28.12.2013 Views

Magmatic Interactions as Recorded in Plagioclase Phenocrysts of ...

Magmatic Interactions as Recorded in Plagioclase Phenocrysts of ...

Magmatic Interactions as Recorded in Plagioclase Phenocrysts of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

JOURNAL OF PETROLOGY VOLUME 40 NUMBER 5 PAGES 787–806 1999<br />

<strong>Magmatic</strong> <strong>Interactions</strong> <strong>as</strong> <strong>Recorded</strong> <strong>in</strong><br />

Plagiocl<strong>as</strong>e <strong>Phenocrysts</strong> <strong>of</strong> Chaos Crags,<br />

L<strong>as</strong>sen Volcanic Center, California<br />

F. J. TEPLEY III 1 ∗, J. P. DAVIDSON 1 AND M. A. CLYNNE 2<br />

1<br />

UNIVERSITY OF CALIFORNIA, LOS ANGELES, DEPARTMENT OF EARTH AND SPACE SCIENCES, LOS ANGELES, CA<br />

90095, USA<br />

2<br />

UNITED STATES GEOLOGICAL SURVEY, MENLO PARK, CA 94025, USA<br />

RECEIVED APRIL 26, 1998; REVISED TYPESCRIPT ACCEPTED NOVEMBER 17, 1998<br />

INTRODUCTION<br />

Magma mix<strong>in</strong>g h<strong>as</strong> been shown to have a large <strong>in</strong>fluence<br />

on the m<strong>in</strong>eralogical, textural, and geochemical de-<br />

velopment <strong>of</strong> arc-related rocks. Undercooled mafic mag-<br />

matic <strong>in</strong>clusions <strong>in</strong> <strong>in</strong>termediate to felsic rocks provide<br />

macroscopic evidence <strong>of</strong> the exchange between two dis-<br />

t<strong>in</strong>ct magm<strong>as</strong>; resorbed phenocryst ph<strong>as</strong>es, compositional<br />

and isotopic zon<strong>in</strong>g, and textural discont<strong>in</strong>uities <strong>in</strong> the<br />

constituent m<strong>in</strong>erals <strong>of</strong> these lav<strong>as</strong> record a history <strong>of</strong><br />

complex m<strong>in</strong>gl<strong>in</strong>g and mix<strong>in</strong>g processes (e.g. S<strong>in</strong>ger et<br />

al., 1995; Simonetti et al., 1996).<br />

Our research h<strong>as</strong> focused primarily on exam<strong>in</strong><strong>in</strong>g<br />

magmatic evolution <strong>as</strong> recorded <strong>in</strong> plagiocl<strong>as</strong>e pheno-<br />

crysts. Plagiocl<strong>as</strong>e, an almost ubiquitous component <strong>in</strong><br />

arc-related volcanic rocks, h<strong>as</strong> great potential to provide<br />

temporal records <strong>of</strong> magma chamber dynamics (And-<br />

erson, 1983; Stamatelopoulou-Seymour et al., 1990;<br />

Blundy & Shimizu, 1991; S<strong>in</strong>ger et al., 1995). It nucleates<br />

The silicic lava domes <strong>of</strong> Chaos Crags <strong>in</strong> L<strong>as</strong>sen Volcanic National<br />

Park conta<strong>in</strong> a suite <strong>of</strong> variably quenched, hybrid b<strong>as</strong>altic andesite<br />

magmatic <strong>in</strong>clusions. The <strong>in</strong>clusions represent thorough mix<strong>in</strong>g<br />

between rhyodacite and b<strong>as</strong>alt recharge liquids accompanied by some<br />

mechanical disaggregation <strong>of</strong> the <strong>in</strong>clusions result<strong>in</strong>g <strong>in</strong> crystals<br />

mix<strong>in</strong>g <strong>in</strong>to the rhyodacite host preserved by quench<strong>in</strong>g on dome<br />

87<br />

emplacement. Sr/ 86 Sr ratios (~0·7037–0·7038) <strong>of</strong> the <strong>in</strong>clusions<br />

are dist<strong>in</strong>ctly lower than those <strong>of</strong> the host rhyodacite<br />

(~0·704–0·7041), which are used to f<strong>in</strong>gerpr<strong>in</strong>t the orig<strong>in</strong> <strong>of</strong><br />

m<strong>in</strong>eral components and to monitor the mix<strong>in</strong>g and m<strong>in</strong>gl<strong>in</strong>g process.<br />

Chemical, isotopic, and textural characteristics <strong>in</strong>dicate that the<br />

<strong>in</strong>clusions are hybrid magm<strong>as</strong> formed from the mix<strong>in</strong>g and undercool<strong>in</strong>g<br />

<strong>of</strong> recharge b<strong>as</strong>altic magma with rhyodacitic magma. All<br />

the host magma phenocrysts (biotite, plagiocl<strong>as</strong>e, hornblende and<br />

quartz crystals) also occur <strong>in</strong> the <strong>in</strong>clusions, where they are rimmed<br />

by reaction products. Compositional and strontium isotopic data<br />

from cores <strong>of</strong> unresorbed plagiocl<strong>as</strong>e crystals <strong>in</strong> the host rhyodacite,<br />

partially resorbed plagiocl<strong>as</strong>e crystals enclosed with<strong>in</strong> b<strong>as</strong>altic andesite<br />

<strong>in</strong>clusions, and partially resorbed plagiocl<strong>as</strong>e crystals <strong>in</strong> the<br />

rhyodacitic host are all similar. Rim 87 Sr/ 86 Sr ratios <strong>of</strong> the partially<br />

resorbed plagiocl<strong>as</strong>e crystals <strong>in</strong> both <strong>in</strong>clusions and host are lower<br />

and close to those <strong>of</strong> the whole-rock hybrid b<strong>as</strong>altic andesite values.<br />

This observation <strong>in</strong>dicates that some crystals orig<strong>in</strong>ally crystallized<br />

<strong>in</strong> the silicic host, were partially resorbed and subsequently overgrown<br />

<strong>in</strong> the hybrid b<strong>as</strong>altic andesite magma, and then some <strong>of</strong> these<br />

partially resorbed plagiocl<strong>as</strong>e crystals were recycled back <strong>in</strong>to the<br />

host rhyodacite. Textural evidence, <strong>in</strong> the form <strong>of</strong> sieve zones and<br />

major dissolution boundaries <strong>of</strong> the resorbed plagiocl<strong>as</strong>e crystals,<br />

<strong>in</strong>dicates immersion <strong>of</strong> crystals <strong>in</strong>to a hotter, more calcic magma. The<br />

occurrence <strong>of</strong> partially resorbed plagiocl<strong>as</strong>e together with plagiocl<strong>as</strong>e<br />

microlites and oliv<strong>in</strong>e crystals reflects disaggregation <strong>of</strong> <strong>in</strong>clusions<br />

and m<strong>in</strong>gl<strong>in</strong>g <strong>of</strong> this material <strong>in</strong>to the silicic host. These processes<br />

are commonplace <strong>in</strong> some orogenic magma systems and may be<br />

elucidated by isotopic microsampl<strong>in</strong>g and analysis <strong>of</strong> the plagiocl<strong>as</strong>es<br />

crystalliz<strong>in</strong>g from them.<br />

KEY WORDS: Chaos Crags; <strong>in</strong>clusion disaggregation; magma mix<strong>in</strong>g;<br />

magmatic <strong>in</strong>clusions; microsampl<strong>in</strong>g<br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

∗Correspond<strong>in</strong>g author. Telephone: (310) 825-3880. Fax: (310) 825-<br />

2779. e-mail: tepley@ess.ucla.edu © Oxford University Press 1999


JOURNAL OF PETROLOGY VOLUME 40 NUMBER 5 MAY 1999<br />

at high temperature and persists <strong>as</strong> a stable crystalliz<strong>in</strong>g <strong>as</strong> recharge (an <strong>in</strong>troduction <strong>of</strong> a fresh batch <strong>of</strong> generally<br />

ph<strong>as</strong>e throughout cool<strong>in</strong>g and eruption. Moreover, CaAl– hotter, less evolved magma <strong>in</strong>to the chamber) and/or<br />

NaSi diffusive exchange with<strong>in</strong> the crystal structure is contam<strong>in</strong>ation (<strong>as</strong>similation or mix<strong>in</strong>g <strong>of</strong> a partial melt<br />

relatively slow, thus ensur<strong>in</strong>g that compositional and generated <strong>in</strong> country rock and its <strong>in</strong>corporation <strong>in</strong>to the<br />

textural zon<strong>in</strong>g reflects primary growth (Grove et al., magma). A simple test <strong>of</strong> open- vs closed-system behavior<br />

1984). Chemical and zon<strong>in</strong>g configurations preserved <strong>in</strong> is to look for isotopic variations with<strong>in</strong> the crystalliz<strong>in</strong>g<br />

plagiocl<strong>as</strong>e crystals provide <strong>in</strong>formation that constra<strong>in</strong>s m<strong>in</strong>erals. As m<strong>in</strong>erals crystallize from a magma, they<br />

the chang<strong>in</strong>g crystal–melt compositions, and therefore <strong>in</strong>herit the isotopic composition <strong>of</strong> the magma from<br />

the chemical evolution <strong>of</strong> the magm<strong>as</strong> <strong>in</strong>volved. which they grow. The isotopic signatures may be locked<br />

Compositionally zoned plagiocl<strong>as</strong>e phenocrysts are a <strong>in</strong>to the crystal lattice, or trapped <strong>in</strong> melt <strong>in</strong>clusions. If<br />

characteristic and abundant feature <strong>of</strong> many igneous the isotopic composition <strong>of</strong> the magma changes through<br />

rocks. Pearce & Kolisnik (1990) have proposed two major magma mix<strong>in</strong>g or <strong>as</strong>similation, the changes should be<br />

types <strong>of</strong> compositional zon<strong>in</strong>g and have speculated on reflected <strong>in</strong> the progressive growth zones on the crystal.<br />

their petrogenetic orig<strong>in</strong>. Type I zon<strong>in</strong>g is characterized Closed-system processes should not change isotopic values<br />

by f<strong>in</strong>e-scale 1–10 μm wide zones, with compositional <strong>of</strong> crystals, parts <strong>of</strong> crystals, or the rocks <strong>in</strong> which they<br />

amplitudes <strong>of</strong> about 1–10 An %, commonly occurr<strong>in</strong>g reside (with the exception <strong>of</strong> long-lived systems with very<br />

<strong>in</strong> periodic, repetitive <strong>in</strong>crements. This type <strong>of</strong> zonation low Sr, high-Rb, high-silica rhyolite; e.g. Bishop Tuff,<br />

is thought to reflect near-equilibrium, <strong>in</strong>cremental diffuto<br />

because even <strong>in</strong> a short amount <strong>of</strong> time, decay <strong>of</strong> 87 Rb<br />

sion-controlled growth enhanced by small perturbations<br />

87 Sr can dramatically affect the 87 Sr/ 86 Sr ratio <strong>of</strong> the<br />

with<strong>in</strong> the local reservoir <strong>of</strong> the grow<strong>in</strong>g crystal (Ha<strong>as</strong>e system).<br />

et al., 1980; Pearce & Kolisnik, 1990; Pearce, 1993; S<strong>in</strong>ger At Chaos Crags, <strong>in</strong> L<strong>as</strong>sen Volcanic National Park <strong>in</strong><br />

et al., 1995). Type II zon<strong>in</strong>g, on the other hand, is northern California, emplacement <strong>of</strong> a series <strong>of</strong> rhyo-<br />

characterized by zones <strong>of</strong> thicknesses up to 100 μm, with dacite domes h<strong>as</strong> arrested the m<strong>in</strong>gl<strong>in</strong>g <strong>of</strong> at le<strong>as</strong>t two<br />

compositional amplitudes commonly between 10 and 25 dist<strong>in</strong>ct magm<strong>as</strong> near the <strong>in</strong>itial stages <strong>of</strong> <strong>in</strong>teraction. In<br />

An %, and usually <strong>as</strong>sociated with a discernible dispreserved<br />

this study, we <strong>in</strong>tegrate textural and compositional details<br />

solution event (Pearce & Kolisnik, 1990). This type <strong>of</strong><br />

<strong>in</strong> crystals with geochemical and isotopic <strong>in</strong>-<br />

zon<strong>in</strong>g is controlled by the liquid composition <strong>of</strong> the formation to elucidate the processes that produced the<br />

system and may reflect gross changes <strong>in</strong> the crystal’s local erupted lithologies from the Chaos Crags domes. We<br />

environment brought on by large-scale disturbance <strong>of</strong> have focused, <strong>in</strong> particular, on the isotopic compositions<br />

the crystalliz<strong>in</strong>g system such <strong>as</strong> magma mix<strong>in</strong>g. <strong>of</strong> the key components <strong>in</strong>volved, which serve to f<strong>in</strong>gerpr<strong>in</strong>t<br />

Textural and compositional features are common <strong>in</strong> contribut<strong>in</strong>g sources. In situ isotopic variations with<strong>in</strong> and<br />

volcanic plagiocl<strong>as</strong>es (Pearce & Kolisnik, 1990; Stimac between the crystall<strong>in</strong>e ph<strong>as</strong>es have allowed us to <strong>in</strong>fer<br />

& Pearce, 1992). Tsuchiyama (1985) h<strong>as</strong> reproduced a history best expla<strong>in</strong>ed by <strong>in</strong>teraction between separate,<br />

similar features <strong>in</strong> the laboratory. In his work, simple dist<strong>in</strong>ct magm<strong>as</strong> and their respective crystall<strong>in</strong>e ph<strong>as</strong>es<br />

dissolution <strong>of</strong> plagiocl<strong>as</strong>e <strong>in</strong>to a melt that is underby<br />

<strong>in</strong>volved <strong>in</strong> an <strong>in</strong>clusion-form<strong>in</strong>g event or events, followed<br />

saturated with respect to plagiocl<strong>as</strong>e may be <strong>in</strong>itiated by<br />

mechanical disaggregation <strong>of</strong> <strong>in</strong>clusions and con-<br />

a rise <strong>in</strong> temperature <strong>of</strong> only a few degrees above the comitant m<strong>in</strong>gl<strong>in</strong>g <strong>of</strong> m<strong>in</strong>eral ph<strong>as</strong>es, <strong>in</strong>clusion fragments,<br />

equilibrium liquidus temperature to produce rounded and differentiated liquids, with the host rhyodacite.<br />

crystals. Additionally, textural and compositional changes<br />

<strong>in</strong> crystals were produced by compositionally disparate<br />

<strong>in</strong>teract<strong>in</strong>g liquids and crystals. For example, mantlelike<br />

resorbed (sieve-textured) modifications <strong>of</strong> plagiocl<strong>as</strong>e GEOLOGICAL SETTING<br />

crystals were produced by partial dissolution, a reaction Chaos Crags comprise a group <strong>of</strong> silicic lava domes<br />

between sodic plagiocl<strong>as</strong>e and calcic melt (Tsuchiyama, and <strong>as</strong>sociated tephra deposits erupted from the L<strong>as</strong>sen<br />

1985), the cause <strong>of</strong> which h<strong>as</strong> been previously attributed Volcanic Center, the southernmost extension <strong>of</strong> current<br />

to mix<strong>in</strong>g <strong>of</strong> mafic and silicic magma (Eichelberger, subduction-related magmatic activity <strong>of</strong> the C<strong>as</strong>cade<br />

1978). Range (Guffanti & Weaver, 1988) (Fig. 1). Volcanism <strong>in</strong><br />

Some <strong>of</strong> the textures and compositional changes described<br />

the L<strong>as</strong>sen region can be characterized on two scales:<br />

above can also be related to closed-system be- (1) regional volcanism compris<strong>in</strong>g hundreds <strong>of</strong> small<br />

havior. Perturbations <strong>in</strong> the <strong>in</strong>tr<strong>in</strong>sic variables T, P, X H2 O, (10 –3 –10 2 km 3 ), short-lived, mafic to <strong>in</strong>termediate vol-<br />

reflect<strong>in</strong>g eruptive or convective cycles with<strong>in</strong> a magma canoes; (2) focused susta<strong>in</strong>ed volcanism <strong>in</strong>volv<strong>in</strong>g larger,<br />

chamber, can produce the Type I zon<strong>in</strong>g <strong>of</strong> plagiocl<strong>as</strong>e longer-lived, <strong>in</strong>termediate to silicic volcanic centers super-<br />

crystals described by Pearce & Kolisnik (1990). The imposed on the broad platform built by regional volcanism<br />

larger-scale compositional and textural changes are<br />

(Clynne, 1990). Included <strong>in</strong> the focused volcanic<br />

thought to reflect large-scale, open-system processes such centers are a cha<strong>in</strong> <strong>of</strong> large, late Pliocene to Pleistocene<br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

