27.12.2013 Views

Strange kinetics: Levy flights and walks (Lecture 3 by J. Klafter)

Strange kinetics: Levy flights and walks (Lecture 3 by J. Klafter)

Strange kinetics: Levy flights and walks (Lecture 3 by J. Klafter)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Strange</strong> <strong>kinetics</strong>:<br />

<strong>Levy</strong> <strong>flights</strong> <strong>and</strong> <strong>walks</strong><br />

(<strong>Lecture</strong> 3 <strong>by</strong> J. <strong>Klafter</strong>)<br />

M. F. Shlesinger (ONR)<br />

G. Zumofen (ETH)<br />

A. Chechkin (Kharkov/TAU)<br />

R. Metzler (Munich)


Brownian motion (simple r<strong>and</strong>om walk)<br />

<<br />

2<br />

r ( t ) > ~<br />

Kt<br />

; K is the diffusion coefficient<br />

Anomalous diffusion<br />

(a)<br />

<<br />

2<br />

r ( t ) > ~<br />

α<br />

t<br />

α 1<br />

Subdiffusion (dispersive)<br />

α Superdiffusion<br />

)<br />

(b)<br />

< r<br />

2<br />

( t)<br />

> ~ log<br />

β<br />

( t<br />

strong anomaly, ultraslow<br />

Aim: creating framework for treating anomaly <strong>and</strong> strong anomaly in diffusion.


Classical scattering in<br />

an egg crate potential.<br />

J. <strong>Klafter</strong> et. al., Physics Today Feb (1996)<br />

r<br />

2<br />

( )<br />

7 / 4<br />

t ≈ t<br />

T. Geisel et al. Z. Phys. B71, 117 (1988)


Superdiffusion


Forms of stable distributions (Lévy)<br />

P<br />

α<br />

( x → ∞)<br />

~<br />

0 < α < 2<br />

x<br />

1<br />

1+<br />

α<br />

P<br />

α<br />

( x → ∞)<br />

~<br />

0 < α


Stable distributions <strong>and</strong> “heavy tails”<br />

( )<br />

1<br />

ˆ<br />

α<br />

pX<br />

( k; α, D) ≡ exp( ikX ) = exp − D | k | , 0 < α ≤ 2, D > 0 ⇒ pX<br />

( x, α, D)<br />

∝<br />

0< α < 2<br />

x→∞<br />

1+<br />

α<br />

| x |<br />

2<br />

⇒ x =∞ , 0< α < 2<br />

x , 0<br />

q<br />


Lévy stable probability laws<br />

⎡ α α ⎛ k ⎞ ⎤<br />

λ α, β ( k; µ , σ ) = exp ⎢−σ | k | ⎜1 − iβ ϖ ( k, α ) + iµ<br />

k ,<br />

| k |<br />

⎟ ⎥<br />

⎣ ⎝<br />

⎠ ⎦<br />

⎧ πα<br />

tan , if α ≠ 1<br />

⎪ 2<br />

ϖ ( k, α)<br />

= ⎨<br />

⎪ 2<br />

− ln | k | , if α = 1<br />

⎪⎩ π<br />

α = 2, β = 0 :<br />

Examples:<br />

( x − µ ) 2<br />

1 ⎛ ⎞<br />

L( x;2,0, µ , σ ) = exp −<br />

,<br />

2<br />

2σ π ⎜ 4<br />

σ<br />

⎟<br />

⎝ ⎠<br />

α = 1, β = 0 :<br />

σ 1<br />

L( x;1,0, µ , σ ) =<br />

,<br />

π µ σ<br />

α = 0.5, β = 0 :<br />

( ) 2 2<br />

x − +<br />

σ<br />

−<br />

( ) 3/ 2 ⎛ σ ⎞<br />

L( x;1/ 2,0, µ , σ ) = x − µ exp ⎜ − ⎟ .<br />

2π ⎝ 2( x − µ ) ⎠<br />

α = 0.5, β = −0.5 :<br />

L x<br />

1 1 ⎛ 1 ⎞<br />

⎜ ⎟<br />

2 π ⎝ 4 x ⎠<br />

−3 / 2<br />

( ;1 / 2, − 1 / 2, 0,1) = x exp − .


