100 years of Superconductivity: achievements and delusions

varlamov.pdf varlamov.pdf

static.sif.it
from static.sif.it More from this publisher
27.12.2013 Views

100 years of Superconductivity: achievements and delusions A.A.Varlamov Institute of Superconductivity and Innovative Materials SPIN-CNR, Italy

<strong>100</strong> <strong>years</strong> <strong>of</strong><br />

<strong>Superconductivity</strong>:<br />

<strong>achievements</strong> <strong>and</strong> <strong>delusions</strong><br />

A.A.Varlamov<br />

Institute <strong>of</strong> <strong>Superconductivity</strong><br />

<strong>and</strong> Innovative Materials<br />

SPIN-CNR, Italy


1911: discovery <strong>of</strong> superconductivity<br />

Discovered by Kamerlingh Onnes<br />

in 1911 during first low temperature<br />

measurements to liquefy helium<br />

Whilst measuring the resistivity <strong>of</strong><br />

pure Hg he noticed that the<br />

electrical resistance dropped to zero at<br />

4.2K<br />

In 1912 he found that the resistive<br />

state is restored in a magnetic field or<br />

at high transport currents<br />

1913


The superconducting elements<br />

Li<br />

Be<br />

0.026<br />

Na Mg Critical magnetic fields at absolute zero (mT) Al<br />

1.14<br />

K Ca Sc Ti<br />

0.39<br />

10<br />

Rb Sr Y Zr<br />

Cs Ba La<br />

6.0<br />

110<br />

0.546<br />

4.7<br />

V<br />

5.38<br />

142<br />

Nb Mo<br />

(Niobium)<br />

9.5 0.92<br />

Hf<br />

0.12<br />

Nb<br />

198<br />

T c =9K Ta<br />

H c =0.2T<br />

4.483<br />

83<br />

Transition temperatures (K)<br />

Cr Mn Fe Co Ni Cu Zn<br />

9.5<br />

W<br />

0.012<br />

0.1<br />

7.77<br />

141<br />

Re<br />

1.4<br />

20<br />

Fe<br />

(iron)<br />

T<br />

Tc c =1K<br />

Ru Rh<br />

(at 20GPa)<br />

0.51<br />

7<br />

Os<br />

0.655<br />

16.5<br />

0.03<br />

5<br />

Ir<br />

0.14<br />

1.9<br />

0.875<br />

5.3<br />

Pd Ag Cd<br />

0.56<br />

3<br />

Pt Au Hg<br />

4.153<br />

41<br />

B C N O F Ne<br />

10<br />

Ga<br />

1.091<br />

5.1<br />

In<br />

3.4<br />

29.3<br />

Tl<br />

2.39<br />

17<br />

Si P S Cl Ar<br />

Ge As Se Br Kr<br />

Sn<br />

3.72<br />

30<br />

Pb<br />

7.19<br />

80<br />

Transition temperatures (K) <strong>and</strong> critical fields are generally low<br />

Metals with the highest conductivities are not superconductors<br />

The magnetic 3d elements are not superconducting<br />

Sb Te I Xe<br />

Bi Po At Rn<br />

...or so we thought until 2001


1933: Meissner-Ochsenfeld effect<br />

Ideal conductor!<br />

Ideal diamagnetic!


1935: Brothers London theory<br />

H<br />

H=0


<strong>Superconductivity</strong> in alloys<br />

Lev Shubnikov with coauthors studied superconductivity in metallic<br />

alloys Pb-Tl, 1935. J.N. Rjabinin <strong>and</strong> L.W. Schubnikow. Nature London,<br />

135 (1935), p. 581.


1937 USSR: Instead <strong>of</strong> Nobel<br />

Prize – Death Penalty!<br />

Lev Shubnikov


<strong>Superconductivity</strong> in binary alloys


1937: Superfluidity <strong>of</strong> liquid He 4<br />

1978


L<strong>and</strong>au theory <strong>of</strong> 2 nd order phase transitions<br />