788


TEPLEY et al.<br />

MAGMA MIXING, LASSEN VOLCANIC CENTER<br />

C<br />

D<br />

E<br />

F<br />

Simplified Geologic Map <strong>of</strong><br />

Chaos Crags, L<strong>as</strong>sen Volcanic<br />

National Park, California<br />

EXPLANATION<br />

Chaos Jumbles<br />

Hot rock debris<br />

Dome F<br />

B<br />

Dome E<br />

Dome D<br />

A<br />

Dome C<br />

Dome B<br />

Dome A<br />

1 km North Pyrocl<strong>as</strong>tic-flow and<br />

fall deposits, and partial<br />

dome collapse and<br />

avalanche debris<br />

Fig. 1. Simplified geologic map <strong>of</strong> the Chaos Crags rhyodacite dome complex [modified after Christiansen et al. (1999)].<br />

<strong>in</strong> the host lav<strong>as</strong> are partially resorbed m<strong>in</strong>eral ph<strong>as</strong>es,<br />

and small fragments <strong>of</strong> disaggregated <strong>in</strong>clusions (pheno-<br />

crysts and microphenocrysts). This suggests that the <strong>in</strong>-<br />

clusions and their fragments were dispersed throughout<br />

the domes and have m<strong>in</strong>gled to the extent that crystal<br />

populations have exchanged and atta<strong>in</strong>ed varied degrees<br />

<strong>of</strong> disequilibrium.<br />

There h<strong>as</strong> been some confusion regard<strong>in</strong>g the term<strong>in</strong>ology<br />

describ<strong>in</strong>g magmatic <strong>in</strong>clusions, which justifies<br />

some <strong>in</strong>troductory def<strong>in</strong>ition. In this work we sometimes<br />

refer to the hybrid b<strong>as</strong>altic andesite <strong>in</strong>clusions <strong>as</strong> variably<br />

quenched <strong>in</strong>clusions, the textures <strong>of</strong> which have been<br />

best described by Eichelberger (1980). Many <strong>of</strong> these<br />

<strong>in</strong>clusions have particularly f<strong>in</strong>e-gra<strong>in</strong>ed to gl<strong>as</strong>sy rims<br />

and crenulate marg<strong>in</strong>s, and all <strong>of</strong> them conta<strong>in</strong> partially<br />

resorbed or reacted phenocrysts from the host lava. These<br />

observations <strong>in</strong>dicate that a mix<strong>in</strong>g event between molten<br />

host and mafic <strong>in</strong>trud<strong>in</strong>g magma must have occurred<br />

before the hybrid <strong>in</strong>clusion w<strong>as</strong> quenched <strong>in</strong> or aga<strong>in</strong>st<br />

the cooler host lava. This occurs because the proportion<br />

<strong>of</strong> hotter mafic magma is large compared with cooler<br />

felsic magma, allow<strong>in</strong>g the two to hybridize without<br />

<strong>in</strong>itially quench<strong>in</strong>g the orig<strong>in</strong>al b<strong>as</strong>alt liquid <strong>in</strong> the cl<strong>as</strong>sic<br />

sense (Sparks & Marshall, 1986).<br />

volcanic centers, each <strong>of</strong> which h<strong>as</strong> flank<strong>in</strong>g silicic domes<br />

and flows. Chaos Crags is part <strong>of</strong> the flank<strong>in</strong>g silicic<br />

volcanism <strong>of</strong> the middle Pleistocene to Holocene, L<strong>as</strong>sen<br />

Volcanic Center (Clynne, 1990).<br />

Detailed geologic mapp<strong>in</strong>g (Christiansen et al., 1999)<br />

and radiometric dat<strong>in</strong>g <strong>of</strong> carbon samples have es-<br />

tablished a detailed emplacement history for Chaos<br />

Crags, <strong>in</strong>dicat<strong>in</strong>g a complex sequence <strong>of</strong> eruption be-<br />

g<strong>in</strong>n<strong>in</strong>g 1125 years BP and end<strong>in</strong>g 1060 years BP (Clynne<br />

&Muffler, 1989). The Chaos Crags eruptive sequence<br />

w<strong>as</strong> <strong>in</strong>itiated by the formation <strong>of</strong> a tephra cone and two<br />

pyrocl<strong>as</strong>tic flows, followed by emplacement <strong>of</strong> dome A,<br />

which plugged the vent. Subsequently, a violent eruption<br />

partially destroyed dome A and generated a pyrocl<strong>as</strong>tic<br />

flow. Emplacement <strong>of</strong> domes B–F followed, accompanied<br />

by hot or warm dome-collapse avalanches from several<br />

domes. After a hiatus <strong>of</strong> ~700 years, Chaos Jumbles<br />

formed when dome C produced a series <strong>of</strong> three cold,<br />

rockfall avalanches probably unrelated to volcanic activity<br />

(Clynne & Muffler, 1989). The total volume <strong>of</strong> erupted<br />

material approaches 2 km 3 .<br />

The lava <strong>of</strong> the Chaos Crags is porphyritic hornblende–<br />

biotite rhyodacite conta<strong>in</strong><strong>in</strong>g 67–70% SiO 2 (the host<br />

rocks span the rhyodacite–dacite compositional boundary;<br />

rhyodacite will be used to describe all host rocks).<br />

The lav<strong>as</strong> are crystal rich, conta<strong>in</strong><strong>in</strong>g mostly crystals <strong>of</strong><br />

plagiocl<strong>as</strong>e and lesser amounts <strong>of</strong> hornblende, biotite and<br />

quartz. The domes conta<strong>in</strong> a suite <strong>of</strong> variably quenched,<br />

hybrid b<strong>as</strong>altic andesite to andesite magmatic <strong>in</strong>clusions<br />

composed <strong>of</strong> sparse oliv<strong>in</strong>e, cl<strong>in</strong>opyroxene and calcic<br />

plagiocl<strong>as</strong>e phenocrysts, and abundant amphibole and<br />

plagiocl<strong>as</strong>e microphenocrysts (b<strong>as</strong>altic andesite will be<br />

used to describe all <strong>in</strong>clusion rocks). The <strong>in</strong>clusions are<br />

distributed homogeneously throughout the domes and<br />

<strong>in</strong>cre<strong>as</strong>e <strong>in</strong> volumetric abundance and diversity with time<br />

throughout the emplacement sequence. Also conta<strong>in</strong>ed<br />

ANALYTICAL PROCEDURES<br />

For bulk chemical analyses, samples were ground <strong>in</strong> a<br />

tungsten carbide shatterbox. Whole-rock major-element<br />

compositions were obta<strong>in</strong>ed at the US Geological Survey<br />

(USGS) laboratory <strong>in</strong> Denver, Colorado, by wavelength-<br />

dispersive X-ray fluorescence (XRF) analysis. Precision<br />

<strong>of</strong> the major-element analyses h<strong>as</strong> been evaluated by<br />

repeated analysis <strong>of</strong> <strong>in</strong>ternal standards and w<strong>as</strong> reported<br />

by Bacon & Druitt (1988).<br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

789


JOURNAL OF PETROLOGY VOLUME 40 NUMBER 5 MAY 1999<br />

Careful petrographic studies <strong>of</strong> <strong>in</strong>clusions and rhyo- n = 11, respectively). At lower concentrations, an ion<br />

dacites were conducted for all Chaos Crags domes, beam <strong>of</strong> 1–3 V for 88 Sr cannot be rout<strong>in</strong>ely susta<strong>in</strong>ed for<br />

although the current study focuses on early erupted a sufficiently long period <strong>of</strong> time to achieve a precision<br />

domes, for which the greatest difference <strong>in</strong> bulk-rock better than ~50 ppm. There is a trade-<strong>of</strong>f between the<br />

87<br />

Sr/ 86 Sr ratio exists between the <strong>in</strong>clusions and host. concentration <strong>of</strong> Sr <strong>in</strong> the sample and the weight <strong>of</strong><br />

Polished 1–2 mm wafers conta<strong>in</strong><strong>in</strong>g plagiocl<strong>as</strong>e crystals material that must be recovered to provide 5 ng <strong>of</strong> Sr,<br />

<strong>in</strong> both <strong>in</strong>clusions and host were prepared.<br />

which <strong>in</strong> turn is a function <strong>of</strong> the drill hole size and is<br />

The Nomarski differential <strong>in</strong>terference contr<strong>as</strong>t (NDIC) deemed a necessary sample size to achieve acceptable<br />

technique (Anderson, 1983; Pearce & Clark, 1989) w<strong>as</strong> precision (see Davidson et al., 1998). Plagiocl<strong>as</strong>e crystals,<br />

used to enhance the compositionally dependent textural which typically conta<strong>in</strong> >500 ppm Sr, can be sampled<br />

features <strong>in</strong> the plagiocl<strong>as</strong>e crystals. Polished probe sections with the smallest available drill bits to yield sufficient Sr<br />

were etched for 180–240 s by immersion <strong>in</strong> concentrated to achieve a precision <strong>of</strong> ~20 ppm.<br />

HBF 4 , which preferentially dissolves Ca-rich zones, creat<strong>in</strong>g<br />

microtopographic (±0·25 μm) relief. The microtopography<br />

is enhanced upon imag<strong>in</strong>g <strong>in</strong> reflected light.<br />

The NDIC technique provides the clearest possible visualization<br />

PETROLOGY AND GEOCHEMISTRY<br />

<strong>of</strong> plagiocl<strong>as</strong>e growth structures.<br />

A suite <strong>of</strong> variably quenched, hybrid b<strong>as</strong>altic andesite<br />

Once imag<strong>in</strong>g <strong>of</strong> the crystals had been performed, an <strong>in</strong>clusions and host rhyodacite w<strong>as</strong> collected from each<br />

electron microprobe traverse w<strong>as</strong> taken along a l<strong>in</strong>e <strong>in</strong> dome (see Fig. 1). The lav<strong>as</strong> can be divided <strong>in</strong>to two<br />

the crystal which transects the most growth zones. In slightly different lithologic groups. Group 1 (dome A, and<br />

this manner, changes <strong>in</strong> composition (An content) could <strong>as</strong>sociated pyrocl<strong>as</strong>tic flows, and dome B) are rhyodacitic<br />

be related to textural variations. Gl<strong>as</strong>ses and m<strong>in</strong>eral (SiO 2 > 68%), have fewer and smaller quenched b<strong>as</strong>altic<br />

ph<strong>as</strong>es were analyzed with a Cameca CAMEBAX elec- andesite <strong>in</strong>clusions, conta<strong>in</strong> a smaller percentage <strong>of</strong> partron<br />

microprobe at UCLA. Element analysis w<strong>as</strong> per- tially resorbed plagiocl<strong>as</strong>e phenocrysts and fragments <strong>of</strong><br />

formed us<strong>in</strong>g an accelerat<strong>in</strong>g potential <strong>of</strong> 15 kV, a beam disaggregated <strong>in</strong>clusions, and have biotite and hornblende<br />

current <strong>of</strong> 10 nA, and count times <strong>of</strong> 20 s. We used a <strong>as</strong>semblages that show little or no perceptible opacitedefocused<br />

beam (~10 μm) for analyz<strong>in</strong>g gl<strong>as</strong>ses. Cor- rim development (Fig. 2a). The groundm<strong>as</strong>s is clear<br />

rections for matrix effects were made us<strong>in</strong>g the procedures colorless gl<strong>as</strong>s. Volumetrically, the amount <strong>of</strong> <strong>in</strong>clusions<br />

<strong>of</strong> Bence & Albee (1968) with modifications <strong>of</strong> Albee & <strong>in</strong> the Group 1 lav<strong>as</strong> is small (up to 1–2% <strong>of</strong> total<br />

Ray (1970).<br />

volume). Group 2 lav<strong>as</strong> (domes C, D, E, F and <strong>as</strong>sociated<br />

A low-blank micro-sampl<strong>in</strong>g and chemical process<strong>in</strong>g dome collapse deposits and rockfalls) are slightly less<br />

procedure h<strong>as</strong> been set up for isotope analyses <strong>of</strong> small evolved (SiO 2 < 68%), have abundant, variably sized,<br />

samples at UCLA. The procedure uses a micro-drill hybrid b<strong>as</strong>altic andesite <strong>in</strong>clusions with quenched and<br />

hav<strong>in</strong>g a vertically mounted bit with an x–y stage. Solid, unquenched marg<strong>in</strong>s, conta<strong>in</strong> abundant partially re-<br />

diamond-tipped drill bits, which range <strong>in</strong> outside diameter sorbed plagiocl<strong>as</strong>e phenocrysts and fragments <strong>of</strong> disaggregated<br />

from 0·25 to 0·51 mm, are used to sample the plagiocl<strong>as</strong>e<br />

<strong>in</strong>clusions, and, <strong>in</strong> many c<strong>as</strong>es, have biotite<br />

crystals at appropriate locations determ<strong>in</strong>ed through the and hornblende crystals with extensive opacite-rim development<br />

NDIC and electron microprobe work. A drop <strong>of</strong> water<br />

(Fig. 2b). Although groundm<strong>as</strong>s from Group<br />

is placed on the drill site and then, <strong>as</strong> the drill penetrates, 2 host lav<strong>as</strong> is generally devitrified, gl<strong>as</strong>sy groundm<strong>as</strong>ses<br />

a slurry is created. The slurry is removed by pipette, do occur. Group 2 <strong>in</strong>clusions account for a larger pro-<br />

dried down and weighed, spiked with 84 S and dissolved. Sr portion <strong>of</strong> the total volume <strong>of</strong> the domes (up to 20%).<br />

separation takes place <strong>in</strong> microcolumns us<strong>in</strong>g a stripp<strong>in</strong>g As the earlier domes (Group 1) are compositionally more<br />

technique with Sr-spec ® res<strong>in</strong> or by chromotography evolved than the later domes (Group 2), we suggest<br />

with cation-exchange res<strong>in</strong>, which later proved to be a (<strong>as</strong>sum<strong>in</strong>g a common source for both) that this reflects<br />

better method for both Rb separation and ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g progressively greater degrees <strong>of</strong> m<strong>in</strong>gl<strong>in</strong>g or mix<strong>in</strong>g that<br />

low blanks. After load<strong>in</strong>g on Re filaments with a Ta adds mafic, <strong>in</strong>clusion-derived components to the host<br />

activator, the sample is analyzed by thermal ionization rhyodacite such that it crosses the dacite compositional<br />

m<strong>as</strong>s spectrometry.<br />

boundary (~3 wt % SiO 2 difference).<br />

We have evaluated our ability to analyze 87 Sr/ 86 Sr The hybrid b<strong>as</strong>altic andesite <strong>in</strong>clusions consist <strong>of</strong> a<br />

ratios accurately and precisely on Sr samples down to microvesicular network <strong>of</strong> acicular plagiocl<strong>as</strong>e, horn-<br />

1–5 ng. Both 6 ng and 600 ng NBS 987 standards are blende, scarce phenocrysts <strong>of</strong> oliv<strong>in</strong>e, cl<strong>in</strong>opyroxene and<br />

rout<strong>in</strong>ely analyzed with microsamples, yield<strong>in</strong>g precisions calcic plagiocl<strong>as</strong>e, and abundant (10–20%) <strong>in</strong>terstitial<br />

<strong>of</strong> the order 25 ppm and 15 ppm respectively, with no gl<strong>as</strong>s (Fig. 2c). The small compositional variation among<br />

significant difference <strong>in</strong> the me<strong>as</strong>ured 87 Sr/ 86 Sr ratios <strong>of</strong> <strong>in</strong>clusions can be accounted for by <strong>in</strong>corporated host-<br />

the standard (0·710253 ± 25, n = 9; 0·710234 ± 15, magma liquid and host phenocryst ph<strong>as</strong>es enclosed with<strong>in</strong><br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

790


TEPLEY et al.<br />

MAGMA MIXING, LASSEN VOLCANIC CENTER<br />

the early domes are more chilled than those <strong>in</strong> the later<br />

domes. Most <strong>in</strong>clusions from the earlier domes have a<br />

f<strong>in</strong>e-gra<strong>in</strong>ed matrix with crenulate marg<strong>in</strong>s (<strong>in</strong>dicative <strong>of</strong> a<br />

liquid–liquid <strong>in</strong>terface) and little vesiculation (e.g. Bacon,<br />

1986). The later domes have a larger variation <strong>in</strong> the<br />

degree <strong>of</strong> quench<strong>in</strong>g. Some are quenched hybrid <strong>in</strong>clusions<br />

such <strong>as</strong> <strong>in</strong> the earlier domes, but many have<br />

fewer quenched textures with vary<strong>in</strong>g thicknesses <strong>of</strong> f<strong>in</strong>egra<strong>in</strong>ed<br />

rims and more vesiculation with<strong>in</strong> the <strong>in</strong>clusions.<br />

Many do not have crenulate marg<strong>in</strong>s at all because <strong>in</strong><br />

later domes the <strong>in</strong>clusions are fragments <strong>of</strong> once larger<br />

