26.12.2013 Views

Estimation of genetic and phenotypic parameters in a closed ...

Estimation of genetic and phenotypic parameters in a closed ...

Estimation of genetic and phenotypic parameters in a closed ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ESTIMATION OF GENET]C AND PHENOTYPIC PARÁMETERS<br />

IN A CLOSED POPI]LATION OF SI^IINE<br />

by<br />

Fang Tsong L<strong>in</strong><br />

A Thesis<br />

SubûÉtted to<br />

The University <strong>of</strong> Manitoba<br />

<strong>in</strong> Partial Fulfillment <strong>of</strong> the Requirements<br />

for the Degree <strong>of</strong><br />

MASTER OF SCIENCE<br />

19 B0


ESTII'iATION OF GENETIC AND PHINOTYPIC PARAMETTRS<br />

TN A CLOSED POPULATION OF SW]NE<br />

D \/<br />

ut<br />

FANG TSONG LIN<br />

A the sis sLrbnlittecl to the Faculty <strong>of</strong> GradLrate stLrdies ol<br />

t¡e Urriversity ol ìrlanitoba <strong>in</strong> partial fLrlfillnlent <strong>of</strong> tlie reqttirettle'nts<br />

<strong>of</strong> the degree <strong>of</strong>-<br />

IlASTIR OF SC I ENCI<br />

o l9B0<br />

Pernrissioir has bcen grantecl to thc LliliìAIìY oF TIIE UNIVEIì-<br />

SITY Otr Ì\'IANITOBA to lcnd or sell copics ol'this the sis' to<br />

the n-ATIOI.\¡\L LIBIìAIìY Oi- CANADA to Inicr.filrÌ this<br />

tliesis ancl to lc-nd or scll copics olthc'liil]r. <strong>and</strong> UNIVERSITY<br />

N,llCROFiLltlS to pLrblish an abstract <strong>of</strong> this thesis'<br />

The aLrthor reserves other pLrblication rigltts. arld lteithe r tlie<br />

thCSis lior t'rtcnsivc ùXtriìCtS lì'r.)lll it ¡l.l¿tt,Lrc llrilttt'cl or otht.rrvisc<br />

rellrocìrrcecl rvjtiioLlt tlte autltol''s writt.,'ll ¡lertttissiort.


ACKNOI^rLEDGÐ{ENTS<br />

The author wishes to express his gratitude to Dr. R.J. Parker<br />

for hís <strong>in</strong>valuable advice <strong>and</strong> guidance dur<strong>in</strong>g the period <strong>of</strong> graduate<br />

Study <strong>and</strong> the preparation <strong>of</strong> this thesis.<br />

I am also grateful to the staff members <strong>of</strong> the Livestock Division<br />

<strong>of</strong> AgrÍculture Canada <strong>and</strong> the personnel <strong>of</strong> Canada Packers Límited,<br />

i^I<strong>in</strong>nipeg, Manitoba for provid<strong>in</strong>g assistance <strong>and</strong> facílities for carcass<br />

measurements.


11<br />

ASSTRACT<br />

Phenotypic <strong>and</strong> <strong>genetic</strong> <strong>parameters</strong> <strong>of</strong> some reproductive traits <strong>in</strong><br />

sw<strong>in</strong>e were estimated from 1 ,264 Lrtters <strong>of</strong> first<br />

parÍty }lanagra gilts<br />

farrowed between L967 anô, 1977. Means <strong>and</strong> st<strong>and</strong>ard deviations for the<br />

traits <strong>of</strong> total number <strong>of</strong> pigs born, number born alive, number at<br />

wean<strong>in</strong>g, average birth weÍght <strong>and</strong> average wean<strong>in</strong>g weight were: 9.681<br />

2.22, 9.L7!2.L3, 7.68!2.L6, 1.3410.18 kg <strong>and</strong> 10.66!I.52 kg, respectively.<br />

SignÍficant dÍfferences were observed among three different farrorn'<strong>in</strong>g<br />

groups <strong>and</strong> among years <strong>in</strong> all reproductive traits.<br />

HeritabilíÈy<br />

estimates r,rere as follows: total number <strong>of</strong> pigs born, 0.0710.12;<br />

number <strong>of</strong> pigs born alive, 0.0210.12; number <strong>of</strong> pigs weaned, 0.0110.12;<br />

average birth weight, 0.36t0.11; <strong>and</strong> average wean<strong>in</strong>g weight, 0.3710.11.<br />

PhenotypÍc correlations among the three different litter<br />

size traits<br />

were highly positive <strong>and</strong> the correlation between average birth weíght<br />

<strong>and</strong> average wean<strong>in</strong>g weight was moderately posÍtive. Phenotypic correlations<br />

between litter si-ze' traits <strong>and</strong> average pig r.igfrt traits were<br />

moderately negative except for the correlaËion <strong>of</strong> nr:mber weaned r¿ith<br />

average bírth weight. Genetic correlations between total number born<br />

<strong>and</strong> average pig weight at birth <strong>and</strong> at wean<strong>in</strong>g were 0"3010.46 <strong>and</strong> 0.92!<br />

0.09, respectively. Genetic correlations betv¡een average wean<strong>in</strong>g<br />

weight <strong>and</strong> nr:mber <strong>of</strong> pigs weaned <strong>and</strong> average birth weight r,¡ere 0.5211.05<br />

<strong>and</strong> 0 .77x0.20, respectively.<br />

Phenotypic <strong>and</strong> genetÍc <strong>parameters</strong> for carcass aeasurements <strong>and</strong> age<br />

to market weight were estimated from data on 1r455 Managra pigs consist<strong>in</strong>g<br />

<strong>of</strong> 425 barrows <strong>and</strong> 1,030 gilts over a seven year period (1971-<br />

1977). Means <strong>and</strong> st<strong>and</strong>ard devÍations for 10 traits \^rere as follows:


iÍi<br />

carcass length,77.22!2.47 cm¡' maximum shoulder fat thíckness, 4.1710.50<br />

cmi m<strong>in</strong><strong>in</strong>srn mid-back fat thickriess, 2.01t0.37 cur; lo<strong>in</strong> fat thickness,<br />

3.2L!0.42 cm; total fat thickness, 9.40tL.04 cm;1o<strong>in</strong> eye area,30.171<br />

2<br />

3.70 cm-; grade <strong>in</strong>dex, 101.84t2.80; 7" lnam weight, 26.6911.62; lnam<br />

surface area, L25.25!L5.34 "*2;<br />

<strong>and</strong> age Lo market weight, 188.40115.06<br />

days. T'he differences between barrorvs <strong>and</strong> gilts.\^rere significant for<br />

all c.arcass trait.s <strong>and</strong> age to market rveight. Heritabilities<br />

estimated<br />

from sire <strong>and</strong>. dam components Treïe: carcass length, 0.62!0.08; maxímum<br />

shoulder fat, 0.39t0.07; rn<strong>in</strong>imr:m mid-back fat, 0.3310.07; lo<strong>in</strong> fat,<br />

0.24!0.07; total fat thickness,0.4510.07; lo<strong>in</strong> eye area,0.5310.07;<br />

grade <strong>in</strong>dex, 0.4910.07; % ham weight, 0.24!0.07; harn surface aÍea, 0.41t<br />

0.07; % predícted yíe1d, 0.56t0.08; <strong>and</strong> age to narket weight, 0.59t0.08.<br />

Phenotypic <strong>and</strong> genetÍc correlation coefficÍents r¡ere calculated from<br />

analysis <strong>of</strong> covariance. Several <strong>genetic</strong> correlation coefficients r¿ere<br />

outside the theoretical range <strong>and</strong> the st<strong>and</strong>ard errors for most <strong>of</strong> the<br />

<strong>genetic</strong> correlatÍon coefficients were hÌgh. Phenotypic <strong>and</strong> <strong>genetic</strong><br />

correlatíons among eleven traits were <strong>in</strong> the same direction buÈ <strong>genetic</strong><br />

correlations tended to be higher.


1v<br />

TABLE OF CONTENTS<br />

Page<br />

ACKNOi^ILEDGEIßNTS<br />

LIST OF TABLES<br />

LIST OF A?PENDICES<br />

INTRODUCTION<br />

LITERATURE REVIEW<br />

}-ÍATERIALS AND METHODS<br />

A. Sources <strong>of</strong> Data<br />

I. Reproductíve traiËs<br />

II. Carcass measurements<br />

<strong>and</strong> age to m¡rket weight<br />

í<br />

vi<br />

vaaa<br />

I<br />

2<br />

L4<br />

I4<br />

L4<br />

T7<br />

B. Statistical Analysis 22<br />

I. Reproductive traits<br />

1. Heritabilíty estimates<br />

2. Phenotypic <strong>and</strong> <strong>genetic</strong><br />

correlations<br />

22<br />

22<br />

24<br />

II. Carcass measurements <strong>and</strong> age to market weight<br />

1. Heritability estimates<br />

2. Phenotypic <strong>and</strong> <strong>genetic</strong> correlations<br />

RESULTS AND D]SCUSSION<br />

A. Reproductive traits ...;.<br />

I. Means <strong>and</strong> st<strong>and</strong>ard devialions<br />

II. Heritability estimates<br />

III. Phenotypic correlations<br />

IV. Genetic correlations<br />

26<br />

¿1<br />

29<br />

33<br />

33<br />

33<br />

36<br />

JÕ<br />

40


TABLE OF CONTENTS<br />

Page<br />

B. Carcass measurements <strong>and</strong> age to market weight<br />

I. Means <strong>and</strong> st<strong>and</strong>ard deviations<br />

II. lleritability estimates -.. -.<br />

III. Phenotypic correlations<br />

fV. Genetic correlations<br />

SU}ßIARY AND CONCLUSION<br />

LITERATI]RE CITED<br />

APPENDIX<br />

40<br />

40<br />

4¿<br />

47<br />

/,o<br />

53<br />

56<br />

59


va<br />

L]ST OF TABLES<br />

Table<br />

I Sunrmary <strong>of</strong> heritability estirnates <strong>of</strong> reproductive<br />

traits<br />

Page<br />

4<br />

| $smmery <strong>of</strong> heritability estimates <strong>of</strong> carcass measuremenÈs<br />

<strong>and</strong> age to market weight traits<br />

3 Managra breed development pattern <strong>and</strong> the current<br />

farrow<strong>in</strong>g groups 15<br />

I<br />

4 Number <strong>of</strong> litters contributíng to the study per<br />

year per group<br />

5 Nr:mber <strong>of</strong> observations contributed to Lhe study<br />

per year per group<br />

6 Regression coefficients used to adjust carcass<br />

Deasurements for carcass weíght<br />

L6<br />

Z0<br />

ZL<br />

7 Analysis <strong>of</strong> variance for litter size 23<br />

B Analysís <strong>of</strong> covariance 24<br />

9 Analysis <strong>of</strong> variance 27<br />

10 Analysis <strong>of</strong> covaríance . 29<br />

11 Means <strong>and</strong> st<strong>and</strong>ard deviations <strong>of</strong> reproductíve traiÈs<br />

for each farrow<strong>in</strong>g group for 10 years 34<br />

12 Means <strong>and</strong> st<strong>and</strong>ard deviations <strong>of</strong> reproducËive traítsfor<br />

eaeh year 35<br />

13 Escimated heritabilitíes <strong>and</strong> their st<strong>and</strong>ard errors for<br />

each <strong>of</strong> five reproductive traits from the sire<br />

cornponent <strong>of</strong> variance<br />

L4<br />

Phenotypic <strong>and</strong> <strong>genetic</strong> correlations among reproductive<br />

traits 39<br />

37<br />

15 Means <strong>and</strong> st<strong>and</strong>ard deviations <strong>of</strong> carcass measurements<br />

<strong>and</strong> age to market weight for each sex .<br />

4L<br />

16 Means <strong>and</strong> st<strong>and</strong>ard deviations <strong>of</strong> carcass measurenents<br />

<strong>and</strong> age to markeÈ weight traits for each farrowíng<br />

group 43


va1<br />

LIST OF TABLES<br />

Table<br />

Page<br />

L7 Means <strong>and</strong> st<strong>and</strong>ard deviations <strong>of</strong> carcass Illeasurements<br />

<strong>and</strong> age to market weight traíts for each year 44<br />

18 Heritability estim¡tes for carcass measurements <strong>and</strong><br />

age to market weight traits 46<br />

19 Phenotypic correlations among n<strong>in</strong>e carcass measurements<br />

<strong>and</strong> age to market weight traits 48<br />

20 Genetic correlations a<strong>in</strong>orlg carcess Eeasurements<br />

<strong>and</strong> age to m¡rket weighË 50


vaal,<br />

Appendix<br />

I<br />

II<br />

III<br />

LIST OF APPENDIX TABLES<br />

Analysis <strong>of</strong> variance <strong>of</strong> reproductive traits . .. 60<br />

Analysís <strong>of</strong> covariance <strong>of</strong> reproductive traits ... 67<br />

Page<br />

Analysis <strong>of</strong> varíance <strong>of</strong> carcass rneasurements<br />

<strong>and</strong> age to rnarket weight 63<br />

IV<br />

v<br />

VI<br />

Analysis <strong>of</strong> covariance <strong>of</strong> carcass measurements<br />

<strong>and</strong> age to m¡¡l¡s¡ weight 64<br />

Table <strong>of</strong> differentials for carcass grade <strong>in</strong>dex 75<br />

Adjustment table for age to urarkeË weight 76


INTRODUCTION<br />

The heritabilíty<br />

<strong>of</strong> traits <strong>of</strong> economic importance is a fundamental<br />

source <strong>of</strong> <strong>in</strong>formation <strong>in</strong> the theory <strong>and</strong> practice <strong>of</strong> sw<strong>in</strong>e breed<strong>in</strong>g<br />

programs.<br />

Phenotypic <strong>and</strong> <strong>genetic</strong> correlations among the traits are t\ro<br />

essential factors for construct<strong>in</strong>g selection <strong>in</strong>dexes vhen several<br />

traits are <strong>in</strong>volved <strong>in</strong> the same program at the same time.<br />

In this study five reproductive traits,<br />

ten carcass measurements<br />

<strong>and</strong> age to market weight were considered ín the determÍnation <strong>of</strong><br />

heritability estimates <strong>and</strong> <strong>in</strong> the computation <strong>of</strong> <strong>genetic</strong> <strong>and</strong> <strong>phenotypic</strong><br />

correlatiorrs among traits <strong>in</strong> Managra pigs. The five reproductive<br />

traits rüere total number <strong>of</strong> pigs born, nurnber <strong>of</strong> pigs born a1ive,<br />

number <strong>of</strong> pÍgs weaned, average pig birth weight <strong>and</strong> average pig wean<strong>in</strong>g<br />

weíght. The ten carcass Ðeasurements <strong>in</strong>cluded: carcass length,<br />

maxímum shoulder fat thíckness, m<strong>in</strong>imum mid-back fat thíckness, maximum<br />

lo<strong>in</strong> fat thickness, total fat thickness, lo<strong>in</strong> eye area, grade <strong>in</strong>dex,<br />

peïcent ham weight, ham surface area <strong>and</strong> percent predicted yield <strong>of</strong><br />

trínrmed cuts.


LITERATURE REVIEI^]<br />

A.<br />

Reproductive Traits<br />

I. Heritability EstÍmates<br />

It has been well recognLzed that characters closely related to<br />

reproductive fitness have low heritability<br />

estimates. Some <strong>of</strong> the heritability<br />

estimates reported by differenË workers are listed <strong>in</strong> Table 1.<br />

Heritability estimates from the literature range from -0.03 to 0.11,<br />

-0.01 to 0.28, 0.04 to 0.29, -0.04 ro 0.27 ar'ð.0.02 ro 0.46 for roral<br />

number <strong>of</strong> pigs born, number <strong>of</strong> pigs born alive, number <strong>of</strong> pigs weaned,<br />

average birth weight <strong>and</strong> average wean<strong>in</strong>g weight, respectívely.<br />

An<br />

exception to the above range has been reported by young et al. (1978)<br />

from an analysis <strong>of</strong> data rlom 2,095 gilts. These workers reported high<br />

heritabílities <strong>of</strong> 0.72!0.22 <strong>and</strong> 0.66!0.23, for total number <strong>of</strong> pigs born<br />

<strong>and</strong> ni¡nber <strong>of</strong> pigs born alive, respectively. young et al. (197S) cited<br />

that Po¡<strong>of</strong>rey et al. (L975) utilized six seasons <strong>of</strong> data <strong>in</strong>stead <strong>of</strong> eight<br />

from the sane population <strong>and</strong> reported heritabilitíes<br />

<strong>of</strong> 0.0910.08 <strong>and</strong><br />

0 .0910.09 f or these trrTo traíts .<br />

Revelle <strong>and</strong> Robison (1973) exam<strong>in</strong>ed data from 1,078 two-generation<br />

<strong>and</strong> 710'three-generation pedigrees to f<strong>in</strong>d the causes <strong>of</strong> 1ow heritabilities<br />

<strong>of</strong> reproductive traits. The gilts were dívided <strong>in</strong>to three<br />

groups as high (78"/"), nr-iddle (647") <strong>and</strong> 1ow (r9i() based on rhe firsË<br />

generation litter size. The daughterrs litter size <strong>of</strong> the 1ow group exceeded<br />

the high <strong>and</strong> the niddle groups. The results suggested a negative<br />

environmental correlation between the litter<br />

size <strong>of</strong> dam <strong>and</strong> daughter.<br />

Heritabilíty est<strong>in</strong>ates for litter size at birth were 0.13t0.06 from the<br />

regression <strong>of</strong> daughter on dam <strong>and</strong> 0.2810.26 from the regression <strong>of</strong>


gr<strong>and</strong>daughter on gr<strong>and</strong>dam. The heritability<br />

estimated from gr<strong>and</strong>daughtergr<strong>and</strong>dam<br />

regres.sion \¡las two times as large as the one estimated from<br />

daughter-dam regression. This result also <strong>in</strong>dicated the presence <strong>of</strong><br />

negative m¡ternal effec.ts on litter size, The authors suggested that the<br />

physiological maturation <strong>of</strong> the gilts from large litters<br />

was delayed<br />

by stress <strong>and</strong> competition. The explanation by the auËhors for the low<br />

heritabÍlity estiuntes <strong>of</strong> litter size were as follor¡s:<br />

1) srnall addÍtive <strong>genetic</strong> variance<br />

2) excessive environmental varíabilÍty<br />

3) negative correlations between direct <strong>genetic</strong> <strong>and</strong> maternal<br />

effects or negative genetíc correlations between component.s<br />

<strong>of</strong> the traits.<br />

Research on the Managra breed developed at the University <strong>of</strong><br />

Manitoba \,ùere reported by stockhausen <strong>and</strong> Boylan (L966), Roy et al. (1968)<br />

<strong>and</strong> Krotch (f975). Stockhauseri <strong>and</strong> Boylan (1966) reported an estimate<br />

<strong>of</strong> 0.1910.16 for the heritability <strong>of</strong> litter size. Krorch (]-915) <strong>in</strong>vestigated<br />

333 Managra litters consist<strong>in</strong>g <strong>of</strong>. 775 group A which farrowed<br />

<strong>in</strong> June-July, 1968-L973 <strong>and</strong> 158 group B litters farrowed <strong>in</strong> January-<br />

February, 1969 to r974. The herítability estimates <strong>of</strong> reproductÍve<br />

traits for each <strong>of</strong> the t\,/o groups vrere: -0.0310.02 <strong>and</strong> 0.05t0.03 for the<br />

total number <strong>of</strong> pigs born, -0.0110.02 <strong>and</strong> 0.03!0.03 for rhe number <strong>of</strong><br />

pigs born alive, 0.0410.04 <strong>and</strong> 0.0910.02 for the nirmber <strong>of</strong> pÍgs at 3 weeks<br />

<strong>of</strong> age, 0.0410.15 <strong>and</strong> 0.11t0.15 for <strong>in</strong>divÍdual birrh weighr, <strong>and</strong> -0.16+<br />

0.14 <strong>and</strong> 0.25!0.17 for <strong>in</strong>dividual 3 week weíght. Roy er al. (1968)<br />

reported that the heritability <strong>of</strong> pig birth weÍghr was 0.1010.15.


