26.12.2013 Views

Estimation of genetic and phenotypic parameters in a closed ...

Estimation of genetic and phenotypic parameters in a closed ...

Estimation of genetic and phenotypic parameters in a closed ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ESTIMATION OF GENET]C AND PHENOTYPIC PARÁMETERS<br />

IN A CLOSED POPI]LATION OF SI^IINE<br />

by<br />

Fang Tsong L<strong>in</strong><br />

A Thesis<br />

SubûÉtted to<br />

The University <strong>of</strong> Manitoba<br />

<strong>in</strong> Partial Fulfillment <strong>of</strong> the Requirements<br />

for the Degree <strong>of</strong><br />

MASTER OF SCIENCE<br />

19 B0


ESTII'iATION OF GENETIC AND PHINOTYPIC PARAMETTRS<br />

TN A CLOSED POPULATION OF SW]NE<br />

D \/<br />

ut<br />

FANG TSONG LIN<br />

A the sis sLrbnlittecl to the Faculty <strong>of</strong> GradLrate stLrdies ol<br />

t¡e Urriversity ol ìrlanitoba <strong>in</strong> partial fLrlfillnlent <strong>of</strong> tlie reqttirettle'nts<br />

<strong>of</strong> the degree <strong>of</strong>-<br />

IlASTIR OF SC I ENCI<br />

o l9B0<br />

Pernrissioir has bcen grantecl to thc LliliìAIìY oF TIIE UNIVEIì-<br />

SITY Otr Ì\'IANITOBA to lcnd or sell copics ol'this the sis' to<br />

the n-ATIOI.\¡\L LIBIìAIìY Oi- CANADA to Inicr.filrÌ this<br />

tliesis ancl to lc-nd or scll copics olthc'liil]r. <strong>and</strong> UNIVERSITY<br />

N,llCROFiLltlS to pLrblish an abstract <strong>of</strong> this thesis'<br />

The aLrthor reserves other pLrblication rigltts. arld lteithe r tlie<br />

thCSis lior t'rtcnsivc ùXtriìCtS lì'r.)lll it ¡l.l¿tt,Lrc llrilttt'cl or otht.rrvisc<br />

rellrocìrrcecl rvjtiioLlt tlte autltol''s writt.,'ll ¡lertttissiort.


ACKNOI^rLEDGÐ{ENTS<br />

The author wishes to express his gratitude to Dr. R.J. Parker<br />

for hís <strong>in</strong>valuable advice <strong>and</strong> guidance dur<strong>in</strong>g the period <strong>of</strong> graduate<br />

Study <strong>and</strong> the preparation <strong>of</strong> this thesis.<br />

I am also grateful to the staff members <strong>of</strong> the Livestock Division<br />

<strong>of</strong> AgrÍculture Canada <strong>and</strong> the personnel <strong>of</strong> Canada Packers Límited,<br />

i^I<strong>in</strong>nipeg, Manitoba for provid<strong>in</strong>g assistance <strong>and</strong> facílities for carcass<br />

measurements.


11<br />

ASSTRACT<br />

Phenotypic <strong>and</strong> <strong>genetic</strong> <strong>parameters</strong> <strong>of</strong> some reproductive traits <strong>in</strong><br />

sw<strong>in</strong>e were estimated from 1 ,264 Lrtters <strong>of</strong> first<br />

parÍty }lanagra gilts<br />

farrowed between L967 anô, 1977. Means <strong>and</strong> st<strong>and</strong>ard deviations for the<br />

traits <strong>of</strong> total number <strong>of</strong> pigs born, number born alive, number at<br />

wean<strong>in</strong>g, average birth weÍght <strong>and</strong> average wean<strong>in</strong>g weight were: 9.681<br />

2.22, 9.L7!2.L3, 7.68!2.L6, 1.3410.18 kg <strong>and</strong> 10.66!I.52 kg, respectively.<br />

SignÍficant dÍfferences were observed among three different farrorn'<strong>in</strong>g<br />

groups <strong>and</strong> among years <strong>in</strong> all reproductive traits.<br />

HeritabilíÈy<br />

estimates r,rere as follows: total number <strong>of</strong> pigs born, 0.0710.12;<br />

number <strong>of</strong> pigs born alive, 0.0210.12; number <strong>of</strong> pigs weaned, 0.0110.12;<br />

average birth weight, 0.36t0.11; <strong>and</strong> average wean<strong>in</strong>g weight, 0.3710.11.<br />

PhenotypÍc correlations among the three different litter<br />

size traits<br />

were highly positive <strong>and</strong> the correlation between average birth weíght<br />

<strong>and</strong> average wean<strong>in</strong>g weight was moderately posÍtive. Phenotypic correlations<br />

between litter si-ze' traits <strong>and</strong> average pig r.igfrt traits were<br />

moderately negative except for the correlaËion <strong>of</strong> nr:mber weaned r¿ith<br />

average bírth weight. Genetic correlations between total number born<br />

<strong>and</strong> average pig weight at birth <strong>and</strong> at wean<strong>in</strong>g were 0"3010.46 <strong>and</strong> 0.92!<br />

0.09, respectively. Genetic correlations betv¡een average wean<strong>in</strong>g<br />

weight <strong>and</strong> nr:mber <strong>of</strong> pigs weaned <strong>and</strong> average birth weight r,¡ere 0.5211.05<br />

<strong>and</strong> 0 .77x0.20, respectively.<br />

Phenotypic <strong>and</strong> genetÍc <strong>parameters</strong> for carcass aeasurements <strong>and</strong> age<br />

to market weight were estimated from data on 1r455 Managra pigs consist<strong>in</strong>g<br />

<strong>of</strong> 425 barrows <strong>and</strong> 1,030 gilts over a seven year period (1971-<br />

1977). Means <strong>and</strong> st<strong>and</strong>ard devÍations for 10 traits \^rere as follows:


iÍi<br />

carcass length,77.22!2.47 cm¡' maximum shoulder fat thíckness, 4.1710.50<br />

cmi m<strong>in</strong><strong>in</strong>srn mid-back fat thickriess, 2.01t0.37 cur; lo<strong>in</strong> fat thickness,<br />

3.2L!0.42 cm; total fat thickness, 9.40tL.04 cm;1o<strong>in</strong> eye area,30.171<br />

2<br />

3.70 cm-; grade <strong>in</strong>dex, 101.84t2.80; 7" lnam weight, 26.6911.62; lnam<br />

surface area, L25.25!L5.34 "*2;<br />

<strong>and</strong> age Lo market weight, 188.40115.06<br />

days. T'he differences between barrorvs <strong>and</strong> gilts.\^rere significant for<br />

all c.arcass trait.s <strong>and</strong> age to market rveight. Heritabilities<br />

estimated<br />

from sire <strong>and</strong>. dam components Treïe: carcass length, 0.62!0.08; maxímum<br />

shoulder fat, 0.39t0.07; rn<strong>in</strong>imr:m mid-back fat, 0.3310.07; lo<strong>in</strong> fat,<br />

0.24!0.07; total fat thickness,0.4510.07; lo<strong>in</strong> eye area,0.5310.07;<br />

grade <strong>in</strong>dex, 0.4910.07; % ham weight, 0.24!0.07; harn surface aÍea, 0.41t<br />

0.07; % predícted yíe1d, 0.56t0.08; <strong>and</strong> age to narket weight, 0.59t0.08.<br />

Phenotypic <strong>and</strong> genetÍc correlation coefficÍents r¡ere calculated from<br />

analysis <strong>of</strong> covariance. Several <strong>genetic</strong> correlation coefficients r¿ere<br />

outside the theoretical range <strong>and</strong> the st<strong>and</strong>ard errors for most <strong>of</strong> the<br />

<strong>genetic</strong> correlatÍon coefficients were hÌgh. Phenotypic <strong>and</strong> <strong>genetic</strong><br />

correlatíons among eleven traits were <strong>in</strong> the same direction buÈ <strong>genetic</strong><br />

correlations tended to be higher.


1v<br />

TABLE OF CONTENTS<br />

Page<br />

ACKNOi^ILEDGEIßNTS<br />

LIST OF TABLES<br />

LIST OF A?PENDICES<br />

INTRODUCTION<br />

LITERATURE REVIEW<br />

}-ÍATERIALS AND METHODS<br />

A. Sources <strong>of</strong> Data<br />

I. Reproductíve traiËs<br />

II. Carcass measurements<br />

<strong>and</strong> age to m¡rket weight<br />

í<br />

vi<br />

vaaa<br />

I<br />

2<br />

L4<br />

I4<br />

L4<br />

T7<br />

B. Statistical Analysis 22<br />

I. Reproductive traits<br />

1. Heritabilíty estimates<br />

2. Phenotypic <strong>and</strong> <strong>genetic</strong><br />

correlations<br />

22<br />

22<br />

24<br />

II. Carcass measurements <strong>and</strong> age to market weight<br />

1. Heritability estimates<br />

2. Phenotypic <strong>and</strong> <strong>genetic</strong> correlations<br />

RESULTS AND D]SCUSSION<br />

A. Reproductive traits ...;.<br />

I. Means <strong>and</strong> st<strong>and</strong>ard devialions<br />

II. Heritability estimates<br />

III. Phenotypic correlations<br />

IV. Genetic correlations<br />

26<br />

¿1<br />

29<br />

33<br />

33<br />

33<br />

36<br />

JÕ<br />

40


TABLE OF CONTENTS<br />

Page<br />

B. Carcass measurements <strong>and</strong> age to market weight<br />

I. Means <strong>and</strong> st<strong>and</strong>ard deviations<br />

II. lleritability estimates -.. -.<br />

III. Phenotypic correlations<br />

fV. Genetic correlations<br />

SU}ßIARY AND CONCLUSION<br />

LITERATI]RE CITED<br />

APPENDIX<br />

40<br />

40<br />

4¿<br />

47<br />

/,o<br />

53<br />

56<br />

59


va<br />

L]ST OF TABLES<br />

Table<br />

I Sunrmary <strong>of</strong> heritability estirnates <strong>of</strong> reproductive<br />

traits<br />

Page<br />

4<br />

| $smmery <strong>of</strong> heritability estimates <strong>of</strong> carcass measuremenÈs<br />

<strong>and</strong> age to market weight traits<br />

3 Managra breed development pattern <strong>and</strong> the current<br />

farrow<strong>in</strong>g groups 15<br />

I<br />

4 Number <strong>of</strong> litters contributíng to the study per<br />

year per group<br />

5 Nr:mber <strong>of</strong> observations contributed to Lhe study<br />

per year per group<br />

6 Regression coefficients used to adjust carcass<br />

Deasurements for carcass weíght<br />

L6<br />

Z0<br />

ZL<br />

7 Analysis <strong>of</strong> variance for litter size 23<br />

B Analysís <strong>of</strong> covariance 24<br />

9 Analysis <strong>of</strong> variance 27<br />

10 Analysis <strong>of</strong> covaríance . 29<br />

11 Means <strong>and</strong> st<strong>and</strong>ard deviations <strong>of</strong> reproductíve traiÈs<br />

for each farrow<strong>in</strong>g group for 10 years 34<br />

12 Means <strong>and</strong> st<strong>and</strong>ard deviations <strong>of</strong> reproducËive traítsfor<br />

eaeh year 35<br />

13 Escimated heritabilitíes <strong>and</strong> their st<strong>and</strong>ard errors for<br />

each <strong>of</strong> five reproductive traits from the sire<br />

cornponent <strong>of</strong> variance<br />

L4<br />

Phenotypic <strong>and</strong> <strong>genetic</strong> correlations among reproductive<br />

traits 39<br />

37<br />

15 Means <strong>and</strong> st<strong>and</strong>ard deviations <strong>of</strong> carcass measurements<br />

<strong>and</strong> age to market weight for each sex .<br />

4L<br />

16 Means <strong>and</strong> st<strong>and</strong>ard deviations <strong>of</strong> carcass measurenents<br />

<strong>and</strong> age to markeÈ weight traits for each farrowíng<br />

group 43


va1<br />

LIST OF TABLES<br />

Table<br />

Page<br />

L7 Means <strong>and</strong> st<strong>and</strong>ard deviations <strong>of</strong> carcass Illeasurements<br />