<strong>in</strong>clusions.<br />

M<strong>in</strong>eral chemistry<br />

The m<strong>in</strong>eral chemistry and textures <strong>of</strong> major ph<strong>as</strong>es <strong>in</strong><br />

both the <strong>in</strong>clusions and host reflect the m<strong>in</strong>erals’ reaction<br />

to exchange between the two different magma types or<br />

to change <strong>in</strong> thermal and compositional regime without<br />

physical exchange. Compositional descriptions <strong>of</strong> the<br />

m<strong>in</strong>eral ph<strong>as</strong>es <strong>in</strong> host and <strong>in</strong>clusions were previously<br />

provided by Heiken & Eichelberger (1980). Hav<strong>in</strong>g cursorily<br />

and sometimes exhaustively me<strong>as</strong>ured compositions<br />

<strong>of</strong> m<strong>in</strong>eral ph<strong>as</strong>es by electron microprobe analyses, we<br />

<strong>in</strong>clude some compositional details <strong>of</strong> the crystals but<br />

focus our discussion on the thermal and compositional<br />

effects <strong>of</strong> magma mix<strong>in</strong>g. Readers are referred to Clynne<br />

(1999) for a detailed description <strong>of</strong> the textures and<br />

compositions <strong>of</strong> all ph<strong>as</strong>es <strong>in</strong> the 1915 L<strong>as</strong>sen Peak<br />

eruption.<br />

Oliv<strong>in</strong>e<br />

Oliv<strong>in</strong>e phenocrysts are sparsely present <strong>in</strong> all lithologies,<br />

mak<strong>in</strong>g up 1% or less <strong>of</strong> the phenocryst population.<br />

Crystals are up to 2 mm <strong>in</strong> size, and are more abundant<br />

<strong>in</strong> the hybrid b<strong>as</strong>altic andesite <strong>in</strong>clusions. In the <strong>in</strong>clusions,<br />

oliv<strong>in</strong>e is euhedral to subhedral, smaller ones be<strong>in</strong>g less<br />

well shaped (Fig. 4a). They have characteristic irregular<br />

fracture and are relatively clear. The oliv<strong>in</strong>e phenocrysts<br />

have little to no reaction with b<strong>as</strong>altic andesite magma.<br />

Fig. 2. Photomicrographs show<strong>in</strong>g typical textures <strong>of</strong> representative Representative analyses <strong>of</strong> oliv<strong>in</strong>e reported <strong>in</strong> Table 1<br />

dome and <strong>in</strong>clusion samples. (a) Gl<strong>as</strong>s from a Group 1 rhyodacite<br />

are similar to compositions reported by Heiken &<br />

dome. Field <strong>of</strong> view is ~2 mm. (b) Devitrified groundm<strong>as</strong>s from a<br />

Group 2 rhyodacite dome. Field <strong>of</strong> view is ~4 mm. (c) Texture <strong>of</strong> a<br />

hybrid b<strong>as</strong>altic andesite <strong>in</strong>clusion. Field <strong>of</strong> view is ~4 mm.<br />

Eichelberger (1980). The crystals are relatively unzoned<br />

from core to rim, hav<strong>in</strong>g compositions <strong>of</strong> Fo 79–84 , although<br />

Ni concentrations decre<strong>as</strong>e from core to rim.<br />

Oliv<strong>in</strong>e crystals also occur <strong>in</strong> the host rhyodacite,<br />

it. The <strong>in</strong>clusions exhibit a variety <strong>of</strong> textures from coexist<strong>in</strong>g with quartz phenocrysts (Fig. 4b). These crysmedium-gra<strong>in</strong>ed<br />

aphyric to f<strong>in</strong>e-gra<strong>in</strong>ed porphyritic tals are not <strong>as</strong> abundant <strong>in</strong> the host lav<strong>as</strong> <strong>as</strong> they are <strong>in</strong><br />

(Heiken & Eichelberger, 1980) (Fig. 3). The porphyritic the <strong>in</strong>clusions, tend to be smaller, and have reacted<br />

variety conta<strong>in</strong>s large (up to 1 cm) plagiocl<strong>as</strong>e phenocrysts with the host rhyodacite, produc<strong>in</strong>g either idd<strong>in</strong>gsite or<br />

and other ph<strong>as</strong>es thought to have been derived from the hornblende overgrowths and armor<strong>in</strong>g the crystals from<br />

host rhyodacite when the <strong>in</strong>clusion magma <strong>in</strong>truded. On further reaction. However, larger, euhedral oliv<strong>in</strong>e crysthe<br />

whole, the degree <strong>of</strong> quench<strong>in</strong>g roughly follows the tals surrounded by pyroxene and plagiocl<strong>as</strong>e microphenocrysts<br />

emplacement order (dome A to dome F): <strong>in</strong>clusions <strong>in</strong><br />

are also found <strong>in</strong> the host rhyodacite.<br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

791


JOURNAL OF PETROLOGY VOLUME 40 NUMBER 5 MAY 1999<br />

Compositions <strong>of</strong> oliv<strong>in</strong>es <strong>in</strong> the host are similar to those<br />

<strong>in</strong> the <strong>in</strong>clusions (Fig. 4c). They are also unzoned and<br />

have compositions <strong>of</strong> approximately Fo 79–83 , with Ni<br />

concentrations decre<strong>as</strong><strong>in</strong>g from core to rim.<br />

In Fig. 4c, equilibrium liquidus oliv<strong>in</strong>e compositions<br />

(Fo contents) have been calculated b<strong>as</strong>ed on Fe/Mg K D m<strong>in</strong>/gl<strong>as</strong>s<br />

values <strong>of</strong> 0·27–0·33 <strong>of</strong> Roeder & Emslie (1970). Fo values<br />

<strong>of</strong> oliv<strong>in</strong>e crystals produced by rhyodacite compositions<br />

range from Fo 47 to Fo 52 , and do not match the me<strong>as</strong>ured<br />

values <strong>of</strong> Fo 79–83 (Fig. 4c). However, <strong>in</strong> the hybrid b<strong>as</strong>altic<br />

andesite <strong>in</strong>clusions, the equilibrium oliv<strong>in</strong>e compositions<br />

correspond directly to me<strong>as</strong>ured values. Furthermore, Ni<br />

concentrations <strong>in</strong> oliv<strong>in</strong>e require K D values <strong>of</strong> ~100 for<br />

oliv<strong>in</strong>e to have crystallized from rhyodacite, which is<br />

unre<strong>as</strong>onable. Our <strong>in</strong>terpretation is that oliv<strong>in</strong>es <strong>in</strong> the<br />

hybrid magmatic <strong>in</strong>clusions and <strong>in</strong> the host rhyodacite<br />

share the same petrogenetic orig<strong>in</strong> and, through <strong>in</strong>clusion<br />

disaggregation, have exchanged from <strong>in</strong>clusions <strong>in</strong>to the<br />

host where they now exist <strong>as</strong> xenocrysts.<br />

Quartz<br />

Quartz phenocrysts are present <strong>in</strong> all lithologies <strong>of</strong> the<br />

Chaos Crags lav<strong>as</strong>, account<strong>in</strong>g for ~1–2% <strong>of</strong> phenocrysts<br />

present. <strong>Phenocrysts</strong> found <strong>in</strong> the host rhyodacite are<br />

similar from dome to dome; the crystals range <strong>in</strong> size<br />

from 1 to 5 mm, are subhedral to anhedral, rounded,<br />

embayed, cracked, and sparsely distributed throughout<br />

the lav<strong>as</strong> (Fig. 5a). Partially resorbed quartz phenocrysts<br />

found <strong>in</strong> the hybrid b<strong>as</strong>altic andesite <strong>in</strong>clusions are similar<br />

<strong>in</strong> size and shape to those <strong>in</strong> the host rhyodacite, although<br />

they are slightly smaller, less abundant, and armored by<br />

a variably thick rim <strong>of</strong> cl<strong>in</strong>opyroxene microphenocrysts<br />

and dark <strong>in</strong>terstitial gl<strong>as</strong>s (Fig. 5b). The cl<strong>in</strong>opyroxene<br />

rims probably formed when quartz-bear<strong>in</strong>g rhyodacite<br />

mixed with b<strong>as</strong>alt <strong>in</strong> the <strong>in</strong>clusion-form<strong>in</strong>g process. A<br />

similar process and consequences were described by<br />

Clynne (1999) for the L<strong>as</strong>sen Peak 1915 eruption products,<br />

which also <strong>in</strong>volved mix<strong>in</strong>g between silicic and<br />

mafic magm<strong>as</strong>.<br />

Amphibole<br />

Amphibole phenocrysts occur <strong>in</strong> the host rhyodacite <strong>as</strong><br />

large, sub- to euhedral phenocrysts, and <strong>in</strong> the <strong>in</strong>clusions<br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

Fig. 3. Sawn and polished slabs <strong>of</strong> hybrid b<strong>as</strong>altic andesite <strong>in</strong>clusions<br />

and rhyodacite show<strong>in</strong>g the <strong>in</strong>terface between the two and illustrat<strong>in</strong>g<br />

the different degrees <strong>of</strong> quench<strong>in</strong>g <strong>of</strong> <strong>in</strong>clusions <strong>in</strong> the Chaos Crags<br />

domes. Each field <strong>of</strong> view is ~15 cm. (a) Hybrid b<strong>as</strong>altic andesite<br />

<strong>in</strong>clusion and rhyodacite from dome B (Group 1) show<strong>in</strong>g crenulate<br />

marg<strong>in</strong>, partially resorbed plagiocl<strong>as</strong>e crystals, and f<strong>in</strong>e-gra<strong>in</strong>ed texture<br />

<strong>of</strong> <strong>in</strong>clusion. (b) Inclusion and rhyodacite from dome F (Group 2)<br />

show<strong>in</strong>g <strong>in</strong>terface between hybrid b<strong>as</strong>altic andesite <strong>in</strong>clusion and rhyodacite.<br />

The rim <strong>of</strong> the <strong>in</strong>clusion is medium gra<strong>in</strong>ed, probably <strong>in</strong>dicat<strong>in</strong>g<br />

that this <strong>in</strong>clusion is a fragment <strong>of</strong> a larger <strong>in</strong>clusion that sheared apart<br />

<strong>in</strong> a convect<strong>in</strong>g rhyodacite magma chamber. In this manner, the<br />

disaggregat<strong>in</strong>g <strong>in</strong>clusion exposes the <strong>in</strong>terior <strong>of</strong> the <strong>in</strong>clusion to the<br />

host rhyodacitic magma and allows partially resorbed crystals to be<br />

entra<strong>in</strong>ed <strong>in</strong> the host magma. (c) Variably quenched <strong>in</strong>clusion from<br />

dome E (Group 2) show<strong>in</strong>g what appears to be an <strong>in</strong>clusion fold<strong>in</strong>g <strong>in</strong><br />

on itself, possibly <strong>in</strong> the act <strong>of</strong> shear<strong>in</strong>g apart. Part <strong>of</strong> the <strong>in</strong>clusion is<br />

slightly crenulated with f<strong>in</strong>e-gra<strong>in</strong>ed marg<strong>in</strong>s, and part h<strong>as</strong> mediumgra<strong>in</strong>ed<br />

uncrenulated marg<strong>in</strong>s similar to the <strong>in</strong>clusion above, (b).<br />

792


TEPLEY et al.<br />

MAGMA MIXING, LASSEN VOLCANIC CENTER<br />

Table 1: Representative analyses <strong>of</strong> oliv<strong>in</strong>e <strong>in</strong> Group 1 (G1) <strong>in</strong>clusions and <strong>in</strong> Group 2 (G2) host<br />

lav<strong>as</strong> and <strong>in</strong>clusions<br />

G1 <strong>in</strong>clusion phenocryst G2 <strong>in</strong>clusion phenocryst G2 host xenocryst<br />

core rim core rim core rim<br />

SiO 2 39·27 39·14 39·32 38·30 39·11 39·34<br />

MgO 42·84 41·53 42·04 41·96 42·60 42·61<br />

FeO 17·48 18·85 19·05 19·49 18·28 18·73<br />

MnO 0·32 0·30 0·31 0·28 0·28 0·22<br />

NiO 0·10 0·07 0·08 0·02 0·12 0·08<br />

CaO 0·12 0·17 0·13 0·16 0·13 0·13<br />

Total 100·14 100·07 100·93 100·21 100·52 101·11<br />

mol % Fo 81·4 79·7 79·7 79·3 80·6 80·2<br />

Ni (ppm) 810 580 620 150 920 660<br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

Fig. 4. Textural relations <strong>of</strong> oliv<strong>in</strong>e <strong>in</strong> the Chaos Crags lav<strong>as</strong>. Each field <strong>of</strong> view is ~2 mm. (a) Oliv<strong>in</strong>e phenocryst <strong>in</strong> a b<strong>as</strong>altic andesite<br />

<strong>in</strong>clusion. The oliv<strong>in</strong>e crystal is euhedral to subhedral and shows characteristic irregular fracture. (b) Oliv<strong>in</strong>e phenocryst <strong>in</strong> host rhyodacite lava.<br />

The oliv<strong>in</strong>e is subhedral to anhedral, and shows <strong>in</strong>cre<strong>as</strong>ed reaction with host lava. (c) Diagram show<strong>in</strong>g the similarity <strong>in</strong> compositions (darkshaded<br />

are<strong>as</strong>) for oliv<strong>in</strong>es found <strong>in</strong> magmatic <strong>in</strong>clusions and host lav<strong>as</strong>. Light-shaded are<strong>as</strong> are equilibrium compositions <strong>of</strong> oliv<strong>in</strong>es calculated<br />

from Fe/Mg K D m<strong>in</strong>/liq values <strong>of</strong> 0·27–0·33 (Roeder & Emslie, 1970).<br />

793


JOURNAL OF PETROLOGY VOLUME 40 NUMBER 5 MAY 1999<br />

Table 2: Representative analyses <strong>of</strong> amphibole<br />

phenocrysts <strong>in</strong> Group (G1) and Group 2 (G2)<br />

lav<strong>as</strong><br />

G1 phenocryst<br />

G2 phenocryst<br />

core rim core rim<br />

Fig. 5. Textural relations <strong>of</strong> quartz <strong>in</strong> Chaos Crags lav<strong>as</strong>. Each field<br />

<strong>of</strong> view is ~4 mm. (a) Quartz phenocryst <strong>in</strong> host rhyodacite. The crystal<br />

is rounded and embayed but shows no appreciable reaction with<br />

surround<strong>in</strong>g host matrix. (b) Quartz phenocryst <strong>in</strong> magmatic <strong>in</strong>clusion.<br />

The crystal is partially resorbed and embayed, and shows reaction-rim<br />

armor<strong>in</strong>g with cl<strong>in</strong>opyroxene.<br />

<strong>as</strong> large, partially resorbed phenocrysts and <strong>as</strong> lathand<br />

diamond-shaped microphenocrysts. In host lav<strong>as</strong>,<br />

amphibole constitutes ~2% <strong>of</strong> the rhyodacite and ranges<br />

<strong>in</strong> size up to 1·5 mm <strong>in</strong> b<strong>as</strong>al sections and up to 15 mm<br />

<strong>in</strong> sections parallel to the c-axis. Amphiboles <strong>in</strong> rocks<br />

from early eruptions (Group 1) are generally euhedral<br />

and display light brown to medium brown pleochroism<br />

(Fig. 6a), but those from later eruptions (Group 2) are<br />

subhedral, have darker, reddish brown pleochroism, and<br />

exhibit a variably thick opacite rim (Fig. 6b). Representative<br />

analyses <strong>of</strong> amphibole from Group 1 and<br />

Group 2 lav<strong>as</strong> are listed <strong>in</strong> Table 2.<br />

Opacite rims on amphibole are common <strong>in</strong> arc-related<br />

volcanic rocks and need not be related to magma-mix<strong>in</strong>g<br />

events. Rutherford & Hill (1993) have demonstrated with<br />

the 1980–1986 erupted lav<strong>as</strong> <strong>of</strong> Mount St Helens that<br />

dehydrogenation <strong>of</strong> amphibole and the result<strong>in</strong>g opacite<br />

rims may be produced by dehydration <strong>of</strong> a coexist<strong>in</strong>g<br />

melt, ow<strong>in</strong>g to a reduction <strong>of</strong> ambient pressure, <strong>as</strong> <strong>in</strong> the<br />

c<strong>as</strong>e <strong>of</strong> slowly <strong>as</strong>cend<strong>in</strong>g magm<strong>as</strong>. Furthermore, they<br />

postulated that the <strong>as</strong>cent rate <strong>of</strong> the early eruptives,<br />

SiO 2 48·29 49·19 49·61 49·56<br />

Al 2 O 3 6·89 6·12 5·53 5·75<br />

FeO 13·14 11·92 12·34 11·98<br />

MgO 15·09 15·75 15·53 15·68<br />

MnO 0·58 0·60 0·75 0·55<br />

TiO 2 1·33 1·18 1·00 1·04<br />

CaO 11·32 11·24 11·12 11·19<br />

Na 2 O 1·37 1·31 1·13 1·19<br />

K 2 O 0·44 0·43 0·36 0·37<br />

Cr 2 O 3 0·03 0·01 0·02 0·00<br />

Total 98·48 97·74 97·39 97·31<br />

Fig. 6. Textural relations <strong>of</strong> amphibole <strong>in</strong> Chaos Crags lav<strong>as</strong>. Field<br />