Table 1. Surnmary <strong>of</strong> herltabil-1ty estlÍìates <strong>of</strong> reproductive tralts<br />

Traltg<br />

.2 h<br />

MeEhod <strong>of</strong> estLmaElon<br />

No. <strong>of</strong> observatlons<br />

Refe¡ence<br />

Total rio. born<br />

0 . 094{ .04<br />

0.11<br />

Dam-daughter regresslon<br />

Pooled<br />

3,78L<br />

ist<br />

Urban eL a1. (1966)<br />

Fahmy <strong>and</strong> Bernard (1972)<br />

-0,03]{.02<br />

-0.05J{.03<br />

0.72+4.22<br />

Half-s1b correlaLlon<br />

Half-sfb correlaElon<br />

175<br />

158<br />

2,095<br />

Krotch (1975)<br />

Young et a1. (1978)<br />

No. born al-1ve<br />

0.03r{.07<br />

Dam-daughter regresslon<br />

1,959<br />

Boyl.an et al. (1961)<br />

0.20-rc.15<br />

0.59{{. 29<br />

Dam-daugh ter regresslon<br />

Half-stb correlatlon<br />

304<br />

304<br />

Stockhausen <strong>and</strong> Boylan (1966)<br />

0.08+0.04<br />

0.07r{).02<br />

0.09<br />

0.13r{.06<br />

0.2814.26<br />

-0 .01r{.02<br />

0.03r{.03<br />

Dam-daughter regresslon<br />

Dam-daughEer regresslon<br />

Pooled<br />

Dam-daughter regressJ-on<br />

Gr<strong>and</strong>dam-gr<strong>and</strong>daughter re gress lon<br />

Half-sib correl-aE1on<br />

3,78L<br />

3B, o0o<br />

75r<br />

750<br />

539<br />

L75<br />

158<br />

Urban et al. (1966)<br />

Strang <strong>and</strong> Ktng (1970)<br />

Fahmy <strong>and</strong> Bernard (1972)<br />

Revelle <strong>and</strong> Robtson (1973)<br />

Krotch (1975)<br />

0 .7 2+4 .22<br />

Half-sib correlaÈ1on<br />

2,095<br />

Young et al. (1978)<br />

No. pigs weaned<br />

0.13r{ .05<br />

0.09-rc.03<br />

0. 15<br />

Dam-daughLer regresslon<br />

Dam-daughter regresslon<br />

Pooled<br />

t 701<br />

38,000<br />

75r<br />

Urban et a1, (1966)<br />

Strang ancl Klng (1970)<br />

Fahmy antl Bernard (1972)<br />

0.04]{ .04<br />

0 .09r{.02<br />

0.29+4.25<br />

Half-slb correlatlon<br />

Half-slb correlatlon<br />

t75<br />

158<br />

2,O95<br />

Krotch (1975)<br />

Young et a1. (1978)<br />

. , Contlnrrecl


Table 1 (Contlnued)<br />

Tralcs<br />

a<br />

n<br />

Method <strong>of</strong> estlr¡ation<br />

No. <strong>of</strong> observatl-ons<br />

Reference<br />

Plg blrth LrelghL<br />

0.0il{.35<br />

0.2714.06<br />

0.17<br />

0.0410.04<br />

-0 . 04{{ .04<br />

0.001{.03<br />

0.16J{.16<br />

0.10+0. 15<br />

Half-s1b correlaElon<br />

Regresslon <strong>of</strong> <strong>of</strong>fsprlng on mid-parent<br />

Pooled from above Er,¡o esÈfwrtlons<br />

Regresslon <strong>of</strong> <strong>of</strong>fsprlng on slre<br />

Regresslon <strong>of</strong> <strong>of</strong>fsprlng on dam<br />

Regreeslon <strong>of</strong> <strong>of</strong>fsprlng on n1d-parent<br />

Half-efb correlaElon<br />

Half-sib correlatfon<br />

6,846<br />

3,760<br />

2,095<br />

r,246<br />

f'ahny <strong>and</strong> Bernard (1970)<br />

Edr¿ard<br />

Young<br />

Roy et<br />

<strong>and</strong> Omtvedt (1971)<br />

et al. (1978)<br />

a1. (1968)<br />

Plg weaned welght<br />

o.r4+4.26<br />

0.08r{.04<br />

0.1r<br />

0.08-m.04<br />

0.02{{) .04<br />

0. o5i{.03<br />

0.46{{.19<br />

0.18+0.15<br />

Half-s1b correlaclon<br />

Regreselon <strong>of</strong> <strong>of</strong>fsprlng on mld-parenE<br />

Pooled from above Ëwo esÈlmaE.1ons<br />

Regresslon <strong>of</strong> <strong>of</strong>fspr<strong>in</strong>g on sire<br />

Regressfon <strong>of</strong> <strong>of</strong>fsprlng on dam<br />

Regresslon <strong>of</strong> <strong>of</strong>fspr<strong>in</strong>g on mid-parenE<br />

Regresslon <strong>of</strong> <strong>of</strong>fsprlng on dam<br />

Half-sfb correlatlon<br />

6,846<br />

2,956<br />

38,000<br />

2,O95<br />

Fahmy <strong>and</strong> Bernard (1970)<br />

Edward <strong>and</strong> Omtvedt (1971)<br />

SErang <strong>and</strong> Klng (1970)<br />

Young et a1, (1978)


Heritability estipates <strong>of</strong> si¡<strong>in</strong>e reproductive traits are generally<br />

1ow <strong>and</strong> ínconsistent. The explanation for the <strong>in</strong>consistency may be due<br />

to Ëhe sampl<strong>in</strong>g eïror, the statístical method for estimation <strong>and</strong> the<br />

population studíed.<br />

II.<br />

Correlations among reproductíve traits<br />

Strang <strong>and</strong> K<strong>in</strong>g (L970) reported favourable positive <strong>phenotypic</strong> <strong>and</strong><br />

<strong>genetic</strong> correlations betr¿een litter size <strong>and</strong> litter weÍght, with the<br />

exception <strong>of</strong> a negative correlation betr¿een litter sLze <strong>and</strong> the average<br />

pig weight at wean<strong>in</strong>g.<br />

Edwards<strong>and</strong> Omtvedt (197f) reported high positive <strong>phenotypic</strong> correlations<br />

among litter síze traits. Fahmy <strong>and</strong> Bernard (L972) found that<br />

litter size (total <strong>and</strong> alive) at birth <strong>and</strong> at r¡ean<strong>in</strong>g r,ùere posítively<br />

<strong>phenotypic</strong>ally correlated with litter weight but were negatively correlated<br />

with <strong>in</strong>dividual pig weight at birth <strong>and</strong> aË wean<strong>in</strong>g. The authors<br />

expla<strong>in</strong>ed when the litter size <strong>in</strong>creases, litter weight also <strong>in</strong>creases<br />

while mean índivídual weÍght decreases due to the competition for the<br />

nutrient supply from the dau. They also reported that a highly positÍve<br />

phenotypíc correlation coefficients existed among three litter size<br />

traits <strong>and</strong> the <strong>in</strong>dividual birth weight was moderately positively correlated<br />

with <strong>in</strong>dividual wean<strong>in</strong>g weight.<br />

Baik et al. (L974) estimated <strong>phenotypic</strong> <strong>and</strong> <strong>genetic</strong> correlatíons<br />

among traiLs <strong>of</strong> litter size <strong>and</strong> litter weight from data <strong>of</strong>. 6L4 L<strong>and</strong>race<br />

litters over a three year period. The <strong>phenotypic</strong> correlation between<br />

the number <strong>of</strong> pigs born alive <strong>and</strong> the total litter weighË aË birth was<br />

0.812. The total number <strong>of</strong> pigs born was highly positively correlated


7<br />

r^/ith the number <strong>of</strong> pigs born alive <strong>and</strong> the litter weíght at birth. The<br />

<strong>genetic</strong> correlation betr¿een number <strong>of</strong> pigs born alive <strong>and</strong> 1ítter weight<br />

at birth was also hígh1y positive.<br />

Young eË al. (1978) anaryzeð. data from 2,095 girts <strong>and</strong> reporred<br />

<strong>phenotypic</strong> correlations between litter size <strong>and</strong> total litter weight at<br />

birth <strong>and</strong> at 42 days to be high <strong>and</strong> positive.<br />

In <strong>genetic</strong> correlations,<br />

pig birth weight was positively correlated with total number born (O .37),<br />

number born alive (0.35) <strong>and</strong> nuuber rueaned (0,04).<br />

The <strong>genetic</strong> correlations<br />

between pig wean<strong>in</strong>g weight <strong>and</strong> lítter<br />

size at birth (total<br />

number born <strong>and</strong> number born alive) were negligible, while a moderately<br />

negative correlation Ítas found between pig wean<strong>in</strong>g weight <strong>and</strong> number<br />

weaned.<br />

B. Carcass measurernents <strong>and</strong> age to ma¡]¡s¡ weight<br />

I. HerÍtabílity estimates<br />

The suntmary <strong>of</strong> heritability<br />

estímates <strong>of</strong> carcass measurements <strong>and</strong>.<br />

age to markeË weight reported frorn different researchers is presented <strong>in</strong><br />

Table 2. rt is clear that the majority <strong>of</strong> sw<strong>in</strong>e carcass traits are<br />

moderately or highly heritable. HerítabilÍty <strong>of</strong> carcass length reported<br />

<strong>in</strong> the lÍterature ranged froro 0.46 to 0.87 <strong>and</strong> averaged 0.63. Backfat<br />

thickness <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>divídual shoulder, rnÍd-back <strong>and</strong> lo<strong>in</strong> fat thickness<br />

measurement, <strong>and</strong> the mean frorn ,two or three fat thickness measurements,<br />

ranged from a 1ow <strong>of</strong> 0.25 to a high <strong>of</strong> 0.74 <strong>and</strong> averaged 0.50. Lo<strong>in</strong> eye<br />

area ranged from 0.35 to 0.70 <strong>and</strong> averaged at 0.50. Dress<strong>in</strong>g percentage<br />

was moderately heritable <strong>and</strong> ranged from 0.26 to 0.40 with an average <strong>of</strong><br />

0.32. HeritabÍlity <strong>of</strong> age to market weight (approx. 90 kg) \^¡as reported


Table 2. Summary <strong>of</strong> herltabllity<br />

estlmates <strong>of</strong> carcass measurements <strong>and</strong> age to rnarket weight traits<br />

Tralts<br />

h2<br />

Mechod <strong>of</strong> estimatlon<br />

No. <strong>of</strong> observatlons<br />

Refe¡ence<br />

Carcass length 0.52<br />

0.78r{.10<br />

0.87<br />

0 .50+0 . 16<br />

0.464n.04<br />

0.64<br />

Pooled from paternal, maternalhalf-slb<br />

<strong>and</strong> fu11-slb correlaLLon<br />

Paternal half-slb correlatlon<br />

il il tr il<br />

ttililtt<br />

tr tr It tt<br />

Pooled fr<strong>of</strong>l paternal- half-sib<br />

correlatlon <strong>and</strong> parent-<strong>of</strong>fspr<strong>in</strong>g regressfon<br />

53r<br />

1,936<br />

2,296<br />

7,275<br />

44,969<br />

2,031<br />

Enfleld <strong>and</strong> llhatley (1.961)<br />

Smlth et a1. (1962)<br />

SmlLh <strong>and</strong> Ross (1965)<br />

Roy et al. (1968)<br />

Flock (1970)<br />

Fahmy <strong>and</strong> Bernard (f970)<br />

Backfat thlckness<br />

. Mean<br />

Shoulder<br />

Mid-back<br />

Loln<br />

Mean<br />

Shoulder<br />

Rtb<br />

L<strong>of</strong>n<br />

Mean<br />

Mean<br />

Mean<br />

0.63<br />

0,62r{.10<br />

o . 73-rc.10<br />

0.71+0.10<br />

0.74<br />

0.26r{.11<br />

0.43+O.13<br />

0.zsfl.L2<br />

0.35r{.12<br />

0.69-rc.17<br />

0.s3<br />

Pooled from paternal, maternal halfslb<br />

<strong>and</strong> fu11-s1b correlatlon<br />

Paternal half-slb correlatlon<br />

tr[[<br />

llItil<br />

ll il tt<br />

il[il<br />

lrltil<br />

ll il il<br />

llrfil<br />

531<br />

7,936<br />

2,296<br />

1 ,191<br />

585<br />

650<br />

Enf íel.d <strong>and</strong> h¡hatley (1961.)<br />

Smlrh et al. (1962)<br />

Smlth <strong>and</strong> Ross (1965)<br />

Roy et al. (1968)<br />

Jensen et al. (1967)<br />

Arganosa et al. (1969)<br />

. . Contlnuetl


Table 2 (Contlnued)<br />

TraÍtg<br />

h2<br />

Method <strong>of</strong> estlMtlon<br />

No. <strong>of</strong> observaËlons<br />

Reference<br />

Mean<br />

Mean<br />

Mean<br />

Mean<br />

Mean<br />

0 . 46J{ .05<br />

0.67<br />

0.25<br />

0.30+0.07<br />

0.35r{.12<br />

Paternal half-elb correlatlon<br />

Pooled frorn paternal half-s1b correlaÈ1on<br />

<strong>and</strong> parenË-<strong>of</strong>feprfng regreselon<br />

PaEernal half-e1b correlatLon<br />

tt il tt I<br />

Irtilil<br />

44,969<br />

2,03L<br />

4,639<br />

5,952<br />

L,L94<br />

Ilock (1970)<br />

Fahmy <strong>and</strong> Bernard (1970<br />

glere <strong>and</strong> Ihonson (1972)<br />

Swlger ec al. (1979)<br />

Roy eE al. (1968)<br />

Loln eye area<br />

0.44<br />

0 . 35r{ .09<br />

0.t+9<br />

0.56+4.22<br />

0.47<br />

0 . 45rr0 .04<br />

0.48<br />

0.70<br />

0.56r{).06<br />

Pooled from paternal, maternal half-elb<br />

<strong>and</strong> full-elb correlatlon<br />

Paternal half-efb correlaEion<br />

trilItU<br />

trÙil[<br />

tr il [ il<br />

ilililil<br />

Pooled from paternal half-s1b correlatl-on<br />

<strong>and</strong> parent-<strong>of</strong>fsprlng regresslon<br />

Paternal half-e1b correlatlon<br />

ll I tt I<br />

531<br />

1,936<br />

2,296<br />

528<br />

650<br />

44,969<br />

2,O31<br />

4,639<br />

5,952<br />

Enffeld <strong>and</strong> Whatley (1961)<br />

Smleh et a1. (1962)<br />

Smfth <strong>and</strong> Roee (1965)<br />

Roy et al. (1968)<br />

Arganoea et al. (1969)<br />

Flock (1970)<br />

Fabmy <strong>and</strong> Bernard (1970)<br />

Slers <strong>and</strong> Thomson (1972)<br />

Swiger et a1. (1979)<br />

. Contfnued


l.abLe 2 (Contlnued)<br />

Tralts<br />

.2 h<br />

Method <strong>of</strong> estimatlon<br />

No. <strong>of</strong> observatlons<br />

Reference<br />

Dreselng out %<br />

0.40r-0.09<br />

o.26<br />

0.30-Ð.07<br />

Paternal- half-slb correlatl-on<br />

rr rr ll<br />

ll<br />

,<br />

il[Itl<br />

1,936<br />

2,296<br />

5,952<br />

smlth et a1. (1962)<br />

Smlth <strong>and</strong> Ross (1965)<br />

Svfger et al. (1979)<br />

Age to markeE welght<br />

0.40{{).07<br />

0.31J{.12<br />

illlllll<br />

Regresslon <strong>of</strong> rnld-parent <strong>and</strong> <strong>of</strong>fsprlng<br />

5,952<br />

r,244<br />

Swlger ec a1. (1979)<br />

Edwards <strong>and</strong> Omtvedt (1971)<br />

F<br />

O


11<br />

as 0.31 <strong>and</strong> 0.40 by Edwards<strong>and</strong> Omtvedt (I97L) <strong>and</strong> Srviger et al. (L979),<br />

respectivery. Research on the }{anagra conducted by Roy et al. (1968)<br />

reported herítabilíty estimates <strong>of</strong> 0.501-0.16, 0.35+0 .L2 <strong>and</strong> 0.5610 .22 for<br />

carcass length, carcass backfat <strong>and</strong> lo<strong>in</strong> eye area, respectively.<br />

II.<br />

Correlations among traits<br />

Snith et al. (L962) estimated heritabÍlities<br />

<strong>and</strong> correlatíons among<br />

35 carcass measurements <strong>and</strong> scores from record,s <strong>of</strong> L936 British Llhite<br />

bacon pigs. The authors found that <strong>phenotypic</strong> <strong>and</strong> genetíc correlations<br />

behave s<strong>in</strong>ilarly. The <strong>genetic</strong> correlatíons are <strong>of</strong> the same sign as<br />

<strong>phenotypic</strong> correlations <strong>in</strong> most cases, whí1e the absolute values <strong>of</strong><br />

<strong>genetic</strong> correlations rÀ7ere higher than <strong>phenotypic</strong> correlations.<br />

There<br />

were high correlations among traits from one particular characteristic<br />

<strong>of</strong> the pÍg such as shoulder fat thickness <strong>and</strong> mid-back fat thickness.<br />

The dress<strong>in</strong>g-ouË percentage shor,¡ed positive correlations with backfat<br />

thickness <strong>and</strong> eye muscle area.<br />

Strith <strong>and</strong> Ross (1965) estimated heritabilitíes <strong>and</strong> correlations<br />

among 26 performance <strong>and</strong> carcass traits from data <strong>in</strong>volv<strong>in</strong>g 21296 British<br />

L<strong>and</strong>race pigs. The <strong>genetic</strong> parameter estimates r^7ere quite similar to the<br />

f igures reported by S<strong>in</strong>ith et al . (L962) on Large ltlhíte pigs.<br />

Jensen et al. (L967) found that average backfat thickness rùas not<br />

correlated phenoÈypically or <strong>genetic</strong>ally i^rith lo<strong>in</strong> eye area, rvhile the<br />

percent lean cuts was highly positively correlated r¿ith average backfat<br />

thíckness <strong>and</strong> was moderately negatively correlated with lo<strong>in</strong> eye area.<br />

Arganosa et al. (1969) estimated the <strong>genetic</strong> <strong>and</strong> <strong>phenotypic</strong> correlaËions<br />

among 13 carcass traits from 650 pigs <strong>and</strong> showed that selection


T2<br />

for less backfat thickness would <strong>in</strong>crease percent lean cuts with an<br />

<strong>in</strong>significant effect on lo<strong>in</strong> eye area. Selection for larger lo<strong>in</strong> eye<br />

area wíl1 <strong>in</strong>crease lean cut yield.<br />

Flock (1970) studied <strong>genetic</strong> correlations among traits on 44,969<br />

German L<strong>and</strong>race pigs <strong>and</strong> reported that carcass length was moderately<br />

negatively correlated with backfat thickness <strong>and</strong> had a low negative<br />

correlation with lo<strong>in</strong> eye area. The correlation betv¡een backfat thíckness<br />

<strong>and</strong> lo<strong>in</strong> eye area was moderately negative.<br />

Siers <strong>and</strong> Thomsor. (L972) est<strong>in</strong>ated <strong>genetic</strong> eorrelations among carcass<br />

traits from records <strong>of</strong> 3,439 purebred pigs. The result <strong>in</strong>dicated<br />

that select<strong>in</strong>g for less backfat thickness will <strong>in</strong>crease lo<strong>in</strong> eye <strong>and</strong> ham<br />

<strong>and</strong> lo<strong>in</strong> percenL <strong>and</strong> select<strong>in</strong>g for larger lo<strong>in</strong> eye area will <strong>in</strong>crease ham<br />

<strong>and</strong> lo<strong>in</strong> percent effectively.<br />

Enfield <strong>and</strong> Ltrhatley (1961) reported that <strong>phenotypic</strong> correlations<br />

anong carcass length, backfat thiekness <strong>and</strong> lo<strong>in</strong> eye area were sm:l1 <strong>in</strong><br />

absolute value with the largest correlation coefficient <strong>of</strong> -.36 be<strong>in</strong>g<br />

betvreen backfat thic.kness <strong>and</strong> carcass length <strong>and</strong> -.27 between backfat<br />

thickness <strong>and</strong> lo<strong>in</strong> eye area. The <strong>genetic</strong> correlaËions among these three<br />

traits were al1 negative <strong>and</strong> <strong>in</strong>sÍgnificant.<br />

Fahmy <strong>and</strong> Bernard (1970) reported favorable relationships between<br />

carcass length, backfat thíckness <strong>and</strong> lo<strong>in</strong> eye area.<br />

Swíger et al. (l-979) found that lean cut percent had a high negative<br />

<strong>genetic</strong> correlation with backfat thickness (-.gO) <strong>and</strong> a high posÍtive<br />

correlation with lo<strong>in</strong> eye area (.83). Backfat thickness was moderately<br />

negatively correlated r¿ith lo<strong>in</strong> eye area both <strong>phenotypic</strong>ally <strong>and</strong><br />

<strong>genetic</strong>ally (-;34). The <strong>phenotypic</strong> correlation between lean cufupercent


13<br />

<strong>and</strong> backfat thickness r^7as negative (-.33) <strong>and</strong> the relationship between<br />

lean cutspercent I^Iíth lo<strong>in</strong> eye area was positive (.39).<br />

Age to 90.7 kg<br />

live weight v¡as posirively correlated wíth lean cut percent <strong>and</strong> lo<strong>in</strong> eye<br />

area both <strong>genetic</strong>ally <strong>and</strong> <strong>phenotypic</strong>ally.<br />

A negative correlation<br />

(not sÍgnificant) was found between backfat thickness <strong>and</strong> age to 90 -7<br />

kg live weight.<br />

Roy et al . (1968) reported that lo<strong>in</strong> eye aTea \,/as negatively correlated<br />

with backfat thickness both <strong>phenotypic</strong>ally <strong>and</strong> <strong>genetic</strong>ally<br />

(rO -.16, tG = -.27). Carcass length was positively correlated i,¡íth<br />

lo<strong>in</strong> eye (r = O.O2, Tn = 0.42) <strong>and</strong> r¿as negatívely correlated wíth back-<br />

-P-('<br />

faË thickness (tn -.11, ra =-.19).


