27.12.2013 Views

Etudes et évaluation de processus océaniques par des hiérarchies ...

Etudes et évaluation de processus océaniques par des hiérarchies ...

Etudes et évaluation de processus océaniques par des hiérarchies ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.7. ON THE BASIC STRUCTURE OF OCEANIC GRAVITY CURRENTS 143<br />

Ocean Dynamics (2009) 59:551–563 563<br />

tel-00545911, version 1 - 13 Dec 2010<br />

θ<br />

u<br />

FC or iolis<br />

Fg<br />

Ffr ict ion<br />

θ + π 4<br />

Fig. 7 Force balance in a gravity current <strong>de</strong>scending at an angle<br />

θ to the horizontal at a constant speed u. The Coriolis force<br />

is at an angle of 3π/2 to the direction of propagation and the<br />

frictional force at an angle of 5π/4. In a stationary state, these two<br />

forces balance the gravitational force: F Coriolis + F friction + F g =<br />

0. Please note the turned coordinate system<br />

As the angle of <strong>de</strong>scent is small to leading or<strong>de</strong>r sin θ ≈<br />

θ and cos(θ + π/4) ≈ 1/ √ 2, Eq. 8 then gives:<br />

θ =<br />

ν √ √<br />

ν Ek<br />

H fδ = 2 f H = 2 4 ≈ 1.1 · 10−2 . (9)<br />

Please note that this result <strong>de</strong>pends only on the Ekman<br />

number and is in<strong>de</strong>pen<strong>de</strong>nt of the velocity of the gravity<br />

current. The analysis presented here does not apply to<br />

the friction layer as the Ekman spiral is not compl<strong>et</strong>e<br />

and θ is not small in this case, but can be exten<strong>de</strong>d to<br />

cases with a turbulent Ekman layer using a quadratic<br />

drag law.<br />

References<br />

Baringer MO, Price JF (1997) Momentum and energy balance of<br />

the mediterranean outflow. J Phys Oceanogr 27:1678–1692<br />

Emms PW (1998) Streamtube mo<strong>de</strong>ls of gravity currents in the<br />

ocean. Deep-Sea Res 44:1575–1610<br />

Ezer T (2005) Entrainment, diapycnal mixing and transport in<br />

three-dimensional bottom gravity current simulations using<br />

the Mellor–Yamada turbulence scheme. Ocean Mo<strong>de</strong>l<br />

9:151–168<br />

Ezer T, Weatherly GL (1990) A numerical study of the interaction<br />

b<strong>et</strong>ween a <strong>de</strong>ep cold j<strong>et</strong> and the bottom boundary layer<br />

of the ocean? J Phys Oceanogr 20:801–816<br />

Ermanyuk EV, Gavrilov NV (2007) A note on the propagation<br />

speed of a weakly dissipative gravity current. J Fluid Mech<br />

574:393–403<br />

y<br />

x<br />

Frisch U, Kurien S, Pandit P, Pauls W, Ray SS, Wirth A, Zou J-Z<br />

(2008) Hyperviscosity, Galerkin truncation, and bottlenecks<br />

in turbulence. Phys Rev L<strong>et</strong>t 101:144501<br />

Garr<strong>et</strong>t C, MacCready P, Rhines P (1993) Boundary mixing and<br />

arrested Ekman layers: rotating stratified flow near a sloping<br />

boundary. Annu Rev Fluid Mech 25:291–323<br />

Gill AE (1982) Atmosphere-ocean dynamics. Aca<strong>de</strong>mic,<br />

London, pp 662<br />

Griffiths RW (1986) Gravity currents in rotationg systems. Annu<br />

Rev Fluid Mech 18:59–89<br />

Killworth PD (1977) Mixing on the Wed<strong>de</strong>ll Sea continental<br />

slope. Deep-Sea Res 24:427–448<br />

Killworth PD (2001) On the rate of <strong>de</strong>scent of overflows. J<br />

Geophys Res 106:22267–22275<br />

Killworth PD, Edwards NR (1999) A turbulent bottom boundary<br />

layer co<strong>de</strong> for use in numerical ocean mo<strong>de</strong>ls. J Phys<br />