Order parameter? Hint: wave function <strong>of</strong> Bose condensate<br />

(complex!)<br />

1962


1950: Ginzburg-L<strong>and</strong>au<br />

Phenomenology Ψ-Theory <strong>of</strong><br />

<strong>Superconductivity</strong><br />

Order parameter? Hint: wave function <strong>of</strong> Bose condensate<br />

(complex!)<br />

Inserting<br />

<strong>and</strong> using the energy conservation law<br />

2003<br />

How one can describe an inhomogeneous state?<br />

One could think about adding . However, electrons<br />

are charged, <strong>and</strong> one has to add a gauge-invariant<br />

combination


Thus the Gibbs free energy acquires the form<br />

Ginzburg-L<strong>and</strong>au functional<br />

To find distributions <strong>of</strong> the order parameter Ψ <strong>and</strong><br />

vector–potential A one has to minimize this functional<br />

with respect to these quantities, i. e. calculate variational<br />

derivatives <strong>and</strong> equate them to 0.


Minimizing with respect to<br />

Minimizing with respect to A:<br />

Maxwell equation<br />

The expression for the current indicates that the<br />

order parameter has a physical meaning <strong>of</strong> the<br />

wave function <strong>of</strong> the superconducting condensate.


1950: Isotopic effect


1950: Herbert Fröhlich arrives to the idea<br />

<strong>of</strong> electron phonon attraction


1957: Discovery <strong>of</strong> the type II<br />

superconductivity<br />

2003


U. Essmann <strong>and</strong> H. Trauble<br />

Max-Planck Institute, Stuttgart<br />

Physics Letters 24A, 526 (1967)<br />

Magneto-optical image<br />

<strong>of</strong> Vortex lattice, 2001<br />

P.E. Goa et al.<br />

University <strong>of</strong> Oslo<br />

Supercond. Sci. Technol. 14, 729 (2001)<br />

Scanning SQUID Microscopy <strong>of</strong> half-integer vortex, 1996<br />

J. R. Kirtley et al. IBM Thomas J. Watson Research Center<br />

Phys. Rev. Lett. 76, 1336 (1996)


1957: BCS- Microscopic theory <strong>of</strong><br />

superconductivity<br />

$L<br />

1972


!<br />

1958: Lev Gorkov<br />

formulates elegant equations <strong>of</strong> the<br />

microscopic theory <strong>of</strong> superconductivity<br />

<strong>and</strong> demonstrates the equivalence<br />

between the microscopic BCS theory<br />

<strong>and</strong> GL phenomenology at<br />

temperatures close to the critical one.


Extensions <strong>of</strong> the BCS theory:<br />

I. BCS <strong>Superconductivity</strong>: no gap – no supercurrent!<br />

The order parameter Ψ has a physical meaning <strong>of</strong> the wave<br />

function <strong>of</strong> the superconducting condensate <strong>and</strong> the gap in<br />