<strong>and</strong> age to market weight traíts for each year 44<br />

18 Heritability estim¡tes for carcass measurements <strong>and</strong><br />

age to market weight traits 46<br />

19 Phenotypic correlations among n<strong>in</strong>e carcass measurements<br />

<strong>and</strong> age to market weight traits 48<br />

20 Genetic correlations a<strong>in</strong>orlg carcess Eeasurements<br />

<strong>and</strong> age to m¡rket weighË 50


vaal,<br />

Appendix<br />

I<br />

II<br />

III<br />

LIST OF APPENDIX TABLES<br />

Analysis <strong>of</strong> variance <strong>of</strong> reproductive traits . .. 60<br />

Analysís <strong>of</strong> covariance <strong>of</strong> reproductive traits ... 67<br />

Page<br />

Analysis <strong>of</strong> varíance <strong>of</strong> carcass rneasurements<br />

<strong>and</strong> age to rnarket weight 63<br />

IV<br />

v<br />

VI<br />

Analysis <strong>of</strong> covariance <strong>of</strong> carcass measurements<br />

<strong>and</strong> age to m¡¡l¡s¡ weight 64<br />

Table <strong>of</strong> differentials for carcass grade <strong>in</strong>dex 75<br />

Adjustment table for age to urarkeË weight 76


INTRODUCTION<br />

The heritabilíty<br />

<strong>of</strong> traits <strong>of</strong> economic importance is a fundamental<br />

source <strong>of</strong> <strong>in</strong>formation <strong>in</strong> the theory <strong>and</strong> practice <strong>of</strong> sw<strong>in</strong>e breed<strong>in</strong>g<br />

programs.<br />

Phenotypic <strong>and</strong> <strong>genetic</strong> correlations among the traits are t\ro<br />

essential factors for construct<strong>in</strong>g selection <strong>in</strong>dexes vhen several<br />

traits are <strong>in</strong>volved <strong>in</strong> the same program at the same time.<br />

In this study five reproductive traits,<br />

ten carcass measurements<br />

<strong>and</strong> age to market weight were considered ín the determÍnation <strong>of</strong><br />

heritability estimates <strong>and</strong> <strong>in</strong> the computation <strong>of</strong> <strong>genetic</strong> <strong>and</strong> <strong>phenotypic</strong><br />

correlatiorrs among traits <strong>in</strong> Managra pigs. The five reproductive<br />

traits rüere total number <strong>of</strong> pigs born, nurnber <strong>of</strong> pigs born a1ive,<br />

number <strong>of</strong> pÍgs weaned, average pig birth weight <strong>and</strong> average pig wean<strong>in</strong>g<br />

weíght. The ten carcass Ðeasurements <strong>in</strong>cluded: carcass length,<br />

maxímum shoulder fat thíckness, m<strong>in</strong>imum mid-back fat thíckness, maximum<br />

lo<strong>in</strong> fat thickness, total fat thickness, lo<strong>in</strong> eye area, grade <strong>in</strong>dex,<br />

peïcent ham weight, ham surface area <strong>and</strong> percent predicted yield <strong>of</strong><br />

trínrmed cuts.


LITERATURE REVIEI^]<br />

A.<br />

Reproductive Traits<br />

I. Heritability EstÍmates<br />

It has been well recognLzed that characters closely related to<br />

reproductive fitness have low heritability<br />

estimates. Some <strong>of</strong> the heritability<br />

estimates reported by differenË workers are listed <strong>in</strong> Table 1.<br />

Heritability estimates from the literature range from -0.03 to 0.11,<br />

-0.01 to 0.28, 0.04 to 0.29, -0.04 ro 0.27 ar'ð.0.02 ro 0.46 for roral<br />

number <strong>of</strong> pigs born, number <strong>of</strong> pigs born alive, number <strong>of</strong> pigs weaned,<br />

average birth weight <strong>and</strong> average wean<strong>in</strong>g weight, respectívely.<br />

An<br />

exception to the above range has been reported by young et al. (1978)<br />

from an analysis <strong>of</strong> data rlom 2,095 gilts. These workers reported high<br />

heritabílities <strong>of</strong> 0.72!0.22 <strong>and</strong> 0.66!0.23, for total number <strong>of</strong> pigs born<br />

<strong>and</strong> ni¡nber <strong>of</strong> pigs born alive, respectively. young et al. (197S) cited<br />

that Po¡<strong>of</strong>rey et al. (L975) utilized six seasons <strong>of</strong> data <strong>in</strong>stead <strong>of</strong> eight<br />

from the sane population <strong>and</strong> reported heritabilitíes<br />

<strong>of</strong> 0.0910.08 <strong>and</strong><br />

0 .0910.09 f or these trrTo traíts .<br />

Revelle <strong>and</strong> Robison (1973) exam<strong>in</strong>ed data from 1,078 two-generation<br />

<strong>and</strong> 710'three-generation pedigrees to f<strong>in</strong>d the causes <strong>of</strong> 1ow heritabilities<br />

<strong>of</strong> reproductive traits. The gilts were dívided <strong>in</strong>to three<br />

groups as high (78"/"), nr-iddle (647") <strong>and</strong> 1ow (r9i() based on rhe firsË<br />

generation litter size. The daughterrs litter size <strong>of</strong> the 1ow group exceeded<br />

the high <strong>and</strong> the niddle groups. The results suggested a negative<br />

environmental correlation between the litter<br />

size <strong>of</strong> dam <strong>and</strong> daughter.<br />

Heritabilíty est<strong>in</strong>ates for litter size at birth were 0.13t0.06 from the<br />

regression <strong>of</strong> daughter on dam <strong>and</strong> 0.2810.26 from the regression <strong>of</strong>


gr<strong>and</strong>daughter on gr<strong>and</strong>dam. The heritability<br />

estimated from gr<strong>and</strong>daughtergr<strong>and</strong>dam<br />

regres.sion \¡las two times as large as the one estimated from<br />

daughter-dam regression. This result also <strong>in</strong>dicated the presence <strong>of</strong><br />

negative m¡ternal effec.ts on litter size, The authors suggested that the<br />

physiological maturation <strong>of</strong> the gilts from large litters<br />

was delayed<br />

by stress <strong>and</strong> competition. The explanation by the auËhors for the low<br />

heritabÍlity estiuntes <strong>of</strong> litter size were as follor¡s:<br />

1) srnall addÍtive <strong>genetic</strong> variance<br />

2) excessive environmental varíabilÍty<br />

3) negative correlations between direct <strong>genetic</strong> <strong>and</strong> maternal<br />

effects or negative genetíc correlations between component.s<br />

<strong>of</strong> the traits.<br />

Research on the Managra breed developed at the University <strong>of</strong><br />

Manitoba \,ùere reported by stockhausen <strong>and</strong> Boylan (L966), Roy et al. (1968)<br />

<strong>and</strong> Krotch (f975). Stockhauseri <strong>and</strong> Boylan (1966) reported an estimate<br />

<strong>of</strong> 0.1910.16 for the heritability <strong>of</strong> litter size. Krorch (]-915) <strong>in</strong>vestigated<br />

333 Managra litters consist<strong>in</strong>g <strong>of</strong>. 775 group A which farrowed<br />

<strong>in</strong> June-July, 1968-L973 <strong>and</strong> 158 group B litters farrowed <strong>in</strong> January-<br />

February, 1969 to r974. The herítability estimates <strong>of</strong> reproductÍve<br />

traits for each <strong>of</strong> the t\,/o groups vrere: -0.0310.02 <strong>and</strong> 0.05t0.03 for the<br />

total number <strong>of</strong> pigs born, -0.0110.02 <strong>and</strong> 0.03!0.03 for rhe number <strong>of</strong><br />

pigs born alive, 0.0410.04 <strong>and</strong> 0.0910.02 for the nirmber <strong>of</strong> pÍgs at 3 weeks<br />

<strong>of</strong> age, 0.0410.15 <strong>and</strong> 0.11t0.15 for <strong>in</strong>divÍdual birrh weighr, <strong>and</strong> -0.16+<br />

0.14 <strong>and</strong> 0.25!0.17 for <strong>in</strong>dividual 3 week weíght. Roy er al. (1968)<br />

reported that the heritability <strong>of</strong> pig birth weÍghr was 0.1010.15.


Table 1. Surnmary <strong>of</strong> herltabil-1ty estlÍìates <strong>of</strong> reproductive tralts<br />

Traltg<br />

.2 h<br />

MeEhod <strong>of</strong> estLmaElon<br />

No. <strong>of</strong> observatlons<br />

Refe¡ence<br />

Total rio. born<br />

0 . 094{ .04<br />

0.11<br />

Dam-daughter regresslon<br />

Pooled<br />

3,78L<br />

ist<br />

Urban eL a1. (1966)<br />

Fahmy <strong>and</strong> Bernard (1972)<br />

-0,03]{.02<br />

-0.05J{.03<br />

0.72+4.22<br />

Half-s1b correlaLlon<br />

Half-sfb correlaElon<br />

175<br />

158<br />

2,095<br />

Krotch (1975)<br />

Young et a1. (1978)<br />

No. born al-1ve<br />

0.03r{.07<br />

Dam-daughter regresslon<br />

1,959<br />

Boyl.an et al. (1961)<br />

0.20-rc.15<br />

0.59{{. 29<br />

Dam-daugh ter regresslon<br />

Half-stb correlatlon<br />

304<br />

304<br />

Stockhausen <strong>and</strong> Boylan (1966)<br />

0.08+0.04<br />

0.07r{).02<br />

0.09<br />

0.13r{.06<br />

0.2814.26<br />

-0 .01r{.02<br />

0.03r{.03<br />

Dam-daughter regresslon<br />

Dam-daughEer regresslon<br />

Pooled<br />

Dam-daughter regressJ-on<br />

Gr<strong>and</strong>dam-gr<strong>and</strong>daughter re gress lon<br />

Half-sib correl-aE1on<br />

3,78L<br />

3B, o0o<br />

75r<br />

750<br />

539<br />

L75<br />

158<br />

Urban et al. (1966)<br />

Strang <strong>and</strong> Ktng (1970)<br />

Fahmy <strong>and</strong> Bernard (1972)<br />

Revelle <strong>and</strong> Robtson (1973)<br />

Krotch (1975)<br />

0 .7 2+4 .22<br />

Half-sib correlaÈ1on<br />

2,095<br />

Young et al. (1978)<br />

No. pigs weaned<br />

0.13r{ .05<br />

0.09-rc.03<br />

0. 15<br />

Dam-daughLer regresslon<br />

Dam-daughter regresslon<br />

Pooled<br />

t 701<br />

38,000<br />

75r<br />

Urban et a1, (1966)<br />

Strang ancl Klng (1970)<br />

Fahmy antl Bernard (1972)<br />

0.04]{ .04<br />

0 .09r{.02<br />

0.29+4.25<br />

Half-slb correlatlon<br />

Half-slb correlatlon<br />

t75<br />

158<br />

2,O95<br />

Krotch (1975)<br />

Young et a1. (1978)<br />

. , Contlnrrecl


Table 1 (Contlnued)<br />

Tralcs<br />

a<br />

n<br />

Method <strong>of</strong> estlr¡ation<br />

No. <strong>of</strong> observatl-ons<br />

Reference<br />

Plg blrth LrelghL<br />

0.0il{.35<br />

0.2714.06<br />

0.17<br />

0.0410.04<br />

-0 . 04{{ .04<br />

0.001{.03<br />

0.16J{.16<br />

0.10+0. 15<br />

Half-s1b correlaElon<br />

Regresslon <strong>of</strong> <strong>of</strong>fsprlng on mid-parent<br />

Pooled from above Er,¡o esÈfwrtlons<br />

Regresslon <strong>of</strong> <strong>of</strong>fsprlng on slre<br />

Regresslon <strong>of</strong> <strong>of</strong>fsprlng on dam<br />

Regreeslon <strong>of</strong> <strong>of</strong>fsprlng on n1d-parent<br />

Half-efb correlaElon<br />

Half-sib correlatfon<br />

6,846<br />

3,760<br />

2,095<br />

r,246<br />

f'ahny <strong>and</strong> Bernard (1970)<br />

Edr¿ard<br />

Young<br />

Roy et<br />

<strong>and</strong> Omtvedt (1971)<br />

et al. (1978)<br />

a1. (1968)<br />

Plg weaned welght<br />

o.r4+4.26<br />

0.08r{.04<br />

0.1r<br />

0.08-m.04<br />

0.02{{) .04<br />

0. o5i{.03<br />

0.46{{.19<br />

0.18+0.15<br />

Half-s1b correlaclon<br />

Regreselon <strong>of</strong> <strong>of</strong>fsprlng on mld-parenE<br />

Pooled from above Ëwo esÈlmaE.1ons<br />

Regresslon <strong>of</strong> <strong>of</strong>fspr<strong>in</strong>g on sire<br />

