27.12.2013 Views

Etude de la combustion de gaz de synthèse issus d'un processus de ...

Etude de la combustion de gaz de synthèse issus d'un processus de ...

Etude de la combustion de gaz de synthèse issus d'un processus de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 7<br />

(Updtraft)<br />

(Downdraft)<br />

⎧ Su<br />

0<br />

=− φ + φ −<br />

⎪<br />

⎨α = φ − φ +<br />

⎪<br />

⎪⎩<br />

β =− φ + φ −<br />

2<br />

0.413 1.056 0.355<br />

2<br />

4.881 9.952 6.731<br />

2<br />

1.469 2.786 1.561<br />

2<br />

⎧ S u 0<br />

=− 0.45φ<br />

+ 1.152φ<br />

−0.354<br />

⎪<br />

⎨α =<br />

2<br />

0.988φ − 1.936φ<br />

+ 2.502<br />

⎪<br />

2<br />

⎪⎩<br />

β =− 1.194φ + 1.967φ<br />

−0.931<br />

tel-00623090, version 1 - 13 Sep 2011<br />

⎧Su<br />

0<br />

= 0.21φ<br />

−0.073<br />

⎪<br />

(Fluidized bed) ⎨α<br />

= 1.485φ<br />

+ 0.639<br />

⎪<br />

⎩β<br />

=− 1.4φ<br />

+ 0.882<br />

Conclusion can be drawn that the burning velocity <strong>de</strong>creases with the increase of<br />

pressure. In opposite, an increase in temperature induces an increase of burning<br />

velocity. The higher burning velocity value is obtained for downdraft syngas. This result<br />

is endorsed to the higher heat value, lower dilution and higher volume percentage of<br />

hydrogen in the downdraft syngas.<br />

This information about <strong>la</strong>minar burning velocity of syngas-air f<strong>la</strong>mes is then applied on<br />

a multi-zone numerical heat transfer simu<strong>la</strong>tion co<strong>de</strong> of the wall-f<strong>la</strong>me interaction<br />

<strong>de</strong>veloped at the Laboratoire <strong>de</strong> Combustion et Détonique. The adapted co<strong>de</strong> allows<br />

simu<strong>la</strong>ting the <strong>combustion</strong> of homogeneous premixed gas mixtures within constant<br />

volume spherical chamber in or<strong>de</strong>r to predict the quenching distance of typical syngasair<br />

f<strong>la</strong>mes. Thus, it was possible to establish analytical expressions of quenching<br />

distance for typical stoichiometric syngas-air f<strong>la</strong>mes.<br />

δ q =450 P -0.79 (μm), P>0.3 MPa (Updraft)<br />

δ q =300 P -0.89 (μm), P>0.3 MPa<br />

(Downdraft)<br />

Another major finding is that the co<strong>de</strong> reproduces well the pressure evolution beyond<br />

the validity of the burning velocity corre<strong>la</strong>tion established in this work for updraft and<br />

downdraft syngas compositions. Fluidized bed syngas composition due to cellu<strong>la</strong>r<br />

f<strong>la</strong>me <strong>de</strong>velopment, which vio<strong>la</strong>tes the assumption of spherical f<strong>la</strong>me was removed<br />

from this study.<br />

Engine-like conditions were experimentally reproduced in a rapid compression machine<br />

(RCM) when working on two strokes mo<strong>de</strong> simu<strong>la</strong>ting a single cycle of an internal<br />

<strong>combustion</strong> engine. Stationary power applications usually use natural gas as fuel, thus<br />

a methane-air mixture is also inclu<strong>de</strong>d in this work as a reference fuel for comparison<br />

with the typical syngas compositions un<strong>de</strong>r study. A common practice in engine testing<br />

for <strong>combustion</strong> diagnostic is, prior to the usual firing tests, to test the engine in motored<br />

197

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!