<strong>of</strong> view is ~2 mm. (a) Representative amphibole and biotite phenocrysts<br />

from Group 1 lava. Euhedral crystals <strong>in</strong> vitrified gl<strong>as</strong>s groundm<strong>as</strong>s<br />

should be noted. (b) Representative amphibole phenocrysts from Group<br />

2 lava. The embayed crystal h<strong>as</strong> a moderately developed opacite rim,<br />

and resides <strong>in</strong> devitrified rhyodacitic groundm<strong>as</strong>s.<br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

794


TEPLEY et al.<br />

MAGMA MIXING, LASSEN VOLCANIC CENTER<br />

Table 3: Representative analyses <strong>of</strong> biotite<br />

phenocrysts <strong>in</strong> Group 1 (G1) and Group 2<br />

(G2) lav<strong>as</strong><br />

G1 phenocryst<br />

G2 phenocryst<br />

core rim core rim<br />

SiO 2 37·05 37·49 37·94 37·66<br />

Al 2 O 3 13·55 13·63 13·52 13·61<br />

FeO 14·77 14·48 15·18 15·06<br />

MgO 15·02 15·37 15·08 15·13<br />

MnO 0·16 0·24 0·18 0·18<br />

TiO 2 4·25 4·35 4·16 4·09<br />

CaO 0·01 0·00 0·00 0·00<br />

Na 2 O 0·50 0·63 0·82 0·81<br />

K 2 O 8·74 8·94 8·99 8·86<br />

Cr 2 O 3 0·02 0·05 0·04 0·03<br />

Total 94·06 95·18 95·91 95·42<br />

characterized by amphiboles with no reaction rims, is<br />

>66 m/h, where<strong>as</strong> thick-rimmed amphiboles from later<br />

eruptives <strong>as</strong>cended at about 15–30 m/h. Their explanation<br />

is that later eruptives spent up to 25 days along<br />

the conduit marg<strong>in</strong>s before be<strong>in</strong>g mixed <strong>in</strong>to a viscous,<br />

Fig. 7. Textural relations <strong>of</strong> biotite <strong>in</strong> Chaos Crags lav<strong>as</strong>. (a) Repslowly<br />

<strong>as</strong>cend<strong>in</strong>g dacite. The development <strong>of</strong> opacite rims resentative biotite phenocryst from Group 1 lava. The crystal is euhedral<br />

on amphiboles <strong>of</strong> Chaos Crags lav<strong>as</strong> is probably also the to subhedral, and although speckled with Fe–Ti oxide crystals, shows<br />

result <strong>of</strong> dehydrogenation related to slowly <strong>as</strong>cend<strong>in</strong>g no development <strong>of</strong> an opacite rim. Field <strong>of</strong> view is ~2 mm. (b)<br />

Representative biotite phenocrysts from Group 2 lava. This subhedral<br />

magm<strong>as</strong>, and the <strong>in</strong>terpretation <strong>of</strong> Rutherford & Hill crystal h<strong>as</strong> a moderately well-developed opacite rim probably ow<strong>in</strong>g<br />

(1993) for <strong>in</strong>cre<strong>as</strong><strong>in</strong>gly thick rims may imply a similar to decre<strong>as</strong>e <strong>in</strong> pressure and the resultant dehydrogenation. Field <strong>of</strong><br />

eruptive pattern for Chaos Crags. The darker color and view is ~2 mm.<br />

pleochroism <strong>in</strong> amphiboles <strong>of</strong> Group 2 lav<strong>as</strong> probably<br />

reflects oxidiz<strong>in</strong>g conditions dur<strong>in</strong>g <strong>as</strong>cent or after erup- (Fig. 7a). Also found <strong>in</strong> Group 1 lav<strong>as</strong> are characteristically<br />

tion.<br />

more euhedral crystals, where<strong>as</strong> <strong>in</strong> Group 2 lav<strong>as</strong>, crystals<br />

The <strong>in</strong>clusions conta<strong>in</strong> two types <strong>of</strong> amphibole. The tend to be rounded, broken, pitted and sub- to anhedral<br />

most abundant type forms bladed or diamond-shaped (Fig. 7b). Crystals have light brown to dark brown pleomicrophenocrysts.<br />

They are compositionally zoned from chroism, although this darkens and becomes reddish<br />

cores to rims (e.g. Al 2 O 3 varies from ~15 wt % to ~7 wt brown <strong>in</strong> Group 2 lav<strong>as</strong>. Also more predom<strong>in</strong>ant <strong>in</strong><br />

%; Heiken & Eichelberger, 1980) and can be <strong>in</strong>terpreted Group 2 lav<strong>as</strong> are reaction rims around biotite crystals,<br />

<strong>as</strong> high-temperature primary ph<strong>as</strong>es <strong>of</strong> the <strong>in</strong>clusions. vary<strong>in</strong>g <strong>in</strong> thickness from tens to hundreds <strong>of</strong> microns.<br />

The other amphiboles <strong>in</strong> the <strong>in</strong>clusions are host-derived Feeley & Sharp (1996) have shown that reaction rims<br />

amphiboles that show vary<strong>in</strong>g degrees <strong>of</strong> recrystallization. around biotite crystals can be a result <strong>of</strong> <strong>in</strong>cre<strong>as</strong>ed heat<strong>in</strong>g<br />

This texture represents amphibole convert<strong>in</strong>g to ag- produc<strong>in</strong>g a dehydrogenation reaction <strong>in</strong> biotite. Opacite<br />

gregates <strong>of</strong> plagiocl<strong>as</strong>e, oxides, and pyroxenes, caused by rims may also develop, <strong>as</strong> <strong>in</strong> amphibole, ow<strong>in</strong>g to a<br />

thermal breakdown.<br />

decre<strong>as</strong>e <strong>in</strong> pressure and separation <strong>of</strong> an aqueous ph<strong>as</strong>e.<br />

In Chaos Crags, the development <strong>of</strong> reaction rims around<br />

Biotite<br />

biotite crystals is probably related to both temperature<br />

Biotite phenocrysts (Table 3) make up ~1–2% <strong>of</strong> crystals rise and water pressure decre<strong>as</strong>e. The temperature <strong>of</strong> the<br />

<strong>in</strong> the host rhyodacite and occur <strong>as</strong> partially resorbed system would rise <strong>as</strong> a result <strong>of</strong> underplat<strong>in</strong>g <strong>of</strong> the<br />

crystals <strong>in</strong> hybrid b<strong>as</strong>altic andesite <strong>in</strong>clusions. Biotite<br />

phenocrysts range <strong>in</strong> size from 0·25 mm to 1·5 mm, the<br />

larger crystals found predom<strong>in</strong>antly <strong>in</strong> the Group 1 lav<strong>as</strong><br />

rhyodacite magma chamber by hot b<strong>as</strong>altic magma. If<br />

the thermal stability limit <strong>of</strong> biotite is exceeded, devolatilization<br />

<strong>in</strong> the biotites would occur. Bard<strong>in</strong>tzeff &<br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

795


JOURNAL OF PETROLOGY VOLUME 40 NUMBER 5 MAY 1999<br />

Table 4: Representative analyses <strong>of</strong> plagiocl<strong>as</strong>e feldspars<br />

Clear plagiocl<strong>as</strong>e Resorbed plagiocl<strong>as</strong>e Resorbed plagiocl<strong>as</strong>e Inclusion microlite Host microlite<br />

phenocryst phenocryst <strong>in</strong> host phenocryst <strong>in</strong> <strong>in</strong>clusion<br />

<strong>in</strong>side outside <strong>in</strong>side outside<br />

core rim core rim rim core rim rim core rim core rim<br />

SiO 2 60·85 59·31 58·57 48·75 57·73 60·89 50·41 51·32 52·18 57·13 48·80 52·41<br />

Al 2 O 3 24·13 25·36 25·73 32·13 26·60 23·74 30·84 29·90 29·47 26·75 32·01 29·34<br />

FeO 0·22 0·25 0·26 0·67 0·38 0·25 0·54 0·51 0·73 0·37 0·61 0·50<br />

CaO 6·14 7·36 7·44 15·42 8·53 5·61 14·00 13·24 12·84 9·02 15·23 12·40<br />

K 2 O 0·62 0·48 0·47 0·08 0·40 0·69 0·11 0·14 0·09 0·37 0·06 0·14<br />

Na 2 O 7·91 7·24 7·19 2·82 6·38 8·03 3·52 3·89 4·31 6·41 2·76 4·61<br />

Total 99·88 99·99 99·67 99·86 100·01 99·22 99·42 98·99 99·62 100·04 99·47 99·41<br />

An 29·0 35·0 35·4 74·8 41·5 26·8 68·3 64·8 61·9 42·8 75·1 59·3<br />

Ab 67·5 62·3 61·9 24·7 56·2 69·3 31·1 34·5 37·6 55·1 24·6 39·9<br />

Or 3·5 2·7 2·7 0·5 2·3 4·0 0·7 0·8 0·5 2·1 0·3 0·8<br />

Bon<strong>in</strong> (1987) and Feeley & Sharp (1996) po<strong>in</strong>ted out that section level; however, most are not fully resorbed and<br />

volatile rele<strong>as</strong>e dur<strong>in</strong>g biotite and amphibole de- have sieve-textured resorption surfaces only a few tens<br />

hydrogenation may lead to vesiculation and eruption. <strong>of</strong> microns thick surround<strong>in</strong>g a clear core. The clear<br />

When comb<strong>in</strong>ed with volatiles rele<strong>as</strong>ed by exsolution cores are compositionally identical to the host rhyodacite<br />

from quenched <strong>in</strong>clusions <strong>in</strong>to a water-saturated rhyo- plagiocl<strong>as</strong>e phenocrysts (~An 30–35 ). All partially resorbed<br />

dacite, there is a strong likelihood that mafic recharge is plagiocl<strong>as</strong>e crystals <strong>in</strong> the <strong>in</strong>clusions have a clear overclosely<br />

coupled <strong>in</strong> time with magma <strong>as</strong>cent, eruption growth rim that is a few tens <strong>of</strong> microns thick and strongly<br />

or emplacement, caus<strong>in</strong>g more devolatilization <strong>in</strong> the normally zoned; this rim tends to restore the euhedral<br />

biotites. The same eruption dynamics that produce vari- outl<strong>in</strong>e <strong>of</strong> the crystal, probably reflect<strong>in</strong>g reatta<strong>in</strong>ment <strong>of</strong><br />

ably thick opacite rims on amphiboles would produce equilibrium between the plagiocl<strong>as</strong>e crystals and the<br />

similar variably thick opacite rims on biotites.<br />

b<strong>as</strong>altic andesite magma. Compositionally, the rims are<br />

approximately An 75 on the <strong>in</strong>side <strong>of</strong> the rim and An 50<br />

Plagiocl<strong>as</strong>e<br />

near the crystal edge.<br />

Plagiocl<strong>as</strong>e is the most abundant m<strong>in</strong>eral <strong>in</strong> the Chaos Resorbed plagiocl<strong>as</strong>e phenocrysts also occur <strong>in</strong> the<br />

Crags domes, with large plagiocl<strong>as</strong>e phenocrysts and host rhyodacite (Fig. 8c). They are ~5–10 mm long, have<br />

small plagiocl<strong>as</strong>e microlites occurr<strong>in</strong>g <strong>in</strong> both the <strong>in</strong>and<br />

variably resorbed cores which extend out to the rim,<br />

clusions and host rhyodacite. Representative analyses <strong>of</strong><br />

are surrounded by clear, strongly normally zoned<br />

all feldspar types are presented <strong>in</strong> Table 4. The large overgrowth rims. The composition <strong>of</strong> the crystals is<br />

phenocrysts occur <strong>as</strong> unresorbed and partially resorbed approximately An 30–35 <strong>in</strong> the core, <strong>in</strong>cre<strong>as</strong>es <strong>in</strong> An content<br />

crystals that appear to have orig<strong>in</strong>ally crystallized largely throughout the sieve-textured zone, and becomes ap-<br />

<strong>in</strong> the host rhyodacite (see below). They are generally proximately An 75 near the <strong>in</strong>side edge and An 50 near the<br />

5–10 mm long and euhedral to subhedral. Unresorbed crystal edge <strong>of</strong> the overgrowth rims. These are equivalent<br />

plagiocl<strong>as</strong>e crystals <strong>in</strong> the host rhyodacite are clear euhed<strong>in</strong>clusions<br />

to the partially resorbed plagiocl<strong>as</strong>e phenocrysts <strong>in</strong> the<br />

ral crystals, weakly zoned across most <strong>of</strong> the crystal<br />

that have been rele<strong>as</strong>ed from the <strong>in</strong>clusions<br />

(~An 30–35 ) but slightly zoned near the rim (~An 35–40 ) back <strong>in</strong>to the host rhyodacite.<br />

(Fig. 8a). Some <strong>of</strong> the clear crystals have rounded corners, Resorbed plagiocl<strong>as</strong>e phenocrysts <strong>in</strong> both <strong>in</strong>clusions<br />

which are <strong>in</strong>terpreted <strong>as</strong> caused by simple dissolution and rhyodacite have sieve textures to a variable extent.<br />

and were probably the result <strong>of</strong> raised temperature. The sieve zones consist <strong>of</strong> micrometer-scale channels<br />

All plagiocl<strong>as</strong>e phenocrysts <strong>in</strong> the hybrid b<strong>as</strong>altic ande<strong>in</strong>terior<br />

<strong>of</strong> gl<strong>as</strong>s and plagiocl<strong>as</strong>e, irregularly truncat<strong>in</strong>g primary<br />

site <strong>in</strong>clusions have experienced various degrees <strong>of</strong> reimmersion<br />

planar growth zones. The texture is the result <strong>of</strong><br />

sorption (Fig. 8b). Many <strong>of</strong> these partially resorbed<br />

<strong>of</strong> sodic plagiocl<strong>as</strong>e phenocrysts <strong>in</strong>to a hotter<br />

phenocrysts have ragged, sieve-textured cores that extend melt and <strong>in</strong> equilibrium with more calcic plagiocl<strong>as</strong>e<br />

out to the rim, which may be a function <strong>of</strong> the th<strong>in</strong> phenocrysts. This texture h<strong>as</strong> been reproduced <strong>in</strong><br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

796


TEPLEY et al.<br />

MAGMA MIXING, LASSEN VOLCANIC CENTER<br />

Fig. 8. Textural relations <strong>of</strong> plagiocl<strong>as</strong>e <strong>in</strong> Chaos Crags lav<strong>as</strong>. (a) Clear, unresorbed plagiocl<strong>as</strong>e phenocryst <strong>in</strong> host dacite. Field <strong>of</strong> view is<br />

~4 mm. (b) Plagiocl<strong>as</strong>e phenocryst with sieve-textured, resorption-generated zone <strong>in</strong> hybrid magmatic <strong>in</strong>clusion. The development <strong>of</strong> a sieve<br />

zone surround<strong>in</strong>g a relatively clear core, and development <strong>of</strong> clear, euhedral, normally zoned rim surround<strong>in</strong>g the whole crystal should be noted.<br />

Field <strong>of</strong> view is ~2 mm. (c) Resorbed plagiocl<strong>as</strong>e phenocryst <strong>in</strong> host rhyodacite, almost identical to resorbed plagiocl<strong>as</strong>e crystals <strong>in</strong> hybrid b<strong>as</strong>altic<br />

andesite <strong>in</strong>clusions. The crystal h<strong>as</strong> a similar sieve-textured, resorption-generated zone, and the clear plagiocl<strong>as</strong>e rim survived the transition from<br />

<strong>in</strong>clusion back <strong>in</strong>to the host. Field <strong>of</strong> view is ~4 mm. (d) Microlites <strong>in</strong> <strong>in</strong>clusion; <strong>in</strong> this c<strong>as</strong>e, a mafic fragment from a disaggregat<strong>in</strong>g <strong>in</strong>clusion.<br />

Microlites also occur <strong>as</strong> s<strong>in</strong>gle crystals float<strong>in</strong>g <strong>in</strong> a rhyodacitic groundm<strong>as</strong>s hav<strong>in</strong>g the same composition <strong>as</strong> microlites from the magmatic<br />

<strong>in</strong>clusions. Field <strong>of</strong> view is ~2 mm.<br />

experiments by Tsuchiyama (1985), support<strong>in</strong>g our Figure 9 shows the similarity <strong>of</strong> compositions between<br />

hypothesis that the large plagiocl<strong>as</strong>e crystals are orig<strong>in</strong>ally the clear zones <strong>in</strong> unresorbed and partially resorbed<br />

from the host rhyodacite, some <strong>of</strong> which w<strong>as</strong> <strong>in</strong>corporated plagiocl<strong>as</strong>e phenocrysts from the rhyodacite and the<br />

<strong>in</strong>to a hotter, more calcic magma.<br />

<strong>in</strong>clusions. The <strong>in</strong>cre<strong>as</strong>e <strong>in</strong> An content <strong>in</strong> the sieve-<br />