Lévy <strong>flights</strong><br />

1. Consider a r<strong>and</strong>om walker each of whose steps is an identically<br />

distributed r<strong>and</strong>om variable with pdf p(x).<br />

2. When can Pn(x), the pdf of being at x after n steps, be the same<br />

as p(x)?<br />

γ<br />

3.<br />

( k<br />

)<br />

=<br />

exp[<br />

−<br />

n<br />

k<br />

] 0 < γ ≤ 2<br />

P n<br />

lim P n<br />

x→∞<br />

γ<br />

( x)<br />

−1−γ<br />

4. = 2 , Gaussian;<br />

2<br />

< x ( n)<br />

> ~ n (finite)<br />

~<br />

n x<br />

0 < γ < 2<br />

γ < 2<br />

,<br />

lim<br />

k→<br />

0<br />

P n<br />

( k)<br />

~ 1−<br />

c k<br />

γ<br />

<<br />

x<br />

2<br />

( n)<br />

>=<br />

2 2<br />

2<br />

∫ dxPn<br />

( x)<br />

x = −∂ Pn<br />

( k) / ∂k<br />

k = 0<br />

→<br />


Lévy walk<br />

∞<br />

~<br />

5. Ψ(<br />

r,<br />

t)<br />

~ δ ( r − vt)<br />

∫ψ<br />

( t')<br />

dt'<br />

t<br />

ψ ( t)<br />

~<br />

t<br />

−α<br />

−1<br />

,<br />

0<br />

< α <<br />

2


Lévy walk


P<br />

n<br />

~ p<br />

~<br />

P<br />

P<br />

Comment: r<strong>and</strong>om walk on a lattice<br />

( r) = P ( r − r'<br />

) P ( r'<br />

)<br />

∑<br />

r'<br />

n−1<br />

1<br />

⎛ 2<br />

k ⎞<br />

∑<br />

2 2<br />

1<br />

≈1−<br />

r k ≈ exp⎜-<br />

⎟ for k →<br />

r=−∞<br />

2<br />

2<br />

⎜ 2 r ⎟<br />

⎝ ⎠<br />

⎛ 2<br />

nk ⎞<br />

= −<br />

⎜ 2<br />

2 r<br />

⎟<br />

⎝ ⎠<br />

∞<br />

( k) = exp( ikr) P ( r)<br />

n<br />

n<br />

1<br />

n<br />

( k) = [ ~<br />

p<br />

( k<br />

)<br />

]<br />

≈<br />

exp<br />

⎜−<br />

⎟<br />

for<br />

n<br />

→ ∞<br />

,<br />

k<br />

→<br />

0<br />

1<br />

2π<br />

π<br />

−ikr<br />

( r) ≈ e P ( k)<br />

letting<br />

letting<br />

n<br />

D<br />

=<br />

∫<br />

−π<br />

= t / τ ,<br />

r<br />

2<br />

~<br />

lim<br />

n<br />

→0,<br />

τ →0<br />

r<br />

dk<br />

2<br />

=<br />

/ τ<br />

1<br />

4πn<br />

r<br />

2<br />

e<br />

2<br />

r<br />

−<br />

4n<br />

r<br />

2<br />

=<br />

1<br />

4πDt<br />

e<br />

2<br />

r<br />

−<br />

4Dt<br />

,<br />

0


Lévy <strong>walks</strong><br />

Lévy Walks is a space-time coupled r<strong>and</strong>om walk model characterized <strong>by</strong><br />

1<br />

ψ ( x, t) ∝ δ ( x − t) ψ ( t)<br />

2<br />

1<br />

Ψ( x, t) ∝ δ ( x − t) ψ ( t ') dt '<br />

2<br />

∫<br />

∞<br />

2<br />

t<br />

<strong>and</strong><br />

The mean squared displacement in Lévy <strong>walks</strong> follows the pattern<br />