Regressfon <strong>of</strong> <strong>of</strong>fsprlng on dam<br />

Regresslon <strong>of</strong> <strong>of</strong>fspr<strong>in</strong>g on mid-parenE<br />

Regresslon <strong>of</strong> <strong>of</strong>fsprlng on dam<br />

Half-sfb correlatlon<br />

6,846<br />

2,956<br />

38,000<br />

2,O95<br />

Fahmy <strong>and</strong> Bernard (1970)<br />

Edward <strong>and</strong> Omtvedt (1971)<br />

SErang <strong>and</strong> Klng (1970)<br />

Young et a1, (1978)


Heritability estipates <strong>of</strong> si¡<strong>in</strong>e reproductive traits are generally<br />

1ow <strong>and</strong> ínconsistent. The explanation for the <strong>in</strong>consistency may be due<br />

to Ëhe sampl<strong>in</strong>g eïror, the statístical method for estimation <strong>and</strong> the<br />

population studíed.<br />

II.<br />

Correlations among reproductíve traits<br />

Strang <strong>and</strong> K<strong>in</strong>g (L970) reported favourable positive <strong>phenotypic</strong> <strong>and</strong><br />

<strong>genetic</strong> correlations betr¿een litter size <strong>and</strong> litter weÍght, with the<br />

exception <strong>of</strong> a negative correlation betr¿een litter sLze <strong>and</strong> the average<br />

pig weight at wean<strong>in</strong>g.<br />

Edwards<strong>and</strong> Omtvedt (197f) reported high positive <strong>phenotypic</strong> correlations<br />

among litter síze traits. Fahmy <strong>and</strong> Bernard (L972) found that<br />

litter size (total <strong>and</strong> alive) at birth <strong>and</strong> at r¡ean<strong>in</strong>g r,ùere posítively<br />

<strong>phenotypic</strong>ally correlated with litter weight but were negatively correlated<br />

with <strong>in</strong>dividual pig weight at birth <strong>and</strong> aË wean<strong>in</strong>g. The authors<br />

expla<strong>in</strong>ed when the litter size <strong>in</strong>creases, litter weight also <strong>in</strong>creases<br />

while mean índivídual weÍght decreases due to the competition for the<br />

nutrient supply from the dau. They also reported that a highly positÍve<br />

phenotypíc correlation coefficients existed among three litter size<br />

traits <strong>and</strong> the <strong>in</strong>dividual birth weight was moderately positively correlated<br />

with <strong>in</strong>dividual wean<strong>in</strong>g weight.<br />

Baik et al. (L974) estimated <strong>phenotypic</strong> <strong>and</strong> <strong>genetic</strong> correlatíons<br />

among traiLs <strong>of</strong> litter size <strong>and</strong> litter weight from data <strong>of</strong>. 6L4 L<strong>and</strong>race<br />

litters over a three year period. The <strong>phenotypic</strong> correlation between<br />

the number <strong>of</strong> pigs born alive <strong>and</strong> the total litter weighË aË birth was<br />

0.812. The total number <strong>of</strong> pigs born was highly positively correlated


7<br />

r^/ith the number <strong>of</strong> pigs born alive <strong>and</strong> the litter weíght at birth. The<br />

<strong>genetic</strong> correlation betr¿een number <strong>of</strong> pigs born alive <strong>and</strong> 1ítter weight<br />

at birth was also hígh1y positive.<br />

Young eË al. (1978) anaryzeð. data from 2,095 girts <strong>and</strong> reporred<br />

<strong>phenotypic</strong> correlations between litter size <strong>and</strong> total litter weight at<br />

birth <strong>and</strong> at 42 days to be high <strong>and</strong> positive.<br />

In <strong>genetic</strong> correlations,<br />

pig birth weight was positively correlated with total number born (O .37),<br />

number born alive (0.35) <strong>and</strong> nuuber rueaned (0,04).<br />

The <strong>genetic</strong> correlations<br />

between pig wean<strong>in</strong>g weight <strong>and</strong> lítter<br />

size at birth (total<br />

number born <strong>and</strong> number born alive) were negligible, while a moderately<br />

negative correlation Ítas found between pig wean<strong>in</strong>g weight <strong>and</strong> number<br />

weaned.<br />

B. Carcass measurernents <strong>and</strong> age to ma¡]¡s¡ weight<br />

I. HerÍtabílity estimates<br />

The suntmary <strong>of</strong> heritability<br />

estímates <strong>of</strong> carcass measurements <strong>and</strong>.<br />

age to markeË weight reported frorn different researchers is presented <strong>in</strong><br />

Table 2. rt is clear that the majority <strong>of</strong> sw<strong>in</strong>e carcass traits are<br />

moderately or highly heritable. HerítabilÍty <strong>of</strong> carcass length reported<br />

<strong>in</strong> the lÍterature ranged froro 0.46 to 0.87 <strong>and</strong> averaged 0.63. Backfat<br />

thickness <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>divídual shoulder, rnÍd-back <strong>and</strong> lo<strong>in</strong> fat thickness<br />

measurement, <strong>and</strong> the mean frorn ,two or three fat thickness measurements,<br />

ranged from a 1ow <strong>of</strong> 0.25 to a high <strong>of</strong> 0.74 <strong>and</strong> averaged 0.50. Lo<strong>in</strong> eye<br />

area ranged from 0.35 to 0.70 <strong>and</strong> averaged at 0.50. Dress<strong>in</strong>g percentage<br />

was moderately heritable <strong>and</strong> ranged from 0.26 to 0.40 with an average <strong>of</strong><br />

0.32. HeritabÍlity <strong>of</strong> age to market weight (approx. 90 kg) \^¡as reported


Table 2. Summary <strong>of</strong> herltabllity<br />

estlmates <strong>of</strong> carcass measurements <strong>and</strong> age to rnarket weight traits<br />

Tralts<br />

h2<br />

Mechod <strong>of</strong> estimatlon<br />

No. <strong>of</strong> observatlons<br />

Refe¡ence<br />

Carcass length 0.52<br />

0.78r{.10<br />

0.87<br />

0 .50+0 . 16<br />

0.464n.04<br />

0.64<br />

Pooled from paternal, maternalhalf-slb<br />

<strong>and</strong> fu11-slb correlaLLon<br />

Paternal half-slb correlatlon<br />

il il tr il<br />

ttililtt<br />

tr tr It tt<br />

Pooled fr<strong>of</strong>l paternal- half-sib<br />

correlatlon <strong>and</strong> parent-<strong>of</strong>fspr<strong>in</strong>g regressfon<br />

53r<br />

1,936<br />

2,296<br />

7,275<br />

44,969<br />

2,031<br />

Enfleld <strong>and</strong> llhatley (1.961)<br />

Smlth et a1. (1962)<br />

SmlLh <strong>and</strong> Ross (1965)<br />

Roy et al. (1968)<br />

Flock (1970)<br />

Fahmy <strong>and</strong> Bernard (f970)<br />

Backfat thlckness<br />

. Mean<br />

Shoulder<br />

Mid-back<br />

Loln<br />

Mean<br />

Shoulder<br />

Rtb<br />

L<strong>of</strong>n<br />

Mean<br />

Mean<br />

Mean<br />

0.63<br />

0,62r{.10<br />

o . 73-rc.10<br />

0.71+0.10<br />

0.74<br />

0.26r{.11<br />

0.43+O.13<br />

0.zsfl.L2<br />

0.35r{.12<br />

0.69-rc.17<br />

0.s3<br />

Pooled from paternal, maternal halfslb<br />

<strong>and</strong> fu11-s1b correlatlon<br />

Paternal half-slb correlatlon<br />

tr[[<br />

llItil<br />

ll il tt<br />

il[il<br />

lrltil<br />

ll il il<br />

llrfil<br />

531<br />

7,936<br />

2,296<br />

1 ,191<br />

585<br />

650<br />

Enf íel.d <strong>and</strong> h¡hatley (1961.)<br />

Smlrh et al. (1962)<br />

Smlth <strong>and</strong> Ross (1965)<br />

Roy et al. (1968)<br />

Jensen et al. (1967)<br />

Arganosa et al. (1969)<br />

. . Contlnuetl


Table 2 (Contlnued)<br />

TraÍtg<br />

h2<br />

Method <strong>of</strong> estlMtlon<br />

No. <strong>of</strong> observaËlons<br />

Reference<br />

Mean<br />

Mean<br />

Mean<br />

Mean<br />

Mean<br />

0 . 46J{ .05<br />

0.67<br />

0.25<br />

0.30+0.07<br />

0.35r{.12<br />

Paternal half-elb correlatlon<br />

Pooled frorn paternal half-s1b correlaÈ1on<br />

<strong>and</strong> parenË-<strong>of</strong>feprfng regreselon<br />

PaEernal half-e1b correlatLon<br />

tt il tt I<br />

Irtilil<br />

44,969<br />

2,03L<br />

4,639<br />

5,952<br />

L,L94<br />

Ilock (1970)<br />

Fahmy <strong>and</strong> Bernard (1970<br />

glere <strong>and</strong> Ihonson (1972)<br />

Swlger ec al. (1979)<br />

Roy eE al. (1968)<br />

Loln eye area<br />

0.44<br />

0 . 35r{ .09<br />

0.t+9<br />

0.56+4.22<br />

0.47<br />

0 . 45rr0 .04<br />

0.48<br />

0.70<br />

0.56r{).06<br />

Pooled from paternal, maternal half-elb<br />

<strong>and</strong> full-elb correlatlon<br />

Paternal half-efb correlaEion<br />

trilItU<br />

trÙil[<br />

tr il [ il<br />

ilililil<br />

Pooled from paternal half-s1b correlatl-on<br />

<strong>and</strong> parent-<strong>of</strong>fsprlng regresslon<br />

Paternal half-e1b correlatlon<br />

ll I tt I<br />

531<br />

1,936<br />

2,296<br />

528<br />

650<br />

44,969<br />

2,O31<br />

4,639<br />

5,952<br />

Enffeld <strong>and</strong> Whatley (1961)<br />

Smleh et a1. (1962)<br />

Smfth <strong>and</strong> Roee (1965)<br />

Roy et al. (1968)<br />

Arganoea et al. (1969)<br />

Flock (1970)<br />

Fabmy <strong>and</strong> Bernard (1970)<br />

Slers <strong>and</strong> Thomson (1972)<br />

Swiger et a1. (1979)<br />

. Contfnued


l.abLe 2 (Contlnued)<br />

Tralts<br />

.2 h<br />

Method <strong>of</strong> estimatlon<br />

No. <strong>of</strong> observatlons<br />

Reference<br />

Dreselng out %<br />

0.40r-0.09<br />

o.26<br />

0.30-Ð.07<br />

Paternal- half-slb correlatl-on<br />

rr rr ll<br />

ll<br />

,<br />

il[Itl<br />

1,936<br />

2,296<br />

5,952<br />

smlth et a1. (1962)<br />

Smlth <strong>and</strong> Ross (1965)<br />

Svfger et al. (1979)<br />

Age to markeE welght<br />

0.40{{).07<br />

0.31J{.12<br />

illlllll<br />

Regresslon <strong>of</strong> rnld-parent <strong>and</strong> <strong>of</strong>fsprlng<br />

5,952<br />

r,244<br />

Swlger ec a1. (1979)<br />

Edwards <strong>and</strong> Omtvedt (1971)<br />

F<br />

O


11<br />

as 0.31 <strong>and</strong> 0.40 by Edwards<strong>and</strong> Omtvedt (I97L) <strong>and</strong> Srviger et al. (L979),<br />

respectivery. Research on the }{anagra conducted by Roy et al. (1968)<br />

reported herítabilíty estimates <strong>of</strong> 0.501-0.16, 0.35+0 .L2 <strong>and</strong> 0.5610 .22 for<br />

carcass length, carcass backfat <strong>and</strong> lo<strong>in</strong> eye area, respectively.<br />

II.<br />

Correlations among traits<br />

Snith et al. (L962) estimated heritabÍlities<br />

<strong>and</strong> correlatíons among<br />

35 carcass measurements <strong>and</strong> scores from record,s <strong>of</strong> L936 British Llhite<br />

bacon pigs. The authors found that <strong>phenotypic</strong> <strong>and</strong> genetíc correlations<br />

behave s<strong>in</strong>ilarly. The <strong>genetic</strong> correlatíons are <strong>of</strong> the same sign as<br />

<strong>phenotypic</strong> correlations <strong>in</strong> most cases, whí1e the absolute values <strong>of</strong><br />