L4<br />

MATERIALS AND ìGTHODS<br />

A.<br />

Sources <strong>of</strong> Data<br />

I. Reproductive traits<br />

The data for 1ítter sLze were obtaíned from the records <strong>of</strong> the<br />

uníversity <strong>of</strong> Manitoba sw<strong>in</strong>e breed<strong>in</strong>g project over the períod <strong>of</strong> years<br />

1967 to L977 at the Glenlea Research Station. First parity gilts <strong>of</strong> the<br />

Managra breed r^iere <strong>in</strong>cluded <strong>in</strong> this study. Managra r¡ere developed<br />

from a gene pool consist<strong>in</strong>g <strong>of</strong> about 457á Swedish L<strong>and</strong>race , 2O7. I^Iessex<br />

Saddleback, 15% I,Ielsh ar'ð 707. M<strong>in</strong>nesota //l-Berkshire-Yorkshire-Tarff^rorth.<br />

Table 3 illustrates<br />

the pattern <strong>of</strong> development <strong>of</strong> the Managra <strong>and</strong> the<br />

current farrow<strong>in</strong>g groups (Parker, f977).<br />

Parents <strong>of</strong> each generation consisted <strong>of</strong> 20 to 30 boars <strong>and</strong> 90 to<br />

120 gilts. Selection <strong>of</strong> parents based on backfat thickness as measured<br />

by adjusted live ultrasonic probe, adjr,rsted age to 90 kg live weight <strong>and</strong><br />

physical soundness. There \¡ras no l<strong>in</strong>e cross<strong>in</strong>g among the groups <strong>and</strong> <strong>in</strong>breedíng<br />

was rulnimized each generation. LitËers from which fewer than<br />

3 pigs \47ere weaned were not <strong>in</strong>cluded <strong>in</strong> the study. The number <strong>of</strong> liËters<br />

which contributed to this study from the diffeïent groups <strong>in</strong> the different<br />

years are lísted ín Table 4. Total number <strong>of</strong> pigs born, total<br />

number <strong>of</strong> pigs born alive, total number <strong>of</strong> pÍgs weaned, average bÍrth<br />

weight <strong>and</strong> average wean<strong>in</strong>g weight were the five reproductive traits<br />

exam<strong>in</strong>ed. Average birth weight <strong>and</strong> average wean<strong>in</strong>g r^reight were adjusted<br />

for number born alive <strong>and</strong> number weaned, respectlvely.<br />

The adjustments<br />

were used only rvhen calculat<strong>in</strong>g <strong>phenotypic</strong> means. The equation for<br />

adjustmenË (Huntsberger, L977) was:


Table 3. Managra breed development patt.ern <strong>and</strong> the current farrow<strong>in</strong>g groups<br />

L<strong>in</strong>e 1<br />

Swedish L<strong>and</strong>rac<br />

2aro.rp B f arrows each year <strong>in</strong> Jan.-Febu<br />

I{essex<br />

I'Ie1sh<br />

45% Sw. L<strong>and</strong>.<br />

Mínn.<br />

20% I{essex<br />

Berkshire<br />

157" Welsh<br />

L<strong>in</strong>e 3<br />

Yorkshi r<br />

20% M.BuYnTn<br />

Tamrn¡ort<br />

L957<br />

19s 9<br />

L967<br />

Gene Poollctorrp<br />

A farrows each year <strong>in</strong> May-June.<br />

Manaqra<br />

Managra<br />

group<br />

3crorrp C farrows each year ín Sept..-octo<br />

Generation <strong>in</strong>terval ís one year <strong>in</strong> each group.<br />

F<br />

(Jr


L6<br />

Table 4.<br />

Number <strong>of</strong> litters<br />

year per grouP<br />

contribut<strong>in</strong>g to the study per<br />

Year<br />

Group A<br />

Group B<br />

Group C<br />

r968<br />

27<br />

35<br />

9<br />

l-969<br />

34<br />

37<br />

26<br />

L97 0<br />

40<br />

39<br />

32<br />

L97L<br />

46<br />

35<br />

35<br />

L97 2<br />

47<br />

37<br />

49<br />

r973<br />

35<br />

58<br />

39<br />

197 4<br />

32<br />

60<br />

27<br />

L97 5<br />

39<br />

4L<br />

31<br />

L97 6<br />

40<br />

53<br />

9L<br />

L977<br />

47<br />

76<br />

67<br />

Total 387 47L 406


L7<br />

Adjusted Y, = Y. - b (Xt-X")<br />

where Y- = average birth weight or average wean<strong>in</strong>g weight<br />

t_<br />

X. = total number born alive or total number weaned<br />

t<br />

i. = reao <strong>of</strong> total nurnber born alive = 9.148<br />

or mean <strong>of</strong> total number weaned = 7.656<br />

b = regressíon coeffi_cient<br />

O.OZLI for average birth weight v¡ith number born alive<br />

- 0.O462 for average wean<strong>in</strong>g weight with nurnber ¡¡eaned<br />

Iï. Carcass measurements <strong>and</strong> age to market weight<br />

The data used for analysis <strong>of</strong> carcass measuïements <strong>and</strong> age to<br />

merket weight were also collected from the same sw<strong>in</strong>e breed<strong>in</strong>g project.<br />

A total <strong>of</strong> 1,455 Managra consist<strong>in</strong>g <strong>of</strong> 425 barrows <strong>and</strong> 1,030 gilts which<br />

farrowed dur<strong>in</strong>g the period 1,97l- xo 1977 were <strong>in</strong>cluded <strong>in</strong> thís study. The<br />

number <strong>of</strong> pigs contríbut<strong>in</strong>g to the study are listed <strong>in</strong> Table 5.<br />

The gilts that ranked at the bottom half <strong>of</strong> the whole population<br />

<strong>in</strong> Record <strong>of</strong> Performance (ROP) <strong>in</strong>dex <strong>and</strong> all the barror\rs \¡/ere marketed<br />

when they reached abouË 90 kg live weight. All pigs were killed at the<br />

1<br />

same abbatoir*.<br />

The carcasses I^/ere reta<strong>in</strong>ed for 24 hours before carcass<br />

measurements were taken. Carcass traits measured <strong>and</strong> the procedures<br />

used for measurement \,rere as follows:<br />

1) Carcass i^Ieight (one side)<br />

The carcass rías accurately split <strong>in</strong>t.o halves <strong>and</strong> the head<br />

<strong>and</strong> jowls removed. The leaf lard, kidney <strong>and</strong> tail were<br />

also excluded from the carcass weight.<br />

1 Canada Packers Limited, I{<strong>in</strong>nipeg, Manítoba.


1B<br />

2) Carcass Length<br />

Carcass length r,ras Ðeasured as the distance between the<br />

Íore-edge <strong>of</strong> the first<br />

rib <strong>and</strong> the fore-edge <strong>of</strong> the aitch<br />

bone section on the cold horizontal carcass.<br />

3) Maxímum Shoulder Fat Ttríckness<br />

Measured <strong>in</strong> nrm at the po<strong>in</strong>t <strong>of</strong> maximum thickness over<br />

the shoulder.<br />

4) Il<strong>in</strong>imurn Mid-back Fat Thickness<br />

Measured i¡ rrrm at the po<strong>in</strong>t <strong>of</strong> m<strong>in</strong>ímum thickness over Lhe<br />

back.<br />

5) Maximuro Lo<strong>in</strong> Fat Thickness<br />

Measured <strong>in</strong> nrm at the po<strong>in</strong>t <strong>of</strong> maxjrnum thickness over<br />

the lumbar region.<br />

6) Total Fat Thickness<br />

Total fat thíckness measurements from shoulder, nid-back<br />

<strong>and</strong> lo<strong>in</strong> aree-, i.e. sum <strong>of</strong> measurement.s 3, 4 <strong>and</strong> 5.<br />

7) Lo<strong>in</strong> Eye Area<br />

The logissimus muscle was sectioned beÈween the 7Ëh<br />

<strong>and</strong> BËh vertebrae <strong>and</strong> its area measured us<strong>in</strong>g a<br />

planÍmeter.<br />

B) Grade Index<br />

Carcass grade <strong>in</strong>dex Lras accord<strong>in</strong>g to the Table <strong>of</strong> Differentials<br />

from Canadian Hog Carcass Grad<strong>in</strong>g/Settlement System provided<br />

by the canadian Pork council.<br />

The Table <strong>of</strong> Differentials<br />

is shown <strong>in</strong> Appendix V.


19<br />

9) 'PercenË Ham I{eight<br />

The proportion <strong>of</strong> ham <strong>in</strong> total iøeight <strong>of</strong> the side.<br />

The ham is detached at a po<strong>in</strong>t 5 cm ahead <strong>of</strong> rhe foreedge<br />

<strong>of</strong> the aitch bone section <strong>and</strong> at right angles to the<br />

1ength.l<strong>in</strong>e.<br />

10) Harn Surface A.rea<br />

Lean area over the ham measured <strong>in</strong> .*2 .rrd traced by<br />

a planiueter.<br />

f1) Percent Predícted Yield <strong>of</strong> Trirrmed Cuts<br />

The formula used for this calculation is:<br />

y = 51.68 - (I.273x, - 0.161x, - 0.485x, - 0.B27xO)<br />

wherei y = predicted yield (Z)<br />

xl = total backfat thickness <strong>in</strong> rr¡m<br />

x, = lo<strong>in</strong> area ín sq. cm<br />

*3=%hamweight<br />

x, : ham surface area ín sq. cm<br />

4'<br />

All factors are corrected for sex <strong>and</strong> carcass weight.<br />

L2) Aee to MarkeË trrleight<br />

Nurnber <strong>of</strong> days to market weight was adjusted to a 90 kg<br />

liveweight basÍs followi-ng the Canadian ROP home test<br />

program procedures. The adjusÈrnenË factors are shovm <strong>in</strong><br />

Appendix VI.<br />

A-ll <strong>of</strong> the above measurements except grade <strong>in</strong>dex, percent predicted<br />

yield <strong>and</strong> age to market weight were adjusted for carcass weíSht


20<br />

Table 5.<br />

Number <strong>of</strong> observations contríbuted<br />

Per year Per group<br />

to the study<br />

Year<br />

Group A<br />

Group B<br />

Group C<br />

L97T<br />

56<br />

L57<br />

B5<br />

L97 2<br />

92<br />

4L<br />

AL<br />

L973<br />

6L<br />

B6<br />

103<br />

797 4<br />

34<br />

138<br />

4B<br />

r97 5<br />

46<br />

B5<br />

34<br />

r97 6<br />

46<br />

69<br />

B7<br />

197 7<br />

54<br />

LO<br />

a)<br />

ToËal 389 625 447


2I<br />

Table 6,<br />

Regression coefficients used to<br />

measurements for carcass weight<br />

adjust carcass<br />

Trai t<br />

MaI e<br />

Femal e<br />

Carcass length (cm)<br />

Max. shoulder fat thickness (cn)<br />

M<strong>in</strong>. back fat. thickness (cn)<br />

Maxo lo<strong>in</strong> fat thickness (cn)<br />

Total fat thickness (crn)<br />

Lo<strong>in</strong> eye area ("*2)<br />

Ham surface area (.r2)<br />

0"031823<br />

0 "<br />

0063 40<br />

0" 004982<br />

0 007 "<br />

565<br />

0,01 9046<br />

0.013218<br />

o.o1 4248<br />

0.031564<br />

0 "<br />

008 655<br />

0.005036<br />

0. 008507<br />

0<br />

"021936<br />

0.020266<br />

0.110079


22<br />

on both sexes.<br />

Adjus ted<br />

where v. -1<br />

The formula for this adjustment (Huntsberger, 1977) was:<br />

Yi = Y. - b (x. - x"¡<br />

= carcass measureo,ent on ith ."..r""<br />

l_<br />

ã..<br />

= carcass weight <strong>of</strong> iËh carcass<br />

: mean carcass weight<br />

68.1 kg mean carcass weight for barrows<br />

68.7 kg mean carcass weight for gí1ts<br />

The regression coefficients (b) for adjustment are listed <strong>in</strong> Table 6.<br />

Carcass rDeasurements <strong>of</strong> gilts were adjusted to a barrow equivalent.<br />

The correction factors used for sex adjustlDent were as follows:<br />

carcass<br />

length -1.138 cn; shoulder fat thickness *O.244 cm; backfat thickness<br />

*0.170 crn; lo<strong>in</strong> fat thickness +{.229 cm;'total faË thickness *o.668;<br />

lo<strong>in</strong> eye area -3. 155 cra2; percent ham weight -0" 632'/"; <strong>and</strong> ham surface<br />

t<br />

area -2.961 cu", respectively<br />

B.<br />

Statistical<br />

Analysis<br />

I. Reproductive traits<br />

Heritabílity estim:tes, <strong>phenotypic</strong> correlations <strong>and</strong> <strong>genetic</strong><br />

correlations for reproductive traits r,¡ere estimated from analysis <strong>of</strong><br />

variance <strong>and</strong> covariance <strong>in</strong> a nested classification with an unequal<br />

number <strong>of</strong> lítters<br />

per sire with<strong>in</strong> years <strong>and</strong> farrow<strong>in</strong>g groups. The<br />

procedures for analysis <strong>of</strong> variance <strong>and</strong> covariance <strong>in</strong> this study fo1-<br />

lowed the procedures described by Becker (L967).<br />

l. Heritability estirnates - Heritability estimates were calculated<br />

from the sire component <strong>of</strong> variance. The form <strong>of</strong> anal-ysis <strong>of</strong>


a')<br />

variance is given <strong>in</strong> Table 7.<br />

Table 7. Analysis <strong>of</strong> variance for litter<br />

size<br />

Source <strong>of</strong> variation<br />

Among years<br />

d"f.<br />

Y-l<br />

Sum <strong>of</strong><br />

souares<br />

(SS)<br />

tt"<br />

Mean<br />

square<br />

(MS)<br />

*t,<br />

Expec ted<br />

mean<br />

souare<br />

Among groups/year<br />

G-Y<br />

SS^tr<br />

MS^<br />

\J<br />

Among sires/group/year<br />

Litters r¿ith<strong>in</strong> sires<br />

S-G<br />

n.-S<br />

'S,<br />

ssw<br />

"ts<br />

MS_.<br />

l^/<br />

"'r*""3<br />

2<br />

oüI<br />

where Y = mrmber <strong>of</strong> years<br />

G = number <strong>of</strong> farrow<strong>in</strong>g groups<br />

S = number <strong>of</strong> sires<br />

<strong>in</strong>Y vears<br />

n. = total number <strong>of</strong> litters<br />

<strong>Estimation</strong> <strong>of</strong> variance cornponents:<br />

<strong>of</strong>r = us"<br />

o!:ts,-rr"<br />

where K =<br />

*<br />

^2 Àn.<br />

n.- l-<br />

n.<br />

n.<br />

l_<br />

number <strong>of</strong> litters<br />

from the Íth sire<br />

Heritability<br />

follows:<br />

h3 =<br />

4"3<br />

22<br />

os * oIn,<br />

estimated from the síre component<br />

(Falconer,1960) as


24<br />

St<strong>and</strong>ard error<br />

(Becker, L967):<br />

<strong>of</strong> heritability<br />

was estim¡ted as follows<br />

s. E. (n3) =<br />

where S<br />

abilÍty<br />

t=<br />

2<br />

o^<br />

22<br />

os*ow<br />

2 (n. -1) (1-r) 2 (r*(x-r) .)<br />

2<br />

x2(r,.-s)(S-1)<br />

,<br />

E. (h:) is the st<strong>and</strong>ard error <strong>of</strong> the esiimate <strong>of</strong> heritt<br />

is the <strong>in</strong>tra-class correlation<br />

S <strong>and</strong> K are as previously def<strong>in</strong>ed.<br />

2. Phenotypic <strong>and</strong> <strong>genetic</strong> correlations among the traits were calculated<br />

from analysis <strong>of</strong> variance <strong>and</strong> covariance (Falconer, 1960). The<br />

form <strong>of</strong> analysis <strong>of</strong> covariance is given <strong>in</strong> Table B.<br />

Table 8. Analysis <strong>of</strong> covariance<br />

Source <strong>of</strong> variation<br />

d.f.<br />

Mean cross<br />

products (MCP)<br />

Expected mean<br />

cross pröducts<br />

Among years<br />

Y-1<br />

MCPY<br />

A-ong groups/years<br />

G-Y<br />

MCP^<br />

\J<br />

Among s ires/groups/years<br />

S_G<br />

MCPS<br />

cov" * K cov,<br />

Among litters with<strong>in</strong> sires n.-S<br />

MCPI{<br />

covw<br />

a. Phenotypic correlation between<br />

estimated as follows:<br />

traíts x <strong>and</strong><br />

(r , .)was p(>n'


25<br />

where:<br />

"ott(*y)<br />

2<br />

ã:<br />

"r(x)<br />

= total covaríance component between traits x <strong>and</strong> y<br />

total variance component for trait x<br />

222<br />

i'e' oY(*) + oc(*) * ot(*) *<br />

2<br />

on<br />

(*)<br />

2<br />

a-. . = total variance cornponent for trait y<br />

r(y)<br />

r'e' .2222<br />

oY(y) * oc(y) * os(y) + on(y)<br />

The st<strong>and</strong>ard error <strong>of</strong> the <strong>phenotypic</strong> correlation coeffícient<br />

(S.E.r ) v¡as estim¡ted as follows:<br />

p<br />

S"E.r<br />

where: n. is the total number <strong>of</strong> lítters<br />

b. GeneLic correlation betr¡een traits x <strong>and</strong> y (Tg(*y)) was<br />

estimated as follows:<br />

tc(*y)<br />

= tots(*y)<br />

22<br />

os<br />

(*) os (y)<br />

where:<br />

.ors(*y) = sire componerit <strong>of</strong> covariance between traits<br />

x<strong>and</strong>y<br />

)<br />

oõ(*) = sire component <strong>of</strong><br />

variance for the traít x<br />

2<br />

oõ(r) = sire component <strong>of</strong><br />

variance for the traít y


lf)<br />

St<strong>and</strong>ard error <strong>of</strong> the genetíc correlation (S.n.ra) was calculated<br />

accord<strong>in</strong>g to the method described by Robertson (1959) <strong>and</strong> is<br />

as follows:<br />

S.E.r^<br />

LJ<br />

-<br />

r- (rr,-, ) 2 s.E.-2, . s.E 2<br />

- '"'h (x) " '"_!{Ð<br />

T h-h<br />

xy<br />

r'¡here :<br />

S.E.r^(J<br />

t'=<br />

-c(>çv)<br />

= st<strong>and</strong>ard error <strong>of</strong> <strong>genetic</strong> correlation<br />

x<strong>and</strong>y<br />

coefficient<br />

<strong>genetic</strong> correlation coefficient between traits<br />

S.E.-?--. = st<strong>and</strong>ard error <strong>of</strong> heritability<br />

h (x)<br />

<strong>of</strong> traÍt x<br />

S.E."-2r--. = st<strong>and</strong>ard error <strong>of</strong> heritabílity<br />

h (Y)<br />

<strong>of</strong> trait y<br />

h2<br />

= heritability estimate <strong>of</strong> trait x<br />

2<br />

h--<br />

v<br />

heritability<br />

estimate <strong>of</strong> trait y<br />

II. Carcass measurements <strong>and</strong> age<br />

to market weight<br />

The analysis <strong>of</strong> variance <strong>and</strong> covariance described by Becker<br />

(L967) was also used for estimation <strong>of</strong> <strong>genetic</strong> <strong>parameters</strong> <strong>in</strong> carcass<br />

measurements <strong>and</strong> age to market weíght.<br />

wÍth<strong>in</strong> years <strong>and</strong> farrow<strong>in</strong>g groups <strong>in</strong> a<br />