the quasi-particle spectrum determines its modulus:<br />

" = #e i$<br />

supercurrent


1959: Abrikosov & Gorkov: Gapless <strong>Superconductivity</strong><br />

Superconductor with paramagnetic impurities<br />

In the interval <strong>of</strong> concentrations 0.915c cr<br />

< c < c cr<br />

there is no gap but supercurrent exists


II. BCS <strong>Superconductivity</strong>: long-range order<br />

3D case<br />

" = #e i$<br />

In superconducting state<br />

!<br />

"( r)" ( r' ) = & 2<br />

|r#r'|$%<br />

In normal state, due to fluctuations<br />

" = 0<br />

!<br />

Due to fluctuations:<br />

!<br />

"( r)" ( r' ) = & 2 #|r#r'|<br />

e<br />

'<br />

|r#r'|$%


2D <strong>Superconductivity</strong>: Wegner - Mermin - Hohenberg<br />

theorem (1968): destruction <strong>of</strong> the long-range order<br />

by the phase fluctuations<br />

"( r)" ( r' ) |r#r'|$%<br />

~<br />

&<br />

ik r#r'<br />

e ( ) d 2 k<br />

( )<br />

Dk 2 + T #T c<br />

~ ln | r # r'|<br />

' GL<br />

T ( )<br />

1972-1973: Berezinsky–Kosterlitz–Thouless transition<br />

( )<br />

$<br />

F = E "TS = #n s2<br />

T<br />

&<br />

% 2m<br />

" 2k T<br />

'<br />

B ) ln R ( a<br />

!<br />

"( r)" r'<br />

( ) |r#r'|$%<br />

~ )<br />

| r # r'|<br />

& GL ( T )<br />

'<br />

(<br />

*<br />

,<br />

+<br />

# mT<br />

-n s


1962: Josephson effect<br />

Amplitude<br />

S<br />

S<br />

1973


Link<br />

Since the energy gain depends on the phase difference, the<br />

finite phase difference must create persistent current<br />

transferring Cooper pairs between the leads


Weak superconductivity in Italy<br />

Arco Felice-Naples-Salerno<br />

Since 70-ies is the world<br />

recognized center <strong>of</strong><br />

research <strong>and</strong> applications<br />

<strong>of</strong> a weak<br />

superconductivity


1986: Discovery <strong>of</strong> the High Temperature<br />

<strong>Superconductivity</strong> in Oxides<br />

Superconducting ceramics BaPbO with Tc=10 K<br />

Where discovered in 70-es<br />

LaBaCuO 4 : T c =35 K<br />

1987<br />

Chaplygin et al, 1980<br />

IGNC, RAS, Russia<br />

B. Raveau, France, 1984


1987: YBa 2 Cu 3 O 6+x àT c =93 K<br />

Nitrogen limit id overpassed!


1988: <strong>Superconductivity</strong> in BSCCO<br />

Bi-2201 has T c ≈ 20 K, Bi-2212 has T c ≈ 95 K, Bi-2223 has T c ≈ 108 K, <strong>and</strong> Bi-2234 has T c ≈ 104K.<br />

'i'iV<br />

£l.fi. VLL<br />

60<br />

Bi2.2Sr2Cao.SCU20S+S<br />

40<br />

20<br />

E<br />

0 u<br />

0.5<br />

.0<br />

co<br />

Q.<br />

0.4<br />

____..-£ ......<br />

o<br />

'T<br />

J HII a,b<br />

o<br />

o 0 0<br />

12 5 HII a.b OT<br />

o<br />

o<br />

o<br />

o<br />

H..la,b 12<br />

o<br />

g<br />

o 0<br />

2T 0 0 0<br />

• 0 0 8<br />

• 0 0<br />

0.3<br />

o<br />

0.2<br />

g<br />

: g 8<br />

J g g ;<br />

0.1<br />

. DO<br />

• : 0 0 0<br />

'.l r :Ii<br />

o°..p0<br />

Ii 00<br />

..,.._...<br />

0.0<br />

L<br />

... · •.<br />

0 20 40 60 80 <strong>100</strong><br />

T(K)<br />

Fig. 6.49. Magnetic field dependence <strong>of</strong> the in p lane electrical rcsh-itivil v li jj /,! I<br />

at the superconducting phase transition <strong>of</strong> single crystalline Bi-22 12 . Nql,' II II<br />

difference in the features, depending on the orientation <strong>of</strong> tlw f'x t ('III:d 11, 1,1<br />

lower frame ernphasizes the low resistance regime (see Ref.[IGS])<br />

f I


1992: <strong>Superconductivity</strong> in fullerides<br />

1)A 3 C 60 (A = K, Rb, Cs or some combination <strong>of</strong> these<br />

elements,<br />

2) Na 2 A x C 60 (x ≤ 1) ( A = K, Rb, Cs or a combination <strong>of</strong><br />

these elements,<br />

3) A 3−x Ba x C 60 (A=K, Rb, Cs), 4) Ca x C 60 (x ∼ 5) <strong>and</strong> Ba 6 C 60