Acicular plagiocl<strong>as</strong>e microphenocrysts up to ~0·5 mm textured zones probably reflects f<strong>in</strong>e Ca-rich plagiocl<strong>as</strong>e<strong>in</strong><br />

length are the major component <strong>in</strong> <strong>in</strong>clusions but also melt material (Tsuchiyama, 1985). Also, the clear rims<br />

occur <strong>in</strong> the host rhyodacite (Fig. 8d). The cores <strong>of</strong> the surround<strong>in</strong>g the partially resorbed plagiocl<strong>as</strong>e phe-<br />

microphenocrysts are ~An 75 and have strong normal nocrysts <strong>in</strong> both <strong>in</strong>clusions and the host rhyodacite have<br />

zon<strong>in</strong>g to ~An 50 at their rims <strong>in</strong> both <strong>in</strong>clusions and similar strong normal zon<strong>in</strong>g.<br />

rhyodacite. The zon<strong>in</strong>g pattern <strong>in</strong> the microphenocrysts<br />

duplicates the zon<strong>in</strong>g pattern <strong>in</strong> the overgrowth rims<br />

<strong>of</strong> the partially resorbed plagiocl<strong>as</strong>e phenocrysts <strong>in</strong> the Bulk-rock chemistry<br />

<strong>in</strong>clusions; this feature suggests that they crystallized <strong>in</strong> Bulk-rock geochemical data for both the <strong>in</strong>clusions and<br />

a common undercool<strong>in</strong>g environment. The micro- host rhyodacite are consistent with simple b<strong>in</strong>ary mix<strong>in</strong>g<br />

phenocrysts <strong>in</strong> the rhyodacite, therefore, are <strong>in</strong>terpreted between two end-member magm<strong>as</strong>, b<strong>as</strong>alt and rhyo<strong>as</strong><br />

orig<strong>in</strong>at<strong>in</strong>g from the hybrid b<strong>as</strong>altic andesite <strong>in</strong>clusions dacite. On oxide–oxide diagrams this is reflected by<br />

that have been disaggregated, and m<strong>in</strong>gled <strong>in</strong>to the extremely good l<strong>in</strong>ear correlations, consider<strong>in</strong>g the 15–<br />

host rhyodacite. Clynne (1999) h<strong>as</strong> documented similar 20% SiO 2 difference; the dist<strong>in</strong>ction between the lithologic<br />

textures that demonstrate this disaggregation process.<br />

groups def<strong>in</strong>ed above for the rhyodacites is apparent<br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

797


JOURNAL OF PETROLOGY VOLUME 40 NUMBER 5 MAY 1999<br />

Fig. 9. Compositional relationships between different plagiocl<strong>as</strong>e crystals<br />

<strong>in</strong> Chaos Crags lav<strong>as</strong>. (a) Representative traverses <strong>of</strong> clear phenocrysts<br />

<strong>in</strong> the host and partially resorbed plagiocl<strong>as</strong>e phenocrysts <strong>in</strong><br />

both host and <strong>in</strong>clusions show<strong>in</strong>g compositional data and their relationship<br />

to cores <strong>of</strong> crystals, sieve zones, and clear rims. (b) Compositions<br />

<strong>of</strong> plagiocl<strong>as</strong>e phenocrysts and microlites plotted <strong>as</strong> mol %<br />

An vs mol % Or <strong>in</strong> the ternary system An–Ab–Or. It should be<br />

noted that clear normally zoned rims on partially resorbed plagiocl<strong>as</strong>e<br />

phenocrysts span the same compositional range <strong>as</strong> the normally zoned<br />

<strong>in</strong>clusion and host microlites.<br />

Fig. 10. Plots <strong>of</strong> MgO and K 2 O vs SiO 2 for Group 1 and Group 2<br />

<strong>in</strong>clusions and host rocks. The excellent fit <strong>of</strong> the data over 15–20 wt<br />

% <strong>in</strong> SiO 2 confirms mix<strong>in</strong>g orig<strong>in</strong> <strong>of</strong> Chaos Crags <strong>in</strong>clusions and host.<br />

It should be noted that an excellent fit occurs for all other oxide<br />

components.<br />

(Fig. 10). The earlier, Group 1 domes (A and B) and the<br />

later, Group 2 domes (C, D, E and F) form tight cohesive<br />

groups with little scatter about or along the mix<strong>in</strong>g l<strong>in</strong>e.<br />

The <strong>in</strong>clusion compositions are more scattered along the<br />

l<strong>in</strong>e but are coll<strong>in</strong>ear with the dome rhyodacite, together<br />

def<strong>in</strong><strong>in</strong>g mix<strong>in</strong>g l<strong>in</strong>es. There is no dist<strong>in</strong>ction <strong>in</strong> com-<br />

position <strong>in</strong> the <strong>in</strong>clusions between the earlier and later<br />

domes. The scatter <strong>of</strong> <strong>in</strong>clusions along the l<strong>in</strong>e represents<br />

the <strong>in</strong>corporation <strong>of</strong> more rhyodacitic material <strong>in</strong>to the<br />

<strong>in</strong>clusions dur<strong>in</strong>g the <strong>in</strong>clusion-form<strong>in</strong>g process. Scatter<br />

<strong>of</strong> <strong>in</strong>clusions about the l<strong>in</strong>e is probably due to analytical<br />

uncerta<strong>in</strong>ty or to some type <strong>of</strong> fractionation <strong>of</strong> one or<br />

more <strong>of</strong> the oxide components. In this c<strong>as</strong>e, it is probably<br />

ga<strong>in</strong> or loss <strong>of</strong> residual liquid <strong>in</strong> the <strong>in</strong>clusions (e.g. see<br />

Bacon, 1986).<br />

Isotope systematics <strong>of</strong> whole rocks<br />

Strontium isotopic data were collected on whole-rock<br />

samples to determ<strong>in</strong>e the extent <strong>of</strong> isotopic differences<br />

between host dome rocks and <strong>in</strong>clusions (Table 5 and<br />

Fig. 11). As stated previously, this study focuses on the<br />

<strong>in</strong>itial domes, for which we postulate that the isotopic<br />

differences are greatest, and the f<strong>in</strong>al dome, where the<br />

isotopic differences are le<strong>as</strong>t. Even though data from<br />

rocks <strong>of</strong> domes C, D, and E are sparse, the isotope data<br />

overall show that, <strong>in</strong> most c<strong>as</strong>es, the host rock ratios have<br />

a slight spread <strong>in</strong> values, which generally decre<strong>as</strong>e with<br />

sequential dome emplacement. The <strong>in</strong>clusions also cover<br />

a range <strong>in</strong> 87 Sr/ 86 Sr ratios with the most primitive bulk<br />

compositions characterized by dist<strong>in</strong>ctly lower 87 Sr/ 86 Sr<br />

ratios, except for dome D <strong>in</strong> which the <strong>in</strong>clusion 87 Sr/<br />

86<br />

Sr ratios are higher than many <strong>of</strong> the host-rock 87 Sr/<br />

86<br />

Sr ratios. These data suggest either that there is <strong>in</strong>-<br />

volvement <strong>of</strong> a different mafic magma, or that the b<strong>as</strong>alt<br />

or hybrid b<strong>as</strong>altic andesite <strong>in</strong>clusions are contam<strong>in</strong>ated<br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

798


TEPLEY et al.<br />

MAGMA MIXING, LASSEN VOLCANIC CENTER<br />

Table 5: Whole-rock isotope values for<br />

pyrocl<strong>as</strong>tic flows, host and <strong>in</strong>clusions <strong>of</strong><br />

domes A–F (see Fig. 1)<br />

Sample Dome<br />

87<br />

Sr/ 86 Sr host<br />

87<br />

Sr/ 86 Sr <strong>in</strong>clusion<br />

LC84-420 Pfa 0·704011±10 —<br />

LC84-421 Pfb 0·704012±10 —<br />

3 A 0·704061±10 0·703738±11<br />

17 A 0·704025±10 0·703696±10<br />

18 A 0·704010±10 0·703721±11<br />

19 A 0·704026±11 —<br />

26 A 0·704014±11 0·703664±11<br />

27 A — 0·703696±10<br />

28 A 0·704038±11 0·703776±11<br />

LC84-422 Pfc 0·704028±10 —<br />

4 B 0·704070±11 0·703797±13<br />

5(a) B 0·704074±11 0·703759±10<br />

5(b) B 0·704056±11 0·703751±10<br />

Fig. 11. Whole-rock 87 Sr/ 86 Sr ratios for host rhyodacites and respective<br />

<strong>in</strong>clusions for all domes. Symbols are approximate size <strong>of</strong> analytical<br />

6 B 0·704056±09 0·703751±09 uncerta<strong>in</strong>ty.<br />

7 B 0·704013±10 0·703727±11<br />

21 B 0·704039±09 —<br />

29 B — 0·703743±13 have diverse 87 Sr/ 86 Sr isotopic compositions rang<strong>in</strong>g from<br />

30 B — 0·703716±11 0·7029 to 0·7042. They concluded that this isotopic<br />

33 B 0·704029±10 0·703676±10 variability primarily reflects that <strong>of</strong> mantle-derived<br />

34 B — 0·703676±11<br />

regional mafic magmatism with m<strong>in</strong>imal <strong>in</strong>teraction with<br />

LC85-717 B — 0·703650±09<br />

middle- to upper-crustal rocks dur<strong>in</strong>g <strong>as</strong>cent. The isotopic<br />

12 C 0·704028±11 0·703779±11<br />

variability <strong>of</strong> <strong>in</strong>clusions <strong>in</strong> dome D, therefore, probably<br />

reflects <strong>in</strong>volvement <strong>of</strong> a slightly different mafic magma.<br />

15 C 0·703995±10 —<br />

In general, however, the conclusion reached from these<br />

20 C 0·703945±10 0·703777±13<br />

data is that isotopic differences become smaller with<br />

35 C 0·703998±10 —<br />

time, reflect<strong>in</strong>g greater mix<strong>in</strong>g between the respective<br />

8 D — 0·703989±09<br />

component reservoirs.<br />

9 D 0·703972±09 0·704159±10<br />

11 E 0·703976±10 0·703708±10<br />

22 E — 0·703701±10<br />

23 E 0·703980±10 0·703734±10<br />

Isotope systematics <strong>of</strong> m<strong>in</strong>eral ph<strong>as</strong>es<br />

24 E — 0·703735±10<br />

Petrographic and geochemical data require that at le<strong>as</strong>t<br />

13 F 0·704008±10 0·703798±11<br />

two different magm<strong>as</strong> and their constituent m<strong>in</strong>eral<br />

14 F 0·703988±09 0·703891±10<br />

ph<strong>as</strong>es have been exchanged <strong>in</strong> the production <strong>of</strong> the<br />

25 F — 0·703696±10<br />

Chaos Crags lav<strong>as</strong>. The two rock types, the hybrid<br />

31 F 0·703972±10 0·703764±14<br />

b<strong>as</strong>altic andesite <strong>in</strong>clusions and the host rhyodacite, are<br />

32 F 0·703934±13 0·703658±11<br />

isotopically dist<strong>in</strong>ct (Fig. 11). If vestiges <strong>of</strong> these com-<br />

CC4(a) F 0·704027±11 0·703766±11<br />

ponents reta<strong>in</strong> their physical identity (early formed crys-<br />

CC4(b) F 0·704058±14 0·704076±14<br />

tals from magm<strong>as</strong> that have subsequently hybridized),<br />

CC5 F 0·703979±11 0·704084±13<br />

then they may also reta<strong>in</strong> their orig<strong>in</strong>al isotopic compositions.<br />

A simple method <strong>of</strong> test<strong>in</strong>g this suggestion is<br />

Pfa and Pfb, and Pfc are pyrocl<strong>as</strong>tic flows related to the by use <strong>of</strong> strontium-isotopic analyses <strong>of</strong> the cores and<br />

emplacement <strong>of</strong> dome A and dome B, respectively.<br />

rims <strong>of</strong> the exchang<strong>in</strong>g crystals [i.e. ‘crystal isotope stratigraphy’,<br />

described by Davidson & Tepley (1997) and<br />

Davidson et al. (1998)].<br />

by a source with higher 87 Sr/ 86 Sr ratios. Bullen & Clynne We have determ<strong>in</strong>ed crystal isotope stratigraphy on<br />

(1990) have shown that rocks <strong>of</strong> b<strong>as</strong>altic andesite and several plagiocl<strong>as</strong>e crystals from the Chaos Crags lav<strong>as</strong>.<br />

andesite composition <strong>in</strong> the L<strong>as</strong>sen Volcanic Center We have focused on the early eruptive domes (domes A<br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

799


JOURNAL OF PETROLOGY VOLUME 40 NUMBER 5 MAY 1999<br />

Table 6: Isotope traverses <strong>of</strong> plagiocl<strong>as</strong>e crystals from Chaos Crags <strong>in</strong>clusions and lav<strong>as</strong><br />

Sample Dome Resorbed plagiocl<strong>as</strong>e crystals <strong>in</strong> b<strong>as</strong>altic andesite <strong>in</strong>clusions and rock matrix<br />

core to rim rock matrix<br />

LT93-17B A 0·704035±39 0·704039±11 — — 0·703959±15 0·703743±26<br />

LT93-17C A 0·7404027±16 0·704059±13 0·704026±14 0·705013±71 0·703768±13 0·703778±11 0·703713±14<br />

LT94-27A A — 0·704032±10 — 0·704014±11 0·703951±11<br />

LT93-06 B — 0·704045±13 — 0·704040±13 — 0·703802±11<br />

LT94-30 B 0·703989±14 0·704170±14 0·704026±13 0·703932±13 0·703862±21 0·703708±13 0·703685±14<br />

LT93-13A F 0·703874±25 0·703927±11 — 0·703854±11 — 0·703780±16<br />

LT93-13B F — 0·704011±16 — 0·704002±14 0·703910±13 0·703781±16<br />

Plagiocl<strong>as</strong>e crystals <strong>in</strong> rhyodacite host<br />

LT93-17A A — 0·704051±13 0·704019±11 — —<br />

LT93-13C F — 0·704012±13 0·704043±13 — 0·703933±11<br />

and B) because, <strong>as</strong> the whole-rock isotopic data <strong>in</strong>dicate, LT94-27A is resorbed plagiocl<strong>as</strong>e from a hybrid<br />

the isotopic differences between the end members are b<strong>as</strong>altic andesite <strong>in</strong>clusion <strong>of</strong> dome A (Fig. 12). The<br />

the greatest; however, crystals from a later dome (dome plagiocl<strong>as</strong>e crystal is ~3·5 mm <strong>in</strong> radius, h<strong>as</strong> several<br />

F) have also been drilled to monitor the homogenization dissolution zones truncat<strong>in</strong>g substratal, f<strong>in</strong>er-scale osprocess.<br />

We have focused on two groups <strong>of</strong> plagiocl<strong>as</strong>e cillatory zones, and h<strong>as</strong> a dist<strong>in</strong>ct ~0·3 mm wide sieve<br />

phenocrysts: the large, partially resorbed plagiocl<strong>as</strong>e crystals<br />

zone. An electron microprobe traverse <strong>of</strong> this crystal<br />

<strong>in</strong> the hybrid b<strong>as</strong>altic andesite <strong>in</strong>clusions, and the <strong>in</strong>dicates relatively constant composition <strong>of</strong> An 35 punc-<br />

large, partially resorbed plagiocl<strong>as</strong>e crystals that now tuated by large variations <strong>in</strong> An content (Type II zon<strong>in</strong>g).<br />

reside <strong>in</strong> the host rhyodacite. As noted above, petro- Near the edge <strong>of</strong> the crystal, the An content <strong>in</strong>cre<strong>as</strong>es<br />

graphic and major-element data suggest that these groups through the sieve zone to An 53 at the edge <strong>of</strong> the crystal.<br />

<strong>of</strong> crystals are <strong>in</strong> fact the same, with one group hav<strong>in</strong>g The clear rim w<strong>as</strong> not analyzed for An content but<br />

found its way back <strong>in</strong>to the host rhyodacite. Drill hole can be estimated from the composition <strong>of</strong> plagiocl<strong>as</strong>e<br />

87<br />

Sr/ 86 Sr ratios <strong>of</strong> n<strong>in</strong>e crystals from three different domes, microlites <strong>in</strong> the <strong>in</strong>clusions to be ~An 60–75 (Table 4).<br />

most <strong>of</strong> which are from the hybrid b<strong>as</strong>altic andesite Oscillatory zon<strong>in</strong>g is represented by shifts <strong>in</strong> the An<br />

<strong>in</strong>clusions, are listed <strong>in</strong> Table 6.<br />

content <strong>of</strong> ~3–5 mol % (Type I zon<strong>in</strong>g). Abrupt shifts<br />