The analysis was carried out<br />

nested classifÍcation with un-<br />

equal numbers <strong>of</strong> progeny per sire <strong>and</strong> per dam. The procedures for<br />

calculat<strong>in</strong>g heritabilities, <strong>phenotypic</strong> <strong>and</strong> <strong>genetic</strong> correlations were<br />

as follows:


¿/<br />

l. Heritability estimates - The form <strong>of</strong> analysis <strong>of</strong> variance is<br />

shov¡n <strong>in</strong> Table 9.<br />

Table 9. Analysis <strong>of</strong> variance<br />

Source <strong>of</strong> variation<br />

Sum <strong>of</strong> Mean Expected<br />

squares square mean<br />

d.f. (SS) _lMS) square<br />

Arnong years Y-l SSy<br />

il:ï::i:::;li:îit,,."." 3-å 33:<br />

Anong dams/sires/group/ D-S SSO<br />

years<br />

Progeny withín darns n..-D SSW<br />

*s"<br />

MS G)),<br />

*S,<br />

MSo<br />

MSt<br />

o"+rroi+rroi<br />

22<br />

'I^I*K1oD<br />

2<br />

oI^l<br />

r,¡here:<br />

Y : m¡mber <strong>of</strong> years<br />

G = number <strong>of</strong> groups <strong>in</strong> Y years<br />

S = nirmber <strong>of</strong> sires<br />

.D = number <strong>of</strong> dams<br />

n.. = total number <strong>of</strong> progeny<br />

EstimaËíon <strong>of</strong> variance components :<br />

2<br />

ol^l<br />

= MSI^,<br />

2<br />

oD<br />

= MSO - MS"<br />

\<br />

<strong>of</strong> : *s, -<br />

(MSw * *, <strong>of</strong>,><br />

\


2B<br />

vrhere:<br />

Kt=<br />

ñ_\<br />

L2 .n<br />

_1ii<br />

, ri.<br />

l_ l-<br />

D_S<br />

,,2rx2<br />

- fI .. n_-<br />

-ii<br />

ii<br />

¿ L n. n..<br />

K^=l<br />

't<br />

s-1<br />

vt<br />

<strong>in</strong>l<br />

ì{ = fl.. - l_ l_.<br />

"3 n..<br />

s-1<br />

n- : number <strong>of</strong> progeny from the ith sire<br />

l_'<br />

n-^. = number <strong>of</strong> progeny from the jth Uæ mâËed to the<br />

rJ<br />

.rh<br />

]. Sare<br />

n.. = total number <strong>of</strong> progeny<br />

Heritability<br />

estirnates \,,/ere obta<strong>in</strong>ed from sire, dam <strong>and</strong> síre * dam<br />

components (Falconer, 1960) as follows:<br />

?2<br />

n1= o 4<br />

z-. os<br />

2 . z<br />

os*oD*oln,<br />

4=<br />

2<br />

4on<br />

"3*"3*"?u


29<br />

St<strong>and</strong>ard errors (S.E.)<br />

follow<strong>in</strong>g:<br />

<strong>of</strong> heritability<br />

estimates were obta<strong>in</strong>ed from the<br />

s . E. (n3)<br />

4 var<br />

2<br />

o<br />

S<br />

*oD<br />

ro?> ò<br />

*<br />

"lu<br />

2<br />

ú<br />

S<br />

s.E. (n?r*ol )<br />

.r"r ¡<strong>of</strong>r¡<br />

2)<br />

-oD*ow<br />

l)2??<br />

= 2 ,l var (or- * var (<strong>of</strong>r) + Z cov {o! <strong>of</strong>)<br />

os*oD*oI^I<br />

where.r"r {<strong>of</strong>) arra.ra= (<strong>of</strong>r) are rhe esrimares <strong>of</strong> the variance <strong>of</strong><br />

the síre <strong>and</strong> dam components ïespectively (Becker, Lg67).<br />

2. Phenotypic <strong>and</strong> <strong>genetic</strong> correlaLions. The analysis <strong>of</strong> covariance<br />

is given <strong>in</strong> Table 10.<br />

Table 10. Analysis <strong>of</strong> covariance<br />

Source <strong>of</strong> variation<br />

d.f.<br />

Mean cross<br />

product (MCP)<br />

Expected mean<br />

cross produets<br />

Among years<br />

Y-1<br />

MCPY<br />

Among groups/years<br />

G-Y<br />

MCP^G<br />

Among sires/ groups /years<br />

S-G<br />

MCPS<br />

cov"*K, cov'*K, cov,<br />

Among dams /sires /groups /yeaïs<br />

D_S<br />

MCPD<br />

cov"*K, cov'<br />

Anong progeny withîn dams<br />

n..-D<br />

MCPw<br />

covw


30<br />

Covariance components r,¡ere estimated as follows:<br />

cov" : MCP"<br />

covD = MCPD - MCPW<br />

Kt<br />

cov^=McPs-MCPD<br />

uv<br />

I\^<br />

J<br />

Phenotypic correlation between<br />

est<strong>in</strong>ated as follows:<br />

traits x <strong>and</strong> y (rn.*"¡) r""<br />

tp (*y)<br />

totr(*y)<br />

or(*) or(y)<br />

where:<br />

totr(*y)<br />

total covariance component betrween traíts x <strong>and</strong><br />

i' e' cov"(*y)+totc(*y)tuots (*y)tuotr(*y)+<br />

2<br />

ot(*) =<br />

cov__.<br />

Ir/(xy)<br />

total variance component for trait<br />

22222<br />

i' e' ov<br />

(*)*ã (*)*r- (*)tuí (*)tui(*)<br />

?<br />

oif") = total variance cornponenË for trait y<br />

i'e' o"c"l*ãry)+o;(v)+oJ (v)tuñcvl<br />

where:<br />

totY (*y)<br />

"otc(*y)<br />

covariance component <strong>of</strong> year between traits<br />

x<strong>and</strong>y<br />

covarlance coaponent <strong>of</strong> group between traits<br />

x<strong>and</strong>y


31<br />

tots (*v)<br />

toto(*y) =<br />

totw(*y) =<br />

covarr-ance conpoIlent<br />

x<strong>and</strong>y<br />

covariance cornponent<br />

covariance component<br />

x<strong>and</strong>y<br />

<strong>of</strong> síre between traits<br />

<strong>of</strong> dam between traits x <strong>and</strong><br />

<strong>of</strong> progeny between traits<br />

2<br />

ov(*)<br />

2<br />

or(*)<br />

= variance component <strong>of</strong> year on trait x<br />

: varíance component <strong>of</strong> group on irait x<br />

2<br />

os<br />

(*)<br />

2<br />

on(r)<br />

: variance component <strong>of</strong><br />

= variance component <strong>of</strong><br />

sire on traít x<br />

dam on trait x<br />

2<br />

ow(*)<br />

2<br />

o"(r)<br />

2<br />

or(r)<br />

2<br />

or (y)<br />

2<br />

oo<br />

(y)<br />

= variance c.omporrent <strong>of</strong> progeny on trait x<br />

= variance component <strong>of</strong> year on trait y<br />

= variance component <strong>of</strong> group on trait y<br />

= variance component <strong>of</strong> sire on trait y<br />

: variance component <strong>of</strong> dam on trait y<br />

2<br />

o"(y)<br />

= variance component <strong>of</strong> progeny on trait y<br />

The st<strong>and</strong>ard error <strong>of</strong> the <strong>phenotypic</strong> correlation coefficient. between<br />

trait.sx<strong>and</strong>y<br />

(S.<br />

E.r ) !ì7as<br />

p'<br />

estimated as follo¡¿s:<br />

S.E.r p<br />

where: n.. Ís<br />

It-, 2<br />

lP<br />

,l n..-2<br />

the total number <strong>of</strong> progeny


1A<br />

)L<br />

b. Genetic correlatÍon between<br />

estimated as:<br />

traits x <strong>and</strong> V(ra1*r¡) was<br />

'c (xv)<br />

cov^/<br />

b (xy)<br />

s (x) os (y)<br />

The st<strong>and</strong>ard error<br />

estimated by the method<br />

<strong>of</strong> the <strong>genetic</strong> correlation coefficient was<br />

outl<strong>in</strong>ed by Becker (L967).


-f1<br />

RESULTS AND DTSCUSSION<br />

A.<br />

Reproductive Traits<br />

I. Means <strong>and</strong> st<strong>and</strong>ard deviations<br />

Phenotypic means <strong>and</strong> st<strong>and</strong>ard deviations for five reproductive<br />

traits <strong>in</strong> different farrow<strong>in</strong>g groups <strong>and</strong> different years are presented<br />

<strong>in</strong> Tables 11 <strong>and</strong> 12.<br />

Two-way classification<br />

<strong>of</strong> analysis <strong>of</strong> variance was applied to the<br />

data. Differences among farrow<strong>in</strong>g groups <strong>and</strong> among years r¿ere found<br />

to be significant for all traíts.<br />

Student-Newman-Keulrs (SllK)<br />

nultiple range test (Snedecor, L976) was also used to conpare the means<br />

<strong>of</strong> three different farrow<strong>in</strong>g groups <strong>and</strong> different years (Table 1l <strong>and</strong><br />

L2). Mean differences between groups A <strong>and</strong> B for f ive traits \^7ere<br />

-1.18, -L.2L, -1.08, -0.L2 anð -0.28 for total number <strong>of</strong> pigs born, total<br />

nr:mber <strong>of</strong> pigs born alive, number <strong>of</strong> pigs ¡.veaned, average birth weight<br />

<strong>and</strong> average wean<strong>in</strong>g weight, respectívely. Íhese differences were all<br />

staËistically significant (P


34<br />

Table 11. Means <strong>and</strong> st<strong>and</strong>ard deviatíons <strong>of</strong> reproductive traits for<br />

each farrow-<strong>in</strong>g group for 10 years<br />

Traít<br />

n<br />

Group B<br />

47r<br />

Group C<br />

406<br />

Total no. <strong>of</strong> pigs born<br />

B "<br />

8012 .0ga<br />

g .g8!2.24b<br />

ro.r7!2.40b<br />

No. <strong>of</strong> pigs born alive<br />

B.27t2.OLa<br />

g .48t2.L6b<br />

g.o6tz.zob<br />

No. <strong>of</strong> pigs weaned<br />

6.9312.084<br />

B.OLlz.20b<br />

7 .ggtz.3Lb<br />

Ave. birth weight (kg)<br />

L.28!O.L6a<br />

1.4010. r8c<br />

1 .33t0 .19b<br />

Ave. wean<strong>in</strong>g weight (kg)<br />

10 .5811 . 604<br />

a0.86!1.72b<br />

10.5111. 414<br />

"b"Diff.rent<br />

(P


Table i-2. Means <strong>and</strong> st<strong>and</strong>ard devlations <strong>of</strong> reproductlve trafts for each year<br />

Trair 1968<br />

n71<br />

Toraf no. born<br />

Total no. born<br />

altve<br />

9.82t2.35b"<br />

9 .28t1.13"b"<br />

L969<br />

97<br />

9.80r2.t3b"<br />

r970<br />

111<br />

9 . 3812 .014b<br />

g .20t2.13"b" B. g611.99ab<br />

7977 L972<br />

i16 133<br />

9.g3t2.28b" g.2g!2.3oab<br />

9.10t2.21-ub" 8.8112.154b<br />

Year<br />

L973 1974 r97s<br />

rn ----1Tt- lti<br />

L97 6<br />

184<br />

9.B5tz.39bt 8.97t2.44a 10.4tr2.30b" g.77tz.2sb"<br />

g.26!2.zzaÈc g.s2!z-33a 9.81t2.35c<br />

]-977<br />

190<br />

g .7 5t2 . h4b'<br />

g.36t2.27b" g.37t2.3Lb"<br />

Total no. v¡eaned 6.99!2.lí¿l<br />

7.BBtz.zrb" 7.r5!z.o7ab<br />

7.77t2.Lzh"<br />

7.44!z.ogabc 7.6r!2.30"b" 7.52!z.3lab" B.o8t2.3oc<br />

7.85t2.37b" 7.g8!2.32c<br />

Average birch<br />

welght (kg) L.zglo.Llab 1.38t0.19c 1,35r0.19c<br />

1.37t0.18c<br />

1.32t0.18b" 1.32to.t8b" 1.3610.21c<br />

L.z7!o.Lla<br />

1.3410.17c 1.3610.18c<br />

Average weanLng<br />

weight (kg)<br />

11.0912.1lc<br />

11.llt1.6lc<br />

10.54t1.76"b" 10.6It1.66bc 10.7811.66c 10.9911.28c l-0.63t1.92b" 10.1Bt1.4tab 10.11tl.26" 10.9211.34c<br />

tb"Dlff.."rrt<br />

superscrlpE l-ndlcaÈee slgniflcantly<br />

different between years (p


36<br />

envíronment <strong>in</strong> the early stage <strong>of</strong> embryo development. This stage falls<br />

<strong>in</strong> the months <strong>of</strong> January <strong>and</strong> February for group A. Krotch (Lg7s)<br />

studied the effect <strong>of</strong> ínbreed<strong>in</strong>g <strong>of</strong> the dam, <strong>of</strong> the sire <strong>and</strong> <strong>of</strong> the<br />

litter on reproductive perforrnances on Managra gïoup A litters (fron<br />

Jr:ae-July, L96B to June-July 1973) <strong>and</strong> group B litters<br />

(from January-<br />

February 1969 to January-February L974). He reporred thaÈ the <strong>in</strong>breed<strong>in</strong>g<br />

leve1 <strong>in</strong>creased from 7.r3% <strong>in</strong> 1968 to r4.gor" <strong>in</strong> 1973, from 5.9"/" ín<br />

1968 ro 73.89"Á <strong>in</strong> 1973 <strong>and</strong> from 11 .66% ín 1968 to r3.2zz <strong>in</strong> 1973 for<br />

group A sire, dem <strong>and</strong> litters, respectively. The rate <strong>of</strong> <strong>in</strong>breed<strong>in</strong>g<br />

<strong>in</strong> group B r¿as less than <strong>in</strong> group A, chang<strong>in</strong>g from 4.L3% ín 1969 to<br />

7-52% <strong>in</strong> 1974 for sire <strong>and</strong> from 4.057" Ln L969 to 7.6L"1 ín L974 for dam,<br />

<strong>and</strong> even decl<strong>in</strong>ed from 11.37" ín 1969 to 9.692 Ln L974 for litters.<br />

No<br />

artifieial selection r,{as applied on all five reproductive traíts. Table<br />

12 <strong>in</strong>dicates diffeïences among yeaïs but no specific trend was observed<br />

<strong>in</strong> any <strong>of</strong> the traits.<br />

II. Heritability<br />

Heritability<br />

estimates<br />

estimates <strong>and</strong> their st<strong>and</strong>ard errors for five reproductive<br />

traits are given ín Table 13. These est<strong>in</strong>ates were derived<br />

from sire components <strong>of</strong> the analysis <strong>of</strong> variance. Heritability estirnates<br />

for three litter size traits are low with high st<strong>and</strong>ard errors <strong>and</strong> are<br />

not significantly different from zero (p


a1<br />

Table 13. Estímated heritabilities<br />

<strong>of</strong> fÍve reproductive traits<br />

variance<br />

<strong>and</strong><br />

their st<strong>and</strong>ard errors for each<br />

from the sire component <strong>of</strong><br />

TraÍt<br />

.2 hs<br />

s. E. rnf I<br />

Total no. <strong>of</strong> pigs born<br />

0.07<br />

a -L2<br />

Total no. <strong>of</strong> pigs born alive<br />

0.02<br />

0.72<br />

Total no<br />

<strong>of</strong> pigs weaned<br />

0. 01<br />

o.L2<br />

Average bírth weight<br />

0. 36<br />

0 .11<br />

Average wean<strong>in</strong>g weight<br />

0 .37<br />

0.11


?o )a<br />

reproductive traits.<br />

The high environmental variance <strong>and</strong> the very lor,r<br />

additive <strong>genetic</strong> variance <strong>in</strong>dicates a low response to selection for<br />

litter<br />

III.<br />

sLze traits <strong>in</strong> sw<strong>in</strong>e.<br />

Phenotypic correlations<br />

Phenotypic correlations among five reproductive traits are<br />

presented <strong>in</strong> Table 14. The correlatíon coefficients among three litter<br />

síze traits rüere positive <strong>and</strong> high <strong>and</strong> generally agreed with Teports<br />

from other workers. The high positive correlatíons among the litter<br />

size traits <strong>in</strong>dicate that the dams with larger litter<br />

would also have larger litter<br />

síze at wean<strong>in</strong>g.<br />

síze at birth<br />

The correlatíon coeffícíent between average birth weighË <strong>and</strong><br />

average wean<strong>in</strong>g weight was 0 " 35 which r¡as lor¿er than the report f rom<br />

Young et al. (1978) at 0.56 but was close to the value reported from<br />

Fahrny <strong>and</strong> Bernard (L972) at 0.42. The relationship betvreen lirter<br />

sLze (total number born, number born alive ald number weaned) <strong>and</strong><br />

average pig weight (aË birth <strong>and</strong> aÈ wean<strong>in</strong>g) was negative. This is <strong>in</strong><br />

agreement with the reports fron f'ahmy <strong>and</strong> Bernaxd (L972) <strong>and</strong> Young et al.<br />

(f978). Pigs from smaller litters<br />

tend to have heavy <strong>in</strong>dividual body<br />

weights at birth <strong>and</strong> at wean<strong>in</strong>g. Fahny <strong>and</strong> Bernard (L972) suggesred<br />

that the negative relationship between litter size <strong>and</strong> <strong>in</strong>dividual píg<br />

weight is probably due to differences among litters <strong>of</strong> vary<strong>in</strong>g síze<br />

<strong>in</strong> competition for maternal nutrients.


Table 14. PhenotypÍca <strong>and</strong> <strong>genetic</strong>b correl-atÍons among reproductíve traíts<br />

TraLt<br />

Total no.<br />

born<br />

No.<br />

born a1íve<br />

No. rn¡eaned.<br />

Average<br />

birth weight<br />

Average<br />

wean<strong>in</strong>g weight<br />

Total no. born<br />

0.9210.01<br />

0.6310 .02<br />

-0.3410.03<br />

-0.17t0.03<br />

No. born alive<br />

2.30<br />

0. 7110.02<br />

-0. 3210.03<br />

-0.1610.03<br />

No. weaned<br />

-2.08<br />

-6.20<br />

-0.0610.03<br />

-0.1210.03<br />

Average birth weight<br />

0 . 3010. 46<br />

L.47<br />

4,82<br />

0.3510.03<br />

Average weaníng weight<br />

0.9210.09<br />

L,9L<br />

0 .52t1 .05 0 .L7 lo .2I<br />

tPh.rroËypic correlatíons above the díagonal.<br />

bcenetic correlations below the díagonal.<br />

(,J<br />

\o


40<br />

IV. Genetic correlations<br />

The <strong>genetic</strong> correlations among fíve reproductive traits calculated<br />

from sire conponents <strong>of</strong> covarianee are given ín Table 14. The<br />

correlation coeffícienEs <strong>of</strong> total number born with nuuber born ali-ve<br />

<strong>and</strong> number weaned; <strong>of</strong> number born alive i+ith number weaned, average bírth<br />

weight <strong>and</strong> average weal<strong>in</strong>g weight, <strong>of</strong> number weaned with average birth<br />

weight are greater than unity.<br />

A favorable positíve <strong>genetic</strong> correlation betr¿een total number born<br />

<strong>and</strong> average pig weight at birth <strong>and</strong> at weaníng were found.. The result<br />

is <strong>in</strong> agreement with the reports from young et al. (1978). The contradictory<br />

result betr,¡een <strong>genetic</strong> <strong>and</strong> <strong>phenotypic</strong> correlation on these<br />

traits could be due to high negative enivronmental covariance components<br />

(Appendix rr).<br />

The high negative environmental covariance<br />

components overcome <strong>genetic</strong> covarÍance components <strong>and</strong> result <strong>in</strong><br />

negative total covariance conponents. The competition for maternal<br />

nutrients could be the reason for thís unfavorable relationship.<br />

B, Carcass Measurements <strong>and</strong> Age to Market l^Ieight<br />

I. lleans <strong>and</strong> st<strong>and</strong>ard deviations<br />

The weighted <strong>phenotypic</strong> means <strong>and</strong> st<strong>and</strong>ard deviations <strong>of</strong> carcass<br />

measurements <strong>and</strong> age to market weight are shornm ín Table 15<br />

separately for each sex. The differences between barror¡s <strong>and</strong> gilts <strong>in</strong><br />

the means <strong>of</strong> each <strong>of</strong> ten traits were -1 .02 cm, .27 cmr.19 cm, .26 cm,<br />

.74 cm, -2.gg .2, -2.L2, -.63"/", -2.03 cn2, <strong>and</strong>. -13.07 days for<br />

carcass length, shoulder fat thickness, míd-back fat thickness,<br />

lo<strong>in</strong> fat thickness, total fat thickness, lo<strong>in</strong> eye area, grade índex,


4L<br />

Table 15 - Means <strong>and</strong> st<strong>and</strong>ard deviations <strong>of</strong> carcass measurements <strong>and</strong> age<br />

to markeË weight for each sex (adjusted for carcass weight,<br />

barro¡¿s : 425, gilts : I,030)<br />

Traits<br />

Carcass length (cn)<br />

Shoulder fat<br />

thickness (cn)<br />

Mid-back<br />

thickness (cm)<br />

Lo<strong>in</strong> fat<br />

ËhÍckness (cn)<br />

Total fat<br />

thickness (cra)<br />

Difference<br />

Sex MeantS.D. (barrows-gí1ts)<br />

M<br />

F<br />

M<br />

F<br />

M<br />

F<br />

M<br />

F<br />

M<br />

F<br />

76.7\x2.55<br />

77 .7 3t2.29<br />

4.3010.51<br />

4 .0310.50<br />

2.LLlo.37<br />

7.92!0.37<br />

3 .34t0.43<br />

3 .08t0 .41<br />

9 .77 !1_ .04<br />

9.0311.06<br />

-l .02't*<br />

o.27xx<br />

0 "<br />

19**<br />

0.26x,\<br />

o .7 4xx<br />

Lo<strong>in</strong> eye )<br />

area (cn-)<br />

Grade <strong>in</strong>dex<br />

"/" Ham weight<br />

Ham surface"<br />

area (cm')<br />

M 28.67!3.54<br />

F 31 .6613. 87<br />

M 100. 7812. 90<br />

F L02.90t2.70<br />

M 26.38!1.70<br />

F 27.0L!L.53<br />

M<br />

F<br />

I24.24!L4.77<br />

L26.27!15.9L<br />

-2.ggxx<br />

ôa^¿J<br />

-0.63**<br />

-2.03x<br />

Age to market weíght M 179"15t14.80<br />

(days) F I92.22!L4.64 -lJ. Q/:c:t<br />

^"P< . 05 ; ;lJrp< . Qf .