<strong>genetic</strong> correlations rÀ7ere higher than <strong>phenotypic</strong> correlations.<br />

There<br />

were high correlations among traits from one particular characteristic<br />

<strong>of</strong> the pÍg such as shoulder fat thickness <strong>and</strong> mid-back fat thickness.<br />

The dress<strong>in</strong>g-ouË percentage shor,¡ed positive correlations with backfat<br />

thickness <strong>and</strong> eye muscle area.<br />

Strith <strong>and</strong> Ross (1965) estimated heritabilitíes <strong>and</strong> correlations<br />

among 26 performance <strong>and</strong> carcass traits from data <strong>in</strong>volv<strong>in</strong>g 21296 British<br />

L<strong>and</strong>race pigs. The <strong>genetic</strong> parameter estimates r^7ere quite similar to the<br />

f igures reported by S<strong>in</strong>ith et al . (L962) on Large ltlhíte pigs.<br />

Jensen et al. (L967) found that average backfat thickness rùas not<br />

correlated phenoÈypically or <strong>genetic</strong>ally i^rith lo<strong>in</strong> eye area, rvhile the<br />

percent lean cuts was highly positively correlated r¿ith average backfat<br />

thíckness <strong>and</strong> was moderately negatively correlated with lo<strong>in</strong> eye area.<br />

Arganosa et al. (1969) estimated the <strong>genetic</strong> <strong>and</strong> <strong>phenotypic</strong> correlaËions<br />

among 13 carcass traits from 650 pigs <strong>and</strong> showed that selection


T2<br />

for less backfat thickness would <strong>in</strong>crease percent lean cuts with an<br />

<strong>in</strong>significant effect on lo<strong>in</strong> eye area. Selection for larger lo<strong>in</strong> eye<br />

area wíl1 <strong>in</strong>crease lean cut yield.<br />

Flock (1970) studied <strong>genetic</strong> correlations among traits on 44,969<br />

German L<strong>and</strong>race pigs <strong>and</strong> reported that carcass length was moderately<br />

negatively correlated with backfat thickness <strong>and</strong> had a low negative<br />

correlation with lo<strong>in</strong> eye area. The correlation betv¡een backfat thíckness<br />

<strong>and</strong> lo<strong>in</strong> eye area was moderately negative.<br />

Siers <strong>and</strong> Thomsor. (L972) est<strong>in</strong>ated <strong>genetic</strong> eorrelations among carcass<br />

traits from records <strong>of</strong> 3,439 purebred pigs. The result <strong>in</strong>dicated<br />

that select<strong>in</strong>g for less backfat thickness will <strong>in</strong>crease lo<strong>in</strong> eye <strong>and</strong> ham<br />

<strong>and</strong> lo<strong>in</strong> percenL <strong>and</strong> select<strong>in</strong>g for larger lo<strong>in</strong> eye area will <strong>in</strong>crease ham<br />

<strong>and</strong> lo<strong>in</strong> percent effectively.<br />

Enfield <strong>and</strong> Ltrhatley (1961) reported that <strong>phenotypic</strong> correlations<br />

anong carcass length, backfat thiekness <strong>and</strong> lo<strong>in</strong> eye area were sm:l1 <strong>in</strong><br />

absolute value with the largest correlation coefficient <strong>of</strong> -.36 be<strong>in</strong>g<br />

betvreen backfat thic.kness <strong>and</strong> carcass length <strong>and</strong> -.27 between backfat<br />

thickness <strong>and</strong> lo<strong>in</strong> eye area. The <strong>genetic</strong> correlaËions among these three<br />

traits were al1 negative <strong>and</strong> <strong>in</strong>sÍgnificant.<br />

Fahmy <strong>and</strong> Bernard (1970) reported favorable relationships between<br />

carcass length, backfat thíckness <strong>and</strong> lo<strong>in</strong> eye area.<br />

Swíger et al. (l-979) found that lean cut percent had a high negative<br />

<strong>genetic</strong> correlation with backfat thickness (-.gO) <strong>and</strong> a high posÍtive<br />

correlation with lo<strong>in</strong> eye area (.83). Backfat thickness was moderately<br />

negatively correlated r¿ith lo<strong>in</strong> eye area both <strong>phenotypic</strong>ally <strong>and</strong><br />

<strong>genetic</strong>ally (-;34). The <strong>phenotypic</strong> correlation between lean cufupercent


13<br />

<strong>and</strong> backfat thickness r^7as negative (-.33) <strong>and</strong> the relationship between<br />

lean cutspercent I^Iíth lo<strong>in</strong> eye area was positive (.39).<br />

Age to 90.7 kg<br />

live weight v¡as posirively correlated wíth lean cut percent <strong>and</strong> lo<strong>in</strong> eye<br />

area both <strong>genetic</strong>ally <strong>and</strong> <strong>phenotypic</strong>ally.<br />

A negative correlation<br />

(not sÍgnificant) was found between backfat thickness <strong>and</strong> age to 90 -7<br />

kg live weight.<br />

Roy et al . (1968) reported that lo<strong>in</strong> eye aTea \,/as negatively correlated<br />

with backfat thickness both <strong>phenotypic</strong>ally <strong>and</strong> <strong>genetic</strong>ally<br />

(rO -.16, tG = -.27). Carcass length was positively correlated i,¡íth<br />

lo<strong>in</strong> eye (r = O.O2, Tn = 0.42) <strong>and</strong> r¿as negatívely correlated wíth back-<br />

-P-('<br />

faË thickness (tn -.11, ra =-.19).


L4<br />

MATERIALS AND ìGTHODS<br />

A.<br />

Sources <strong>of</strong> Data<br />

I. Reproductive traits<br />

The data for 1ítter sLze were obtaíned from the records <strong>of</strong> the<br />

uníversity <strong>of</strong> Manitoba sw<strong>in</strong>e breed<strong>in</strong>g project over the períod <strong>of</strong> years<br />

1967 to L977 at the Glenlea Research Station. First parity gilts <strong>of</strong> the<br />

Managra breed r^iere <strong>in</strong>cluded <strong>in</strong> this study. Managra r¡ere developed<br />

from a gene pool consist<strong>in</strong>g <strong>of</strong> about 457á Swedish L<strong>and</strong>race , 2O7. I^Iessex<br />

Saddleback, 15% I,Ielsh ar'ð 707. M<strong>in</strong>nesota //l-Berkshire-Yorkshire-Tarff^rorth.<br />

Table 3 illustrates<br />

the pattern <strong>of</strong> development <strong>of</strong> the Managra <strong>and</strong> the<br />

current farrow<strong>in</strong>g groups (Parker, f977).<br />

Parents <strong>of</strong> each generation consisted <strong>of</strong> 20 to 30 boars <strong>and</strong> 90 to<br />

120 gilts. Selection <strong>of</strong> parents based on backfat thickness as measured<br />

by adjusted live ultrasonic probe, adjr,rsted age to 90 kg live weight <strong>and</strong><br />

physical soundness. There \¡ras no l<strong>in</strong>e cross<strong>in</strong>g among the groups <strong>and</strong> <strong>in</strong>breedíng<br />

was rulnimized each generation. LitËers from which fewer than<br />

3 pigs \47ere weaned were not <strong>in</strong>cluded <strong>in</strong> the study. The number <strong>of</strong> liËters<br />

which contributed to this study from the diffeïent groups <strong>in</strong> the different<br />

years are lísted ín Table 4. Total number <strong>of</strong> pigs born, total<br />

number <strong>of</strong> pigs born alive, total number <strong>of</strong> pÍgs weaned, average bÍrth<br />

weight <strong>and</strong> average wean<strong>in</strong>g weight were the five reproductive traits<br />

exam<strong>in</strong>ed. Average birth weight <strong>and</strong> average wean<strong>in</strong>g r^reight were adjusted<br />

for number born alive <strong>and</strong> number weaned, respectlvely.<br />

The adjustments<br />

were used only rvhen calculat<strong>in</strong>g <strong>phenotypic</strong> means. The equation for<br />

adjustmenË (Huntsberger, L977) was:


Table 3. Managra breed development patt.ern <strong>and</strong> the current farrow<strong>in</strong>g groups<br />

L<strong>in</strong>e 1<br />

Swedish L<strong>and</strong>rac<br />

2aro.rp B f arrows each year <strong>in</strong> Jan.-Febu<br />

I{essex<br />

I'Ie1sh<br />

45% Sw. L<strong>and</strong>.<br />

Mínn.<br />

20% I{essex<br />

Berkshire<br />

157" Welsh<br />

L<strong>in</strong>e 3<br />

Yorkshi r<br />

20% M.BuYnTn<br />

Tamrn¡ort<br />

L957<br />

19s 9<br />

L967<br />

Gene Poollctorrp<br />

A farrows each year <strong>in</strong> May-June.<br />

Manaqra<br />

Managra<br />

group<br />

3crorrp C farrows each year ín Sept..-octo<br />

Generation <strong>in</strong>terval ís one year <strong>in</strong> each group.<br />

F<br />

(Jr


L6<br />

Table 4.<br />

Number <strong>of</strong> litters<br />

year per grouP<br />

contribut<strong>in</strong>g to the study per<br />

Year<br />

Group A<br />

Group B<br />

Group C<br />

r968<br />

27<br />

35<br />

9<br />

l-969<br />

34<br />

37<br />

26<br />

L97 0<br />

40<br />

39<br />

32<br />

L97L<br />

46<br />

35<br />

35<br />

L97 2<br />

47<br />

37<br />

49<br />

r973<br />

35<br />

58<br />

39<br />

197 4<br />

32<br />

60<br />

27<br />

L97 5<br />

39<br />

4L<br />

31<br />

L97 6<br />

40<br />

53<br />

9L<br />

L977<br />

47<br />

76<br />

67<br />

Total 387 47L 406


L7<br />

Adjusted Y, = Y. - b (Xt-X")<br />

where Y- = average birth weight or average wean<strong>in</strong>g weight<br />

t_<br />

X. = total number born alive or total number weaned<br />

t<br />

i. = reao <strong>of</strong> total nurnber born alive = 9.148<br />

or mean <strong>of</strong> total number weaned = 7.656<br />

b = regressíon coeffi_cient<br />

O.OZLI for average birth weight v¡ith number born alive<br />

- 0.O462 for average wean<strong>in</strong>g weight with nurnber ¡¡eaned<br />

Iï. Carcass measurements <strong>and</strong> age to market weight<br />

The data used for analysis <strong>of</strong> carcass measuïements <strong>and</strong> age to<br />

merket weight were also collected from the same sw<strong>in</strong>e breed<strong>in</strong>g project.<br />

A total <strong>of</strong> 1,455 Managra consist<strong>in</strong>g <strong>of</strong> 425 barrows <strong>and</strong> 1,030 gilts which<br />

farrowed dur<strong>in</strong>g the period 1,97l- xo 1977 were <strong>in</strong>cluded <strong>in</strong> thís study. The<br />

number <strong>of</strong> pigs contríbut<strong>in</strong>g to the study are listed <strong>in</strong> Table 5.<br />

The gilts that ranked at the bottom half <strong>of</strong> the whole population<br />

<strong>in</strong> Record <strong>of</strong> Performance (ROP) <strong>in</strong>dex <strong>and</strong> all the barror\rs \¡/ere marketed<br />

when they reached abouË 90 kg live weight. All pigs were killed at the<br />

1<br />

same abbatoir*.<br />

The carcasses I^/ere reta<strong>in</strong>ed for 24 hours before carcass<br />

measurements were taken. Carcass traits measured <strong>and</strong> the procedures<br />

used for measurement \,rere as follows:<br />

1) Carcass i^Ieight (one side)<br />

The carcass rías accurately split <strong>in</strong>t.o halves <strong>and</strong> the head<br />

<strong>and</strong> jowls removed. The leaf lard, kidney <strong>and</strong> tail were<br />

also excluded from the carcass weight.<br />

1 Canada Packers Limited, I{<strong>in</strong>nipeg, Manítoba.


1B<br />

2) Carcass Length<br />

Carcass length r,ras Ðeasured as the distance between the<br />

Íore-edge <strong>of</strong> the first<br />

rib <strong>and</strong> the fore-edge <strong>of</strong> the aitch<br />

bone section on the cold horizontal carcass.<br />

3) Maxímum Shoulder Fat Ttríckness<br />

Measured <strong>in</strong> nrm at the po<strong>in</strong>t <strong>of</strong> maximum thickness over<br />

the shoulder.<br />

4) Il<strong>in</strong>imurn Mid-back Fat Thickness<br />

Measured i¡ rrrm at the po<strong>in</strong>t <strong>of</strong> m<strong>in</strong>ímum thickness over Lhe<br />

back.<br />

5) Maximuro Lo<strong>in</strong> Fat Thickness<br />

Measured <strong>in</strong> nrm at the po<strong>in</strong>t <strong>of</strong> maxjrnum thickness over<br />

the lumbar region.<br />

6) Total Fat Thickness<br />

Total fat thíckness measurements from shoulder, nid-back<br />

<strong>and</strong> lo<strong>in</strong> aree-, i.e. sum <strong>of</strong> measurement.s 3, 4 <strong>and</strong> 5.<br />

7) Lo<strong>in</strong> Eye Area<br />

The logissimus muscle was sectioned beÈween the 7Ëh<br />

<strong>and</strong> BËh vertebrae <strong>and</strong> its area measured us<strong>in</strong>g a<br />

planÍmeter.<br />

B) Grade Index<br />

Carcass grade <strong>in</strong>dex Lras accord<strong>in</strong>g to the Table <strong>of</strong> Differentials<br />

from Canadian Hog Carcass Grad<strong>in</strong>g/Settlement System provided<br />

by the canadian Pork council.<br />

The Table <strong>of</strong> Differentials<br />

is shown <strong>in</strong> Appendix V.


