26.12.2013 Views

Adaptivity with moving grids

Adaptivity with moving grids

Adaptivity with moving grids

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

128 C. J. Budd, W. Huang and R. D. Russell<br />

S. T. Li and L. R. Petzold (1997), ‘Moving mesh methods <strong>with</strong> upwinding schemes<br />

for time dependent PDEs’, J. Comput Phys. 131, 368–377.<br />

S. T. Li, L. R. Petzold and Y. Ren (1998), ‘Stability of <strong>moving</strong> mesh systems of<br />

partial differential equations’, SIAM J. Sci. Comput. 20, 719–738.<br />

G. Liao and D. Anderson (1992), ‘A new approach to grid generation’, Appl. Anal.<br />

44, 285–297.<br />

G. Liao and J. Xue (2006), ‘Moving meshes by the deformation method’, J. Comput.<br />

Appl. Math. 195, 83–92.<br />

V. D. Liseikin (1999), Grid Generation Methods, Springer, Berlin.<br />

A. Liu and B. Joe (1994), ‘Relationship between tetrahedron quality measures’,<br />

BIT 34, 268–287.<br />

J. Mackenzie (1999), ‘Uniform convergence analysis of an upwind finite-difference<br />

approximation of a convection–diffusion boundary value problem on an adaptive<br />

grid’, IMA J. Numer. Anal. 19, 233–249.<br />

J. A. Mackenzie and W. R. Mekwi (2007a), On the use of <strong>moving</strong> mesh methods<br />

to solve PDEs, in Adaptive Computations: Theory and Algorithms (T. Tang<br />

and J. Xu, eds), Science Press, Beijing, pp. 242–278.<br />

J. A. Mackenzie and W. R. Mekwi (2007b), ‘An analysis of stability and convergence<br />

of a finite-difference discretization of a model parabolic PDE in 1D using a<br />

<strong>moving</strong> mesh’, IMA J. Numer. Anal. 27, 507–528.<br />

J. A. Mackenzie and M. L. Robertson (2002), ‘A <strong>moving</strong> mesh method for the<br />

solution of the one-dimensional phase-field equations’, J. Comput. Phys.<br />

181, 526–544.<br />

R. I. McLachlan (1994), ‘Symplectic integration of Hamiltonian wave equations’,<br />

Numer. Math. 66, 465–492.<br />

A. Marquina (1994), ‘Local piecewise hyperbolic resolution of numerical fluxes for<br />

nonlinear scalar conservation laws’, SIAM J. Sci. Comput. 15, 894–904.<br />

C. T. Miller, S. N. Gleyzer and P. T. Imhoff (1998), Numerical modeling of NAPL<br />

dissolution fingering in porous media, in Physical Nonequilibrium in Soils:<br />

Modeling and Application (H. M. Selim and L. Ma, eds), Ann Arbor Press.<br />

K. Miller (1981), ‘Moving finite elements II’, SIAM J. Numer. Anal. 18, 1033–1057.<br />

K. Miller and R. N. Miller (1981), ‘Moving finite elements I’, SIAM J. Numer.<br />

Anal. 18, 1019–1032.<br />

P. K. Moore and J. E. Flaherty (1992), ‘Adaptive local overlapping grid methods<br />

for parabolic system in two space dimensions’, J. Comput. Phys. 98, 54–63.<br />

J. Moser (1965), ‘On the volume elements of a manifold’, Trans. Amer. Math. Soc.<br />

120, 286–294.<br />

L. S. Mulholland, W. Huang and D. M. Sloan (1998), ‘Pseudospectral solution of<br />

near-singular problems using numerical coordinate transformations based on<br />

adaptivity’, SIAM J. Sci. Comput. 19, 1261–1298.<br />

N. Nakamura (1994), ‘Nonlinear equilibriation of two-dimensional Eady waves’,<br />

Simulations <strong>with</strong> viscous geostrophic momentum equations’, J. Atmos. Sci.<br />

51, 1023–1035.<br />

V. I. Oliker and L. D. Prussner (1988), ‘On the numerical solution of the equation<br />

(∂ 2 z/∂x 2 )(∂ 2 z/∂y 2 ) − ((∂ 2 z/∂x∂y)) 2 = f and its discretizations I’, Numer.<br />

Math. 54, 271–293.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!