27.12.2013 Views

Etudes et évaluation de processus océaniques par des hiérarchies ...

Etudes et évaluation de processus océaniques par des hiérarchies ...

Etudes et évaluation de processus océaniques par des hiérarchies ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4.8. ESTIMATION OF FRICTION LAWS AND PARAMETERS IN GRAVITY CURRENTS BY DATA<br />

15<br />

A Appendix: Calculation of the Coriolis-Boussinesq <strong>par</strong>am<strong>et</strong>er for linear<br />

Ekman layers<br />

The Solution for the Ekman spiral of a fluid moving with a constant geostrophic speed of V G<br />

in the y-direction is given by:<br />

ũ = V G exp(−z/δ) sin(z/δ) (19)<br />

ṽ = V G (1 − exp(−z/δ) cos(z/δ)) , (20)<br />

where I have <strong>de</strong>noted ũ the variable that has a <strong>de</strong>pen<strong>de</strong>nce in the z-direction as opposed to<br />

vertically averaged value u = 〈ũ〉 = 1 R h<br />

h 0 ũdz. The vertical average of the velocity component<br />

in the x-direction and its square, using eq. (19), are:<br />

u = 〈ũ〉 = 1 h<br />

u 2 ≠ 〈ũ 2 〉<br />

R h<br />

0 ũdz = V G<br />

h<br />

R h<br />

0 exp(−z/δ) sin(z/δ)dz = V Gδ<br />

2h<br />

= V 2 G<br />

h<br />

R h<br />

0 exp(−2z/δ) sin2 (z/δ)dz = V 2 G δ<br />

8h<br />

= V G<br />

4β<br />

= V 2 G<br />

16β<br />

(21)<br />

(22)<br />

β = 〈ũ2 〉<br />

〈ũ〉 2 = h 2δ<br />

(23)<br />

tel-00545911, version 1 - 13 Dec 2010<br />

Please note that equation (21) shows that the mean velocity in the x-component is only<br />

one quarter of geostrophic velocity divi<strong>de</strong>d by β. Linear Ekman layer theory shows, that the<br />

frictional force is equal in both directions, so that in the friction term the u value has to be<br />

multiplied by 4β. The non-linear term in the v-equation is u∂ xv is vanishing to leading or<strong>de</strong>r of<br />

β −1 as the u-velocity is concentrated in the Ekman layer, whereas the bulk of the v-momentum<br />

is above it.<br />

I used:<br />

Z<br />

exp(−z/δ) sin(z/δ)dz = −δ (sin(z/δ) + cos(z/δ)) and (24)<br />

2<br />

Z<br />

exp(−2z/δ) sin 2 (z/δ)dz = − exp(−2z/δ) (2sin 2 (z/δ) + sin(z/δ) cos(z/δ) + 1). (25)<br />

8<br />

I emphasise that these calculations are only valid for the unaccelerated laminar Ekman layer.<br />

References<br />

1. K. Brusdal, J.M. Brankart, G. Halberstadt, G. Evensen, P. Brasseur, P.J. van Leeuwen, E.<br />

Dombrowsky, & J. Verron (2003) A <strong>de</strong>monstration of ensemble-based assimilation m<strong>et</strong>hods<br />

with a layered OGCM from the perspective of operational ocean forecasting systems J.<br />

Marine Systems. 40-41, 253–289.<br />

2. G. Burgers, P. van Leeuwen & G. Evensen (1998) Analysis scheme in the ensemble Kalman<br />

filter Mon. Weather Rev. 126, 1719–1724.<br />

3. G. Evensen (1994), Sequential data assimilation with a nonlinear quasi-geostrophic mo<strong>de</strong>l<br />

using Monte Carlo m<strong>et</strong>hods to forecast error statistics. J. Geophys. Res. 99, 10,143–10,162.<br />

4. G. Evensen (2003), The ensemble Kalman filter: theor<strong>et</strong>ical formulation and practical<br />

implementation. Ocean Dyn . 53, 343–367.<br />

5. Frisch U., S. Kurien, R. Pandit, W. Pauls, S. Sankar Ray, A. Wirth, and J.-Z. Zhu, “Hyperviscosity,<br />

Galerkin Truncation, and Bottlenecks in Turbulence” Phys. Rev. L<strong>et</strong>t., 101,<br />

144501, 2008.<br />

6. N. Grianik, I. M. Held, K. S. Smith & G. K. Vallis (2004) The effects of quadratic<br />

drag on the inverse casca<strong>de</strong> of two-dimensional turbulence, Phys. Fluids 16, 73;<br />

doi:10.1063/1.1630054.<br />

7. J. Jiménez (2004), Turbulent flows over rough walls, Ann. Rev. Fluid Mech 36, 173–196.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!