19<br />

9) 'PercenË Ham I{eight<br />

The proportion <strong>of</strong> ham <strong>in</strong> total iøeight <strong>of</strong> the side.<br />

The ham is detached at a po<strong>in</strong>t 5 cm ahead <strong>of</strong> rhe foreedge<br />

<strong>of</strong> the aitch bone section <strong>and</strong> at right angles to the<br />

1ength.l<strong>in</strong>e.<br />

10) Harn Surface A.rea<br />

Lean area over the ham measured <strong>in</strong> .*2 .rrd traced by<br />

a planiueter.<br />

f1) Percent Predícted Yield <strong>of</strong> Trirrmed Cuts<br />

The formula used for this calculation is:<br />

y = 51.68 - (I.273x, - 0.161x, - 0.485x, - 0.B27xO)<br />

wherei y = predicted yield (Z)<br />

xl = total backfat thickness <strong>in</strong> rr¡m<br />

x, = lo<strong>in</strong> area ín sq. cm<br />

*3=%hamweight<br />

x, : ham surface area ín sq. cm<br />

4'<br />

All factors are corrected for sex <strong>and</strong> carcass weight.<br />

L2) Aee to MarkeË trrleight<br />

Nurnber <strong>of</strong> days to market weight was adjusted to a 90 kg<br />

liveweight basÍs followi-ng the Canadian ROP home test<br />

program procedures. The adjusÈrnenË factors are shovm <strong>in</strong><br />

Appendix VI.<br />

A-ll <strong>of</strong> the above measurements except grade <strong>in</strong>dex, percent predicted<br />

yield <strong>and</strong> age to market weight were adjusted for carcass weíSht


20<br />

Table 5.<br />

Number <strong>of</strong> observations contríbuted<br />

Per year Per group<br />

to the study<br />

Year<br />

Group A<br />

Group B<br />

Group C<br />

L97T<br />

56<br />

L57<br />

B5<br />

L97 2<br />

92<br />

4L<br />

AL<br />

L973<br />

6L<br />

B6<br />

103<br />

797 4<br />

34<br />

138<br />

4B<br />

r97 5<br />

46<br />

B5<br />

34<br />

r97 6<br />

46<br />

69<br />

B7<br />

197 7<br />

54<br />

LO<br />

a)<br />

ToËal 389 625 447


2I<br />

Table 6,<br />

Regression coefficients used to<br />

measurements for carcass weight<br />

adjust carcass<br />

Trai t<br />

MaI e<br />

Femal e<br />

Carcass length (cm)<br />

Max. shoulder fat thickness (cn)<br />

M<strong>in</strong>. back fat. thickness (cn)<br />

Maxo lo<strong>in</strong> fat thickness (cn)<br />

Total fat thickness (crn)<br />

Lo<strong>in</strong> eye area ("*2)<br />

Ham surface area (.r2)<br />

0"031823<br />

0 "<br />

0063 40<br />

0" 004982<br />

0 007 "<br />

565<br />

0,01 9046<br />

0.013218<br />

o.o1 4248<br />

0.031564<br />

0 "<br />

008 655<br />

0.005036<br />

0. 008507<br />

0<br />

"021936<br />

0.020266<br />

0.110079


22<br />

on both sexes.<br />

Adjus ted<br />

where v. -1<br />

The formula for this adjustment (Huntsberger, 1977) was:<br />

Yi = Y. - b (x. - x"¡<br />

= carcass measureo,ent on ith ."..r""<br />

l_<br />

ã..<br />

= carcass weight <strong>of</strong> iËh carcass<br />

: mean carcass weight<br />

68.1 kg mean carcass weight for barrows<br />

68.7 kg mean carcass weight for gí1ts<br />

The regression coefficients (b) for adjustment are listed <strong>in</strong> Table 6.<br />

Carcass rDeasurements <strong>of</strong> gilts were adjusted to a barrow equivalent.<br />

The correction factors used for sex adjustlDent were as follows:<br />

carcass<br />

length -1.138 cn; shoulder fat thickness *O.244 cm; backfat thickness<br />

*0.170 crn; lo<strong>in</strong> fat thickness +{.229 cm;'total faË thickness *o.668;<br />

lo<strong>in</strong> eye area -3. 155 cra2; percent ham weight -0" 632'/"; <strong>and</strong> ham surface<br />

t<br />

area -2.961 cu", respectively<br />

B.<br />

Statistical<br />

Analysis<br />

I. Reproductive traits<br />

Heritabílity estim:tes, <strong>phenotypic</strong> correlations <strong>and</strong> <strong>genetic</strong><br />

correlations for reproductive traits r,¡ere estimated from analysis <strong>of</strong><br />

variance <strong>and</strong> covariance <strong>in</strong> a nested classification with an unequal<br />

number <strong>of</strong> lítters<br />

per sire with<strong>in</strong> years <strong>and</strong> farrow<strong>in</strong>g groups. The<br />

procedures for analysis <strong>of</strong> variance <strong>and</strong> covariance <strong>in</strong> this study fo1-<br />

lowed the procedures described by Becker (L967).<br />

l. Heritability estirnates - Heritability estimates were calculated<br />

from the sire component <strong>of</strong> variance. The form <strong>of</strong> anal-ysis <strong>of</strong>


a')<br />

variance is given <strong>in</strong> Table 7.<br />

Table 7. Analysis <strong>of</strong> variance for litter<br />

size<br />

Source <strong>of</strong> variation<br />

Among years<br />

d"f.<br />

Y-l<br />

Sum <strong>of</strong><br />

souares<br />

(SS)<br />

tt"<br />

Mean<br />

square<br />

(MS)<br />

*t,<br />

Expec ted<br />

mean<br />

souare<br />

Among groups/year<br />

G-Y<br />

SS^tr<br />

MS^<br />

\J<br />

Among sires/group/year<br />

Litters r¿ith<strong>in</strong> sires<br />

S-G<br />

n.-S<br />

'S,<br />

ssw<br />

"ts<br />

MS_.<br />

l^/<br />

"'r*""3<br />

2<br />

oüI<br />

where Y = mrmber <strong>of</strong> years<br />

G = number <strong>of</strong> farrow<strong>in</strong>g groups<br />

S = number <strong>of</strong> sires<br />

<strong>in</strong>Y vears<br />

n. = total number <strong>of</strong> litters<br />

<strong>Estimation</strong> <strong>of</strong> variance cornponents:<br />

<strong>of</strong>r = us"<br />

o!:ts,-rr"<br />

where K =<br />

*<br />

^2 Àn.<br />

n.- l-<br />

n.<br />

n.<br />

l_<br />

number <strong>of</strong> litters<br />

from the Íth sire<br />

Heritability<br />

follows:<br />

h3 =<br />

4"3<br />

22<br />

os * oIn,<br />

estimated from the síre component<br />

(Falconer,1960) as


24<br />

St<strong>and</strong>ard error<br />

(Becker, L967):<br />

<strong>of</strong> heritability<br />

was estim¡ted as follows<br />

s. E. (n3) =<br />

where S<br />

abilÍty<br />

t=<br />

2<br />

o^<br />

22<br />

os*ow<br />

2 (n. -1) (1-r) 2 (r*(x-r) .)<br />

2<br />

x2(r,.-s)(S-1)<br />

,<br />

E. (h:) is the st<strong>and</strong>ard error <strong>of</strong> the esiimate <strong>of</strong> heritt<br />

is the <strong>in</strong>tra-class correlation<br />

S <strong>and</strong> K are as previously def<strong>in</strong>ed.<br />

2. Phenotypic <strong>and</strong> <strong>genetic</strong> correlations among the traits were calculated<br />

from analysis <strong>of</strong> variance <strong>and</strong> covariance (Falconer, 1960). The<br />

form <strong>of</strong> analysis <strong>of</strong> covariance is given <strong>in</strong> Table B.<br />

Table 8. Analysis <strong>of</strong> covariance<br />

Source <strong>of</strong> variation<br />

d.f.<br />

Mean cross<br />

products (MCP)<br />

Expected mean<br />

cross pröducts<br />

Among years<br />

Y-1<br />

MCPY<br />

A-ong groups/years<br />

G-Y<br />

MCP^<br />

\J<br />

Among s ires/groups/years<br />

S_G<br />

MCPS<br />

cov" * K cov,<br />

Among litters with<strong>in</strong> sires n.-S<br />

MCPI{<br />

covw<br />

a. Phenotypic correlation between<br />

estimated as follows:<br />

traíts x <strong>and</strong><br />

(r , .)was p(>n'


25<br />

where:<br />

"ott(*y)<br />

2<br />

ã:<br />

"r(x)<br />

= total covaríance component between traits x <strong>and</strong> y<br />

total variance component for trait x<br />

222<br />

i'e' oY(*) + oc(*) * ot(*) *<br />

2<br />

on<br />

(*)<br />

2<br />

a-. . = total variance cornponent for trait y<br />

r(y)<br />

r'e' .2222<br />

oY(y) * oc(y) * os(y) + on(y)<br />

The st<strong>and</strong>ard error <strong>of</strong> the <strong>phenotypic</strong> correlation coeffícient<br />

(S.E.r ) v¡as estim¡ted as follows:<br />

p<br />

S"E.r<br />

where: n. is the total number <strong>of</strong> lítters<br />

b. GeneLic correlation betr¡een traits x <strong>and</strong> y (Tg(*y)) was<br />

estimated as follows:<br />

tc(*y)<br />

= tots(*y)<br />

22<br />

os<br />

(*) os (y)<br />

where:<br />

.ors(*y) = sire componerit <strong>of</strong> covariance between traits<br />

x<strong>and</strong>y<br />

)<br />

oõ(*) = sire component <strong>of</strong><br />

variance for the traít x<br />

2<br />

oõ(r) = sire component <strong>of</strong><br />

variance for the traít y


lf)<br />

St<strong>and</strong>ard error <strong>of</strong> the genetíc correlation (S.n.ra) was calculated<br />

accord<strong>in</strong>g to the method described by Robertson (1959) <strong>and</strong> is<br />

as follows:<br />

S.E.r^<br />

LJ<br />

-<br />

r- (rr,-, ) 2 s.E.-2, . s.E 2<br />

- '"'h (x) " '"_!{Ð<br />

T h-h<br />

xy<br />

r'¡here :<br />

S.E.r^(J<br />

t'=<br />

-c(>çv)<br />

= st<strong>and</strong>ard error <strong>of</strong> <strong>genetic</strong> correlation<br />

x<strong>and</strong>y<br />

coefficient<br />

<strong>genetic</strong> correlation coefficient between traits<br />

S.E.-?--. = st<strong>and</strong>ard error <strong>of</strong> heritability<br />

h (x)<br />

<strong>of</strong> traÍt x<br />

S.E."-2r--. = st<strong>and</strong>ard error <strong>of</strong> heritabílity<br />

h (Y)<br />

<strong>of</strong> trait y<br />

h2<br />

= heritability estimate <strong>of</strong> trait x<br />

2<br />

h--<br />

v<br />

heritability<br />

estimate <strong>of</strong> trait y<br />

II. Carcass measurements <strong>and</strong> age<br />

to market weight<br />

The analysis <strong>of</strong> variance <strong>and</strong> covariance described by Becker<br />