4l<br />

% lnam weight, ham surface area, age to market weight, respectively.<br />

Al-1 differences rr'ere statisticalry<br />

signíficant (p


43<br />

Table 16. Means <strong>and</strong> st<strong>and</strong>ard deviations <strong>of</strong> carcass measurements <strong>and</strong><br />

age to market weight traits for each farrow<strong>in</strong>g group<br />

(adjusted for sex <strong>and</strong> carcass weíght)<br />

Trait<br />

n<br />

389<br />

Farrow<strong>in</strong>g group<br />

625<br />

44L<br />

Carcass length (cn)<br />

77 .24!2.r|b<br />

7 6 .28!2 .3La<br />

7 6.53!2.L64<br />

Shoulder fat<br />

thickness (cu)<br />

4.42t0.46b<br />

4.22!0.484<br />

4.27!0.464<br />

Mid-back<br />

thickness (crq)<br />

2 .18t0. 3Bc<br />

2.0810.36b<br />

2. O3t0 . 364<br />

Lo<strong>in</strong> fat<br />

thickness (cto)<br />

3 .33rO.3Bb<br />

3 .33t0.38b<br />

3 .28t0 .38a<br />

Total fat<br />

thickness (cn)<br />

9 .9310 "<br />

91b<br />

g .6gxo.gla<br />

g.6oto.g|a<br />

Lo<strong>in</strong> eye ?<br />

area (.rn-)<br />

28 .3813.614<br />

28.44!3.684<br />

28 . B3t3 .614<br />

Grade <strong>in</strong>dex<br />

gg .67 !2 .Bza<br />

LOO .4L!2.74b<br />

LO} .2L!2.77b<br />

% t,am weight<br />

26 .72!L -6gc<br />

26 .09t1.5g4<br />

zø.4stt.4zb<br />

Hau surface<br />

area ("r2)<br />

LzL.O7!r5.224<br />

725 .45!L4.g6c<br />

L23.O7tLz.g6b<br />

Predic ted<br />

yield (7")<br />

7o .45!z.3Ba<br />

7L.L2t2.47c<br />

70.80t2.20b<br />

Age to market weight<br />

(days)<br />

185 .00114 . B9a<br />

188 .50t16 . 00b<br />

191 .14t15 . BBc<br />

"b"Diff.tent superscripts <strong>in</strong>dicaËe significantly different at p


Table 17. Means <strong>and</strong> st<strong>and</strong>ard devlatlons <strong>of</strong> carcasg measuì:enents <strong>and</strong><br />

age to market welght Eralts for each year (adJusted for sex <strong>and</strong> carcass welght)<br />

Trait<br />

n<br />

Carcasg<br />

length (cn)<br />

Shoul-der fat<br />

thickness (crn)<br />

Mld-back fat<br />

thlckneee (cn)<br />

Loln faE<br />

thlckness (cm)<br />

Total fat<br />

lhlckness (cm)<br />

1471<br />

298<br />

7 6 .7 6!2 .46b<br />

4 .37 lO .48c<br />

2.0gr0 .3Bc<br />

3 .4510 . 3Bc<br />

9 .91jO .99cd<br />

1q:77<br />

2t7<br />

7 6 .7 6!2.06b<br />

4 .27!O.46ab<br />

1 .9110 .304<br />

3 .2810.38b<br />

g .47!o.B6a<br />

lq.7i<br />

250<br />

7 6.86!2.2rb<br />

hó<br />

4 .34!O.46""<br />

1.9610.30b<br />

3 .2510 .3Bb<br />

9 .58t0. 94ab<br />

. L974<br />

220<br />

7 6 .33!2 .36b<br />

4.22!0.484<br />

2.0610.33c<br />

3 ,33t0.38b<br />

9.63t0.894b<br />

I9l 5<br />

L65<br />

76.68t1.88b<br />

4.1710.514<br />

2.2g!O .3oe<br />

3.28t0.33b<br />

9 .73t0. B9l'"<br />

1976<br />

202<br />

7 6 .7 3t2 ,24b<br />

4.32t0.43b"<br />

2.36!0 .33f<br />

3.3310. 36b<br />

10.0310.97d<br />

.L97 7<br />

103<br />

7 5 .62!2 .3ga<br />

4.27!0.464<br />

2. 21t0.30d<br />

3.1810.364<br />

9.63t0.97ab<br />

Loln eye )<br />

area (cm-)<br />

Grade lndex<br />

Z ham weight<br />

Ham surface<br />

a.ea (cm2)<br />

Pred fc ted<br />

yleld (Z)<br />

Age to market<br />

wefght (days)<br />

27,48!2.g74<br />

gg .7 5!3 .r3a<br />

26.26!L.64b<br />

125111 .93c<br />

7o.i,oxz.ogb"<br />

L84.72!16.LBa<br />

29,73!3.55c<br />

100 .3912 .53ab<br />

25 .94!L.584<br />

L3L .7 7 !I2 .7 Ie<br />

7L.8g!2.21d<br />

Lgo .23tr6.7 4b"<br />

29 . 0913 .81b"<br />

100.19!2 . B3ab<br />

25 .84!L.474<br />

L25 .g7 !L3 .Ogc<br />

70.76!2.31,c<br />

189.78115 . zBb"<br />

28 .38t3. 68b<br />

gg .93!2,694<br />

25 .g2!r.484<br />

:..2g .32!:16.O6d<br />

7I .62!2.44d<br />

189 .49116 .34bc<br />

27 .35!3.7 4a<br />

-100.6912.50b<br />

26.87t1.38c<br />

109 . 78t10.004<br />

69 . 6011.894<br />

184.99112.824<br />

z9 .03t3. 61b"<br />

gg .g2t2.704<br />

26 .9011 .1 3c<br />

114.17112.13b<br />

70.1512.37b<br />

792.82tr6.34c<br />

29.3513:48c<br />

100.8312.70b<br />

27 .g1¿!l .(t6d<br />

123.13r11.09c<br />

71 .85!2.55d<br />

186 .8 2t11 . 7 74b<br />

abcdef-. -- Dltterent superscrlpt lndicaEes slgnlflcantly<br />

dlfferent at p


45<br />

Most <strong>of</strong> the heritabilities<br />

derived from the dam components Ìùere<br />

higher than those from the sire components. The hígher heritabílity<br />

estimaËes from dem components are possibly due to maternal effects.<br />

The heritability estim¡¡s for carcass length was hÍgh at 0.62<br />

2<br />

(hi*o) <strong>and</strong> fel1 with<strong>in</strong><br />

The herÍtabÍlities<br />

the range reported from other researchers.<br />

for three <strong>in</strong>dividual fat thickness measuremenËs<br />

<strong>and</strong> total back fat thickness were íntermediate <strong>and</strong> <strong>in</strong> good agreement<br />

with values reported by Flock (1970), siers et al. (L912) <strong>and</strong><br />

Roy et a1. (1968) but were considerably lower than the reports from<br />

SnÍth et al. (L962), Jensen er al. (L967), Anganosa er al. (f969),<br />

Enfield <strong>and</strong> Whatley (1961) <strong>and</strong> Fahmy er at. (f970).<br />

The heritability<br />

<strong>of</strong> io<strong>in</strong> eye \"ras .53 <strong>and</strong> was ín close agreement<br />

r¿ith the estimates reported by Flock (1970), Jensen et al. (L967),<br />

Arganosa et al. (1969), smith <strong>and</strong> Ross (1965), Enfield <strong>and</strong> LÏhatley<br />

(1961), Fahmy et al. (1970) <strong>and</strong> Roy er al. (1968) bur was higher rhan<br />

the estimete <strong>of</strong> 0.35 by srníth et al. (1962) <strong>and</strong> r^ras lower than the<br />

estimate reported by Siers eË al. (L972).<br />

The percent ham weight <strong>of</strong> c.arcass side weight rnras moderately<br />

heritable <strong>and</strong> the value estim¡lsd from the presenË study was <strong>in</strong> agreement<br />

wíth other reports.<br />

The herj-tability<br />

<strong>of</strong> ham surface area, percent predicted yield <strong>and</strong><br />

age to market weight were 0.41, 0.56 <strong>and</strong> 0.59, respectively.<br />

The<br />

estimatiorsfor these Ëraits were slightly higher than the values reported<br />

<strong>in</strong> the literature.<br />

In conclusion, Ëhe traits <strong>of</strong> carcass shoulder fat Èhickness, midback<br />

fat thickness, lo<strong>in</strong> fat thickness <strong>and</strong> the percenË ham weight were


Table 18. Heritabil-ity estlnates for carcass measurements <strong>and</strong> age to market weight traits<br />

Trait<br />

h3 =<br />

')<br />

4o7 5<br />

-2--- 2 --z or*oO*o"<br />

.2 h=D<br />

4"3<br />

os*oD*olni<br />

222<br />

h? = 2k3*<strong>of</strong>rl<br />

^'s+D -T--T- -Z<br />

oi+oi+<strong>of</strong>r<br />

Carcass length<br />

Shoulder fat<br />

thickness<br />

Mid-back fat<br />

thickness<br />

Lo<strong>in</strong> fat<br />

thickness<br />

Total fat<br />

thíckness<br />

Lo<strong>in</strong> eye<br />

area<br />

Grade <strong>in</strong>dex<br />

7" ham weight<br />

Ham surface<br />

area<br />

Percent predlcted<br />

yield<br />

Age to rnarket<br />

weíght<br />

0.8610.15<br />

0 .3010 .l_2<br />

0 .1010 . tt<br />

0 . 30t0.11<br />

0 .41r0.l_3<br />

0. t5r0 .13<br />

0.20!0.L2<br />

0 . 33!0 .11<br />

0.3810.12<br />

0 . 3310 .15<br />

0 .3910 .13<br />

0.3910.12<br />

0.4710.15<br />

0.57r0.16<br />

0 .1810 .14<br />

0 .50r0 .14<br />

0.9210.16<br />

0 . 7Br0 .16<br />

0 .1510. 14<br />

0 .4310 . 14<br />

0.7910 .18<br />

0.7910.15<br />

0. 62r0 .08<br />

0. 3910 .07<br />

0 .33t0 . 07<br />

0.24x0.07<br />

0 .4510 .07<br />

0.5310 .07<br />

0.4910.07<br />

0.24!O .07<br />

0 .4110 .07<br />

0.5610.08<br />

0 .5910.08


47<br />

moderately heritable while carcass length, total fat thickness, lo<strong>in</strong><br />

eye area, grade <strong>in</strong>dex, ham surface area, percent predicted yield <strong>and</strong><br />

adjusted age to market weight were highly heritable.<br />

III.<br />

Phenotypic correlations<br />

Phenotypic correlatíons among the eleven traiLs are<br />

summarized <strong>in</strong> Table 19.<br />

Carcass length \,Jas negatively correlated wíth shoulder fal thickness'<br />

mid-back fât thickness, lo<strong>in</strong> fat thickness, lo<strong>in</strong> <strong>and</strong> ham surface<br />

area' <strong>and</strong> age to market weight, but was positively correlated with carcass<br />

grade. The correlations betr¿een carcass length <strong>and</strong> percent ham<br />

weight <strong>and</strong> predicted yield were negligible.<br />

These f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicate<br />

that longer pigs should have l-ower back fat, smaller lo<strong>in</strong> eye <strong>and</strong> ham<br />

surface, faster growth rate <strong>and</strong> higher carcass grade <strong>in</strong>dex. This<br />

f<strong>in</strong>d<strong>in</strong>g was <strong>in</strong> good agreement wíth most reports from previous research.<br />

The relationships among the back fat thickness measurenents were al-l<br />

positive <strong>and</strong> the values ranged from 0.32 to 0.53. similar results<br />

have also been reporred by Smirh et al. (Lg6Z).<br />

Lo<strong>in</strong> eye area !/as negatively correlated with all three back fat<br />

thickness measurements, but was positively correlated wÍth grade, percent<br />

ham weight <strong>and</strong> ham surface area <strong>and</strong> highly positively related to<br />

percent predicted yield.<br />

The association between lo<strong>in</strong> eye area <strong>and</strong><br />

age to market weight was positive but low <strong>in</strong> magnitude. The <strong>phenotypic</strong><br />

correlation coeffÍcients between lo<strong>in</strong> eye area <strong>and</strong> back fat<br />

thickness, percent predicted yield <strong>and</strong> age to market weight reported.<br />

from the present study were fairly<br />

similar to the reports from Smith<br />

et al. (1962), smith <strong>and</strong> Ross (1965), Jensen er ar. (1967), Arganosa


Table 19.<br />

PhenoLyplc correlatÍons among nlne carcass measurements <strong>and</strong> age to narket welghL tralts<br />

Tralt<br />

Carcass length<br />

Shoulder faE<br />

Mid-back far<br />

Loln fat<br />

Total fac<br />

Loln eye area<br />

Grade<br />

Z Han welghr<br />

Ham surface<br />

area<br />

% Predicted<br />

yle1d<br />

Shoulder<br />

fat<br />

-0.1110.03<br />

Back faC Loln fat<br />

-0.1610.03 -0.1610.03<br />

o.32!0 .02 0 .5310 .02<br />

0.3910.02<br />

Loln eye<br />

Total fat area<br />

-0,18t0 .03 -0.1310.03<br />

0. 79i0.02 -0.1810.03<br />

0 .6810.02 -0. 1310.03<br />

0.8110 .02 -0. 20J0.03<br />

_0.22r0.03<br />

Carcas s<br />

lndex<br />

0.1510 .03<br />

-0 .7 6!0 .02<br />

-0 .35r0.02<br />

-0 .7 4!0 .o2<br />

-0.8110.02<br />

0 . 1910 .03<br />

"/. Ham<br />

welgh t<br />

-0 . 0510 .03<br />

-0.1310 .03<br />

0 .0110 . 03<br />

-0.1910.03<br />

-0 . 1310 .03<br />

0. 1 2t0 .03<br />

0.1510.03<br />

Ham surface<br />

ar ea<br />

-0.1410.03<br />

-0 .1510.03<br />

-0.3610 .02<br />

-0,1210.03<br />

-0.2610.03<br />

0.3010.03<br />

0.1410 .03<br />

-0. 2310 .03<br />

Z Predicted<br />

yield<br />

-0.0610 .03<br />

-0.5310.02<br />

-0.5310.02<br />

-0.5310.02<br />

-0 .6910. 02<br />

0.5110.02<br />

0.52!0.O2<br />

0 .0810.03<br />

0.75r0.02<br />

Age<br />

-0.14r0.03<br />

-0.1010 .0 3<br />

-0.22t0.03<br />

-0.1110.03<br />

-0.19r0 .03<br />

0.0910.03<br />

0.03r0.03<br />

0.01r0.03<br />

0 .1510 .03<br />

0.21:0.03<br />

.Þ.<br />

co


,o<br />

AJ<br />

et 41. (L969), Roy er al. (1968), Enfield <strong>and</strong> \,,rharley (1961), Fahmy<br />

<strong>and</strong> Bernard (f970) <strong>and</strong> Swiger er al. (1979).<br />

As expected, the correlations between grade <strong>in</strong>dex <strong>and</strong> back fat<br />

thickness measurements v/eïe highly negative which agreed r¡ith the basic<br />

pr<strong>in</strong>ciple <strong>of</strong> the Canadian market hog <strong>in</strong>dex system. The relationships<br />

between grade <strong>in</strong>dex <strong>and</strong> percent ham rveight, ham surface area <strong>and</strong> percent<br />

predicted yield r¡/ere positive.<br />

The carcasses with lower shoulder<br />

or lo<strong>in</strong> fat thickness r¿ill have higheï percent ham weight. Ham surface<br />

area !)as negatively correlated i^rith three back fat thickness measurements<br />

<strong>and</strong> percent ham weighr, but was highly posÍtively correlated<br />

with percent predícted yield.<br />

The negative association between age to market weight <strong>and</strong> the<br />

three back fat measure<strong>in</strong>ents <strong>in</strong>dicated that faster groi+<strong>in</strong>g pigs were<br />

somer,¡hat fatter.<br />

This f<strong>in</strong>d<strong>in</strong>g corresponds to the result described<br />

earlier where faster grow<strong>in</strong>g pigs <strong>in</strong> group A had higher back fat<br />

measltLements <strong>and</strong> ¡^rere lower <strong>in</strong> carcass grade <strong>in</strong>dex <strong>in</strong> conseqrlence. The<br />

positive correlatíons betv¡een age to market rveight <strong>and</strong> h:m surface area<br />

<strong>and</strong> percent predicted yield implied that pígs requir<strong>in</strong>g the longer time<br />

to reach market weight would have larger hem surface area <strong>and</strong> higher<br />

percent predicted yíeld <strong>in</strong> carcasses.<br />

IV. Genetic correlations<br />

Genetic correlations among the<br />

components <strong>of</strong> variance <strong>and</strong> covaríance,<br />

traits, calculated from síre<br />

are presented <strong>in</strong> Table 20.<br />

The <strong>genetic</strong> correlaËions among<br />

eleven traiLs behaved si_ur_ilarly


Table 20. Genetic correlatlons among carc¿rss measurement.s <strong>and</strong> age to rnarket welght<br />