Isotope traverses were conducted on several partially <strong>in</strong> An content <strong>of</strong> up to 15 mol % locally along the<br />

resorbed plagiocl<strong>as</strong>e phenocrysts enclosed with<strong>in</strong> hybrid traverse correspond to major dissolution surfaces e<strong>as</strong>ily<br />

b<strong>as</strong>altic andesite <strong>in</strong>clusions. These crystals are typically discernible on the NDIC image and <strong>in</strong>dicated by the<br />

large and, <strong>in</strong> terms <strong>of</strong> An content ~An 30–35 , com- arrows across Fig. 12.<br />

positionally similar to those <strong>in</strong> the host rhyodacite. Many Three Sr microanalysis holes were drilled <strong>in</strong> this crystal<br />

crystals have sieve textures <strong>in</strong>dicat<strong>in</strong>g that the crystals (see Fig. 12). The core 87 Sr/ 86 Sr ratio is similar to that<br />

were immersed <strong>in</strong> an environment hotter and more calcic <strong>of</strong> the host rhyodacite (see Table 6), where<strong>as</strong> the sieve<br />

than the environment <strong>of</strong> the equilibrium plagiocl<strong>as</strong>e. zone and the clear overgrowth-rim 87 Sr/ 86 Sr ratios are<br />

Nomarski imag<strong>in</strong>g shows that the growth histories <strong>of</strong> slightly lower. The isotopic composition <strong>of</strong> the rim is not<br />

the crystals are def<strong>in</strong>ed by many f<strong>in</strong>e oscillatory zones quite <strong>as</strong> low <strong>as</strong> that <strong>of</strong> the <strong>in</strong>clusions, probably because<br />

punctuated by multiple, major dissolution surfaces with the scale <strong>of</strong> sampl<strong>in</strong>g is larger than the width <strong>of</strong> the rim<br />

irregular boundaries and calcic zones (Type II zon<strong>in</strong>g); itself, result<strong>in</strong>g <strong>in</strong> mechanical mix<strong>in</strong>g <strong>of</strong> rim Sr with Sr<br />

this feature also supports this hypothesis. All crystals from the <strong>in</strong>terior the crystal.<br />

studied have a dist<strong>in</strong>ct overall drop <strong>in</strong> the 87 Sr/ 86 Sr ratio LT94-30 (Fig. 13) is a plagiocl<strong>as</strong>e crystal from a hybrid<br />

from core to rim. Below, we discuss the <strong>in</strong>tegration <strong>of</strong> b<strong>as</strong>altic andesite <strong>in</strong>clusion <strong>of</strong> dome B. Part <strong>of</strong> Group 1,<br />

Sr-isotope data with compositional and petrographic data this sample represents a crystal from an early eruptive<br />

for plagiocl<strong>as</strong>e phenocrysts from three hybrid b<strong>as</strong>altic dome that should behave similarly to samples from dome<br />

andesite <strong>in</strong>clusions and another from a dome rhyodacite. A. This crystal is ~1 cm long, shows numerous truncations<br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

800


TEPLEY et al.<br />

MAGMA MIXING, LASSEN VOLCANIC CENTER<br />

Fig. 13. Nomarski image and 87 Sr/ 86 Sr ratios from drill holes <strong>in</strong> a<br />

partially resorbed plagiocl<strong>as</strong>e crystal (LT94-30) from dome A. The<br />

crystal dist<strong>in</strong>ctly shows a relatively clear core, a partially resorbed or<br />

sieve-textured zone around the crystal, and a th<strong>in</strong>, clear rim surround<strong>in</strong>g<br />

the whole crystal. Large, black holes are sample site drill holes, which<br />

sample both <strong>in</strong>side the crystal and out <strong>in</strong>to surround<strong>in</strong>g <strong>in</strong>clusion<br />

matrix.<br />

Fig. 12. Nomarski image, electron microprobe traverse, and 87 Sr/ 86 Sr<br />

ratios from drill holes <strong>of</strong> a partially resorbed plagiocl<strong>as</strong>e crystal (LT94-<br />

27A) from dome B. The image shows dist<strong>in</strong>ct growth and dissolution<br />

zones, a sieve area result<strong>in</strong>g from partial resorption, and a clear rim normalized distance <strong>of</strong> partially resorbed plagiocl<strong>as</strong>e cryssurround<strong>in</strong>g<br />

the crystal and <strong>in</strong> contact with hybrid b<strong>as</strong>altic andesite<br />

tals sampled <strong>in</strong> this study. In all c<strong>as</strong>es, the 87 Sr/ 86 Sr ratio<br />

groundm<strong>as</strong>s. The electron probe traverse corresponds to a l<strong>in</strong>e from<br />

the middle drill hole extend<strong>in</strong>g right to the two drill holes near the decre<strong>as</strong>es toward the rim <strong>of</strong> the crystal.<br />

edge <strong>of</strong> the crystal. Dist<strong>in</strong>ct changes <strong>in</strong> An content correspond to To <strong>as</strong>certa<strong>in</strong> the effects <strong>of</strong> mix<strong>in</strong>g later <strong>in</strong> the sequence<br />

growth and dissolution zones on the crystal. (See text for details.) <strong>of</strong> dome extrusion, we exam<strong>in</strong>ed LT93-13A and LT93-<br />

13B, plagiocl<strong>as</strong>e crystals from <strong>in</strong>clusions <strong>in</strong> dome F, for<br />

strontium microanalysis. These crystals were not imaged<br />

us<strong>in</strong>g NDIC nor analyzed for major-element comand<br />

dissolution surfaces with<strong>in</strong> the crystal, and is sur- position; however, both crystals have the same charrounded<br />

by a sieve zone <strong>of</strong> ~200–750 μm thickness, and acteristic general decre<strong>as</strong>e <strong>in</strong> 87 Sr/ 86 Sr ratios form cores<br />

a clear rim <strong>of</strong> 5–10 μm thickness. Several holes were to rims (see Table 6 and Fig. 14). The 87 Sr/ 86 Sr ratio <strong>of</strong><br />

drilled from the core <strong>of</strong> the crystal through the rim and the core <strong>of</strong> sample LT93-13A is slightly lower than that<br />

<strong>in</strong>to the surround<strong>in</strong>g matrix. Table 6 shows that the 87 Sr/ <strong>of</strong> most cores <strong>of</strong> crystals analyzed, probably because we<br />

86<br />

Sr ratio <strong>of</strong> the core is similar to that <strong>of</strong> the host drilled <strong>of</strong>f center to the low side. The data show the<br />

rhyodacite but dramatically decre<strong>as</strong>es through the rim 87 Sr/ 86 Sr ratios <strong>in</strong>cre<strong>as</strong><strong>in</strong>g then decre<strong>as</strong><strong>in</strong>g to the hybrid<br />

matrix sites to the 87 Sr/ 86 Sr ratio <strong>of</strong> the hybrid b<strong>as</strong>altic b<strong>as</strong>altic andesite <strong>in</strong>clusion values near the rim. Data for<br />

andesite <strong>in</strong>clusion whole-rock value.<br />

LT93-13B show the characteristic decre<strong>as</strong>e to the rim.<br />

Data from LT94-27A and LT94-30 suggest that these A partially resorbed plagiocl<strong>as</strong>e phenocryst (LT93-13C)<br />

crystals <strong>in</strong>itially grew <strong>in</strong> the host rhyodacite, acquired <strong>in</strong> the host rhyodacite <strong>of</strong> dome F, the l<strong>as</strong>t dome to erupt,<br />

their 87 Sr/ 86 Sr ratios, were then enveloped by the lower- w<strong>as</strong> exam<strong>in</strong>ed for the same purpose. The data show the<br />

87<br />

Sr/ 86 Sr hybrid b<strong>as</strong>altic andesite <strong>in</strong>clusion, and grew same decre<strong>as</strong>e <strong>in</strong> 87 Sr/ 86 Sr ratio from the core to the<br />

rims <strong>in</strong> equilibrium with this lower- 87 Sr/ 86 Sr magma. rim, suggest<strong>in</strong>g that the process <strong>of</strong> plagiocl<strong>as</strong>e resorption<br />

LT93-17A, a large, partially resorbed plagiocl<strong>as</strong>e crystal and multiple recycl<strong>in</strong>g w<strong>as</strong> still operat<strong>in</strong>g later <strong>in</strong> the<br />

<strong>in</strong> the host rhyodacite from dome A, h<strong>as</strong> the same textural eruption sequence.<br />

features and the same decre<strong>as</strong>e <strong>in</strong> 87 Sr/ 86 Sr ratio from An alternative explanation for the uniformly decre<strong>as</strong><strong>in</strong>g<br />

87<br />

core toward the rim <strong>as</strong> crystals that are now <strong>in</strong> the hybrid Sr/ 86 Sr ratios <strong>in</strong> the plagiocl<strong>as</strong>e crystals is self-diffusion,<br />

b<strong>as</strong>altic andesite <strong>in</strong>clusions. Figure 14 plots the 87 Sr/ 86 Sr which could produce partial equilibration <strong>of</strong> a uniformly<br />

ratio <strong>of</strong> drill holes along crystal traverses versus the homogeneous plagiocl<strong>as</strong>e crystal immersed <strong>in</strong> a hot, mafic<br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

801


JOURNAL OF PETROLOGY VOLUME 40 NUMBER 5 MAY 1999<br />

Resorbed plagiocl<strong>as</strong>e isotope traverses<br />

from crystals <strong>in</strong> <strong>in</strong>clusions<br />

87 Sr/ 86 Sr<br />

87 Sr/ 86 Sr<br />

87 Sr/ 86 Sr<br />

87 Sr/ 86 Sr<br />

87 Sr/ 86 Sr<br />

0.7042<br />

17<br />

0.7040<br />

0.7052<br />

17C<br />

0.7048<br />

0.7044<br />

0.7038<br />

0.7040<br />

Rim Core Rim Rim Core Rim<br />

0.7036<br />

0.7036<br />

–1 0 1 2<br />

–1 0 1 2<br />

0.7042<br />

0.7042<br />

27A<br />

06<br />

0.7040<br />

0.7038<br />

0.7036<br />

0.7042<br />

0.7040<br />

0.7038<br />

0.7036<br />

30<br />

0.7042<br />

13B<br />

0.7040<br />

0.7038<br />

0.7036<br />

0.7042<br />

17A<br />

0.7040<br />

0.7038<br />

0.7036<br />

Rim Core Rim<br />

–1 0 1 2<br />

Rim Core Rim<br />

–1 0 1 2<br />

Rim Core Rim<br />

–1 0 1 2<br />

Normalized Distance<br />

0.7040<br />

0.7038<br />

0.7036<br />

0.7042<br />

13A<br />

0.7040<br />

0.7038<br />

0.7036<br />

Resorbed plagiocl<strong>as</strong>e isotope traverses<br />

from crystals <strong>in</strong> host<br />

0.7042<br />

13C<br />

0.7040<br />

0.7038<br />

Rim Core Rim<br />

–1 0 1<br />

0.7036<br />

2<br />

Normalized Distance<br />

Rim Core Rim<br />

–1 0 1 2<br />

Rim Core Rim<br />

–1 0 1 2<br />

Normalized Distance<br />

Rim Core Rim<br />

–1 0 1 2<br />

Normalized Distance<br />

Fig. 14. 87 Sr/ 86 Sr ratios plotted aga<strong>in</strong>st normalized distances for partially resorbed plagiocl<strong>as</strong>e phenocrysts from <strong>in</strong>clusion and host crystals<br />

exam<strong>in</strong>ed <strong>in</strong> this study. The large black dots represent sample site drill holes from which strontium isotopic data were collected. The black dots<br />

do not represent drill hole size or analytical uncerta<strong>in</strong>ty <strong>of</strong> isotopic analysis. Distances between the center hole and the crystal edge were used<br />

<strong>as</strong> normaliz<strong>in</strong>g distances from which to compare locations <strong>of</strong> other drill holes with<strong>in</strong> the crystal, outside but alongside the crystal, and between<br />

other different-sized crystals. Shaded are<strong>as</strong> are representative <strong>of</strong> crystal extents. It should be noted that sample 17C h<strong>as</strong> a different 87 Sr/ 86 Sr<br />

scale from the rest <strong>of</strong> the samples.<br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

magma with a lower 87 Sr/ 86 Sr ratio. However, simple<br />

model<strong>in</strong>g <strong>of</strong> 87 Sr/ 86 Sr pr<strong>of</strong>iles us<strong>in</strong>g diffusion coefficients<br />

<strong>of</strong> Giletti & C<strong>as</strong>serly (1994) and equations <strong>of</strong> Christensen<br />

& DePaolo (1993) yields unrealistically long residence<br />

times (~10 5 –10 6 years) <strong>of</strong> plagiocl<strong>as</strong>e crystals <strong>in</strong> hybrid<br />

b<strong>as</strong>altic andesite <strong>in</strong>clusions. The <strong>in</strong>ferred size <strong>of</strong> the Chaos<br />

Crags magma chamber is small b<strong>as</strong>ed on the small<br />

erupted volume <strong>of</strong> material (~2 km 3 ). In 10 5 –10 6 years,<br />

a small, isolated molten body <strong>of</strong> magma at a shallow<br />

level <strong>in</strong> the crust would probably solidify, on the b<strong>as</strong>is <strong>of</strong><br />

parameters <strong>of</strong>fered by Spera (1980).<br />

DISCUSSION AND PETROGENETIC<br />

MODEL<br />

The petrographic, chemical, and isotopic evidence suggests<br />

that Chaos Crags resulted from the complex <strong>in</strong>ter-<br />

action <strong>of</strong> a mafic magma and a felsic magma. Plagiocl<strong>as</strong>e,<br />

biotite, hornblende and quartz crystals, orig<strong>in</strong>ally crystallized<br />

<strong>in</strong> the rhyodacite, occur <strong>as</strong> partially resorbed<br />

crystals <strong>in</strong> the hybrid b<strong>as</strong>altic andesite <strong>in</strong>clusions. Oliv<strong>in</strong>e<br />

crystals <strong>in</strong> the host rhyodacite, occurr<strong>in</strong>g alongside quartz<br />

crystals, have the same composition <strong>as</strong> those <strong>in</strong> the hybrid<br />

802


TEPLEY et al.<br />

MAGMA MIXING, LASSEN VOLCANIC CENTER<br />

b<strong>as</strong>altic andesite <strong>in</strong>clusions. Inclusion debris, <strong>in</strong>clud<strong>in</strong>g hornblende, and quartz that orig<strong>in</strong>ally were <strong>in</strong> chemical<br />

<strong>in</strong>clusion microlites and partially resorbed plagiocl<strong>as</strong>e and isotopic equilibrium with the rhyodacitic melt. Cores<br />

crystals, are scattered throughout the rhyodacite host. <strong>of</strong> partially resorbed plagiocl<strong>as</strong>e crystals <strong>in</strong> the <strong>in</strong>clusions<br />

This evidence <strong>in</strong>dicates that variably quenched hybrid have identical 87 Sr/ 86 Sr ratios to unresorbed plagiocl<strong>as</strong>e<br />

b<strong>as</strong>altic andesite <strong>in</strong>clusions disaggregated, mix<strong>in</strong>g their crystals <strong>in</strong> the host dome rocks. This could have produced<br />

contents (<strong>in</strong>clud<strong>in</strong>g resorbed and rimmed plagiocl<strong>as</strong>e a hybrid mafic magma, a b<strong>as</strong>altic andesitic magma, which<br />

phenocrysts and differentiated liquid) back <strong>in</strong>to the host subsequently would have <strong>in</strong>teracted with the rhyodacitic<br />

rhyodacite (e.g. Clynne, 1989, 1999). magma to form the <strong>in</strong>clusions (Fig. 15).<br />

In this system, the pathways <strong>of</strong> crystals are well con- Experiments have demonstrated that <strong>in</strong>trud<strong>in</strong>g magma<br />

stra<strong>in</strong>ed and supported by the observations described may entra<strong>in</strong> a resident magma ow<strong>in</strong>g to the turbulence<br />

above. These observations imply that crystal populations <strong>of</strong> the <strong>in</strong>jection, produc<strong>in</strong>g a hybrid magma along the<br />

derived from dist<strong>in</strong>ct magm<strong>as</strong> have exchanged <strong>as</strong> the <strong>in</strong>terface (e.g. Campbell & Turner, 1986, 1989). Enmagm<strong>as</strong><br />

<strong>in</strong>teract. A mechanism for the <strong>in</strong>teraction <strong>of</strong> tra<strong>in</strong>ment <strong>of</strong> small volumes <strong>of</strong> rhyodacite <strong>in</strong>to b<strong>as</strong>alt<br />

these magm<strong>as</strong> is therefore required. The model proposed along the mafic–silicic <strong>in</strong>terface through viscous drag<br />

is necessarily not <strong>as</strong> rigorously constra<strong>in</strong>ed <strong>as</strong> the crystal may form the hybrid b<strong>as</strong>altic andesite magma (Campbell<br />

pathway <strong>in</strong>terpretations but is b<strong>as</strong>ed on experimental & Turner, 1986, 1989). This allows mix<strong>in</strong>g <strong>of</strong> thermally<br />

or theoretical considerations presented elsewhere <strong>in</strong> the and compositionally diverse magm<strong>as</strong> because the maficliterature.<br />