(L967) was also used for estimation <strong>of</strong> <strong>genetic</strong> <strong>parameters</strong> <strong>in</strong> carcass<br />

measurements <strong>and</strong> age to market weíght.<br />

wÍth<strong>in</strong> years <strong>and</strong> farrow<strong>in</strong>g groups <strong>in</strong> a<br />

The analysis was carried out<br />

nested classifÍcation with un-<br />

equal numbers <strong>of</strong> progeny per sire <strong>and</strong> per dam. The procedures for<br />

calculat<strong>in</strong>g heritabilities, <strong>phenotypic</strong> <strong>and</strong> <strong>genetic</strong> correlations were<br />

as follows:


¿/<br />

l. Heritability estimates - The form <strong>of</strong> analysis <strong>of</strong> variance is<br />

shov¡n <strong>in</strong> Table 9.<br />

Table 9. Analysis <strong>of</strong> variance<br />

Source <strong>of</strong> variation<br />

Sum <strong>of</strong> Mean Expected<br />

squares square mean<br />

d.f. (SS) _lMS) square<br />

Arnong years Y-l SSy<br />

il:ï::i:::;li:îit,,."." 3-å 33:<br />

Anong dams/sires/group/ D-S SSO<br />

years<br />

Progeny withín darns n..-D SSW<br />

*s"<br />

MS G)),<br />

*S,<br />

MSo<br />

MSt<br />

o"+rroi+rroi<br />

22<br />

'I^I*K1oD<br />

2<br />

oI^l<br />

r,¡here:<br />

Y : m¡mber <strong>of</strong> years<br />

G = number <strong>of</strong> groups <strong>in</strong> Y years<br />

S = nirmber <strong>of</strong> sires<br />

.D = number <strong>of</strong> dams<br />

n.. = total number <strong>of</strong> progeny<br />

EstimaËíon <strong>of</strong> variance components :<br />

2<br />

ol^l<br />

= MSI^,<br />

2<br />

oD<br />

= MSO - MS"<br />

\<br />

<strong>of</strong> : *s, -<br />

(MSw * *, <strong>of</strong>,><br />

\


2B<br />

vrhere:<br />

Kt=<br />

ñ_\<br />

L2 .n<br />

_1ii<br />

, ri.<br />

l_ l-<br />

D_S<br />

,,2rx2<br />

- fI .. n_-<br />

-ii<br />

ii<br />

¿ L n. n..<br />

K^=l<br />

't<br />

s-1<br />

vt<br />

<strong>in</strong>l<br />

ì{ = fl.. - l_ l_.<br />

"3 n..<br />

s-1<br />

n- : number <strong>of</strong> progeny from the ith sire<br />

l_'<br />

n-^. = number <strong>of</strong> progeny from the jth Uæ mâËed to the<br />

rJ<br />

.rh<br />

]. Sare<br />

n.. = total number <strong>of</strong> progeny<br />

Heritability<br />

estirnates \,,/ere obta<strong>in</strong>ed from sire, dam <strong>and</strong> síre * dam<br />

components (Falconer, 1960) as follows:<br />

?2<br />

n1= o 4<br />

z-. os<br />

2 . z<br />

os*oD*oln,<br />

4=<br />

2<br />

4on<br />

"3*"3*"?u


29<br />

St<strong>and</strong>ard errors (S.E.)<br />

follow<strong>in</strong>g:<br />

<strong>of</strong> heritability<br />

estimates were obta<strong>in</strong>ed from the<br />

s . E. (n3)<br />

4 var<br />

2<br />

o<br />

S<br />

*oD<br />

ro?> ò<br />

*<br />

"lu<br />

2<br />

ú<br />

S<br />

s.E. (n?r*ol )<br />

.r"r ¡<strong>of</strong>r¡<br />

2)<br />

-oD*ow<br />

l)2??<br />

= 2 ,l var (or- * var (<strong>of</strong>r) + Z cov {o! <strong>of</strong>)<br />

os*oD*oI^I<br />

where.r"r {<strong>of</strong>) arra.ra= (<strong>of</strong>r) are rhe esrimares <strong>of</strong> the variance <strong>of</strong><br />

the síre <strong>and</strong> dam components ïespectively (Becker, Lg67).<br />

2. Phenotypic <strong>and</strong> <strong>genetic</strong> correlaLions. The analysis <strong>of</strong> covariance<br />

is given <strong>in</strong> Table 10.<br />

Table 10. Analysis <strong>of</strong> covariance<br />

Source <strong>of</strong> variation<br />

d.f.<br />

Mean cross<br />

product (MCP)<br />

Expected mean<br />

cross produets<br />

Among years<br />

Y-1<br />

MCPY<br />

Among groups/years<br />

G-Y<br />

MCP^G<br />

Among sires/ groups /years<br />

S-G<br />

MCPS<br />

cov"*K, cov'*K, cov,<br />

Among dams /sires /groups /yeaïs<br />

D_S<br />

MCPD<br />

cov"*K, cov'<br />

Anong progeny withîn dams<br />

n..-D<br />

MCPw<br />

covw


30<br />

Covariance components r,¡ere estimated as follows:<br />

cov" : MCP"<br />

covD = MCPD - MCPW<br />

Kt<br />

cov^=McPs-MCPD<br />

uv<br />

I\^<br />

J<br />

Phenotypic correlation between<br />

est<strong>in</strong>ated as follows:<br />

traits x <strong>and</strong> y (rn.*"¡) r""<br />

tp (*y)<br />

totr(*y)<br />

or(*) or(y)<br />

where:<br />

totr(*y)<br />

total covariance component betrween traíts x <strong>and</strong><br />

i' e' cov"(*y)+totc(*y)tuots (*y)tuotr(*y)+<br />

2<br />

ot(*) =<br />

cov__.<br />

Ir/(xy)<br />

total variance component for trait<br />

22222<br />

i' e' ov<br />

(*)*ã (*)*r- (*)tuí (*)tui(*)<br />

?<br />

oif") = total variance cornponenË for trait y<br />

i'e' o"c"l*ãry)+o;(v)+oJ (v)tuñcvl<br />

where:<br />

totY (*y)<br />

"otc(*y)<br />

covariance component <strong>of</strong> year between traits<br />

x<strong>and</strong>y<br />

covarlance coaponent <strong>of</strong> group between traits<br />

x<strong>and</strong>y


31<br />

tots (*v)<br />

toto(*y) =<br />

totw(*y) =<br />

covarr-ance conpoIlent<br />

x<strong>and</strong>y<br />

covariance cornponent<br />

covariance component<br />

x<strong>and</strong>y<br />

<strong>of</strong> síre between traits<br />

<strong>of</strong> dam between traits x <strong>and</strong><br />

<strong>of</strong> progeny between traits<br />

2<br />

ov(*)<br />

2<br />

or(*)<br />

= variance component <strong>of</strong> year on trait x<br />

: varíance component <strong>of</strong> group on irait x<br />

2<br />

os<br />

(*)<br />

2<br />

on(r)<br />

: variance component <strong>of</strong><br />

= variance component <strong>of</strong><br />

sire on traít x<br />

dam on trait x<br />

2<br />

ow(*)<br />

2<br />

o"(r)<br />

2<br />

or(r)<br />

2<br />

or (y)<br />

2<br />

oo<br />

(y)<br />

= variance c.omporrent <strong>of</strong> progeny on trait x<br />

= variance component <strong>of</strong> year on trait y<br />

= variance component <strong>of</strong> group on trait y<br />

= variance component <strong>of</strong> sire on trait y<br />

: variance component <strong>of</strong> dam on trait y<br />

2<br />

o"(y)<br />

= variance component <strong>of</strong> progeny on trait y<br />

The st<strong>and</strong>ard error <strong>of</strong> the <strong>phenotypic</strong> correlation coefficient. between<br />

trait.sx<strong>and</strong>y<br />

(S.<br />

E.r ) !ì7as<br />

p'<br />

estimated as follo¡¿s:<br />

S.E.r p<br />

where: n.. Ís<br />

It-, 2<br />

lP<br />

,l n..-2<br />

the total number <strong>of</strong> progeny


1A<br />

)L<br />

b. Genetic correlatÍon between<br />

estimated as:<br />

traits x <strong>and</strong> V(ra1*r¡) was<br />

'c (xv)<br />

cov^/<br />

b (xy)<br />

s (x) os (y)<br />

The st<strong>and</strong>ard error<br />

estimated by the method<br />

<strong>of</strong> the <strong>genetic</strong> correlation coefficient was<br />

outl<strong>in</strong>ed by Becker (L967).


-f1<br />

RESULTS AND DTSCUSSION<br />

A.<br />

Reproductive Traits<br />

I. Means <strong>and</strong> st<strong>and</strong>ard deviations<br />

Phenotypic means <strong>and</strong> st<strong>and</strong>ard deviations for five reproductive<br />

traits <strong>in</strong> different farrow<strong>in</strong>g groups <strong>and</strong> different years are presented<br />

<strong>in</strong> Tables 11 <strong>and</strong> 12.<br />

Two-way classification<br />

<strong>of</strong> analysis <strong>of</strong> variance was applied to the<br />

data. Differences among farrow<strong>in</strong>g groups <strong>and</strong> among years r¿ere found<br />

to be significant for all traíts.<br />

Student-Newman-Keulrs (SllK)<br />

nultiple range test (Snedecor, L976) was also used to conpare the means<br />

<strong>of</strong> three different farrow<strong>in</strong>g groups <strong>and</strong> different years (Table 1l <strong>and</strong><br />

L2). Mean differences between groups A <strong>and</strong> B for f ive traits \^7ere<br />

-1.18, -L.2L, -1.08, -0.L2 anð -0.28 for total number <strong>of</strong> pigs born, total<br />

nr:mber <strong>of</strong> pigs born alive, number <strong>of</strong> pigs ¡.veaned, average birth weight<br />

<strong>and</strong> average wean<strong>in</strong>g weight, respectívely. Íhese differences were all<br />

staËistically significant (P


34<br />

Table 11. Means <strong>and</strong> st<strong>and</strong>ard deviatíons <strong>of</strong> reproductive traits for<br />

each farrow-<strong>in</strong>g group for 10 years<br />

Traít<br />

n<br />

Group B<br />

47r<br />

Group C<br />

406<br />

Total no. <strong>of</strong> pigs born<br />

B "<br />

8012 .0ga<br />

g .g8!2.24b<br />

ro.r7!2.40b<br />

No. <strong>of</strong> pigs born alive<br />

B.27t2.OLa<br />

g .48t2.L6b<br />

g.o6tz.zob<br />

No. <strong>of</strong> pigs weaned<br />

6.9312.084<br />

B.OLlz.20b<br />

7 .ggtz.3Lb<br />

Ave. birth weight (kg)<br />

L.28!O.L6a<br />

1.4010. r8c<br />

1 .33t0 .19b<br />

Ave. wean<strong>in</strong>g weight (kg)<br />

10 .5811 . 604<br />

a0.86!1.72b<br />

10.5111. 414<br />

"b"Diff.rent<br />

(P


Table i-2. Means <strong>and</strong> st<strong>and</strong>ard devlations <strong>of</strong> reproductlve trafts for each year<br />

Trair 1968<br />

n71<br />

Toraf no. born<br />

Total no. born<br />

altve<br />

9.82t2.35b"<br />

9 .28t1.13"b"<br />

L969<br />

97<br />

9.80r2.t3b"<br />

r970<br />

111<br />

9 . 3812 .014b<br />

g .20t2.13"b" B. g611.99ab<br />

7977 L972<br />

i16 133<br />

9.g3t2.28b" g.2g!2.3oab<br />

9.10t2.21-ub" 8.8112.154b<br />

Year<br />

L973 1974 r97s<br />

rn ----1Tt- lti<br />

L97 6<br />

184<br />

9.B5tz.39bt 8.97t2.44a 10.4tr2.30b" g.77tz.2sb"<br />

g.26!2.zzaÈc g.s2!z-33a 9.81t2.35c<br />

]-977<br />

190<br />

g .7 5t2 . h4b'<br />

g.36t2.27b" g.37t2.3Lb"<br />

Total no. v¡eaned 6.99!2.lí¿l<br />

7.BBtz.zrb" 7.r5!z.o7ab<br />

7.77t2.Lzh"<br />

7.44!z.ogabc 7.6r!2.30"b" 7.52!z.3lab" B.o8t2.3oc<br />

7.85t2.37b" 7.g8!2.32c<br />

Average birch<br />

welght (kg) L.zglo.Llab 1.38t0.19c 1,35r0.19c<br />

1.37t0.18c<br />

1.32t0.18b" 1.32to.t8b" 1.3610.21c<br />

L.z7!o.Lla<br />

1.3410.17c 1.3610.18c<br />

Average weanLng<br />

weight (kg)<br />

11.0912.1lc<br />

11.llt1.6lc<br />

10.54t1.76"b" 10.6It1.66bc 10.7811.66c 10.9911.28c l-0.63t1.92b" 10.1Bt1.4tab 10.11tl.26" 10.9211.34c<br />

tb"Dlff.."rrt<br />

superscrlpE l-ndlcaÈee slgniflcantly<br />

different between years (p


36<br />

envíronment <strong>in</strong> the early stage <strong>of</strong> embryo development. This stage falls<br />