Tral-t<br />

Shoulder<br />

faE<br />

Back fat.<br />

Loln faË<br />

Total fat.<br />

Lo<strong>in</strong> eye<br />

area<br />

Grade<br />

lndex<br />

Z Ham<br />

wefgh E<br />

Ham surface<br />

area<br />

Z Predlcted<br />

y1eld<br />

Àge<br />

Carcass length<br />

Shoulder fat<br />

Mfd-back fat<br />

Loln fat<br />

Tolal fat<br />

Lo<strong>in</strong> eye area<br />

Grade lndex<br />

Z Ham welght<br />

Han surface<br />

area<br />

Z Predlcred<br />

yleld<br />

-0.17r0 .18<br />

-0.0110.32 -0.24!0.L7<br />

]. 40r0.67 0.5610.18<br />

L.42!0.58<br />

-0.1410.16 -7.07!o.46<br />

0.8810.06 0.1810.47<br />

1 .5010. 53 -0.0110. 65<br />

0 .9210.06 0 .5110.55<br />

0.2L!0 .42<br />

O.22!O.22<br />

-1 . 0410 .13<br />

-1 .5510 .71<br />

-1 .3010.21<br />

-1. 2510.18<br />

-1 .0210. 91<br />

0 ,0210 .1 7<br />

-0.3610.24<br />

-0.7610.4 9<br />

-0.20!o.24<br />

-0. 3510 .21<br />

-0.19r0.42<br />

0.6210. 30<br />

-0. 6010 .16<br />

-0.49!O.24<br />

-0.6110.48<br />

-0.1410. 24<br />

-0.4610.20<br />

0.64t0.32<br />

o.L2!0 .32<br />

0 .1610. 23<br />

-0.43t0. 19<br />

-0.86t0.14<br />

-1.3010.53<br />

-0 .5510.18<br />

-0.8510 .10<br />

0.2810.36<br />

0. 78t0.20<br />

0.3010. 24<br />

0.8310.10<br />

-0 . 27r0 .16<br />

-0.6110.28<br />

-0. 9610 . 5B<br />

-0.18r0.19<br />

-0.57!0,22<br />

0.1210.38<br />

0.79t0.4?<br />

0.1310.24<br />

0.3310.23<br />

0.5510.25<br />

L¡I<br />

O


51<br />

to <strong>phenotypic</strong> correlations <strong>in</strong> most cases although the <strong>genetic</strong> correlations<br />

were higher. Several values outsíde the theoretical range (rG , 1 o,<br />

tG ' - 1) were found, i.e. mid-back fat with shoulder fat, lo<strong>in</strong> fat<br />

<strong>and</strong> total fat, carcass length with lo<strong>in</strong> eye area, grade índex with three<br />

back faË thickness measurenents <strong>and</strong> total fat thickness <strong>and</strong> lo<strong>in</strong> eye<br />

area' mid-back fat with percent predÍcted yíeld.<br />

coefficients are high <strong>in</strong> st<strong>and</strong>ard error.<br />

Most <strong>genetic</strong><br />

The back fat thÍckness measurements at three different po<strong>in</strong>ts were<br />

highly positively correlated with each orher. A si_milar f<strong>in</strong>d<strong>in</strong>g has<br />

been reported by smith et a1. (L962). selection for 1or¿er back faË<br />

thickness at one location will reduce thickness at other areas <strong>and</strong><br />

average back fat.<br />

Carcass length had moderately negative correlations with shoulder<br />

fat, loÍn faÈ, total fat <strong>and</strong> age to markeË weight. The correlations<br />

betr¿een carcass length <strong>and</strong> ham surface area <strong>and</strong> percent predicted yield<br />

were highly negarive. snith er a1. (Lg62), smith <strong>and</strong> Ross (1965),<br />

Jensen et al. (1967), Flock (L970), siers <strong>and</strong> Thomson (L972), Enfield<br />

<strong>and</strong> I^Ihatley (1961) <strong>and</strong> Roy eÈ a1. (196g) also showed that negarive<br />

correlatÍons existed between carcass length <strong>and</strong> carcass back fat <strong>and</strong><br />

percent lean cuts. Lo<strong>in</strong> eye area was positively correlated Ì,¡ith lo<strong>in</strong><br />

fat which suggested that selection for lower back fat at lo<strong>in</strong> would<br />

reduce lo<strong>in</strong> eye area simultaneously. This result is not <strong>in</strong> agreement<br />

wÍth reports from previ-ous research.<br />

Percent han weight \474s negatively correlated with a1l three back<br />

fat thickness measurements <strong>and</strong> 1oÍn eye area <strong>and</strong> the values ranged from<br />

medium to hÍgh, but it was positively correlated with ham surface area,


52<br />

percent predicted yield, grade <strong>and</strong> age to r¡arket weíght, the coefficients<br />

ranged from low to hígh.<br />

The relationships between ham sur_<br />

face <strong>and</strong> shoulder fat, mid-back fat <strong>and</strong> total back fat thickness measure*<br />

mentswere highly negative' whíle the relationshÍp betr¿een ham surface<br />

area <strong>and</strong> percent predicted yield was highly positive which suggested<br />

that selection for larger hau surface area would. <strong>in</strong>crease percent predicred<br />

yield.<br />

The high negatíve correlations between percent predicted yield <strong>and</strong><br />

back fat thíckness measurernents <strong>in</strong>dicat.ed that selection for lower<br />

back fat thiekness would signifícantly <strong>in</strong>crease the percent predicted<br />

yÍeld. selection for larger ro<strong>in</strong> eye area, percent ham weight, ham<br />

surface area or grade <strong>in</strong>dex should lead to an <strong>in</strong>crease <strong>in</strong> peïcent predicted<br />

yÍeld.<br />

The correlations betr¿een age to markeÈ weÍght <strong>and</strong> backfat thíckness<br />

measurements rùere highly negative except for lo<strong>in</strong> fat which Índicated<br />

that sel-ection for fasL growth rate would Íncrease back fat thickness<br />

<strong>and</strong> decrease carcass grade <strong>in</strong>dex <strong>in</strong> consequence. The relationships<br />

between age Lo market weight <strong>and</strong> grade <strong>in</strong>dex, ham surface area <strong>and</strong> percent<br />

predícted yield were positive <strong>and</strong> high.<br />

These f<strong>in</strong>d<strong>in</strong>gs suggested<br />

that selectíon for lower back fat or hÍgher grade <strong>in</strong>dex or srnaller ham<br />

surface area or higher percent predicted yield would tend to <strong>in</strong>crease<br />

age to market weight unless the traits \¡/ere comb<strong>in</strong>ed <strong>in</strong> a selectÍon<br />

i-ndex.


53<br />

SI]MMARY AND CONCLUSION<br />

Data from L,268 first<br />

parity gilts <strong>and</strong> from r,455 rnarket pigs <strong>of</strong><br />

the Managra breed were analyzed to estimate <strong>phenotypic</strong> <strong>and</strong>. <strong>genetic</strong><br />

parameLers for five reproductive trairs,<br />

ten carcass measurements <strong>and</strong><br />

age at 90 kg live weight.<br />

Heritability<br />

estimates v¡ere calculated from Ëhe sire coûponent<br />

<strong>of</strong> variance. Three litter<br />

size traits <strong>in</strong>clud<strong>in</strong>g total number <strong>of</strong> pigs<br />

born, nurnber <strong>of</strong> pigs born alive <strong>and</strong> number <strong>of</strong> pigs weaned had lor¿ heritabilities<br />

i¿hich <strong>in</strong>dicate that litt1e response would be expected from<br />

selection.<br />

Average birth weÍght <strong>and</strong> wean<strong>in</strong>g weíght had moderate heritabilities<br />

which reveals that about 40"Á <strong>of</strong> the differences <strong>in</strong> these traits<br />

r'¡ere attributable to geneLic causes <strong>and</strong> r¡ould be expected to be transruitted<br />

to <strong>of</strong>fspr<strong>in</strong>g from parents. Phenotypic correlations among three<br />

litter<br />

size traits were hÍgh1y positíve <strong>and</strong> generally agreed with the<br />

results from previous research. Average birth weight was moderately<br />

correlated <strong>phenotypic</strong>ally with average wean<strong>in</strong>g weÍght. <strong>phenotypic</strong> correlations<br />

between litter<br />

sÍze tralts <strong>and</strong> average pig weight at birth <strong>and</strong><br />

wean<strong>in</strong>g were moderately negative except the correlation between<br />

nr:mber weaned <strong>and</strong> average pig birth weight. Genetic correlations between<br />

total number born <strong>and</strong> average birth weight <strong>and</strong> average r+ean<strong>in</strong>g weight<br />

were 0.3010.46 <strong>and</strong> O.92t0.A9, respectively.<br />

Genetíc correlations between<br />

average pig wean<strong>in</strong>g weÍght <strong>and</strong> nr-rmber <strong>of</strong> pÍgs weaned <strong>and</strong> average birth<br />

weight were 0.52!L.05 <strong>and</strong> O.L7XO.2L, respectively.<br />

Heri'tability<br />

estimates for carcass neasurements <strong>and</strong> age at 90 kg<br />

live weÍght T/¡ere anaLyzed by hierarchÍcal .analysis<br />

<strong>of</strong> varíance. Three<br />

carcass back fat thícknesses (maximum shoulder fat, m<strong>in</strong>imum mid-back


54<br />

fat <strong>and</strong> lo<strong>in</strong> fat), total back fat thíckness, grade <strong>in</strong>dex, T" ]'am weight<br />

<strong>and</strong> ham surface area \¡/ere moderaËely heritable. The heritabilities <strong>of</strong><br />

carcass length, lo<strong>in</strong> eye area, "/" preð.icted yield <strong>and</strong> age at 90 kg live<br />

weight were high <strong>and</strong> ranged from 0.53-0.62. Moderate <strong>and</strong> high response<br />

would be expected from selection <strong>of</strong> those traits.<br />

<strong>phenotypic</strong> <strong>and</strong><br />

<strong>genetic</strong> correlations vrere calculated from analysis <strong>of</strong> covariance.<br />

Phenotypic correlations <strong>of</strong> carcass length with three back fat thicknesses,<br />

loj-n eye area, ham surface area <strong>and</strong> age at 90 kg live weÍght<br />

r{ere negatÍve but smaIl. The <strong>phenotypic</strong> correlations among three back<br />

faÈ thicknesses were positÍve <strong>and</strong> <strong>in</strong>termediate. Lo<strong>in</strong> eye area \¡/as<br />

negatively correlated i¡Íth three back fat thicknesses but was positively<br />

correlated with grade <strong>in</strong>dex, T" ]r,am weight, ham surface area <strong>and</strong> % predicted<br />

yield-<br />

Grade <strong>in</strong>dex was highly negatively correlated r¿ith three<br />

back fat thicknesses <strong>and</strong> was positively correlated r¿ith Z :ham weíght,<br />

ham surface area <strong>and</strong> % predicted yierd.<br />

Ham surface area 'sas<br />

negatively<br />

correlated ¡¿ith back fat thÍcknesses <strong>and</strong> "/" :ham weÍghË but was<br />

positively correlated with Z predicted yíeld.<br />

Phenotypic correlations<br />

<strong>of</strong> age at 90 kg live weight r¿ith three back fat thicknesses Trere<br />

negative but sroall. The relationship <strong>of</strong> age at 90 kg rive r^¡eight \^/ith<br />

ham surface area <strong>and</strong> "/" predicted yÍe1d was positive.<br />

Genetic correlatíons<br />

among carcass measurement <strong>and</strong> age at ng ut live weighÈ<br />

generally behaved siurilarly to the phenotypíc correlations but v¡ere<br />

higher <strong>in</strong> rnagnÍtude. Most <strong>of</strong> the <strong>genetic</strong> correlations had hÍgh st<strong>and</strong>ard<br />

errors.<br />

In conclusion, most carcass traÍts \,Jere<br />

each other whÍch <strong>in</strong>dicates that selection for<br />

favorabl-y correlated with<br />

one carcass trait would


55<br />

also improve Ëhe others where several carcass traits \,rere considered<br />

simultaneously <strong>in</strong> a breed<strong>in</strong>g program. The relationshipsbeiween growth<br />

rate i.e. age at 90 kg líve weight <strong>and</strong> carcass traits r¿ere unfavorable.


56<br />

LITERATJRE CITED<br />

Arganosa, V.G., I.T. Orntvedt <strong>and</strong> L.E. Walters.<br />

genetypic <strong>parameters</strong> <strong>of</strong> some carcass traits<br />

An. Sci. 28:I6B-L14.<br />

L969. Phenorypic <strong>and</strong><br />

<strong>in</strong> sw<strong>in</strong>e. J. <strong>of</strong><br />

Baik, D.H., Y.K. Park, B.K, Ohh <strong>and</strong> S.i^I. Han. Ig74. Heritabilities<br />

repeatabllÍties, <strong>and</strong> geneiic correlations among litter size,<br />

1Ítter weight, <strong>and</strong> gestaLion length Ín sw<strong>in</strong>e. Korean J. <strong>of</strong> An.<br />

Sci. L6(2):L52-I57 .<br />

Becker, W.A. L967. Manual <strong>of</strong> procedures <strong>in</strong><br />

(2nd ed.), I^lashfngton State University<br />

University, pullman, I,Iash<strong>in</strong>gton.<br />

quantitative geneties<br />

Press, InJash<strong>in</strong>gton State<br />

Beresk<strong>in</strong>, 8., c.E. shelby <strong>and</strong> L.N. Hazel. Lg7L. carcass traits <strong>of</strong><br />

purebred Duroc <strong>and</strong> yorkshires <strong>and</strong> their crosses. J. <strong>of</strong> An.<br />

Sci. 32:4L3-4L9.<br />

Boylan, w.J., trrr.E. Remper <strong>and</strong> R.E. comstock. Lg6r. Heritability<br />

litter size <strong>in</strong> sw<strong>in</strong>e. J. <strong>of</strong> An. ScÍ. 20:566_568.<br />

<strong>of</strong><br />

Enfield, F.D. <strong>and</strong> J-4. Idhatley, Jr. 1961. Heritability <strong>of</strong> carcass<br />

length' carcass backfat thíckness <strong>and</strong> lo<strong>in</strong> lean area <strong>in</strong> swíne.<br />

J. <strong>of</strong> An. Sei. 20:63I-634.<br />

Edwards, R.L. <strong>and</strong> r.T. ûntvedt. Lg7L. Genetic anarysÍs <strong>of</strong> a sr¿<strong>in</strong>e<br />

populatÍon. rr. Estimates <strong>of</strong> population paraÐeters. J. <strong>of</strong> An.<br />

Sci. 32:185-190.<br />

Fahmy, M.H. <strong>and</strong> C.S. Bernard. Ig7O.<br />

score on the <strong>genetic</strong> improvement<br />

Can. J. <strong>of</strong> An. Sci. 50:585-592.<br />

Effect <strong>of</strong> selectíon for carcass<br />

<strong>of</strong> its components <strong>in</strong> sw<strong>in</strong>e.<br />

Fahny, M.H. <strong>and</strong> C.S. Bernard. Lg7O.<br />

pre- <strong>and</strong> post-wean<strong>in</strong>g weights <strong>and</strong><br />

An. Sci. 50:593-599.<br />

Genetic <strong>and</strong> <strong>phenotypic</strong> study <strong>of</strong><br />

ga<strong>in</strong>s <strong>in</strong> sr¿<strong>in</strong>e. Can. J. <strong>of</strong><br />

Fahmy, M.H. <strong>and</strong> c.s. Bernard. Lg7z. rnterrelations between some<br />

reproductive traïts <strong>in</strong> sw<strong>in</strong>e. can. J. <strong>of</strong> An. sci. 52239-45.<br />

Fahny, M"H. <strong>and</strong> c.s. Bernard. Lg72. Reproductive performance<br />

gilts<br />

<strong>of</strong><br />

from l<strong>in</strong>es selected for feed utilízatíon <strong>and</strong> carcass score.<br />

Can. J. An. Sci. 52:267_27L.<br />

Falconer, D.s. 1960. rntroduetion to quantitative <strong>genetic</strong>s. Eighth<br />

Pr<strong>in</strong>t<strong>in</strong>g, Ronald press, New.york.


57<br />

Flock, D.K. 1970. Genetic <strong>parameters</strong> <strong>of</strong> German L<strong>and</strong>race pigs estimated<br />

fron different relationships. J. <strong>of</strong> An, Sci. 30 :839-843.<br />

Huntsberger, D.V. <strong>and</strong> p. Bill<strong>in</strong>gsley.<br />

<strong>in</strong>ference (4ttr ed.), pp. 2j4_277.<br />

Lg77 " Elements <strong>of</strong><br />

s tat is tical<br />

Jensen, P., H.B. craig <strong>and</strong> O.tr^r. Robison. 1967. <strong>phenotypic</strong> <strong>and</strong> genetÍc<br />

associations among carcass traits <strong>of</strong> swíne. J. <strong>of</strong> An, scí.<br />

26:I252-L260 .<br />

Krotch, K.M. 1975 - The effects <strong>of</strong> sire <strong>and</strong> <strong>of</strong> <strong>in</strong>breed<strong>in</strong>g <strong>of</strong> the dam <strong>and</strong><br />

<strong>of</strong> the litter on pre\^Tean<strong>in</strong>g traits <strong>in</strong> a <strong>closed</strong> breed <strong>of</strong> si¿<strong>in</strong>e.<br />

M.Sc. Thesis, University <strong>of</strong>. l"fanitoba.<br />

Parker, R-J. 197L. Development <strong>of</strong> the Managra - A new breed <strong>of</strong> sw<strong>in</strong>e.<br />

Dept. <strong>of</strong> Animal science, university <strong>of</strong> r"r¿nitoba (unpublished<br />

paper) .<br />

Revelle, T.J. <strong>and</strong> o.I^I. Robison. L973. An ex,olanation for the 1ow<br />

heritability <strong>of</strong> litter síze <strong>in</strong> sw<strong>in</strong>e. J. <strong>of</strong> An. Sci.37:668-615.<br />

Robertson, A. L959. The sampl<strong>in</strong>g variance <strong>of</strong> the <strong>genetic</strong> correlation<br />

coefficient. Biometrics. L5:469-485.<br />

Roy, G.L., i^I .J. Boylan <strong>and</strong> M,E. Sea1e. 1968. Estirnates <strong>of</strong> <strong>genetic</strong><br />

correlat.ions among certa<strong>in</strong> carcass <strong>and</strong> performance traits <strong>in</strong><br />

sw<strong>in</strong>e. Can. J. <strong>of</strong> An. Sci. 48:1-6.<br />

siers, D.G. <strong>and</strong> G.M. Thomson. Lglz. Heritabilities <strong>and</strong> <strong>genetic</strong> correlations<br />

<strong>of</strong> carcass <strong>and</strong> growth traits <strong>in</strong> sw<strong>in</strong>e. J. An. scÍ.<br />

35 : 311-316.<br />

s'ith, c., J.I^l .8. K<strong>in</strong>g <strong>and</strong> N. Gilbert. L962. Genetic <strong>parameters</strong> <strong>of</strong><br />

British Large l^Ihite bacon pigs. An. prod. 4zLZB-L43.<br />

s*ith, c. <strong>and</strong> G.J.s. Ross. 1965. Genetíc <strong>parameters</strong> <strong>of</strong> British<br />

L<strong>and</strong>race bacon pigs. An. prod.7:29I-30L.<br />

snedecor, G.w. <strong>and</strong> i,J.G. cochran. Lg76. statistical Merhods.<br />

sixth Edition. The roi¿a state uníversity press, Ames, rowa.<br />

stockhausen, c.w.F. <strong>and</strong> LrI.J. Boylan. L966. Heritability <strong>and</strong> <strong>genetic</strong><br />

correlation estimates <strong>in</strong> a ne\¡r breed <strong>of</strong> sw<strong>in</strong>e. can. J. <strong>of</strong> An.<br />

Sci. 46:21L-2I6.'<br />

strang, G-s. <strong>and</strong> J.I,I.B. K<strong>in</strong>g. Lg7o. LiLter productivity <strong>in</strong> Large<br />

hlhite pigs. An. Prod. L2(Z) 2235-243.


