27.12.2013 Views

Etude de la combustion de gaz de synthèse issus d'un processus de ...

Etude de la combustion de gaz de synthèse issus d'un processus de ...

Etude de la combustion de gaz de synthèse issus d'un processus de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 4<br />

0.5<br />

0.4<br />

φ =1.0<br />

Su (m/s)<br />

0.3<br />

0.2<br />

Updraft<br />

Dow ndraf t<br />

0.1<br />

Fluidized<br />

0.0<br />

0 100 200 300 400 500 600<br />

κ (s -1 )<br />

0.5<br />

φ=1.2<br />

0.4<br />

tel-00623090, version 1 - 13 Sep 2011<br />

Su (m/s)<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Updraft<br />

Downdraft<br />

0 100 200 300 400 500 600 700<br />

κ (s -1 )<br />

Figure 4.18b – Stretched burning velocity versus stretch rate for syngas-air mixtures at various<br />

equivalence ratios.<br />

The unstretched <strong>la</strong>minar burning velocity, S , shown in Fig. 4.19 is <strong>de</strong>rived from the<br />

value of the unstretched f<strong>la</strong>me speed and the expansion factor which is evaluated<br />

using the adiabatic f<strong>la</strong>me calcu<strong>la</strong>tion via the Gaseq co<strong>de</strong> package, which can be found<br />

in the Appendix B.<br />

0<br />

u<br />

S 0 u (m/s)<br />

0.4<br />

0.3<br />

0.2<br />

Updraft<br />

Dow ndraft<br />

Fluidized<br />

0.1<br />

0<br />

0.6 0.8 1 1.2<br />

Equivalence ratio<br />

Figure 4.19- Unstretched f<strong>la</strong>me speed versus equivalence ratio of syngas-air mixtures.<br />

105

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!