2001:Two b<strong>and</strong> superconductor: MgB 2


Anomalies <strong>of</strong> HTS<br />

Growth <strong>of</strong> c-axis resistance<br />

Non-BCS behavior <strong>of</strong> Hc2<br />

Giant Nernst effect<br />

Existing <strong>of</strong> pseudogap above Tc<br />

d-symmetry <strong>of</strong> the order parameter


ARPES experiments: reconstraction <strong>of</strong> the Fermi<br />

surface by means <strong>of</strong> energy resolved<br />

photoemission


Is antiferromagnetism related to<br />

superconductivity?<br />

3. Parent compounds are Mott insulators<br />

<strong>and</strong> Heisenberg antiferromagnets<br />

superconductor


Can we think about spin fluctuations as a new pairing glue?<br />

!(k) = -<br />

"<br />

V spin<br />

(q) ! (k + q) dq<br />

V spin<br />

(q)<br />

><br />

0,<br />

repulsive,<br />

peaked at q<br />

=<br />

( π , π )<br />

+<br />

0<br />

0<br />

−<br />

−<br />

0<br />

0<br />

Campuzano + et al<br />

d-wave


2006: Fe-Pnictide high temperature<br />

Binary componds <strong>of</strong> pnictogens.<br />

A pnictogen – an element from<br />

the nitrogen group N,P, As,Sb,Bi<br />

superconductors<br />

RFeAsO (1111)<br />

R = La, Nd, Sm, Pr, Gd<br />

LaOFeP<br />

AFe2As2 (122)<br />

A = Ba, Sr, Ca<br />

LiFeAs (111)<br />

Fe(Se/Te) (11)


Hole Fermi<br />

surface<br />

B<strong>and</strong> theory calcula/ons agree with experiments <br />

Lebegue, Mazin et al, Singh & Du, Cvetkovic & Tesanovic…<br />

Electron<br />

Fermi surface<br />

2 circular hole pockets around (0,0)<br />

2 elliptical electron pockets around (π,π) (folded BZ), or (0,π)<br />

<strong>and</strong> (π,0) (unfolded BZ)


T c (K) <br />

SmFeAsO 1-x<br />

Gd 1-x Th x FeAsO<br />

SmFeAsO 1-x F x<br />

PrFeAsO 1-x F x<br />

NdFeAsO 1-x F x<br />

SmFeAsO 1-x F x<br />

CeFeAsO 1-x F x<br />

GdFeAsO 1-x F x<br />

GdFeAsO 1-x<br />

Tb 1-x Th x FeAsO<br />

TbFeAsO 1-x F x<br />

DyFeAsO 1-x F x<br />

Ba 1-x K x Fe 2 As 2<br />

Sr 1-x K x Fe 2 As 2<br />

Eu 1-x K x Fe 2 As 2<br />

LaFeAsO 1-x F x<br />

La 1-x Sr x FeAsO<br />

Ca 1-x Na x Fe 2 As 2<br />

Eu 1-x La x Fe 2 As 2<br />

Li 1-x FeAs<br />

BaCo x Fe 2-x As 2<br />

SrCo x Fe 2-x As 2<br />

BaNi x Fe 2-x As 2<br />

FeSe 0.5 Te 0.5<br />

LaO 1-x F x FeP<br />

LaOFeP<br />

LaONiP<br />

BaNi 2 P 2<br />

LaO 1-x NiBi<br />

α-FeSe 1-x<br />

SrNi 2 As 2<br />

α-FeSe<br />

2008 <br />

courtesy <strong>of</strong> J. H<strong>of</strong>fman


Cuprates<br />

Pnictides<br />

Parent compounds are insulators<br />

Parent compounds are metals


How about using the “analogy” with the cuprates <strong>and</strong><br />

assume that the pairing is mediated by spin fluctuations<br />

Cuprates<br />

spin fluct.<br />

+<br />

Fe-pnictides<br />

−<br />

0<br />

−<br />

+<br />

spin fluct.<br />

Δ ( θ ) = Δ 0<br />

(cos k<br />

x<br />

- cos k<br />

y)<br />

+<br />

Δ<br />

−<br />

( k = 0) = Δ<br />

Δ<br />

0,<br />

Δ ( k = π,<br />

π ) = -<br />

0<br />

d-wave gap (d x2-y2 )<br />

sign-changing s-wave gap (s +- )


HTS <strong>and</strong> its applications <br />

American Superconductor Corporation


MAGLEV: flying train<br />

The linear motor car experiment vehicles MLX01-01 <strong>of</strong> Central Japan Railway<br />

Company. The technology has the potential to exceed 4000 mph (6437 km/h) if<br />

deployed in an evacuated tunnel.


Superconducting RF cavities for colliders


Energy transmission


Transformers for railway power supply


Powerful superconducting magnets


Scientific <strong>and</strong> industrial NMR<br />

facilities<br />

900 MHz superconductive<br />

NMR installation. It is used<br />

For pharmacological<br />

investigations <strong>of</strong> various<br />

bio-macromolecules.<br />

Yokohama City University


Medical NMR tomography<br />

equipment


Criogenic high frequency filters<br />

for wireless communications

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!