Oceanogr 29:1221–1238<br />

Lane-Serf GF, Baines PG (1998) Eddy formation by <strong>de</strong>nse flows<br />

on slopes in a rotating fluid. J Fluid Mech 363:229–252<br />

Lane-Serf GF, Baines PG (2000) Eddy formation by overflows in<br />

stratified water. J Phys Oceanogr 30:327-337<br />

Legg S, Hallberg RW, Girton JB (2006) Com<strong>par</strong>ison of entrainment<br />

in overflows simulated by z-coordinate, isopycnal and<br />

non-hydrostatic mo<strong>de</strong>ls. Ocean Mo<strong>de</strong>l 11:69–97<br />

MacCready P (1994) Frictional <strong>de</strong>cay of abysal boundary currents.<br />

J Mar Res 52:197–217<br />

Meacham SP, Stephens JC (2001) Instabilities of currents along a<br />

slope. J Prog Oceanogr 31:30–53<br />

Nof D (1983) The translation of isolated cold eddies on a sloping<br />

bottom. Deep-Sea Res A 30:171–182<br />

Pedlosky J (1998) Ocean circulation theory. ISBN: 978-3-540-<br />

60489-1. Springer, Berlin Hei<strong>de</strong>lberg New York, p 453<br />

Price JF, Baringer MO (1994) Outflows and <strong>de</strong>ep water production<br />

by marginal seas. Prog Oceanogr 33:161–200<br />

Price JF, Yang J (1998) Marginal sea overflows for climate simulations.<br />

In: Cassign<strong>et</strong> E, Verron J (eds) Ocean mo<strong>de</strong>ling and<br />

<strong>par</strong>am<strong>et</strong>erization. Kluwer, Dordrecht, pp 155–170<br />

Shapiro GI, Hill AE (1997) Dynamics of <strong>de</strong>nse water casca<strong>de</strong>s at<br />

the shelf edge. J Phys Oceanogr 27:2381–2394<br />

Shapiro GI, Zatsepin AG (1997) Gravity current down a steeply<br />

inclined slope in a rotating fluid. Ann Geophys 15:366–374<br />

Smith PC (1975) A stream tube mo<strong>de</strong>l for bottom boundary<br />

currents in the ocean. Deep-Sea Res 22:853–873<br />

Smith PC (1977) Experiments with viscous source flows in rotating<br />

systems. Dyn Atmos Ocean 1:241–272<br />

Stull RB (1988) An introduction to boundary layer m<strong>et</strong>eorology.<br />

Kluwer, Dordrecht<br />

Sutherland BR, Nault J, Yewchuk K, Swaters GE (2004) Rotating<br />

<strong>de</strong>nse currents on a slope. Part 1. Stability. J Fluid Mech<br />

508:241–264<br />

Umlauf L, Arneborg L, Burchard H, Fiekas V, Lass HU,<br />

Mohrholz V, Prandke H (2007) Transverse structure of turbulence<br />

in a rotating gravity current. Geophys Resea L<strong>et</strong>t<br />

34:L08601. doi:10.1029/2007GL029521<br />

Weatherly GL, Kelley Jr EA, (1982) Too cold bottom layers at<br />

the base of the Scotian Rise. J Mar Res 40:985–1012<br />

Wirth A (2005) A non-hydrostatic flat-bottom ocean mo<strong>de</strong>l entirely<br />

based on Fourier expansion. Ocean Mo<strong>de</strong>l 9:71–87<br />

Wirth A, Verron J (2008) Estimation of friction <strong>par</strong>am<strong>et</strong>ers and<br />

laws in 1.5D shallow-water gravity currents on the f-plane, by<br />

data assimilation. Ocean Dyn doi:10.1007/s10236-008-0151-8<br />

Wu W, Danabasoglu G, Large WG (2007) On the effects of <strong>par</strong>am<strong>et</strong>erized<br />

Mediterranean overflow on North Atlantic ocean<br />

circulation and climate. Ocean Mo<strong>de</strong>l 19:31–52

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!