<strong>in</strong> the months <strong>of</strong> January <strong>and</strong> February for group A. Krotch (Lg7s)<br />

studied the effect <strong>of</strong> ínbreed<strong>in</strong>g <strong>of</strong> the dam, <strong>of</strong> the sire <strong>and</strong> <strong>of</strong> the<br />

litter on reproductive perforrnances on Managra gïoup A litters (fron<br />

Jr:ae-July, L96B to June-July 1973) <strong>and</strong> group B litters<br />

(from January-<br />

February 1969 to January-February L974). He reporred thaÈ the <strong>in</strong>breed<strong>in</strong>g<br />

leve1 <strong>in</strong>creased from 7.r3% <strong>in</strong> 1968 to r4.gor" <strong>in</strong> 1973, from 5.9"/" ín<br />

1968 ro 73.89"Á <strong>in</strong> 1973 <strong>and</strong> from 11 .66% ín 1968 to r3.2zz <strong>in</strong> 1973 for<br />

group A sire, dem <strong>and</strong> litters, respectively. The rate <strong>of</strong> <strong>in</strong>breed<strong>in</strong>g<br />

<strong>in</strong> group B r¿as less than <strong>in</strong> group A, chang<strong>in</strong>g from 4.L3% ín 1969 to<br />

7-52% <strong>in</strong> 1974 for sire <strong>and</strong> from 4.057" Ln L969 to 7.6L"1 ín L974 for dam,<br />

<strong>and</strong> even decl<strong>in</strong>ed from 11.37" ín 1969 to 9.692 Ln L974 for litters.<br />

No<br />

artifieial selection r,{as applied on all five reproductive traíts. Table<br />

12 <strong>in</strong>dicates diffeïences among yeaïs but no specific trend was observed<br />

<strong>in</strong> any <strong>of</strong> the traits.<br />

II. Heritability<br />

Heritability<br />

estimates<br />

estimates <strong>and</strong> their st<strong>and</strong>ard errors for five reproductive<br />

traits are given ín Table 13. These est<strong>in</strong>ates were derived<br />

from sire components <strong>of</strong> the analysis <strong>of</strong> variance. Heritability estirnates<br />

for three litter size traits are low with high st<strong>and</strong>ard errors <strong>and</strong> are<br />

not significantly different from zero (p


a1<br />

Table 13. Estímated heritabilities<br />

<strong>of</strong> fÍve reproductive traits<br />

variance<br />

<strong>and</strong><br />

their st<strong>and</strong>ard errors for each<br />

from the sire component <strong>of</strong><br />

TraÍt<br />

.2 hs<br />

s. E. rnf I<br />

Total no. <strong>of</strong> pigs born<br />

0.07<br />

a -L2<br />

Total no. <strong>of</strong> pigs born alive<br />

0.02<br />

0.72<br />

Total no<br />

<strong>of</strong> pigs weaned<br />

0. 01<br />

o.L2<br />

Average bírth weight<br />

0. 36<br />

0 .11<br />

Average wean<strong>in</strong>g weight<br />

0 .37<br />

0.11


?o )a<br />

reproductive traits.<br />

The high environmental variance <strong>and</strong> the very lor,r<br />

additive <strong>genetic</strong> variance <strong>in</strong>dicates a low response to selection for<br />

litter<br />

III.<br />

sLze traits <strong>in</strong> sw<strong>in</strong>e.<br />

Phenotypic correlations<br />

Phenotypic correlations among five reproductive traits are<br />

presented <strong>in</strong> Table 14. The correlatíon coefficients among three litter<br />

síze traits rüere positive <strong>and</strong> high <strong>and</strong> generally agreed with Teports<br />

from other workers. The high positive correlatíons among the litter<br />

size traits <strong>in</strong>dicate that the dams with larger litter<br />

would also have larger litter<br />

síze at wean<strong>in</strong>g.<br />

síze at birth<br />

The correlatíon coeffícíent between average birth weighË <strong>and</strong><br />

average wean<strong>in</strong>g weight was 0 " 35 which r¡as lor¿er than the report f rom<br />

Young et al. (1978) at 0.56 but was close to the value reported from<br />

Fahrny <strong>and</strong> Bernard (L972) at 0.42. The relationship betvreen lirter<br />

sLze (total number born, number born alive ald number weaned) <strong>and</strong><br />

average pig weight (aË birth <strong>and</strong> aÈ wean<strong>in</strong>g) was negative. This is <strong>in</strong><br />

agreement with the reports fron f'ahmy <strong>and</strong> Bernaxd (L972) <strong>and</strong> Young et al.<br />

(f978). Pigs from smaller litters<br />

tend to have heavy <strong>in</strong>dividual body<br />

weights at birth <strong>and</strong> at wean<strong>in</strong>g. Fahny <strong>and</strong> Bernard (L972) suggesred<br />

that the negative relationship between litter size <strong>and</strong> <strong>in</strong>dividual píg<br />

weight is probably due to differences among litters <strong>of</strong> vary<strong>in</strong>g síze<br />

<strong>in</strong> competition for maternal nutrients.


Table 14. PhenotypÍca <strong>and</strong> <strong>genetic</strong>b correl-atÍons among reproductíve traíts<br />

TraLt<br />

Total no.<br />

born<br />

No.<br />

born a1íve<br />

No. rn¡eaned.<br />

Average<br />

birth weight<br />

Average<br />

wean<strong>in</strong>g weight<br />

Total no. born<br />

0.9210.01<br />

0.6310 .02<br />

-0.3410.03<br />

-0.17t0.03<br />

No. born alive<br />

2.30<br />

0. 7110.02<br />

-0. 3210.03<br />

-0.1610.03<br />

No. weaned<br />

-2.08<br />

-6.20<br />

-0.0610.03<br />

-0.1210.03<br />

Average birth weight<br />

0 . 3010. 46<br />

L.47<br />

4,82<br />

0.3510.03<br />

Average weaníng weight<br />

0.9210.09<br />

L,9L<br />

0 .52t1 .05 0 .L7 lo .2I<br />

tPh.rroËypic correlatíons above the díagonal.<br />

bcenetic correlations below the díagonal.<br />

(,J<br />

\o


40<br />

IV. Genetic correlations<br />

The <strong>genetic</strong> correlations among fíve reproductive traits calculated<br />

from sire conponents <strong>of</strong> covarianee are given ín Table 14. The<br />

correlation coeffícienEs <strong>of</strong> total number born with nuuber born ali-ve<br />

<strong>and</strong> number weaned; <strong>of</strong> number born alive i+ith number weaned, average bírth<br />

weight <strong>and</strong> average weal<strong>in</strong>g weight, <strong>of</strong> number weaned with average birth<br />

weight are greater than unity.<br />

A favorable positíve <strong>genetic</strong> correlation betr¿een total number born<br />

<strong>and</strong> average pig weight at birth <strong>and</strong> at weaníng were found.. The result<br />

is <strong>in</strong> agreement with the reports from young et al. (1978). The contradictory<br />

result betr,¡een <strong>genetic</strong> <strong>and</strong> <strong>phenotypic</strong> correlation on these<br />

traits could be due to high negative enivronmental covariance components<br />

(Appendix rr).<br />

The high negative environmental covariance<br />

components overcome <strong>genetic</strong> covarÍance components <strong>and</strong> result <strong>in</strong><br />

negative total covariance conponents. The competition for maternal<br />

nutrients could be the reason for thís unfavorable relationship.<br />

B, Carcass Measurements <strong>and</strong> Age to Market l^Ieight<br />

I. lleans <strong>and</strong> st<strong>and</strong>ard deviations<br />

The weighted <strong>phenotypic</strong> means <strong>and</strong> st<strong>and</strong>ard deviations <strong>of</strong> carcass<br />

measurements <strong>and</strong> age to market weight are shornm ín Table 15<br />

separately for each sex. The differences between barror¡s <strong>and</strong> gilts <strong>in</strong><br />

the means <strong>of</strong> each <strong>of</strong> ten traits were -1 .02 cm, .27 cmr.19 cm, .26 cm,<br />

.74 cm, -2.gg .2, -2.L2, -.63"/", -2.03 cn2, <strong>and</strong>. -13.07 days for<br />

carcass length, shoulder fat thickness, míd-back fat thickness,<br />

lo<strong>in</strong> fat thickness, total fat thickness, lo<strong>in</strong> eye area, grade índex,


4L<br />

Table 15 - Means <strong>and</strong> st<strong>and</strong>ard deviations <strong>of</strong> carcass measurements <strong>and</strong> age<br />

to markeË weight for each sex (adjusted for carcass weight,<br />

barro¡¿s : 425, gilts : I,030)<br />

Traits<br />

Carcass length (cn)<br />

Shoulder fat<br />

thickness (cn)<br />

Mid-back<br />

thickness (cm)<br />

Lo<strong>in</strong> fat<br />

ËhÍckness (cn)<br />

Total fat<br />

thickness (cra)<br />

Difference<br />

Sex MeantS.D. (barrows-gí1ts)<br />

M<br />

F<br />

M<br />

F<br />

M<br />

F<br />

M<br />

F<br />

M<br />

F<br />

76.7\x2.55<br />

77 .7 3t2.29<br />

4.3010.51<br />

4 .0310.50<br />

2.LLlo.37<br />

7.92!0.37<br />

3 .34t0.43<br />

3 .08t0 .41<br />

9 .77 !1_ .04<br />

9.0311.06<br />

-l .02't*<br />

o.27xx<br />

0 "<br />

19**<br />

0.26x,\<br />

o .7 4xx<br />

Lo<strong>in</strong> eye )<br />

area (cn-)<br />

Grade <strong>in</strong>dex<br />

"/" Ham weight<br />

Ham surface"<br />

area (cm')<br />

M 28.67!3.54<br />

F 31 .6613. 87<br />

M 100. 7812. 90<br />

F L02.90t2.70<br />

M 26.38!1.70<br />

F 27.0L!L.53<br />

M<br />

F<br />

I24.24!L4.77<br />

L26.27!15.9L<br />

-2.ggxx<br />

ôa^¿J<br />

-0.63**<br />

-2.03x<br />

Age to market weíght M 179"15t14.80<br />

(days) F I92.22!L4.64 -lJ. Q/:c:t<br />

^"P< . 05 ; ;lJrp< . Qf .