2<br />

⎧ t < <<br />

, 0 α 1<br />

⎪ 2<br />

t ln t α = 1<br />

2 ⎪ 3−α<br />

x ( t) ∝ ⎨ t 1< α < 2<br />

⎪<br />

t ln t α = 2<br />

⎪<br />

⎪ ⎩ t 2 < α<br />

16


Diffusion of tracers in fluid flows.<br />

Large scale structures (eddies, jets or convection rolls) dominate<br />

the transport.<br />

Example. Experiments in a rapidly rotating annulus (Swinney et al.).<br />

Ordered flow:<br />

<strong>Levy</strong> diffusion<br />

(<strong>flights</strong> <strong>and</strong> traps)<br />

Weakly turbulent flow:<br />

Gaussian diffusion


V ( x,<br />

y)<br />

= A + B(cos<br />

x + sin y)<br />

+ C cos x cos y


Coupled model<br />

Possibility to include within the velocity model, interruptions <strong>by</strong> spatial<br />

localization (jump model)<br />

~ ψ<br />

(<br />

t<br />

)


Lévy <strong>walks</strong>


First Step: Towards a fractal<br />

search pattern<br />

reduce oversampling<br />

J. E. Gillis, G.H. Weiss J. Mathematical Physics 11, 1307 (1970).<br />

J. <strong>Klafter</strong>, I. M. Sokolov Physics World 18, 29 (2005).


Lévy <strong>flights</strong>/<strong>walks</strong> in foraging,<br />

humans ??<br />

“…..certain animals such as ants perform <strong>Levy</strong> <strong>walks</strong> when<br />

searching for food in a new area. The above analysis may imply<br />

that starving <strong>Levy</strong> walk ants possess a slight evolutionary<br />

advantage over ants performing other <strong>walks</strong>, such as even the<br />

SAW. Flying ants can be considered <strong>by</strong> the reader.”<br />

Lévy-taxis?<br />

M. F Shlesinger <strong>and</strong> J.<strong>Klafter</strong> (1986)<br />

“On Growth <strong>and</strong> Form, Fractal <strong>and</strong> Non-Fractal Patterns in Physics.”


The flight of the albatross


Searching for food


Breakdown of segregation<br />

(Mixing in A+B0)