We stress that this is just one <strong>in</strong>terpretation to-silicic ratio along the <strong>in</strong>terface is high for a short time,<br />

us<strong>in</strong>g well-constra<strong>in</strong>ed observations, and that other <strong>in</strong>- <strong>in</strong> accord with thermal and fluid-dynamical constra<strong>in</strong>ts<br />

terpretations, us<strong>in</strong>g the same observations, could be<br />

(e.g. Sparks & Marshall, 1986). Alternatively (and probequally<br />

plausible.<br />

ably related), Kouchi & Sunagawa (1985) produced a<br />

Magma–magma mix<strong>in</strong>g <strong>of</strong> mafic and silicic comhybrid<br />

magma by forced convective mix<strong>in</strong>g <strong>of</strong> b<strong>as</strong>altic<br />

ponents on a magma-chamber scale cannot expla<strong>in</strong> all<br />

and dacitic magma. Dacitic drops were torn from the<br />

<strong>of</strong> the chemical and m<strong>in</strong>eralogical features <strong>of</strong> the Chaos<br />

<strong>in</strong>terface and trapped <strong>in</strong> a large volume <strong>of</strong> b<strong>as</strong>altic liquid,<br />

Crags dome-<strong>in</strong>clusion system. Complete and <strong>in</strong>timate<br />

readily produc<strong>in</strong>g a homogenized andesitic composition.<br />

mix<strong>in</strong>g can only occur when the m<strong>as</strong>s fraction <strong>of</strong> the mafic<br />

Furthermore, the addition <strong>of</strong> phenocrysts considerably<br />

end member is large ([50%) or where the compositional<br />

<strong>in</strong>cre<strong>as</strong>ed the efficiency <strong>of</strong> mix<strong>in</strong>g because <strong>of</strong> smallerdifferences<br />

between magm<strong>as</strong> are small (Ζ10 wt % SiO 2 )<br />

scale mechanical mix<strong>in</strong>g. In either c<strong>as</strong>e, laboratory ex-<br />

(Kouchi & Sunagawa, 1985; Bacon, 1986; Sparks & periments have shown that if certa<strong>in</strong> criteria are met,<br />

Marshall, 1986; Nixon & Pearce, 1987; Nixon, 1988).<br />

magm<strong>as</strong> with large contr<strong>as</strong>ts <strong>in</strong> viscosity and composition<br />

Such large-scale mix<strong>in</strong>g would produce large proportions<br />

may partially mix.<br />

<strong>of</strong> homogeneous <strong>in</strong>termediate-composition lav<strong>as</strong>, which<br />

A hybrid layer is produced by viscous shear<strong>in</strong>g along<br />

are common <strong>in</strong> rocks <strong>of</strong> the L<strong>as</strong>sen Volcanic Center<br />

(Clynne, 1999) but are not present at Chaos Crags. Below<br />

the <strong>in</strong>terface <strong>of</strong> rhyodacite and <strong>in</strong>trud<strong>in</strong>g b<strong>as</strong>alt (Fig. 15b).<br />

~50% <strong>of</strong> the mafic component, the result <strong>of</strong> <strong>in</strong>teraction Small volumes <strong>of</strong> rhyodacitic magma are mixed <strong>in</strong>to the<br />

between the dom<strong>in</strong>antly silicic component and the mafic<br />

upper surface <strong>of</strong> the <strong>in</strong>trud<strong>in</strong>g b<strong>as</strong>altic magma, ma<strong>in</strong>component<br />

is the formation <strong>of</strong> undercooled magmatic<br />

ta<strong>in</strong><strong>in</strong>g a large proportion <strong>of</strong> b<strong>as</strong>alt to rhyodacite. Vari-<br />

<strong>in</strong>clusions.<br />

ability <strong>in</strong> the compositional and isotopic data <strong>of</strong> the<br />

The <strong>in</strong>clusion-form<strong>in</strong>g process is, however, only partly hybrid b<strong>as</strong>altic andesite <strong>in</strong>clusions illustrates the small<br />

responsible for the chemical and isotopic diversity obtogether<br />

(see Figs 10 and 11). Also mixed <strong>in</strong>to the b<strong>as</strong>alt<br />

but varied amount <strong>of</strong> rhyodacite and b<strong>as</strong>alt that mixed<br />

served between rocks and ph<strong>as</strong>es there<strong>in</strong>. Before <strong>in</strong>clusion<br />

formation, there must have been some <strong>in</strong>teraction becompositional<br />

and isotopic values different from the<br />

are phenocryst ph<strong>as</strong>es from the rhyodacite, which have<br />

tween the orig<strong>in</strong>al magm<strong>as</strong>, <strong>in</strong>volv<strong>in</strong>g complete magma<br />

mix<strong>in</strong>g (Fig. 15). Our model suggests that the rhyodacitic b<strong>as</strong>alt. This forms a hybrid layer, which is a comb<strong>in</strong>ation<br />

magma <strong>in</strong> a chamber beneath Chaos Crags orig<strong>in</strong>ally <strong>of</strong> b<strong>as</strong>altic liquid with ph<strong>as</strong>es with low 87 Sr/ 86 Sr ratios<br />

crystallized phenocrysts <strong>of</strong> plagiocl<strong>as</strong>e, quartz, biotite, and rhyodacitic liquid with ph<strong>as</strong>es with higher 87 Sr/ 86 Sr<br />

and hornblende. The 87 Sr/ 86 Sr ratios <strong>of</strong> dome whole-rock ratios.<br />

samples and <strong>of</strong> cores drilled from unresorbed plagiocl<strong>as</strong>e The thermal pr<strong>of</strong>ile <strong>of</strong> the hybrid layer contributes to<br />

crystals with<strong>in</strong> those rocks <strong>in</strong>dicate they orig<strong>in</strong>ally crysexist<br />

the production <strong>of</strong> <strong>in</strong>clusions. A thermal gradient must<br />

tallized together. An <strong>in</strong>jection <strong>of</strong> hotter, less viscous b<strong>as</strong>alt<br />

across the hybrid layer; unmixed b<strong>as</strong>alt beneath the<br />

ponded at the b<strong>as</strong>e <strong>of</strong> this crystal-rich, rhyodacitic magma hybrid layer is hotter than unmixed rhyodacite material<br />

chamber (e.g. Wiebe, 1993, 1996) (Fig. 15a). A small above the hybrid layer, and small volumes <strong>of</strong> cooler<br />

proportion <strong>of</strong> rhyodacitic magma and its ph<strong>as</strong>es must rhyodacite are <strong>in</strong>corporated <strong>in</strong>to the b<strong>as</strong>alt. A small-scale<br />

have been homogeneously mixed with the b<strong>as</strong>altic convection system may develop with<strong>in</strong> the hybrid layer<br />

magma, <strong>in</strong>corporat<strong>in</strong>g crystals <strong>of</strong> plagiocl<strong>as</strong>e, biotite, ow<strong>in</strong>g to the temperature contr<strong>as</strong>t across it, which would<br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

803


JOURNAL OF PETROLOGY VOLUME 40 NUMBER 5 MAY 1999<br />

(a)<br />

(b)<br />

rhyodacite<br />

(c)<br />

rhyodacite<br />

hybrid b<strong>as</strong>alticandesite<br />

<strong>in</strong>clusions<br />

hybrid layer<br />

Rhyodacite magma<br />

chamber with b<strong>as</strong>alt <strong>in</strong>trusion and<br />

m<strong>in</strong>gl<strong>in</strong>g<br />

b<strong>as</strong>alt<br />

Viscous entra<strong>in</strong>ment along<br />

the b<strong>as</strong>alt-rhyodacite<br />

boundary<br />

b<strong>as</strong>alt<br />

B<strong>as</strong>alt and entra<strong>in</strong>ed<br />

rhyodacite produce hybrid<br />

b<strong>as</strong>altic-andesite <strong>in</strong>clusions<br />

(d)<br />

rhyodacite<br />

(e)<br />

rhyodacite<br />

Variably sized and variably quenched<br />

<strong>in</strong>clusions conta<strong>in</strong><strong>in</strong>g rhyodacite-derived<br />

phenocrysts<br />

crystal key<br />

clear plagiocl<strong>as</strong>es<br />

resorbed plagiocl<strong>as</strong>es<br />

microlites<br />

Inclusion disaggregation: resorbed crystals,<br />

microlites, and differentiated liquid disperse <strong>in</strong>to<br />

the rhyodacite magma chamber<br />

Fig. 15. Model illustrat<strong>in</strong>g b<strong>as</strong>altic <strong>in</strong>flux <strong>in</strong>to magma chamber (a), viscously entra<strong>in</strong><strong>in</strong>g rhyodacitic magma along the turbulent <strong>in</strong>terface (b),<br />

formation <strong>of</strong> a hybrid layer and hybrid b<strong>as</strong>altic andesite <strong>in</strong>clusions <strong>of</strong> various sizes and various degrees <strong>of</strong> quench<strong>in</strong>g (c and d), and <strong>in</strong>clusion<br />

disaggregation <strong>in</strong>to magma chamber dispers<strong>in</strong>g partially resorbed crystals, microlites, and differentiated liquid (e). It should be noted that the<br />

chamber configuration is entirely schematic and may bear no relation to the actual shape.<br />

<strong>as</strong>sist <strong>in</strong> homogeniz<strong>in</strong>g the hybrid (e.g. Kouchi & Su- a f<strong>in</strong>e crystal–melt mixture, produc<strong>in</strong>g partially resorbed<br />

nagawa, 1985). As heat is transferred across the hybrid– or sieve-textured plagiocl<strong>as</strong>e crystals (Tsuchiyama, 1985).<br />

rhyodacite <strong>in</strong>terface and some cool<strong>in</strong>g occurs, The composition <strong>of</strong> the sieve zone becomes more calcic<br />

crystallization <strong>of</strong> the b<strong>as</strong>altic andesite hybrid proceeds, and is thought to be controlled largely by diffusion<br />

caus<strong>in</strong>g vapor-ph<strong>as</strong>e saturation. The vapor-ph<strong>as</strong>e ex- <strong>in</strong> the melt and partially by diffusion <strong>in</strong> the crystal<br />

solution causes the bulk density <strong>of</strong> the hybrid b<strong>as</strong>altic (Tsuchiyama, 1985). Similar thermal and chemical dis-<br />

andesite magma to equal the bulk density <strong>of</strong> the overly<strong>in</strong>g equilibrium reactions take place with other rhyodacitederived<br />

rhyodacite magma, creat<strong>in</strong>g an unstable, water-saturated<br />

phenocrysts mixed <strong>in</strong>to the b<strong>as</strong>alt. Biotite and<br />

layer (Eichelberger, 1980; Huppert et al., 1982). Huppert hornblende recrystallize <strong>in</strong>to pyroxene, plagiocl<strong>as</strong>e and<br />

et al. (1982) calculated that an unstable, vesiculat<strong>in</strong>g oxides, and quartz is resorbed around which pyroxene<br />

hybrid layer could be produced, which may thicken to coronae form.<br />

a few meters and which may account for the occurrence Instability <strong>in</strong> the hybrid layer caused by convective<br />

<strong>of</strong> mafic <strong>in</strong>clusions <strong>in</strong> silicic volcanic rocks.<br />

currents, density variability between the b<strong>as</strong>altic andesite<br />

Rhyodacite-derived plagiocl<strong>as</strong>e crystals <strong>in</strong>corporated and the rhyodacite, or periodic <strong>in</strong>fusions <strong>of</strong> fresh mafic<br />

<strong>in</strong>to the b<strong>as</strong>alt react to the thermal and chemical dis- magm<strong>as</strong> may lead to rele<strong>as</strong>e <strong>of</strong> blobs <strong>of</strong> hybrid magma<br />

equilibrium. Immersion <strong>of</strong> crystals <strong>in</strong>to a hotter, more <strong>in</strong>to the overly<strong>in</strong>g rhyodacitic magma (Fig. 15c). Because<br />

calcic melt causes the crystals’ edges to dis<strong>in</strong>tegrate <strong>in</strong>to many <strong>of</strong> the hybrid <strong>in</strong>clusions have quenched marg<strong>in</strong>s,<br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

804


TEPLEY et al.<br />

MAGMA MIXING, LASSEN VOLCANIC CENTER<br />

thermal equilibration between the rhyodacite magma<br />

and hybrid <strong>in</strong>clusions occurs after the blobs are separated<br />

from the hybrid layer. As the blobs move <strong>in</strong>to the cooler<br />

rhyodacite magma, many <strong>in</strong>clusions are quenched; this<br />

traps volatile ph<strong>as</strong>es with<strong>in</strong> the <strong>in</strong>clusions to produce lowdensity,<br />

self-conta<strong>in</strong>ed blobs <strong>of</strong> hybrid b<strong>as</strong>altic andesite<br />

magma. The chilled marg<strong>in</strong> may act <strong>as</strong> a barrier to g<strong>as</strong><br />

bubbles, allow<strong>in</strong>g the <strong>in</strong>clusions to behave <strong>as</strong> suspended<br />

low-density, partially solid, lumps (Bacon, 1986). Ad-<br />

ditionally, <strong>as</strong> the <strong>in</strong>clusions are quenched <strong>in</strong> the rhyo-<br />

dacite magma, crystallization occurs rapidly. Clear,<br />

strongly normally zoned rims form around the resorbed<br />

feldspars, and microlites <strong>of</strong> similar compositional zon<strong>in</strong>g<br />

crystallize. The rims around the feldspars also acquire<br />

the isotopic value <strong>of</strong> the bulk <strong>of</strong> the b<strong>as</strong>altic andesite<br />

<strong>in</strong>clusion (Fig. 15d).<br />

The blobs, hav<strong>in</strong>g a smaller effective density than the<br />

overly<strong>in</strong>g rhyodacite magma, rise or are caught <strong>in</strong> the<br />

convect<strong>in</strong>g rhyodacite and disperse throughout the cham-<br />

ber. This allows for their distribution with<strong>in</strong> the domes<br />

despite the viscosity contr<strong>as</strong>t (e.g. Eichelberger, 1980;<br />

Huppert et al., 1982). Shear<strong>in</strong>g <strong>of</strong> the undercooled mag-<br />

matic <strong>in</strong>clusions <strong>in</strong> the convect<strong>in</strong>g rhyodacitic magma<br />

chamber is probably the primary mechanism for dis-<br />

aggregation (Fig. 15e).<br />

Episodic <strong>in</strong>fusions <strong>of</strong> hot, mafic magma, prolonged<br />

residence <strong>of</strong> hot, mafic magma beneath the rhyodacitic<br />

magma chamber, or a comb<strong>in</strong>ation <strong>of</strong> these processes<br />

will lead to lower temperature, density and viscosity<br />

contr<strong>as</strong>ts between the rhyodacite magma and the hybrid<br />

b<strong>as</strong>altic andesite layer, from which the hybrid b<strong>as</strong>altic<br />

andesite <strong>in</strong>clusions are derived. Forceful <strong>in</strong>jection <strong>of</strong> hot,<br />

mafic magma <strong>in</strong>to the previously heated rhyodacitic<br />

magma might allow b<strong>as</strong>altic magma to stir <strong>in</strong>to the<br />

magma chamber more vigorously and turbulently than<br />

before. The result could be the production <strong>of</strong> larger<br />

and more variably quenched hybrid b<strong>as</strong>altic andesite<br />

<strong>in</strong>clusions (Fig. 15d).<br />

The above-described processes may expla<strong>in</strong> the differ-<br />

ences between Group 1 and Group 2 lav<strong>as</strong>. Group 1<br />

lav<strong>as</strong> have fewer, more completely quenched <strong>in</strong>clusions,<br />

where<strong>as</strong> Group 2 lav<strong>as</strong> have more abundant, variably<br />

quenched <strong>in</strong>clusions. Small <strong>in</strong>clusions <strong>in</strong> the early domes<br />

(Group 1) rapidly crystallized. Be<strong>in</strong>g smaller and more<br />

crystall<strong>in</strong>e, Group 1 <strong>in</strong>clusions would be more resistant<br />

to shear<strong>in</strong>g and contributed a smaller amount <strong>of</strong> disaggregated<br />

<strong>in</strong>clusion material (liquid and crystals) back<br />

<strong>in</strong>to the host. Larger <strong>in</strong>clusions <strong>in</strong> the later domes (Group<br />

2) cooled more slowly, thus allow<strong>in</strong>g the enveloped plagiocl<strong>as</strong>e<br />

crystals to chemically and thermally resorb, and<br />

allow<strong>in</strong>g the microlites <strong>in</strong> the <strong>in</strong>clusions and the clear<br />

rims on the plagiocl<strong>as</strong>e crystals <strong>in</strong> the <strong>in</strong>clusions to<br />

crystallize. The larger <strong>in</strong>clusions generally have th<strong>in</strong>ner<br />

quenched rims, if any, and were less crystall<strong>in</strong>e, which<br />

allowed them to be sheared apart more e<strong>as</strong>ily than<br />

smaller, more completely quenched Group 1 <strong>in</strong>clusions.<br />

IMPLICATIONS AND CONCLUSIONS<br />

Isotopic microsampl<strong>in</strong>g <strong>of</strong> crystal ph<strong>as</strong>es provides a def<strong>in</strong>-<br />

itive means <strong>of</strong> identify<strong>in</strong>g open-system differentiation<br />

histories. For plagiocl<strong>as</strong>e <strong>in</strong> particular, isotopic microsampl<strong>in</strong>g<br />

relative to textural features such <strong>as</strong> dissolution<br />

surfaces provides a crystal isotope stratigraphy, which<br />

reflects changes <strong>in</strong> magma composition.<br />

For Chaos Crags, a complex pathway <strong>of</strong> magma m<strong>in</strong>g-<br />

l<strong>in</strong>g is <strong>in</strong>dicated by the occurrence <strong>of</strong> variably quenched,<br />

hybrid b<strong>as</strong>altic andesite <strong>in</strong>clusions <strong>in</strong> rhyodacite host.<br />

