26.12.2013 Views

Adaptivity with moving grids

Adaptivity with moving grids

Adaptivity with moving grids

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

124 C. J. Budd, W. Huang and R. D. Russell<br />

N. Carlson and K. Miller (1998b), ‘Design and application of a gradient-weighted<br />

<strong>moving</strong> finite element code II: In 2-D’, SIAM J. Sci. Comput. 19, 766–798.<br />

H. D. Ceniceros (2002), ‘A semi-implicit <strong>moving</strong> mesh method for the focusing<br />

nonlinear Schrödinger equation’, Comm. Pure Appl. Anal. 4, 1–14.<br />

H. D. Ceniceros and T. Y. Hou (2001), ‘An efficient dynamically adaptive mesh<br />

for potentially singular solutions’, J. Comput. Phys. 172, 609–639.<br />

L. Chacón and G. Lapenta (2006), ‘A fully implicit, nonlinear adaptive grid strategy’,<br />

J. Comput. Phys. 212, 703–717.<br />

R. Chartrand, K. R. Vixie, B. Wohlberg and E. M. Bollt (2007), A gradient descent<br />

solution to the Monge–Kantorovich problem.<br />

math.lanl.gov/Research/Publications/Docs/chartrand-2007-gradient.pdf.<br />

K. Chen (1994), ‘Error equidistribution and mesh adaptation’, SIAM J. Sci. Comput.<br />

15, 798–818.<br />

L. Chen, P. Sun and J. Xu (2007), ‘Optimal anisotropic meshes for minimizing<br />

interpolation errors in the L p -norm’, Math. Comput. 76, 179–204.<br />

S. Chynoweth and M. J. Baines (1989), Legendre transform solutions to semigeostrophic<br />

frontogenesis, in Finite Element Analysis in Fluids (T. J. Chung<br />

and G. R. Kerr, eds), pp. 697–703.<br />

S. Chynoweth and M. J. Sewell (1989), ‘Dual variables in semigeostrophic theory’,<br />

Proc. R. Soc. London A 424, 155–186.<br />

M. J. P. Cullen (1989), ‘Implicit finite difference methods for modelling discontinuous<br />

atmospheric flows’, J. Comput. Phys. 81, 319–348.<br />

M. J. P. Cullen (2006), A Mathematical Theory of Large-Scale Atmosphere/Ocean<br />

Flow, Imperial College Press.<br />

M. J. P. Cullen and R. J. Purser (1984), ‘An extended Lagrangian theory of semigeostrophic<br />

frontogenesis’, J. Atmos. Sci. 41, 1477–1497.<br />

M. J. P. Cullen, J. Norbury, and R. J. Purser (1991), ‘Generalised Lagrangian<br />

solutions for atmospheric and oceanic flows’, SIAM J. Appl. Math. 51, 20–<br />

31.<br />

B. Dacorogna and J. Moser (1990), ‘On a partial differential equation involving<br />

the Jacobian determinant’, Ann. Inst. Henri Poincaré Analyse non linéaire<br />

7, 1–26.<br />

E. Dean and R. Glowinski (2003), ‘Numerical solution of the two-dimensional elliptic<br />

Monge–Ampère equation <strong>with</strong> Dirichlet boundary conditions: An augmented<br />

Lagrangian approach’, Comptes rendus Mathématique 336, 779–784.<br />

E. Dean and R. Glowinski (2004), ‘Numerical solution of the two-dimensional elliptic<br />

Monge–Ampère equation <strong>with</strong> Dirichlet boundary conditions: A leastsquares<br />

approach’, Comptes rendus Mathématique 339, 887–892.<br />

G. Delzanno, L. Chacón, J. Finn, Y. Chung and G. Lapenta (2008), ‘An optimal<br />

robust equidistribution method for two-dimensional grid adaptation based on<br />

Monge–Kantorovich optimization’, J. Comput. Phys. 227, 9841–9864.<br />

Y. Di, R. Li, T. Tang and P. Zhang (2005), ‘Moving mesh finite element methods for<br />

the incompressible Navier–Stokes equations’, SIAM J. Sci. Comput. 26, 1036–<br />

1056.<br />

E. A. Dorfi and L. O’C. Drury (1987), ‘Simple adaptive <strong>grids</strong> for 1-D initial value<br />

problems’, J. Comput. Phys. 69, 175–195.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!