to <strong>the</strong> measured<br />

flipping ratios. Almost all <strong>the</strong> spin <strong>density</strong><br />

is localized in <strong>the</strong> nitrogen and sulfur<br />

p orbitals perpendicular to <strong>the</strong> DTDA<br />

ring (0.281 µ B<br />

and 0.247 µ B<br />

, respectively).<br />

These orbitals generate <strong>the</strong> Single<br />

Occupied Molecular Orbital (SOMO).<br />

Some negative <strong>density</strong> is observed<br />

between <strong>the</strong> sulfur and nitrogen atoms<br />

that can be due to covalence and polarization<br />

effects. In addition, a small negative<br />

<strong>density</strong> is observed (-0.055 µ B<br />

) on<br />

<strong>the</strong> carbon site <strong>of</strong> <strong>the</strong> DTDA ring due to<br />

polarization effects. The spin <strong>density</strong><br />

over <strong>the</strong> rest <strong>of</strong> <strong>the</strong> <strong>radical</strong> is below<br />

<strong>the</strong> limits <strong>of</strong> <strong>the</strong> experimental accuracy.<br />

To support <strong>the</strong> experimental modelling,<br />

ab initio calculations were performed<br />

at <strong>the</strong> generalized gradient<br />

approximation level, using several<br />

exchange-correlation functionals<br />

(PW91, BLYP, VWM) with a double<br />

numerical basis set including functions<br />

and numerical integrations, as implemented<br />

in <strong>the</strong> Dmol3 s<strong>of</strong>tware based on<br />

<strong>density</strong> functional <strong>the</strong>ory. Both periodic<br />

(crystal) and molecular calculations<br />

were made.<br />

The ab initio calculations (figure 2 and<br />

table I) confirm <strong>the</strong> experimental results<br />

and, in particular, <strong>the</strong>y show that <strong>the</strong><br />

negative spin <strong>density</strong> in <strong>the</strong> plane <strong>of</strong><br />

<strong>the</strong> DTDA ring is not a spurious effect <strong>of</strong><br />

<strong>the</strong> multipolar model used. This negative<br />

spin <strong>density</strong> could play a very important<br />

role in <strong>the</strong> ferromagnetic behavior <strong>of</strong> <strong>the</strong><br />

O 2<br />

N·C 6<br />

F 4<br />

CNSSN• <strong>radical</strong>. The spin populations<br />

in <strong>the</strong> rest <strong>of</strong> <strong>the</strong> molecule could<br />

also be obtained: in <strong>the</strong> carbon atoms<br />

<strong>the</strong>re are alternate negative and positive<br />

low spin <strong>density</strong> populations due to<br />

polarization effects. Only a suggestion<br />

<strong>of</strong> <strong>the</strong> latter was observed experimentally,<br />

which emphasizes <strong>the</strong> importance<br />

<strong>of</strong> combining experiment and ab initio<br />

calculations in such studies.<br />

Figure 2: <strong>Spin</strong>-<strong>density</strong> <strong>distribution</strong> <strong>of</strong> <strong>the</strong> p-O 2<br />

N·C 6<br />

F 4<br />

CNSSN• <strong>radical</strong> calculated with <strong>the</strong> Dmol3<br />

package (BLYP functional, molecular calculation). The red surface is <strong>the</strong> contour <strong>of</strong> 0.0002 µ B<br />

/Å 3<br />

and <strong>the</strong> blue one is <strong>the</strong> contour <strong>of</strong> –0.0002 µ B<br />

/Å 3 .<br />

References: [1] "Magnetic Properties <strong>of</strong> Organic Materials" Ed. By P. Lahti, Marcel Dekker Inc New York (1999)<br />

[2] F. Palacio, G. Antorrena, M. Castro, R. Burriel, J.M. Rawson, J.N.B. Smith, N. Bricklebank, J. Novoa and C. Ritter, Phys. Rev.<br />

Lett. 79 (1997) 2336-9<br />

[3] J. M. Rawson, C.M. Pask, F. Palacio, P. Oliete, C. Paulsen, A. Yamaguchi and R.D. Farley (To be published)<br />

103

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!