Strontium-isotope analyses <strong>of</strong> clear and partially resorbed<br />

plagiocl<strong>as</strong>e crystals <strong>in</strong>dicate that all orig<strong>in</strong>ally crystallized<br />

<strong>in</strong> the silicic host. Some are now found <strong>in</strong> the hybrid<br />

b<strong>as</strong>altic andesite <strong>in</strong>clusions, where they are partially resorbed<br />

and rimmed with a clear overgrowth. Mechanical<br />

entra<strong>in</strong>ment <strong>of</strong> crystals occurred dur<strong>in</strong>g mix<strong>in</strong>g. How-<br />

ever, some <strong>of</strong> these crystals, together with concurrently<br />

formed microlites, have been identified <strong>in</strong> the silicic host.<br />

We demonstrate that this is due to disaggregation <strong>of</strong> the<br />

hybrid b<strong>as</strong>altic andesite <strong>in</strong>clusions. Progressive m<strong>in</strong>gl<strong>in</strong>g<br />

<strong>of</strong> the mafic and silicic components at Chaos Crags is<br />

reflected <strong>in</strong> the convergence <strong>of</strong> host and <strong>in</strong>clusion whole-<br />

rock 87 Sr/ 86 Sr ratios through time. Such a process may<br />

be a common mechanism <strong>in</strong> the products <strong>of</strong> <strong>in</strong>termediate<br />

magm<strong>as</strong>, especially <strong>in</strong> orogenic magm<strong>as</strong>, but may be<br />

e<strong>as</strong>ily overlooked <strong>in</strong> the absence <strong>of</strong> macroscopic evidence<br />

such <strong>as</strong> the presence <strong>of</strong> <strong>in</strong>clusions. Isotopic microsampl<strong>in</strong>g<br />

is one way <strong>of</strong> test<strong>in</strong>g for such processes.<br />

ACKNOWLEDGEMENTS<br />

The authors thank the reviewers R. L. Christiansen,<br />

D. Geist, M. J. Hibbard, J. Tepper, and R. Till<strong>in</strong>g for<br />

provid<strong>in</strong>g excellent and constructive comments. We also<br />

thank D. Siems, USGS analyst, for XRF analyses,<br />

F. Ramos and M. Yeager for <strong>in</strong>valuable help <strong>in</strong> the<br />

UCLA geochemistry laboratory, and the National Park<br />

Service for access to L<strong>as</strong>sen Volcanic National Park.<br />

Fund<strong>in</strong>g for this project w<strong>as</strong> provided <strong>in</strong> part from<br />

National Science Foundation Grants EAR-9303791 and<br />

EAR-9526903 to J.P.D. and <strong>in</strong> part from Geological<br />

Society <strong>of</strong> America and Sigma Xi grants to F.J.T.<br />

REFERENCES<br />

Albee, A. L. & Ray, L. (1970). Correction factors for electron micro-<br />

analysis <strong>of</strong> silicates and oxides, carbonates, phosphates, and sulfates.<br />

Analytical Chemistry 42, 1408–1414.<br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

805


JOURNAL OF PETROLOGY VOLUME 40 NUMBER 5 MAY 1999<br />

Anderson, A. T. (1983). Oscillatory zon<strong>in</strong>g <strong>of</strong> plagiocl<strong>as</strong>e: Nomarski Guffanti, M. & Weaver, C. S. (1988). Distribution <strong>of</strong> late Cenozoic volcanic<br />

<strong>in</strong>terferencecontr<strong>as</strong>tmicroscopy<strong>of</strong>etchedpolishedth<strong>in</strong>sections.Amerregionaltectonicconsiderations.Journal<strong>of</strong>GeophysicalResearch93,6513–<br />

vents <strong>in</strong> the C<strong>as</strong>cade Range: volcanic arc segmentation and<br />

ican M<strong>in</strong>eralogist 69, 660–676.<br />

Bacon, C. R. (1986). <strong>Magmatic</strong> <strong>in</strong>clusions <strong>in</strong> silicic and <strong>in</strong>termediate 6529.<br />

volcanic rocks. Journal <strong>of</strong> Geophysical Research 91, 6091–6112.<br />

Ha<strong>as</strong>e, C. S., Chadam, J., Fe<strong>in</strong>n, D. & Ortoleva, P. (1980). Oscillatory<br />

Bacon, C. R. & Druitt, T. H. (1988). Compositional evolution <strong>of</strong> the zon<strong>in</strong>g <strong>in</strong> plagiocl<strong>as</strong>e feldspar. Science 209, 272–274.<br />

zoned calc-alkal<strong>in</strong>e magma chamber <strong>of</strong> Mount Mazama, Crater Lake, Heiken, G. &Eichelberger, J. C. (1980). Eruptions at Chaos Crags, L<strong>as</strong>sen<br />

Oregon. Contributions to M<strong>in</strong>eralogy and Petrology 98, 224–256.<br />

Volcanic National Park, California. Journal <strong>of</strong> Volcanology and Geothermal<br />

Bard<strong>in</strong>tzeff, J.-M. & Bon<strong>in</strong>, B. (1987). The amphibole effect: a possible Research 7, 443–481.<br />

mechanism for trigger<strong>in</strong>g explosive eruptions. Journal <strong>of</strong> Volcanology and Huppert, H. E., Sparks, R. S. J. & Turner, J. S. (1982). Effects <strong>of</strong> volatiles<br />

Geothermal Research 33, 255–262.<br />

on mix<strong>in</strong>g <strong>in</strong> calc-alkal<strong>in</strong>e magma systems. Nature 297, 554–557.<br />

Bence, A. E. & Albee, A. L. (1968). Empirical correction factors for the Kouchi, A. & Sunagawa, I. (1985). A model for mix<strong>in</strong>g b<strong>as</strong>altic and<br />

electron microanalysis <strong>of</strong> silicates and oxides. Journal <strong>of</strong> Geology 76, dacitic magm<strong>as</strong> <strong>as</strong> deduced from experimental data. Contributions to<br />

382–403.<br />

M<strong>in</strong>eralogy and Petrology 89, 17–23.<br />

Blundy, J. D. & Shimizu, N. (1991). Trace element evidence for pla- Nixon, G. T. (1988). Petrology <strong>of</strong> the younger andesites and dacites at<br />

giocl<strong>as</strong>e recycl<strong>in</strong>g <strong>in</strong> calc-alkal<strong>in</strong>e magm<strong>as</strong>. Earth and Planetary Science Iztaccihuatl Volcano, Mexico: I. Disequilibrium phenocryst <strong>as</strong>-<br />

Letters 102, 178–197.<br />

semblages <strong>as</strong> <strong>in</strong>dicators <strong>of</strong> magma chamber processes. Journal <strong>of</strong> Pet-<br />

Bullen, T. D. & Clynne, M. A. (1990). Trace element and isotopic con- rology 29, 213–264.<br />

stra<strong>in</strong>ts on magmatic evolution at L<strong>as</strong>sen Volcanic Center. Journal <strong>of</strong> Nixon, G. T. & Pearce, T. H. (1987). L<strong>as</strong>er-<strong>in</strong>terferometry study <strong>of</strong><br />

Geophysical Research 95, 19671–19691.<br />

oscillatory zon<strong>in</strong>g <strong>in</strong> plagiocl<strong>as</strong>e: the record <strong>of</strong> magma mix<strong>in</strong>g and<br />

Campbell, I. H. & Turner, J. S. (1986). The <strong>in</strong>fluence <strong>of</strong> viscosity on phenocryst recycl<strong>in</strong>g <strong>in</strong> calc-alkal<strong>in</strong>e magma chambers, Iztaccihuatl<br />

founta<strong>in</strong>s <strong>in</strong> magma chambers. Journal <strong>of</strong> Petrology 27, 1–30.<br />

Volcano, Mexico. American M<strong>in</strong>eralogist 72, 1144–1162.<br />

Campbell, I. H. & Turner, J. S. (1989). Founta<strong>in</strong>s <strong>in</strong> magma chambers. Pearce, T. H. (1993). Recent work on oscillatory zon<strong>in</strong>g <strong>in</strong> plagiocl<strong>as</strong>e.<br />

Journal <strong>of</strong> Petrology 30, 885–923.<br />

In: Parsons, I. (ed.) Feldspars and their Reactions. Dordrecht: Kluwer<br />

Christensen, J. N. & DePaolo, D. N. (1993). Time scales <strong>of</strong> large volume Academic, pp. 313–349.<br />

silicic magma systems; Sr isotopic systematics <strong>of</strong> phenocrysts and gl<strong>as</strong>s<br />

Pearce, T. H. & Clark, A. H. (1989). Nomarski <strong>in</strong>terference contr<strong>as</strong>t<br />

fromtheBishop Tuff,LongValley,California.Contributionsto M<strong>in</strong>eralogy<br />

observations <strong>of</strong> textural details <strong>in</strong> volcanic rocks. Geology 17, 757–759.<br />

and Petrology 113, 100–114.<br />

Pearce, T. H. & Kolisnik, A. M. (1990). Observations <strong>of</strong> plagiocl<strong>as</strong>e<br />

Christiansen, R. L., Clynne, M. A. & Muffler, L. J. P. (1999). Geologic<br />

zon<strong>in</strong>g us<strong>in</strong>g <strong>in</strong>terference imag<strong>in</strong>g. Earth-Science Reviews 29, 9–26.<br />

map <strong>of</strong> the area <strong>of</strong> L<strong>as</strong>sen Peak, Chaos Crags, and Upper Hat Creek,<br />

Roeder, P. L. & Emslie, R. F. (1970). Oliv<strong>in</strong>e–liquid equilibrium. Con-<br />

tributions to M<strong>in</strong>eralogy and Petrology 29, 275–289.<br />

California. Scale 1:24 000. US Geological Survey (<strong>in</strong> press).<br />

Rutherford, M. J. & Hill, P. M. (1993). Magma <strong>as</strong>cent rates from am-<br />

Clynne, M. A. (1989). Disaggregation <strong>of</strong> quenched magmatic <strong>in</strong>clusions<br />

phibole breakdown; an experimental study applied to the 1980–1986<br />

contributes to chemical diversity <strong>in</strong> silicic lav<strong>as</strong> <strong>of</strong> L<strong>as</strong>sen Peak, Cali-<br />

Mount St Helens eruptions. Journal <strong>of</strong> Geophysical Research 98, 19667–<br />

fornia. Bullet<strong>in</strong> <strong>of</strong> the New Mexico Bureau <strong>of</strong> M<strong>in</strong>es and M<strong>in</strong>eral Resources 131,<br />

19685.<br />

54.<br />

Simonetti, A., Shore, M. & Bell, K. (1996). Diopside phenocrysts from<br />

Clynne, M. A. (1990). Stratigraphic, lithologic, and major element geonephel<strong>in</strong>ite<br />

lav<strong>as</strong>, Napak volcano, e<strong>as</strong>tern Uganda: evidence for<br />

chemical constra<strong>in</strong>ts on magmatic evolution at L<strong>as</strong>sen Volcanic Cenmagma<br />

mix<strong>in</strong>g. Canadian M<strong>in</strong>eralogist 34, 411–421.<br />

ter, California. Journal <strong>of</strong> Geophysical Research 95, 19651–19669.<br />

S<strong>in</strong>ger, B. S., Dungan, M. A. & Layne, G. D. (1995). Textures and Sr,<br />

Clynne, M. A. (1999). Complex magma mix<strong>in</strong>g orig<strong>in</strong> for multiple vol-<br />

Ba, Mg, Fe, K, and Ti compositional pr<strong>of</strong>iles <strong>in</strong> volcanic plagiocl<strong>as</strong>e:<br />

canic lithologies erupted <strong>in</strong> 1915, from L<strong>as</strong>sen Peak, California. Journal<br />

clues to the dynamics <strong>of</strong> calc-alkal<strong>in</strong>e magm<strong>as</strong> chambers. American<br />

<strong>of</strong> Petrology 40, 105–132.<br />

M<strong>in</strong>eralogist 80, 776–798.<br />

Clynne, M. A. & Muffler, L. J. P. (1989). L<strong>as</strong>sen National Park and<br />

Sparks, R. S. J. & Marshall, L. A. (1986). Thermal and mechanical<br />

vic<strong>in</strong>ity. In: Muffler, L. J. P. (ed.) IAVCEI Excursion 12B, South C<strong>as</strong>cade<br />

constra<strong>in</strong>ts on mix<strong>in</strong>g between mafic and silicic magm<strong>as</strong>. Journal <strong>of</strong><br />

Arc Volcanism, California and Southern Oregon. New Mexico Bureau <strong>of</strong> M<strong>in</strong>es<br />

Volcanology and Geothermal Research 29, 99–124.<br />

and M<strong>in</strong>eral Resources Memoir 47, 183–225.<br />

Spera,F. (1980)Thermalevolution <strong>of</strong>plutons;aparameterizedapproach.<br />

Davidson, J. P. & Tepley, F. J. III (1997). Recharge <strong>in</strong> volcanic systems:<br />

Science 207, 299–310.<br />

evidence from isotopic pr<strong>of</strong>iles <strong>of</strong> phenocrysts. Science 275, 826–829. Stamatelopoulou-Seymour, K., Vl<strong>as</strong>sopoulos, D., Pearce, T. H. & Rice,<br />

Davidson, J. P., Tepley, F. J. III & Knesel, K. (1998). Isotopic f<strong>in</strong>- C. (1990). The record <strong>of</strong> magma chamber processes <strong>in</strong> plagiocl<strong>as</strong>e<br />

gerpr<strong>in</strong>t<strong>in</strong>g may provide <strong>in</strong>sights <strong>in</strong>to evolution <strong>of</strong> magmatic systems. phenocrysts at Thera volcano, Aegean volcanic arc, Greece. Con-<br />

Eos Transactions, American Geophysical Union 79, 185, 189, 193. tributions to M<strong>in</strong>eralogy and Petrology 104, 73–84.<br />

Eichelberger, J. C. (1978). Andesitic volcanism and crustal evolution. Stimac, J. A. & Pearce, T. H. (1992). Textural evidence <strong>of</strong> mafic–felsic<br />

Nature 275, 21–27.<br />

magma <strong>in</strong>teraction <strong>in</strong> dacite lav<strong>as</strong>, Clear Lake, California. American<br />

Eichelberger, J. C. (1980). Vesiculation <strong>of</strong> mafic magma dur<strong>in</strong>g re- M<strong>in</strong>eralogist 77, 795–809.<br />

plenishment <strong>of</strong> silicic magma reservoir. Nature 288, 446–450. Tsuchiyama, A. (1985). Dissolution k<strong>in</strong>etics <strong>of</strong> plagiocl<strong>as</strong>e <strong>in</strong> the melt <strong>of</strong><br />

Feeley, T. C. & Sharp, Z. D. (1996). Chemical and hydrogen isotopic the system diopside–albite–anorthite, and the orig<strong>in</strong> <strong>of</strong> dusty plaevidence<br />

for <strong>in</strong> situ dehydrogenation <strong>of</strong> biotite <strong>in</strong> silicic magma cham- giocl<strong>as</strong>e <strong>in</strong> andesites. Contributions to M<strong>in</strong>eralogy and Petrology 89, 1–16.<br />

ber. Geology 24, 1021–1024.<br />

Wiebe, R. A. (1993). B<strong>as</strong>altic <strong>in</strong>jections <strong>in</strong>to floored silicic magma cham-<br />

Giletti, B. J. & C<strong>as</strong>serly, E. D. (1994). Strontium diffusion k<strong>in</strong>etics <strong>in</strong> bers. Eos Transactions, American Geophysical Union 74, 1, 3.<br />

plagiocl<strong>as</strong>e feldspars. Geochimica et Cosmochimica Acta 58, 3785–3793. Wiebe, R. A. (1996). Mafic–silicic layered <strong>in</strong>trusions: the role <strong>of</strong> b<strong>as</strong>altic<br />

Grove, T. H., Baker, M. B. & K<strong>in</strong>zler, R. J. (1984). Coupled CaAl–NaSi <strong>in</strong>jections on magmatic processes and the evolution <strong>of</strong> silicic magma<br />

diffusion <strong>in</strong> plagiocl<strong>as</strong>e feldspar: experiments and applications to cool- chambers. Transactions <strong>of</strong> the Royal Society <strong>of</strong> Ed<strong>in</strong>burgh: Earth Sciences 87,<br />

<strong>in</strong>g rate speedometry. Geochimica et Cosmochimica Acta 48, 2113–2121. 233–242.<br />

Downloaded from http://petrology.oxfordjournals.org/ by guest on August 28, 2013<br />

806

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!