27.12.2013 Views

Etudes et évaluation de processus océaniques par des hiérarchies ...

Etudes et évaluation de processus océaniques par des hiérarchies ...

Etudes et évaluation de processus océaniques par des hiérarchies ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4.5. MEAN CIRCULATION AND STRUCTURES OF TILTED OCEAN DEEP CONVECTION117<br />

816 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 38<br />

tel-00545911, version 1 - 13 Dec 2010<br />

the horizontal velocity field are consi<strong>de</strong>red. The similarity<br />

to the wind stress forcing that leads to horizontal<br />

divergence, Ekman pumping, and a large-scale circulation<br />

by Sverdrup balance can be taken further. Gradients<br />

in the heat flux at the ocean surface will lead to<br />

horizontal divergence, leading to vertical velocities and<br />

a large-scale circulation by Sverdrup balance, which is<br />

an effect that is compl<strong>et</strong>ely neglected when the traditional<br />

approximation is employed.<br />

Furthermore, the vertical shear induced by a tilted<br />

rotation vector will lead to tilted convective chimneys.<br />

This tilt in the chimney structure is likely to play an<br />

important role in the subsequent restratification of the<br />

convective area.<br />

In the present paper we d<strong>et</strong>ermined the influence of<br />

the horizontal component of the rotation vector on the<br />

convective dynamics. This influence should be reflected<br />

in <strong>par</strong>am<strong>et</strong>erization schemes of the convective dynamics.<br />

The important, but somehow more controversial,<br />

discussion of the effect of the herein-presented results<br />

on existing <strong>par</strong>am<strong>et</strong>erization schemes of the convection<br />

process and a construction of an improved <strong>par</strong>am<strong>et</strong>erization<br />

scheme will be the subject of a forthcoming publication.<br />

The importance of the herein-presented effect<br />

on the ocean global circulation and, more precisely, on<br />

the thermohaline circulation can only be evaluated by<br />

implementing such improved <strong>par</strong>am<strong>et</strong>erization in an<br />

ocean global circulation mo<strong>de</strong>l (OGCM).<br />

Acknowledgments. We are grateful to Theo Gerkema,<br />

Yves Morel, Chantal Staqu<strong>et</strong>, Joel Sommeria, and two<br />

anonymous reviewers for their remarks, and to Pago<strong>de</strong><br />

du Baron for discussion. The work was fun<strong>de</strong>d by<br />

EPSHOM-UJF 00.87.070.00.470.29.25 and EPSHOM-<br />

UJFCA2003/01/CMO. Calculations were performed at<br />

IDRIS (France) within Project 62037. This work is <strong>par</strong>t<br />

of the COUGAR Project fun<strong>de</strong>d by ANR-06-JCJC-<br />

0031-01.<br />

REFERENCES<br />

Boubnov, B. M., and G. S. Golitsyn, 1995: Convection of Rotating<br />

Fluids. Kluwer Aca<strong>de</strong>mic, 224 pp.<br />

Bush, J. W. M., H. A. Stone, and J. Bloxham, 1992: The motion of<br />

an inviscid drop in a boun<strong>de</strong>d rotating fluid. Phys. Fluids, 4A,<br />

1142–1147.<br />

Chanut, J., B. Barnier, W. Large, L. Debreu, T. Penduff, and J.-M.<br />

Molines, 2008: Mesoscale eddies in the Labrador Sea and<br />

their contribution to convection and restratification. J. Phys.<br />

Oceanogr., in press.<br />

Colin <strong>de</strong> Verdière, A., 2002: Un flui<strong>de</strong> lent entre <strong>de</strong>ux sphères en<br />

rotation rapi<strong>de</strong>: Les théories <strong>de</strong> la circulation océanique.<br />

Ann. Math. Blaise Pascal, 9, 245–268.<br />

Gibert, M., H. Pabiou, F. Chillà, and B. Castaing, 2006: High-<br />

Rayleigh-number convection in a vertical channel. Phys. Rev.<br />

L<strong>et</strong>t., 96, doi:10.1103/PhysRevL<strong>et</strong>t.96.084501.<br />

Hathaway, D. H., and R. C. J. Somerville, 1983: Three-dimensional<br />

simulations of convection in layers with tilted rotation<br />

vectors. J. Fluid Mech., 126, 75–89.<br />

Klinger, B. A., and J. Marshall, 1995: Regimes and scaling laws for<br />

rotating <strong>de</strong>ep convection in the ocean. Dyn. Atmos. Oceans,<br />

21, 227–256.<br />

Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic<br />

vertical mixing: A review and a mo<strong>de</strong>l with a nonlocal boundary<br />

layer <strong>par</strong>am<strong>et</strong>rization. Rev. Geophys., 32, 363–403.<br />

Lohse, D., and F. Toschi, 2003: Ultimate state of thermal convection.<br />

Phys. Rev. L<strong>et</strong>t., 90, doi:10.1103/PhysRevL<strong>et</strong>t.90.034502.<br />

Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations,<br />

theory, and mo<strong>de</strong>ls. Rev. Geophys., 37, 1–64.<br />

——, C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic,<br />

quasihydrostatic, and nonhydrostatic ocean mo<strong>de</strong>ling. J.<br />

Geophys. Res., 102, 5733–5752.<br />

Matsumoto, M., and T. Nishimura, 1998: Mersenne twister: A<br />

623-dimensionally equidistributed uniform pseudorandom<br />

number generator. ACM Trans. Mo<strong>de</strong>l. Comput. Simul., 8,<br />

3–30.<br />

Maxworthy, T., and S. Narimousa, 1994: Unsteady, turbulent convection<br />

into a homogeneous, rotating fluid, with oceanographic<br />

applications. J. Phys. Oceanogr., 24, 865–887.<br />

Send, U., and J. Marshall, 1995: Integral effects of <strong>de</strong>ep convection.<br />

J. Phys. Oceanogr., 25, 855–872.<br />

Sherem<strong>et</strong>, V. A., 2004: Laboratory experiments with tilted convective<br />

plumes on a centrifuge: A finite angle b<strong>et</strong>ween the<br />

buoyancy force and the axis of rotation. J. Fluid Mech., 506,<br />

217–244.<br />

Straneo, F., 2006: Heat and freshwater transport through the central<br />

Labrador Sea. J. Phys. Oceanogr., 36, 606–628.<br />

Wang, D., 2006: Effects of the earth’s rotation on convection:<br />

Turbulent statistics, scaling laws and Lagrangian diffusion.<br />

Dyn. Atmos. Oceans, 41, 103–120.<br />

Wirth, A., 2004: A non-hydrostatic flat-bottom ocean mo<strong>de</strong>l entirely<br />

based on Fourier expansion. Ocean Mo<strong>de</strong>ll., 9, 71–87.<br />

——, and B. Barnier, 2006: Tilted convective plumes in numerical<br />

experiments. Ocean Mo<strong>de</strong>ll., 12, 101–111.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!