Spatial derivatives<br />

Riesz-Weil symmetric derivative:<br />

d<br />

d<br />

α<br />

x<br />

α<br />

⎧ 1<br />

⎪<br />

−<br />

φ(<br />

x)<br />

=<br />

2cos<br />

⎨<br />

⎪<br />

⎩<br />

( ) [ α α<br />

+ ]<br />

−∞<br />

Dx<br />

φ<br />

xD∞φ<br />

πα / 2<br />

−<br />

d<br />

Hφ,<br />

α = 1<br />

dx<br />

,<br />

α ≠ 1<br />

with H being a Hilbert-transform.<br />

In the Fourier-representation<br />

α<br />

ˆ<br />

⎛ d φ ⎞<br />

Φ⎜ ⎟<br />

α<br />

⎝ d | x | ⎠<br />

= −<br />

|<br />

k<br />

|<br />

α<br />

ˆ φ


Space-fractional diffusion equation, U=0: free<br />

Lévy <strong>flights</strong><br />

R<strong>and</strong>om jumps<br />

with Lévy PDF:<br />

(n is time instant)<br />

n<br />

∑<br />

j=<br />

1<br />

ikX<br />

(<br />

α<br />

)<br />

X ( n) = X j , pα<br />

( x) ÷ pˆ<br />

α ( k) = e = exp −D k<br />

0 < α ≤ 2 f ( x, n) = ?<br />

j<br />

n<br />

ik ∑ X j<br />

n<br />

( ) j 1 ikX<br />

α<br />

ikX n<br />

j nD k<br />

e e<br />

= −<br />

| |<br />

= = = e = e<br />

ˆ( , )<br />

−tD k<br />

α<br />

n<br />

fˆ( k , n )<br />

⇐<br />

f k t<br />

= e<br />

Equation for the characteristic<br />

function of free Lévy <strong>flights</strong> ⇒<br />

∂ fˆ<br />

α<br />

=− Dk fˆ<br />

∂t<br />

α<br />

d φ<br />

α<br />

d x<br />

α<br />

÷ − k ˆ( φ k )<br />

Equation for the PDF of free Lévy<br />

<strong>flights</strong><br />

<strong>flights</strong> ⇒<br />

∂f<br />

∂t<br />

=<br />

α<br />

∂ f<br />

D<br />

α<br />

∂ x


Confined Lévy <strong>flights</strong> in bistable<br />

potential: Kramers problem<br />

dx dU Y α ( t )<br />

dt dx<br />

= − + ( )<br />

2 4<br />

⎛ 1 ⎞<br />

TGauss<br />

( D)<br />

∝ exp ⎜ ⎟, D


Confined Lévy <strong>flights</strong> in bistable potential:<br />

Kramers’ problem<br />

lg T esc<br />

5<br />

4<br />

3<br />

2<br />

1<br />

1.0 1.5 2.0 2.5 3.0 3.5<br />

-lg D<br />

α=0.1<br />

α=0.25<br />

α=0.5<br />

α=0.75<br />

α=1.0<br />

α=1.25<br />

α=1.5<br />

α=1.75<br />

α=1.85<br />

α=1.9<br />

α=1.95<br />

α=1.99<br />

α=2.0<br />

Escape time versus noise intensity<br />

µ(α)<br />

1.14<br />

1.12<br />

1.10<br />

1.08<br />

1.06<br />

1.04<br />

1.02<br />

1.00<br />

lg C(α)<br />

T<br />

=<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

0.0 0.5 1.0 1.5 2.0<br />

α<br />

C ( α )<br />

D µ ⎛<br />

α<br />

⎞<br />

⎜ ⎟<br />

⎝ ⎠<br />

0.98<br />

0.5 1.0 1.5 2.0<br />

α


Lévy flight in harmonic potential, 1≤ α


Confined Lévy <strong>flights</strong>. Quartic potential, U ∝ x 4 .<br />

Cauchy case, α = 1<br />

PDF:<br />

f<br />

( x)<br />

=<br />

π (1 −<br />

x<br />

1<br />

2<br />

+<br />

x<br />

4<br />

)<br />

Two properties of stationary PDF:<br />

Bimodality: .1<br />

local minimum at<br />

two maxima at<br />

x min = 0<br />

x max = ± 1/ 2<br />

2. Steep power law asymptotics with finite variance:<br />

f ( x)<br />

∝<br />

4<br />

x −<br />

∞<br />

x<br />

2 2<br />

= dx x f ( x)<br />

= 1<br />

∫<br />

−∞<br />

⇒<br />

Stationary solution is out of the domain of attraction of stable laws


Two propositions<br />

Proposition 1: Stationary PDF for the Lévy <strong>flights</strong> in external field<br />

is not unimodal.<br />

Proposition 2: Stationary PDF for the Lévy <strong>flights</strong> in external field<br />

has power-law asymptotics,<br />

f ( x)<br />

≈<br />

x<br />

C<br />

α<br />

α + c−1<br />

,<br />

x<br />

→ ∞<br />

U<br />

c<br />

= x , c > 2<br />

U<br />

c<br />

= x , c ≥ 2<br />

−1<br />

1 Cα = Γ α π sin πα 2<br />

( ) ( )<br />

Critical exponentc cr<br />

= 4 −α<br />

is a “universal constant”, i.e., it does not depend on c.<br />

c<br />

<<br />

c<br />

cr<br />

⇒<br />

2<br />

x<br />

= ∞<br />

c<br />

><br />

c<br />

cr<br />

⇒<br />

2<br />

x<br />

< ∞<br />

: “confined”


Leapover lengths <strong>and</strong> first passage<br />

time statistics for Lévy <strong>flights</strong><br />

Question: What are the statistics of FPTs <strong>and</strong> FPLs ?


Trajectories: examples<br />

T. Koren, A.V. Chechkin & J. <strong>Klafter</strong> Physica A 379, 10 (2007)


Results I - symmetric case<br />

FPTs:<br />

FPLs:<br />

Sparre Andersen universality<br />

(1953, 1954)<br />

Decay slower than the step’s<br />

PDF !<br />

T. Koren et al. Phys. Rev. Lett. 99, 160602 (2007)


Results II – one-sided case<br />

FPTs:<br />

FPLs:


Anomalous is Normal...

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!