27.12.2013 Views

Etude de la combustion de gaz de synthèse issus d'un processus de ...

Etude de la combustion de gaz de synthèse issus d'un processus de ...

Etude de la combustion de gaz de synthèse issus d'un processus de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Bibliographic revision<br />

2<br />

1<br />

−<br />

− ⎤ 3<br />

γu<br />

−1<br />

⎡<br />

dp 3 ⎛dx ⎞ ⎛ pi<br />

⎞<br />

⎛ p ⎞<br />

= ⎢1 ( 1 x)<br />

⎥<br />

⎜ ⎟ −⎜ ⎟ − ⎜ ⎟<br />

dt R ⎝dp ⎠ ⎢ ⎝ p ⎠ ⎥<br />

⎝ pi<br />

⎢<br />

⎥<br />

⎠<br />

⎣<br />

⎦<br />

1<br />

−<br />

γu<br />

S<br />

u<br />

(2.62)<br />

A result first <strong>de</strong>rived by O´Donovan and Rallis, (1959). Rearranging Eq. (2.62) gives:<br />

S<br />

u<br />

2<br />

1<br />

−<br />

⎤ 3<br />

γu<br />

1<br />

⎡<br />

−<br />

R⎛dx ⎞ ⎛p<br />

u<br />

i<br />

⎞ ⎛ p ⎞ γ<br />

⎛dp⎞<br />

= ⎢1 ( 1 x)<br />

⎥<br />

⎜ ⎟ − −<br />

3 dp ⎢ ⎜ ⎟ ⎜ ⎟<br />

p ⎥ p<br />

⎜<br />

i<br />

dt<br />

⎟<br />

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠<br />

⎢⎣<br />

⎥⎦<br />

(2.63)<br />

tel-00623090, version 1 - 13 Sep 2011<br />

In this equation, R is the effective radius of the vessel and γ u = c pu /c vu , the isentropic<br />

exponent of the unburned mixture. Both x and its <strong>de</strong>rivative dx/dp <strong>de</strong>pend on pressure.<br />

The advantage of this expression of the burning velocity is the possibility of exploring a<br />

wi<strong>de</strong> range of pressures and temperatures with one explosion. This is the main reason<br />

of its utilization for burning velocity <strong>de</strong>termination in engine conditions. Several x(p)<br />

re<strong>la</strong>tions have been proposed in the literature. The most important of which are:<br />

- O’Donovan and Rallis (1959)<br />

Based on the same assumptions mentioned, O’Donovan and Rallis (1959) present an<br />

x(p) re<strong>la</strong>tion that in the present symbols reads,<br />

( γu<br />

−1)/<br />

( /<br />

i )<br />

( )<br />

p−<br />

pi( Tu / Ti)<br />

T ⎛ p−<br />

p<br />

e<br />

i<br />

p p<br />

x = =<br />

pe( Tb / Te) − pi( Tu / Ti) T ⎜<br />

b<br />

⎝pe − ( Tb / Te) pi p/<br />

pi<br />

γu<br />

( γu<br />

−1)/<br />

γu<br />

⎞<br />

⎟<br />

⎠<br />

(2.64)<br />

Tb<br />

is the mass averaged burnt temperature during <strong>combustion</strong>, with end value T<br />

e<br />

. T b is<br />

<strong>de</strong>termined for every burned shell from 3 consecutive increases. First its unburned<br />

temperature is <strong>de</strong>termined from adiabatic compression. Its burned temperature is then<br />

obtained from energy conservation for the shell at constant pressure. Finally, the<br />

burned shell is further compressed (and heated) adiabatically.<br />

As a further simplification to their mo<strong>de</strong>l, O’Donovan and Rallis assume that Tb<br />

and T<br />

e<br />

are equal during the whole <strong>combustion</strong> period. In this case one finds<br />

p−<br />

pi( p/ pi)<br />

x =<br />

p − p ( p/ p )<br />

( γu<br />

−1)/<br />

γu<br />

( γu<br />

−1)/<br />

γu<br />

e i i<br />

(2.65)<br />

54

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!