58<br />

swiger, L.A. '<br />

G.A. rsrer <strong>and</strong> i^I .R. Harvey. rg7g. postwean<strong>in</strong>g <strong>genetic</strong><br />

parâmeters <strong>and</strong> <strong>in</strong>dexes for sw<strong>in</strong>e. J. An. sci. 48:1096-1100.<br />

Urban, Lï.E., Jr., C.E. Shelby, A.B. Chapman, J.A. irì.hatley, Jr. <strong>and</strong><br />

V'A' Garwood. L966. Genetíc <strong>and</strong> environmental r"på"t" <strong>of</strong> litter<br />

size <strong>in</strong> sw<strong>in</strong>e" J. <strong>of</strong> Arr. Sci. 25:1148_1153.<br />

Young, L.D., R.A. pumfrey, p.J. Cunn<strong>in</strong>gham <strong>and</strong> D.R. Zímmerman. L978.<br />

HerÍtabilities <strong>and</strong> <strong>genetic</strong> <strong>and</strong> <strong>phenotypic</strong> correlations for prepr<strong>in</strong>ciple<br />

components.<br />

breed<strong>in</strong>g traits, reproductive traits <strong>and</strong><br />

J. <strong>of</strong> Än. Sci. 46:937-949.


APPENDIX<br />

s9


Appendix r. Analysis <strong>of</strong> variance <strong>of</strong> reproductive traits<br />

Mean squares<br />

Source <strong>of</strong><br />

varíation<br />

Year<br />

Group/yr.<br />

Sire/group/yr.<br />

LitËer/si re / gr o:up / yr,<br />

D. F.<br />

9<br />

20<br />

4LB<br />

B1_6<br />

Total no.<br />

born<br />

l_7 . 83<br />

29 .47<br />

5 .08<br />

4.84<br />

No. born<br />

alive<br />

No.<br />

weaned<br />

15 .67 13.58<br />

30 .23 26.24<br />

4.58 4 .69<br />

4.53 4.68<br />

Ave.<br />

birth wt.<br />

0 .18<br />

0 .18<br />

0"04<br />

0 .03<br />

Ave.<br />

wn. wt"<br />

l-6.53<br />

10 .71<br />

2"75<br />

2.L4<br />

2<br />

ú<br />

S<br />

0.084<br />

0 .018 0 .006<br />

0.003<br />

0.22<br />

2<br />

6 "w<br />

4.84<br />

4.53<br />

4.68<br />

0 .03<br />

2.r4<br />

Or<br />

O


Appendix rr. Anal-ysis <strong>of</strong> covarÍance <strong>of</strong> reproducti_ve traits<br />

Mean cross products<br />

Source <strong>of</strong><br />

covariance<br />

Year<br />

GrouB/yr.<br />

D.F.<br />

9<br />

20<br />

Total no.<br />

born <strong>and</strong><br />

no. born<br />

alÍve<br />

15.97<br />

29.L5<br />

Total- no.<br />

born <strong>and</strong><br />

no. weaned<br />

I .70<br />

23.84<br />

Total no.<br />

born <strong>and</strong><br />

ave. bírth<br />

wt.<br />

-L.L2<br />

0.74<br />

Total no.<br />

born <strong>and</strong><br />

ave .h7n.I,It.<br />

-3 .48<br />

-3.43<br />

No. born<br />

alive <strong>and</strong><br />

no. weaned<br />

9 .13<br />

25.23<br />

Sire/group/yr .<br />

Litter/sire/<br />

group/yr<br />

Cov,<br />

418<br />

816<br />

4.47<br />

4.22<br />

0 .09<br />

2.85<br />

2.98<br />

-0.05<br />

-0. l-5<br />

-0 .16<br />

0.005<br />

-0.34<br />

-0. 6B<br />

0.I2<br />

3.09<br />

3.27<br />

-0 .07<br />

Cov"<br />

4.22<br />

2.98<br />

-0.16<br />

-0.68<br />

3.27<br />

o\<br />

F


Appendix II (Contínued)<br />

Mean cross products<br />

Source <strong>of</strong><br />

covariance<br />

Year<br />

Group/yr.<br />

Sire/grouplyr.<br />

Litter/síre/<br />

gtoupf y'r.<br />

Cov,<br />

D.F.<br />

9<br />

20<br />

418<br />

816<br />

No. born<br />

alÍve <strong>and</strong><br />

ave.bírth<br />

vüt.<br />

-r.04<br />

0. 70<br />

-0. 13<br />

-0.16<br />

0. 01<br />

No. born<br />

alive <strong>and</strong><br />

ave " T.{Tr.<br />

I^rt .<br />

-4.L6<br />

-4.53<br />

-0.27<br />

-0.61<br />

0.L2<br />

No. weaned<br />

<strong>and</strong> ave.<br />

birth rn¡t.<br />

-0.03<br />

0. 84<br />

-0 .002<br />

-0.06<br />

0.02<br />

No. weaned<br />

<strong>and</strong> ave.<br />

wn. wt.<br />

-4.60<br />

_t 70<br />

L.l )<br />

-0.34<br />

-0. 39<br />

0 .02<br />

Ave. birth<br />

wt. <strong>and</strong><br />

aVe "vm.r,¡t.<br />

0.39<br />

0.68<br />

0 .10<br />

0.09<br />

0 .005<br />

Cov,<br />

-0. 16<br />

-0 .61<br />

-0.06<br />

-0. 39<br />

0 .09<br />

o\<br />

N)


Appendlx rrr'<br />

Ànalysfs <strong>of</strong> varlance <strong>of</strong> carcass neasurements <strong>and</strong> age to harket wefght<br />

Source <strong>of</strong><br />

varLaÈion<br />

Year<br />

Group/year<br />

Slre/group/yr.<br />

Da¡/efre/group/<br />

D. F.<br />

6<br />

13<br />

269<br />

yr. 368<br />

Progeny/dan/<br />

elre/group/<br />

yr. 798<br />

2<br />

os<br />

)<br />

oD<br />

Carcaeg<br />

length<br />

3.901<br />

5.055<br />

L.497<br />

o.676<br />

0.523<br />

0.t62<br />

0.074<br />

Shoulder<br />

faE<br />

0.157<br />

0.277<br />

0 .046<br />

0.033<br />

0.o25<br />

0 .002<br />

0.004<br />

Mfd-back<br />

faE<br />

Loln<br />

fat<br />

0.887 0.254<br />

0.153 0.095<br />

0.020 0.028<br />

0.018 0.020<br />

0.013 0.o18<br />

0.0004 0.0016<br />

0.0022 0.0010<br />

Total<br />

fat<br />

Mean gquares<br />

Loln eye<br />

area<br />

L.263 4.283<br />

0.932 2.105<br />

0.203 0.418<br />

0.132 0.344<br />

0.099 0.209<br />

0.013 0.011<br />

0 .016 0.066<br />

Grade<br />

lndex<br />

PercenÈ<br />

hau wt.<br />

28.6]-2 85.599<br />

42.438 30.891<br />

I0.822 2.649<br />

8.571 1.840<br />

5.594 t.694<br />

0.360 0.159<br />

t.443 0.071<br />

Ham eurface<br />

area<br />

295.333<br />

60.943<br />

5.192<br />

3.481<br />

2.7L8<br />

0.323<br />

0.370<br />

Percerrt<br />

pred.yfeld Ape<br />

146.259 1869.03<br />

55.901 2134.2r<br />

7.442 380.84<br />

5.246 255.15<br />

3.355 162.02<br />

0.385 22.56L<br />

0.91 7 45 .L40<br />

ot.¡<br />

0.523<br />

0.025<br />

0.0130 0.0183<br />

0.099 0.209<br />

5.594 1.694<br />

2.7L8<br />

3.355 162.020<br />

o\<br />

(¡J


Appendlx IV. Analysls <strong>of</strong> covarlance <strong>of</strong> carcass neasurements <strong>and</strong> age to market welght<br />

Mean cross products<br />

Source <strong>of</strong><br />

covarlance<br />

Yeãr<br />

Group/yr.<br />

SIre/ group/yr.<br />

D. F.<br />

Darn/ slre / group /<br />

yr. 368<br />

6<br />

13<br />

269<br />

ProEeny / dan/<br />

eLre/ Eroupf<br />

yr. 798<br />

Carcass length<br />

<strong>and</strong><br />

shoulder fat<br />

0.379<br />

0.580<br />

-0.048<br />

-0 "029<br />

-0.017<br />

Carcass length<br />

<strong>and</strong><br />

m1d-back fat<br />

-0.454<br />

0.44'J.<br />

-0.030<br />

-0 .0 28<br />

-0.019<br />

Carcass length<br />

<strong>and</strong><br />

1o1n fat<br />

0.381<br />

0.118<br />

-0 .03s<br />

-0 . 017<br />

-0.024<br />

Carcass length<br />

<strong>and</strong><br />

total fat<br />

0.333<br />

T.T26<br />

-0.109<br />

-0.076<br />

-0 .060<br />

Carcass lengLh<br />

<strong>and</strong><br />

loln eye area<br />

-0.475<br />

-1. 386<br />

-0.223<br />

-0 .006<br />

-0 .011<br />

Cov^ò<br />

Cov- l)<br />

Cov,,<br />

-0 .00 3<br />

-0 .006<br />

-0.017<br />

-0 .0001<br />

-0.0046<br />

-0.0l-89<br />

-0.0040<br />

0.0030<br />

-0.0237<br />

-0.0062<br />

-0.0076<br />

-0 .0602<br />

-0.Ot |tt<br />

0.0021<br />

-0.0107<br />

. Con t lnued<br />

o¡\<br />

¡-


Appendlx IV (Conr<strong>in</strong>ued)<br />

Mean cross products<br />

Source <strong>of</strong><br />

covarlance<br />

D. F.<br />

Carcass l-ength<br />

<strong>and</strong><br />

grade lndex<br />

Carcass length<br />

<strong>and</strong><br />

% ham ¡¿t.<br />

Carcass length<br />

<strong>and</strong> ham<br />

surface area<br />

Carcass l.ength<br />

<strong>and</strong><br />

% pred. yleld<br />

Carcass length<br />

<strong>and</strong><br />

agg__<br />

Year<br />

6<br />

-3.744<br />

-rt.027<br />

-1.948<br />

-tr.202<br />

B. 180<br />

Group/yr.<br />

L3<br />

-6 .090<br />

4.265<br />

-I2.725<br />

-11.866<br />

-82.937<br />

Slre/group/yr.<br />

269<br />

0.797<br />

-0 .085<br />

-0.759<br />

-0 .389<br />

-4.895<br />

Daml eLrel group/yr.<br />

368<br />

0.507<br />

-0.080<br />

-0.071<br />

0.133<br />

-1.993<br />

Progeny/darn ls'Ixel<br />

group I yr .<br />

798<br />

0.313<br />

-0.036<br />

0.002<br />

0,r29<br />

0.2L6<br />

Covr'<br />

0.053<br />

0 .000 3<br />

-0.1382<br />

-0.1069<br />

-o.522<br />

Covo<br />

0.094<br />

-0.0213<br />

-0.0354<br />

0.0019<br />

-1.071<br />

Cov,<br />

0.313<br />

-0.03s9<br />

0.0021<br />

o.1292<br />

o.2t6<br />

cr\<br />

Ln


Appendlx IV (Contlnued)<br />

Mean cross rrroducts<br />

Source <strong>of</strong><br />

covariance<br />

Year<br />

Group/yr.<br />

Slre/group/yr.<br />

Dam/ eíre / group /yr .<br />

Progeny/dam / sLre/<br />

group/yr.<br />

Cov,<br />

D. F.<br />

6<br />

13<br />

269<br />

368<br />

798<br />

Shoui.der fat<br />

<strong>and</strong><br />

mld-back fat<br />

-0.080<br />

0.077<br />

0 .016<br />

0.009<br />

0.006<br />

0.0013<br />

Shoulder fat<br />

<strong>and</strong><br />

lo<strong>in</strong> fat<br />

0.113<br />

0 .097<br />

0.021<br />

0 .015<br />

0 .010<br />

0.0011<br />

Shoulder fac<br />

<strong>and</strong><br />

toEal faE<br />

0.182<br />

0.430<br />

0 ,082<br />

0 .0s5<br />

0.039<br />

0.0049<br />

Shoulder fat<br />

<strong>and</strong> lo<strong>in</strong><br />

eye area<br />

-0.030<br />

0.028<br />

-0.032<br />

-0.032<br />

-0.009<br />

0 .0009<br />

Shoulder fat<br />

<strong>and</strong><br />

grade <strong>in</strong>dex<br />

-1. 386<br />

-3.182<br />

-0,560<br />

-0. 395<br />

-0.290<br />

-0.0301<br />

CovO<br />

0 .0016<br />

0.0024<br />

0.0077<br />

-0.0114<br />

-0.050 7<br />

Cov"<br />

0.0056<br />

0.0102<br />

0.0393<br />

-0.0088<br />

-0.2903<br />

o.<br />

cl\


Appendlx IV (Conrlnued)<br />

Mean cross Droducts<br />

Source <strong>of</strong><br />

covarlance<br />

Year<br />

Group/yr.<br />

Slre/group/yr.<br />

Dam/ sfte/ group /yr .<br />

Progeny/dan I strel<br />

gxoup /yr .<br />

Cov,<br />

D. F.<br />

6<br />

13<br />

269<br />

368<br />

798<br />

Shoulder fat<br />

<strong>and</strong><br />

Z ham wt.<br />

-0.953<br />

0.489<br />

-0.088<br />

-0.049<br />

-0 .019<br />

-0.0069<br />

Shoulder fat<br />

<strong>and</strong> ham<br />

gurface area<br />

7 .443<br />

-o.644<br />

-0.128<br />

-0 .060<br />

-0.049<br />

-0.0135<br />

Shoulder fat<br />

<strong>and</strong> Z<br />

pred, vle1d<br />

-1 .041<br />

-t.3r2<br />

-0. 388<br />

-0.247<br />

-0.160<br />

-o.0257<br />

Shoulder fat<br />

<strong>and</strong><br />

åge<br />

-0.416<br />

-9.79r<br />

-0.631<br />

0.024<br />

-0.180<br />

-0. 1403<br />

Mld-back far<br />

<strong>and</strong><br />

l<strong>of</strong>n fat<br />

0.005<br />

0.044<br />

0.014<br />

0.009<br />

0.006<br />

0.0011<br />

CovO<br />

Cov*<br />

-0.0146<br />

-0.0190<br />

-0.0053<br />

-0.0492<br />

-o.0423<br />

-0 .1600<br />

0.0991<br />

-0.1801<br />

0.0013<br />

0 .0060<br />

Con t lnu ed<br />

cl'<br />

!


