Etude de la combustion de gaz de synthèse issus d'un processus de ...

Etude de la combustion de gaz de synthèse issus d'un processus de ... Etude de la combustion de gaz de synthèse issus d'un processus de ...

tel.archives.ouvertes.fr
from tel.archives.ouvertes.fr More from this publisher
27.12.2013 Views

Experimental and numerical laminar syngas combustion 4.1.1.4 Laminar burning velocity Fig. 4.18 gives the stretched laminar burning velocity versus the flame stretch rate for typical syngas compositions. The maximum value laminar burning velocity is presented at the stoichiometric equivalence ratio, while lean or rich mixtures decrease the burning velocities. Downdraft syngas composition shows the highest burning velocities for all the equivalence ratios considered. The stretched burning velocity increases with the increase of flame stretch rate for lean (φ=0.8) syngas-air mixtures. This behavior remains for stoichiometric and rich (φ=1.2) mixtures in the case of updraft and downdraft compositions. In opposite, burning velocity decreases with the increase of stretch rate for stoichiometric fluidized syngas-air case. tel-00623090, version 1 - 13 Sep 2011 Su (m/s) 0.4 φ =0.6 0.3 0.2 0.1 Updraft Downdraft 0.0 0 50 100 150 200 250 300 350 400 κ (s -1 ) 0.5 φ =0.8 0.4 Su (m/s) 0.3 0.2 0.1 0.0 Updraft Dow ndraft Fluidized 0 100 200 300 400 500 600 κ (s -1 ) Figure 4.18a – Stretched burning velocity versus stretch rate for syngas-air mixtures at various equivalence ratios. 104

Chapter 4 0.5 0.4 φ =1.0 Su (m/s) 0.3 0.2 Updraft Dow ndraf t 0.1 Fluidized 0.0 0 100 200 300 400 500 600 κ (s -1 ) 0.5 φ=1.2 0.4 tel-00623090, version 1 - 13 Sep 2011 Su (m/s) 0.3 0.2 0.1 0.0 Updraft Downdraft 0 100 200 300 400 500 600 700 κ (s -1 ) Figure 4.18b – Stretched burning velocity versus stretch rate for syngas-air mixtures at various equivalence ratios. The unstretched laminar burning velocity, S , shown in Fig. 4.19 is derived from the value of the unstretched flame speed and the expansion factor which is evaluated using the adiabatic flame calculation via the Gaseq code package, which can be found in the Appendix B. 0 u S 0 u (m/s) 0.4 0.3 0.2 Updraft Dow ndraft Fluidized 0.1 0 0.6 0.8 1 1.2 Equivalence ratio Figure 4.19- Unstretched flame speed versus equivalence ratio of syngas-air mixtures. 105

Experimental and numerical <strong>la</strong>minar syngas <strong>combustion</strong><br />

4.1.1.4 Laminar burning velocity<br />

Fig. 4.18 gives the stretched <strong>la</strong>minar burning velocity versus the f<strong>la</strong>me stretch rate for<br />

typical syngas compositions.<br />

The maximum value <strong>la</strong>minar burning velocity is presented at the stoichiometric<br />

equivalence ratio, while lean or rich mixtures <strong>de</strong>crease the burning velocities.<br />

Downdraft syngas composition shows the highest burning velocities for all the<br />

equivalence ratios consi<strong>de</strong>red. The stretched burning velocity increases with the<br />

increase of f<strong>la</strong>me stretch rate for lean (φ=0.8) syngas-air mixtures. This behavior<br />

remains for stoichiometric and rich (φ=1.2) mixtures in the case of updraft and<br />

downdraft compositions. In opposite, burning velocity <strong>de</strong>creases with the increase of<br />

stretch rate for stoichiometric fluidized syngas-air case.<br />

tel-00623090, version 1 - 13 Sep 2011<br />

Su (m/s)<br />

0.4<br />

φ =0.6<br />

0.3<br />

0.2<br />

0.1<br />

Updraft<br />

Downdraft<br />

0.0<br />

0 50 100 150 200 250 300 350 400<br />

κ (s -1 )<br />

0.5<br />

φ =0.8<br />

0.4<br />

Su (m/s)<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Updraft<br />

Dow ndraft<br />

Fluidized<br />

0 100 200 300 400 500 600<br />

κ (s -1 )<br />

Figure 4.18a – Stretched burning velocity versus stretch rate for syngas-air mixtures at various<br />

equivalence ratios.<br />

104

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!