Appendlx IV (Contlnued)<br />

Mean ctoss products<br />

Source <strong>of</strong><br />

covarlance<br />

Year<br />

Group/yr.<br />

SLre/ Erorplyr .<br />

Dam/ eLre/ group /yr.<br />

. Progeny/dar¡.l she/<br />

group/yr.<br />

Cov,<br />

Cov'<br />

D.F.<br />

6<br />

13<br />

269<br />

368<br />

798<br />

Mld-back fac<br />

<strong>and</strong><br />

total faË<br />

0.77 4<br />

0.273<br />

0 .050<br />

0.032<br />

0.024<br />

0.0033<br />

0 .0039<br />

trfld-back fat<br />

<strong>and</strong> loln<br />

eve area<br />

-0.658<br />

-0.260<br />

-0.009<br />

-0.008<br />

-0.002<br />

-0 . 0000 3<br />

-0.0027<br />

Mld-back far<br />

<strong>and</strong><br />

prade lndex<br />

0.299<br />

-0.7 44<br />

-0.251<br />

-0.153<br />

-0.093<br />

-0.018<br />

-o.029<br />

I'fld-back far<br />

<strong>and</strong><br />

Z ha¡o r¿È,<br />

6. 785<br />

0.319<br />

-0.065<br />

-0.034<br />

-0.022<br />

-0.0058<br />

-0.005 7<br />

Mld-back fat<br />

<strong>and</strong> ham<br />

surface area<br />

-I4.387<br />

-I.9I7<br />

-0.065<br />

-0.031<br />

-0 .025<br />

-0.0067<br />

-0 .0032<br />

Cov"<br />

o.0243<br />

-0.0022<br />

-0.093<br />

-0.0224<br />

-0 .0248<br />

o\<br />

co


Appendlx IV (Contlnued)<br />

Mean cross products<br />

Source <strong>of</strong><br />

covariance<br />

Year<br />

Group /yr.<br />

Sire/group/yr.<br />

Daml elrel group/yr.<br />

Progeny/darn /al:el<br />

group/yr.<br />

Cov,<br />

D. P.<br />

6<br />

13<br />

269<br />

368<br />

798<br />

Mld-back fat<br />

<strong>and</strong><br />

% pred.yLeLð,<br />

-7.109<br />

-2.386<br />

-0.22L<br />

-0.138<br />

-0.096<br />

-0 .016<br />

Mld-back fat<br />

<strong>and</strong><br />

age<br />

-0. 705<br />

-9.653<br />

-0.683<br />

-0.274<br />

-0.41-1<br />

-0 .088<br />

Loln fat<br />

<strong>and</strong><br />

total fat<br />

0.359<br />

0. 239<br />

0 .065<br />

0.043<br />

0.034<br />

0.0042<br />

Lo<strong>in</strong> fat<br />

<strong>and</strong><br />

Lo<strong>in</strong> eye area<br />

-0.67L<br />

-0.079<br />

-0.019<br />

-0.026<br />

-0,005<br />

0.0021<br />

Loln fat<br />

<strong>and</strong><br />

Erade. lndex<br />

-2.259<br />

-t .339<br />

-0 .452<br />

-0.291<br />

-0.239<br />

-0.0309<br />

CovO<br />

-0.020<br />

0.066<br />

0.0042<br />

-0 .0100<br />

-0.0254<br />

Cov,<br />

-0.096<br />

-0 .411<br />

0.0343<br />

-0.0054<br />

-0.2385<br />

. Cont{nrrecl<br />

o\


Appendlx IV (Conrtnued)<br />

Mean crosg producÈs<br />

Source <strong>of</strong><br />

covarlânce<br />

Year<br />

Group/yr.<br />

Slre/g¡sup/y¡.<br />

Dam/ el¡e/group/yr.<br />

Progeny/dam / eLre/<br />

group/yr.<br />

Cov,<br />

D.F.<br />

6<br />

13<br />

269<br />

368<br />

798<br />

Lo<strong>in</strong> far<br />

<strong>and</strong><br />

Z han wt.<br />

-T.292<br />

-0.120<br />

-0 .07 4<br />

-0.054<br />

-0.020<br />

-0 .003<br />

Lo<strong>in</strong> fat<br />

<strong>and</strong> ham<br />

surface area<br />

o.776<br />

0.165<br />

-0.07 4<br />

-0.055<br />

-0 .031<br />

-0.003<br />

Loln fat<br />

<strong>and</strong> 7"<br />

pred, y1e1d<br />

-2.L04<br />

-0.719<br />

-0.278<br />

-0.201<br />

-0.130<br />

-0.013<br />

Loln fat<br />

<strong>and</strong><br />

aPe<br />

-8.803<br />

-3.551<br />

-0. 250<br />

-0.103<br />

-0.201<br />

-0 .033<br />

ToEal fat<br />

<strong>and</strong> 1o1n<br />

eve area<br />

-7.228<br />

-0.345<br />

-0.062<br />

-0.066<br />

-0 .016<br />

0.003<br />

CovO<br />

Cov"<br />

-0.016<br />

-0 .020<br />

-0 .012<br />

-0 .031<br />

-0.034<br />

-0.130<br />

0.048<br />

-0.201<br />

-0.024<br />

-0.016<br />

Contlnued<br />

\.1<br />

O


^Appendix IV (Cont<strong>in</strong>ued)<br />

Mea4 cross products<br />

Source <strong>of</strong><br />

covarfance<br />

Year<br />

Group/yr.<br />

SLre/ grç¡p/y¡.<br />

Dam/sfte/ Eroup /yr .<br />

Progeny/dam/s 1re /<br />

group /yr .<br />

Cov,<br />

CovO<br />

Cov"<br />

D. F.<br />

6<br />

13<br />

269<br />

368<br />

798<br />

Total fat<br />

<strong>and</strong><br />

grade lndex<br />

-3. 341<br />

-5.505<br />

-L.282<br />

-0.825<br />

-0.618<br />

-0 .0 86<br />

-0 .100<br />

-0.618<br />

ToEal fat<br />

<strong>and</strong>, 7"<br />

ham ¡+t.<br />

Toral fat<br />

<strong>and</strong> har¡<br />

surface area<br />

4 .116 _11 .409<br />

0, 868 _2,505<br />

-0.227 _o .298<br />

-0.137 _0.t42<br />

-0.058 _0 .098<br />

-0.016 -0 .030<br />

-0.038 _o .022<br />

-0.058 _0.098<br />

Total fat<br />

<strong>and</strong> 7.<br />

pred. yleld<br />

-9.586<br />

-4.496<br />

-0 .9l.B<br />

-0.589<br />

-0. 387<br />

-0 .060<br />

-0.098<br />

-0.387<br />

Total fat<br />

<strong>and</strong><br />

aEe<br />

-7 .064<br />

-)1 101<br />

-I .75tl<br />

-0.455<br />

-0 .81 7<br />

-0.276<br />

0.175<br />

-0.817


Appendlx fV (Conc<strong>in</strong>ued)<br />

Mean cross products<br />

Source <strong>of</strong><br />

covarlance<br />

D.F,<br />

Lo<strong>in</strong> eye area<br />

<strong>and</strong><br />

grade lndex<br />

Loln eye area<br />

<strong>and</strong><br />

% ham q't.<br />

Lo<strong>in</strong> eye area<br />

<strong>and</strong> han<br />

su¡face area<br />

Loln eye area<br />

anð "l<br />

pred. yield<br />

Loln eye area<br />

<strong>and</strong><br />

age<br />

Year<br />

6<br />

3.043<br />

-1.815<br />

14.011<br />

76.307<br />

7L.6tL<br />

Group/yr.<br />

13<br />

-0 .L7 4<br />

1.339<br />

4.3L2<br />

5 .592<br />

7t'raA<br />

SLre/ gtoup/yr.<br />

269<br />

0.337<br />

0.167<br />

0. 575<br />

0.957<br />

O.B89<br />

Dam/ sLre/ group /yr .<br />

368<br />

0.576<br />

0.184<br />

0 .360<br />

o.796<br />

0.497<br />

Progeny/dam / s1-re/<br />

group/yr.<br />

798<br />

0.134<br />

0.045<br />

0.150<br />

0.331<br />

-0.117<br />

Covr'<br />

-0.063<br />

-0.008<br />

0.037<br />

0.018<br />

0 .060<br />

Cov'<br />

0.2r4<br />

0.067<br />

0.102<br />

0.225<br />

0.298<br />

Cov"<br />

0.l_34<br />

0.045<br />

0.150<br />

0. 331<br />

-0.117<br />

. Contlnuecl<br />

! l.J


Appendix IV (Conctnued)<br />

Mean crosà products<br />

Source <strong>of</strong><br />

covarlance<br />

Year<br />

Group/yr.<br />

SLre/ group/yr.<br />

Dan/ elre/ group/yr ,<br />

Progeny/dan /el¡e/<br />

group /yr.<br />

Cov,<br />

D. F.<br />

6<br />

13<br />

269<br />

368<br />

198<br />

Grade lndex<br />

<strong>and</strong> Z ham<br />

wefght<br />

21.545<br />

-8.509<br />

r.654<br />

0.830<br />

0.249<br />

0.149<br />

Grade lndex<br />

<strong>and</strong> ham surface<br />

area<br />

Grade lndex<br />

<strong>and</strong> Z pred.<br />

yleld<br />

-22.901 8.823<br />

6.578 14.720<br />

r.647 5,633<br />

1.336 3.951<br />

0.595 2.384<br />

0.039 0.29L<br />

Grade lndex<br />

<strong>and</strong>'age<br />

-I8.292<br />

86.524<br />

6.24L<br />

-4 .001<br />

0.610<br />

2.239<br />

Z Ham welght<br />

<strong>and</strong> ham<br />

surface area<br />

-L02.382<br />

-22.326<br />

o.284<br />

0.039<br />

-0.376<br />

0.037<br />

CovO<br />

0.281<br />

0.359 0.760<br />

-2.234<br />

0. 201<br />

Cov--<br />

0.249<br />

0.s95 2.384<br />

0.6r 0<br />

-0.376<br />

. ContLnued<br />

!<br />

tt


Àppendlx IV (Contlnued)<br />

Mean cross products<br />

Source <strong>of</strong><br />

covarlance<br />

D.F.<br />

% Ham welght<br />

<strong>and</strong> %<br />

pred. yleld<br />

% Ham welght<br />

<strong>and</strong><br />

age<br />

Ham surface<br />

area <strong>and</strong> Z<br />

pred. yleld<br />

Ham surface<br />

area <strong>and</strong><br />

age<br />

7. Pred. yleld<br />

<strong>and</strong><br />

age<br />

Year<br />

Group/yr.<br />

SLre/gtoup/yr.<br />

Dam/ s|re/ group/yr,<br />

Progeny/darn /sl:e/<br />

group/yr.<br />

6<br />

13<br />

269<br />

368<br />

798<br />

-28.477<br />

-L6.435<br />

T.347<br />

0.873<br />

0. 250<br />

-7L664<br />

-25.617<br />

r.922<br />

0.643<br />

0 .443<br />

171.524<br />

50.019<br />

4.72L<br />

3.L30<br />

2.L72<br />

84.980<br />

247 .27_1<br />

7.053<br />

2 .600<br />

1.839<br />

168 .7 2r<br />

257 .900<br />

Lr.292<br />

3. 366<br />

3.555<br />

coys<br />

0 .075<br />

0.254<br />

o.293<br />

0.884<br />

r.622<br />

Cov'<br />

0,302<br />

0.097<br />

0 .464<br />

0. 367<br />

-0.092<br />

Cov*<br />

0.250<br />

0 .443<br />

2.77 2<br />

1.839<br />

3.555<br />

!


75<br />

Appendix V. Table <strong>of</strong> differentials<br />

for carcass grade índex<br />

Carcass weight (lb)<br />

Backfat <strong>in</strong>. 90<br />

L24<br />

l-25<br />

l-29<br />

130<br />

r39<br />

L40 150<br />

r49 159<br />

160 L70<br />

769 180<br />

181<br />

195<br />

796 Ridg<strong>and</strong><br />

l<strong>in</strong>g<br />

over<br />

- -1.9<br />

2.0-2.I<br />

2.2-2.3<br />

2.4-2.5<br />

B7<br />

B7<br />

B7<br />

87<br />

105<br />

103<br />

L02<br />

100<br />

109 110<br />

LO7 109<br />

105 707<br />

103 10s<br />

LL2 IL2<br />

110 LLz<br />

109 110<br />

r07 109<br />

LL2<br />

LL2<br />

110<br />

109<br />

9L<br />

9I<br />

91<br />

9T<br />

85<br />

85<br />

85<br />

B5<br />

67<br />

67<br />

67<br />

67<br />

2.6-2 "7<br />

B7<br />

9B<br />

L02 103<br />

r05 L07<br />

L07<br />

9L<br />

85<br />

67<br />

)Q_10<br />

3.0-3.1<br />

87<br />

B7<br />

97<br />

95<br />

100 L02<br />

98 100<br />

103 105<br />

LOz 103<br />

105<br />

103<br />

9T<br />

91<br />

Q(<br />

UJ<br />

B5<br />

67<br />

67<br />

3.2-3 .3<br />

B7<br />

92<br />

97 98<br />

100 r02<br />

ro2<br />

91<br />

85<br />

67<br />

3 .4-3. s<br />

3 .6-3.7<br />

87<br />

B7<br />

B8<br />

B8<br />

95 97<br />

92 95<br />

98 100<br />

97 98<br />

100<br />

9B<br />

9I<br />

9T<br />

B5<br />

85<br />

67<br />

67<br />

3. B-3.9<br />

4.0-4.L<br />

4.2-4.3<br />

87<br />

B7<br />

B7<br />

BB<br />

B8<br />

8B<br />

BB 92<br />

BB 88<br />

88 BB<br />

9s 97<br />

92 95<br />

BB 92<br />

97<br />

95<br />

92<br />

9L<br />

B7<br />

B7<br />

B5<br />

B2<br />

B2<br />

67<br />

67<br />

67<br />

4.4- +<br />

87<br />

B8<br />

88 88<br />

BB BB<br />

BB<br />

B7<br />

B2<br />

67


76<br />

Appendix VI. Adjustment table for age to market weíght<br />

Body wÈ.<br />

(ke)<br />

75<br />

76<br />

77<br />

78<br />

79<br />

80<br />

B1<br />

B2<br />

B3<br />

B4<br />

B5<br />

86<br />

B7<br />

8B<br />

89<br />

90<br />

91<br />

92<br />

93<br />

94<br />

95<br />

96<br />

97<br />

9B<br />

99<br />

100<br />

101<br />

702<br />

103<br />

104<br />

105<br />

155<br />

Ls4<br />

153<br />

L52<br />

151<br />

150<br />

L4B<br />

r47<br />

746<br />

L46<br />

L4s<br />

L44<br />

143<br />

L42<br />

141<br />

140<br />

139<br />

138<br />

l-37<br />

L37<br />

136<br />

135<br />

134<br />

134<br />

133<br />

r32<br />

131<br />

131<br />

r30<br />

130<br />

l-29<br />

159 l_67<br />

L56 L59<br />

r55 L57<br />

L54 156<br />

153 155<br />

r52 l.54<br />

151 153<br />

150 r52<br />

148 151<br />

148 150<br />

147 L49<br />

746 748<br />

L45 147<br />

L44 L46<br />

L43 145<br />

r42 744<br />

L4I L43<br />

r40 L42<br />

139 r4L<br />

139 ]-4L<br />

138 140<br />

137 139<br />

136 138<br />

136 138<br />

135 L37<br />

134 136<br />

133 135<br />

133 135<br />

132 L34<br />

r32 133<br />

131 732<br />

163 165<br />

L6L 163<br />

160 L62<br />

158 161<br />

L57 L59<br />

156 rs8<br />

155 L57<br />

754 156<br />

153 155<br />

L52 L54<br />

r51 153<br />

150 752<br />

L49 151<br />

148 1s0<br />

L47 L49<br />

L46 148<br />

r4s L47<br />

L44 l-46<br />

L43 L45<br />

r43 r4s<br />

L42 r44<br />

L41 L43<br />

140 142<br />

139 L4L<br />

138 L40<br />

138 L40<br />

L37 139<br />

L37 139<br />

136 138<br />

135 r37<br />

L34 L36<br />

usted<br />

L67 t69<br />

165 l-67<br />

L64 ]66<br />

L63 165<br />

L62 L64<br />

160 163<br />

159 L62<br />

r5B 160<br />

\57 L59<br />

156 158<br />

155 L57<br />

L54 156<br />

153 155<br />

r52 r54<br />

151 153<br />

150 152<br />

L49 151<br />

148 150<br />

1,47 L49<br />

L46 I4B<br />

L46 r47<br />

r45 L46<br />

144 l-46<br />

L43 A45<br />

L42 744<br />

142 L44<br />

L4L 143<br />

140 L42<br />

L40 l4r<br />

139 ]'4]-<br />

138 140<br />

L7I L74<br />

L69 L77<br />

168 I70<br />

167 L69<br />

L66 168<br />

L65 L67<br />

L64 166<br />

163 l-65<br />

I6L L64<br />

160 L62<br />

159 r6L<br />

158 160<br />

L57 159<br />

156 158<br />

155 L57<br />

r54 L56<br />

153 1s5<br />

L52 L54<br />

151 153<br />

150 L52<br />

1"49 151<br />

r4B 150<br />

148 150<br />

747 L49<br />

146 748<br />

146 L4B<br />

r45 L47<br />

144 L46<br />

L43 L4s<br />

L42 L44<br />

L4L L43<br />

L76 r78<br />

L75 I77<br />

L72 L76<br />

L7L L73<br />

L70 I72<br />

L69 L7L<br />

168 L70<br />

L67 169<br />

L66 168<br />

165 l-67<br />

163 L66<br />

L62 L64<br />

161 163<br />

160 L62<br />

159 L6r<br />

r5B 160<br />

L57 159<br />

156 158<br />

155 L57<br />

r54 156<br />

153 155<br />

L52 754<br />

r52 L54<br />

151 r53<br />

r50 L52<br />

L49 151<br />

L49 1s0<br />

148 150<br />

L47 L49<br />

L46 148<br />

L4s r47<br />

Cont<strong>in</strong>ued.


77<br />

Appendix VI.<br />

(Cont<strong>in</strong>ued)<br />

Body wt.<br />

(kg)<br />

75<br />

76<br />

77<br />

78<br />

79<br />

BO<br />

BI<br />

82<br />

OJ<br />

B4<br />

B5<br />

B6<br />

B7<br />

B8<br />

B9<br />

90<br />

91<br />

92<br />

93<br />

94<br />

9s<br />

96<br />

97<br />

98<br />

99<br />

100<br />

101<br />

LO2<br />

103<br />

104<br />

105<br />

180 rB2 IB4 186 188<br />

t79 181 183 185 787<br />

I7B 1BO 182 T84 186<br />

L77 L79 1Bl 183 rB5<br />

r75 L77 779 181 183<br />

773 t76 r78 180 tB2<br />

L72 r74 L77 L79 181<br />

L7l- r73 L75 L78 180<br />

L70 L72 r74 L76 L79<br />

169 L7L L73 175 I77<br />

168 L70 772 L74 176<br />

166 168 I70 I72 L74<br />

165 T67 L69 l-7L L73<br />

L64 L66 168 L70 L72<br />

L63 165 L67 L69 L77<br />

162 L64 166 168 r70<br />

161 L63 165 l.67 ],69<br />

160 L62 764 L66 168<br />

159 161 163 L65 t67<br />

1s8 160 162 l.64 ]-66<br />

r57 159 161 163 ]'65<br />

156 ls8 160 L62 L64<br />

156 158 159 161 163<br />

155 L57 r59 160 L62<br />

r54 156 rs8 159 161<br />

153 155 L57 159 160<br />

t52 r54 156 158 160<br />

151 153 155 r57 159<br />

150 L52 154 156 158<br />

150 151 153 155 l-57<br />

749 1s1 1s2 Ls4 756<br />

Adjusted age <strong>in</strong> days<br />

190 l-92 r94<br />

189 191 L93<br />

188 190 L92<br />

L87 189 L9T<br />

185 IB7 189<br />

184 186 lBB<br />

183 185 LB7<br />

L82 rB4 186<br />

181 183 185<br />

r79 181 183<br />

L78 lBO IB2<br />

L76 L7B TBI<br />

L75 r77 T79<br />

T74 L76 L7B<br />

L73 r75 L77<br />

!72 1_74 176<br />

L7L L73 T75<br />

r70 r72 L74<br />

L69 T7L L73<br />

168 L70 172<br />

1"67 l69 L70<br />

166 168 L70<br />

165 t67 L69<br />

L64 166 168<br />

163 165 ]'67<br />

762 L64 L66<br />

L6L 163 165<br />

16r 162 L64<br />

160 161 163<br />

159 161 l-62<br />

158 160 162<br />

L96 198 200<br />

195 l'97 199<br />

L94 796 198<br />

193 195 Lg7<br />

LgL 193 195<br />

190 L92 L94<br />

189 191 193<br />

188 190 L92<br />

LB7 rB9 191<br />

185 rB7 r89<br />

LBî 186 188<br />

183 rB5 L87<br />

rB2 184 186<br />

180 I82 184<br />

r79 181 183<br />

L78 1BO LB2<br />

r77 L79 181<br />

L76 178 180<br />

175 L77 L79<br />

L74 L76 r78<br />

L72 L74 L76<br />

L7L T73 L75<br />

77L L72 L74<br />

L70 L72 173<br />

L69 t7L r72<br />

168 170 L72<br />

L67 L69 L7T<br />

166 168 L70<br />

16s 167 L69<br />

164 L66 168<br />

163 165 767<br />

ContÍnued.


7B<br />

Appendix VI.<br />

(Conr<strong>in</strong>ued)<br />

Body wt.<br />

(ke)<br />

75<br />

76<br />

77<br />

78<br />

79<br />

BO<br />

81<br />

B2<br />

83<br />

' .84<br />

85<br />

86<br />

B7<br />

B8<br />

B9<br />

90<br />

91<br />

92<br />

93<br />

94<br />

9s<br />

96<br />

97<br />

9B<br />

99<br />

r00<br />

101<br />

L02<br />

103<br />

104<br />

105<br />

202 204<br />

20L 203<br />

200 202<br />

L99 207<br />

L97 199<br />

L96 198<br />

195 L97<br />

L94 L96<br />

193 195<br />

191 193<br />

190 L92<br />

189 191<br />

1BB 190<br />

186 188<br />

185 r87<br />

L84 186<br />

183 185<br />

782 184<br />

181 183<br />

180 t_Bz<br />

I78 180<br />

777 L79<br />

176 r7B<br />

L75 l-77<br />

I74 l-76<br />

t73 r75<br />

L73 L74<br />

L72 L74<br />

L7T L73<br />

L70 L72<br />

t69 L7L<br />

206<br />

205<br />

204<br />

203<br />

207<br />

200<br />

l99<br />

19B<br />

L97<br />

195<br />

L94<br />

193<br />

L92<br />

190<br />

189<br />

lBB<br />

l-87<br />

186<br />

184<br />

184<br />

182<br />

181<br />

180<br />

l-79<br />

178<br />

t77<br />

L76<br />

L75<br />

175<br />

l-74<br />

l-73<br />

Adiusted a<br />

208 2lL0<br />

207 209<br />

206 208<br />

205 207<br />

203 205<br />

202 204<br />

20L 203<br />

20a 202<br />

r99 20L<br />

L97 A99<br />

796 198<br />

195 r97<br />

794 L96<br />

L92 L94<br />

191 193<br />

190 792<br />

189 191<br />

1BB 190<br />

186 1BB<br />

185 787<br />

184 186<br />

183 185<br />

182 rB4<br />

181 rB3<br />

180 l-82<br />

L79 181<br />

L78 180<br />

177 L79<br />

L76 L7B<br />

776 177<br />

L75 L76<br />

272<br />

277<br />

2LO<br />

209<br />

207<br />

206<br />

205<br />

204<br />

203<br />

20L<br />

200<br />

L99<br />

198<br />

L96<br />

195<br />

L94<br />

193<br />

L92<br />

190<br />

189<br />

1BB<br />

L8l<br />

IB6<br />

185<br />

184<br />

183<br />

r82<br />

1BI<br />

tB0<br />

1,79<br />

t77<br />

<strong>in</strong> da<br />

2L4<br />

21"3<br />

272<br />

2LL<br />

209<br />

208<br />

207<br />

206<br />

205<br />

203<br />

202<br />

20l-<br />

200<br />

198<br />

L97<br />

L96<br />

r95<br />

L94<br />

192<br />

191<br />

190<br />

189<br />

LB7<br />

L87<br />

186<br />

185<br />

184<br />

183<br />

I82<br />

lBl<br />

l-79<br />

2L6 2IB<br />

2L5 2L7<br />

2L4 2L6<br />

2L3 215<br />

zLL 2L3<br />

2L0 272<br />

209 2rr<br />

208 270<br />

207 209<br />

205 207<br />

204 206<br />

203 205<br />

202 204<br />

200 202<br />

L99 20I<br />

r98 200<br />

L97 L99<br />

L96 198<br />

L94 L96<br />

193 195<br />

L92 r94<br />

191 193<br />

189 191<br />

188 190<br />

1BB 189<br />

L87 189<br />

186 TBB<br />

185 rB7<br />

184 186<br />

183 185<br />

181 183<br />

220 222<br />

2L9 22L<br />

2r8 220<br />

2L7 2L9<br />

2L5 277<br />

2t4 216<br />

2L3 2L5<br />

2r2 2L4<br />

zLT 2L3<br />

209 21L<br />

208 2L0<br />

207 209<br />

206 208<br />

204 206<br />

203 205<br />

202 204<br />

20L 203<br />

200 202<br />

198 200<br />

r97 L99<br />

L96 198<br />

195 L97<br />

193 195<br />

L92 r94<br />

191 193<br />

190 L92<br />

189 LgL<br />

189 190<br />

1BB 190<br />

LB7 189<br />

r85 l-87<br />

Cont<strong>in</strong>ued.


79<br />

Appendix<br />

VI.<br />

(Cont<strong>in</strong>ued)<br />

Body wt.<br />

(ke)<br />

75<br />

76<br />

77<br />

7B<br />

79<br />

BO<br />

B1<br />

B2<br />

OJ<br />

B4<br />

B5<br />

B6<br />

B7<br />

BB<br />

B9<br />

90<br />

9L<br />

92<br />

93<br />

94<br />

95<br />

96<br />

97<br />

9B<br />

99<br />

100<br />

101<br />

L02<br />

103<br />

104<br />

105<br />

Adjusted age <strong>in</strong> days<br />

224 226 228 230 232 234 236 238<br />

223 225 227 229 23r 233 235 237<br />

222 224 226 228 230 232 234 236<br />

22I 223 225 227 229 237 233 235<br />

2L9 22L 223 225 227 229 23I 233<br />

2LB 220 222 224 226 228 230 .232<br />

277 2Ig 22L 223 225 227 22g 23L<br />

2L6 zLB 220 222 224 226 228 230<br />

2L5 2L7 279 22L 223 225 227 229<br />

2l-3 2L5 2L7 2L9 22L 223 225 227<br />

2L2 2I4 2L6 2IB 220 222 224 226<br />

27L 2L3 2L5 2L7 2L9 22L 223 225<br />

2L0 2L2 274 2L6 zLB 220 222 224<br />

208 zLO 2L2 2L4 2L6 zLB 220 222<br />

207 209 zIL 2L3 2L5 2L7 2L9 22I<br />

206 208 2I0 2L2 214 2l:6 2LB 220<br />

205 207 209 2LI 2L3 2l-5 2L7 2Lg<br />

204 206 208 2]I0 2L2 2L4 2L6 zLB<br />

202 204 206 208 2IO 2L2 2L4 216<br />

20L 203 205 207 209 zLL 2L3 2L5<br />

200 202 204 206 208 2I0 2L2 2I4<br />

L99 20I 203 205 207 209 2LL 2L3<br />

I97 L99 20L 203 205 207 209 2LL<br />

196 r9B 200 202 204 206 208 2LO<br />

195 197 199 20\ 203 205 207 2og<br />

L94 L96 198 200 202 204 206 208<br />

193 195 r97 r99 20L 203 205 207<br />

191 193 195 r97 L99 zOL 203 205<br />

191 L92 L94 L96 198 2OO 202 204<br />

191 191 193 195 r97 r99 20:- 203<br />

rB9 191 L92 r94 L96 r9B 200 202

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!