4l<br />

% lnam weight, ham surface area, age to market weight, respectively.<br />

Al-1 differences rr'ere statisticalry<br />

signíficant (p


43<br />

Table 16. Means <strong>and</strong> st<strong>and</strong>ard deviations <strong>of</strong> carcass measurements <strong>and</strong><br />

age to market weight traits for each farrow<strong>in</strong>g group<br />

(adjusted for sex <strong>and</strong> carcass weíght)<br />

Trait<br />

n<br />

389<br />

Farrow<strong>in</strong>g group<br />

625<br />

44L<br />

Carcass length (cn)<br />

77 .24!2.r|b<br />

7 6 .28!2 .3La<br />

7 6.53!2.L64<br />

Shoulder fat<br />

thickness (cu)<br />

4.42t0.46b<br />

4.22!0.484<br />

4.27!0.464<br />

Mid-back<br />

thickness (crq)<br />

2 .18t0. 3Bc<br />

2.0810.36b<br />

2. O3t0 . 364<br />

Lo<strong>in</strong> fat<br />

thickness (cto)<br />

3 .33rO.3Bb<br />

3 .33t0.38b<br />

3 .28t0 .38a<br />

Total fat<br />

thickness (cn)<br />

9 .9310 "<br />

91b<br />

g .6gxo.gla<br />

g.6oto.g|a<br />

Lo<strong>in</strong> eye ?<br />

area (.rn-)<br />

28 .3813.614<br />

28.44!3.684<br />

28 . B3t3 .614<br />

Grade <strong>in</strong>dex<br />

gg .67 !2 .Bza<br />

LOO .4L!2.74b<br />

LO} .2L!2.77b<br />

% t,am weight<br />

26 .72!L -6gc<br />

26 .09t1.5g4<br />

zø.4stt.4zb<br />

Hau surface<br />

area ("r2)<br />

LzL.O7!r5.224<br />

725 .45!L4.g6c<br />

L23.O7tLz.g6b<br />

Predic ted<br />

yield (7")<br />

7o .45!z.3Ba<br />

7L.L2t2.47c<br />

70.80t2.20b<br />

Age to market weight<br />

(days)<br />

185 .00114 . B9a<br />

188 .50t16 . 00b<br />

191 .14t15 . BBc<br />

"b"Diff.tent superscripts <strong>in</strong>dicaËe significantly different at p


Table 17. Means <strong>and</strong> st<strong>and</strong>ard devlatlons <strong>of</strong> carcasg measuì:enents <strong>and</strong><br />

age to market welght Eralts for each year (adJusted for sex <strong>and</strong> carcass welght)<br />

Trait<br />

n<br />

Carcasg<br />

length (cn)<br />

Shoul-der fat<br />

thickness (crn)<br />

Mld-back fat<br />

thlckneee (cn)<br />

Loln faE<br />

thlckness (cm)<br />

Total fat<br />

lhlckness (cm)<br />

1471<br />

298<br />

7 6 .7 6!2 .46b<br />

4 .37 lO .48c<br />

2.0gr0 .3Bc<br />

3 .4510 . 3Bc<br />

9 .91jO .99cd<br />

1q:77<br />

2t7<br />

7 6 .7 6!2.06b<br />

4 .27!O.46ab<br />

1 .9110 .304<br />

3 .2810.38b<br />

g .47!o.B6a<br />

lq.7i<br />

250<br />

7 6.86!2.2rb<br />

hó<br />

4 .34!O.46""<br />

1.9610.30b<br />

3 .2510 .3Bb<br />

9 .58t0. 94ab<br />

. L974<br />

220<br />

7 6 .33!2 .36b<br />

4.22!0.484<br />

2.0610.33c<br />

3 ,33t0.38b<br />

9.63t0.894b<br />

I9l 5<br />

L65<br />

76.68t1.88b<br />

4.1710.514<br />

2.2g!O .3oe<br />

3.28t0.33b<br />

9 .73t0. B9l'"<br />

1976<br />

202<br />

7 6 .7 3t2 ,24b<br />

4.32t0.43b"<br />

2.36!0 .33f<br />

3.3310. 36b<br />

10.0310.97d<br />

.L97 7<br />

103<br />

7 5 .62!2 .3ga<br />

4.27!0.464<br />

2. 21t0.30d<br />

3.1810.364<br />

9.63t0.97ab<br />

Loln eye )<br />

area (cm-)<br />

Grade lndex<br />

Z ham weight<br />

Ham surface<br />

a.ea (cm2)<br />

Pred fc ted<br />

yleld (Z)<br />

Age to market<br />

wefght (days)<br />

27,48!2.g74<br />

gg .7 5!3 .r3a<br />

26.26!L.64b<br />

125111 .93c<br />

7o.i,oxz.ogb"<br />

L84.72!16.LBa<br />

29,73!3.55c<br />

100 .3912 .53ab<br />

25 .94!L.584<br />

L3L .7 7 !I2 .7 Ie<br />

7L.8g!2.21d<br />

Lgo .23tr6.7 4b"<br />

29 . 0913 .81b"<br />

100.19!2 . B3ab<br />

25 .84!L.474<br />

L25 .g7 !L3 .Ogc<br />

70.76!2.31,c<br />

189.78115 . zBb"<br />

28 .38t3. 68b<br />

gg .93!2,694<br />

25 .g2!r.484<br />

:..2g .32!:16.O6d<br />

7I .62!2.44d<br />

189 .49116 .34bc<br />

27 .35!3.7 4a<br />

-100.6912.50b<br />

26.87t1.38c<br />

109 . 78t10.004<br />

69 . 6011.894<br />

184.99112.824<br />

z9 .03t3. 61b"<br />

gg .g2t2.704<br />

26 .9011 .1 3c<br />

114.17112.13b<br />

70.1512.37b<br />

792.82tr6.34c<br />

29.3513:48c<br />

100.8312.70b<br />

27 .g1¿!l .(t6d<br />

123.13r11.09c<br />

71 .85!2.55d<br />

186 .8 2t11 . 7 74b<br />

abcdef-. -- Dltterent superscrlpt lndicaEes slgnlflcantly<br />

dlfferent at p


45<br />

Most <strong>of</strong> the heritabilities<br />

derived from the dam components Ìùere<br />

higher than those from the sire components. The hígher heritabílity<br />

estimaËes from dem components are possibly due to maternal effects.<br />

The heritability estim¡¡s for carcass length was hÍgh at 0.62<br />

2<br />

(hi*o) <strong>and</strong> fel1 with<strong>in</strong><br />

The herÍtabÍlities<br />

the range reported from other researchers.<br />

for three <strong>in</strong>dividual fat thickness measuremenËs<br />

<strong>and</strong> total back fat thickness were íntermediate <strong>and</strong> <strong>in</strong> good agreement<br />

with values reported by Flock (1970), siers et al. (L912) <strong>and</strong><br />

Roy et a1. (1968) but were considerably lower than the reports from<br />

SnÍth et al. (L962), Jensen er al. (L967), Anganosa er al. (f969),<br />

Enfield <strong>and</strong> Whatley (1961) <strong>and</strong> Fahmy er at. (f970).<br />

The heritability<br />

<strong>of</strong> io<strong>in</strong> eye \"ras .53 <strong>and</strong> was ín close agreement<br />

r¿ith the estimates reported by Flock (1970), Jensen et al. (L967),<br />

Arganosa et al. (1969), smith <strong>and</strong> Ross (1965), Enfield <strong>and</strong> LÏhatley<br />

(1961), Fahmy et al. (1970) <strong>and</strong> Roy er al. (1968) bur was higher rhan<br />

the estimete <strong>of</strong> 0.35 by srníth et al. (1962) <strong>and</strong> r^ras lower than the<br />

estimate reported by Siers eË al. (L972).<br />

The percent ham weight <strong>of</strong> c.arcass side weight rnras moderately<br />

heritable <strong>and</strong> the value estim¡lsd from the presenË study was <strong>in</strong> agreement<br />

wíth other reports.<br />

The herj-tability<br />

<strong>of</strong> ham surface area, percent predicted yield <strong>and</strong><br />

age to market weight were 0.41, 0.56 <strong>and</strong> 0.59, respectively.<br />

The<br />

estimatiorsfor these Ëraits were slightly higher than the values reported<br />

<strong>in</strong> the literature.<br />

In conclusion, Ëhe traits <strong>of</strong> carcass shoulder fat Èhickness, midback<br />

fat thickness, lo<strong>in</strong> fat thickness <strong>and</strong> the percenË ham weight were


Table 18. Heritabil-ity estlnates for carcass measurements <strong>and</strong> age to market weight traits<br />

Trait<br />

h3 =<br />

')<br />

4o7 5<br />

-2--- 2 --z or*oO*o"<br />

.2 h=D<br />

4"3<br />

os*oD*olni<br />

222<br />

h? = 2k3*<strong>of</strong>rl<br />

^'s+D -T--T- -Z<br />

oi+oi+<strong>of</strong>r<br />

Carcass length<br />

Shoulder fat<br />

thickness<br />

Mid-back fat<br />

thickness<br />

Lo<strong>in</strong> fat<br />

thickness<br />

Total fat<br />

thíckness<br />

Lo<strong>in</strong> eye<br />

area<br />

Grade <strong>in</strong>dex<br />

7" ham weight<br />

Ham surface<br />

area<br />

Percent predlcted<br />

yield<br />

Age to rnarket<br />

weíght<br />

0.8610.15<br />

0 .3010 .l_2<br />

0 .1010 . tt<br />

0 . 30t0.11<br />

0 .41r0.l_3<br />

0. t5r0 .13<br />

0.20!0.L2<br />

0 . 33!0 .11<br />

0.3810.12<br />

0 . 3310 .15<br />

0 .3910 .13<br />

0.3910.12<br />

0.4710.15<br />

0.57r0.16<br />

0 .1810 .14<br />

0 .50r0 .14<br />

0.9210.16<br />

0 . 7Br0 .16<br />

0 .1510. 14<br />

0 .4310 . 14<br />

0.7910 .18<br />

0.7910.15<br />

0. 62r0 .08<br />

0. 3910 .07<br />

0 .33t0 . 07<br />

0.24x0.07<br />

0 .4510 .07<br />

0.5310 .07<br />

0.4910.07<br />

0.24!O .07<br />

0 .4110 .07<br />

0.5610.08<br />

0 .5910.08


47<br />

moderately heritable while carcass length, total fat thickness, lo<strong>in</strong><br />

eye area, grade <strong>in</strong>dex, ham surface area, percent predicted yield <strong>and</strong><br />

adjusted age to market weight were highly heritable.<br />

III.<br />

Phenotypic correlations<br />

Phenotypic correlatíons among the eleven traiLs are<br />

summarized <strong>in</strong> Table 19.<br />

Carcass length \,Jas negatively correlated wíth shoulder fal thickness'<br />

mid-back fât thickness, lo<strong>in</strong> fat thickness, lo<strong>in</strong> <strong>and</strong> ham surface<br />

area' <strong>and</strong> age to market weight, but was positively correlated with carcass<br />

grade. The correlations betr¿een carcass length <strong>and</strong> percent ham<br />

weight <strong>and</strong> predicted yield were negligible.<br />

These f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicate<br />

that longer pigs should have l-ower back fat, smaller lo<strong>in</strong> eye <strong>and</strong> ham<br />

surface, faster growth rate <strong>and</strong> higher carcass grade <strong>in</strong>dex. This<br />

f<strong>in</strong>d<strong>in</strong>g was <strong>in</strong> good agreement wíth most reports from previous research.<br />

The relationships among the back fat thickness measurenents were al-l<br />

positive <strong>and</strong> the values ranged from 0.32 to 0.53. similar results<br />

have also been reporred by Smirh et al. (Lg6Z).<br />

Lo<strong>in</strong> eye area !/as negatively correlated with all three back fat<br />

thickness measurements, but was positively correlated wÍth grade, percent<br />

ham weight <strong>and</strong> ham surface area <strong>and</strong> highly positively related to<br />

percent predicted yield.<br />

The association between lo<strong>in</strong> eye area <strong>and</strong><br />

age to market weight was positive but low <strong>in</strong> magnitude. The <strong>phenotypic</strong><br />

correlation coeffÍcients between lo<strong>in</strong> eye area <strong>and</strong> back fat<br />

thickness, percent predicted yield <strong>and</strong> age to market weight reported.<br />

from the present study were fairly<br />

similar to the reports from Smith<br />

et al. (1962), smith <strong>and</strong> Ross (1965), Jensen er ar. (1967), Arganosa


Table 19.<br />

PhenoLyplc correlatÍons among nlne carcass measurements <strong>and</strong> age to narket welghL tralts<br />

Tralt<br />

Carcass length<br />

Shoulder faE<br />

Mid-back far<br />

Loln fat<br />

Total fac<br />

Loln eye area<br />

Grade<br />

Z Han welghr<br />

Ham surface<br />

area<br />

% Predicted<br />

yle1d<br />

Shoulder<br />

fat<br />

-0.1110.03<br />

Back faC Loln fat<br />

-0.1610.03 -0.1610.03<br />

o.32!0 .02 0 .5310 .02<br />

0.3910.02<br />

Loln eye<br />

Total fat area<br />

-0,18t0 .03 -0.1310.03<br />

0. 79i0.02 -0.1810.03<br />

0 .6810.02 -0. 1310.03<br />

0.8110 .02 -0. 20J0.03<br />

_0.22r0.03<br />

Carcas s<br />

lndex<br />

0.1510 .03<br />

-0 .7 6!0 .02<br />

-0 .35r0.02<br />

-0 .7 4!0 .o2<br />

-0.8110.02<br />

0 . 1910 .03<br />

"/. Ham<br />

welgh t<br />

-0 . 0510 .03<br />

-0.1310 .03<br />

0 .0110 . 03<br />

-0.1910.03<br />

-0 . 1310 .03<br />

0. 1 2t0 .03<br />

0.1510.03<br />

Ham surface<br />

ar ea<br />

-0.1410.03<br />

-0 .1510.03<br />

-0.3610 .02<br />

-0,1210.03<br />

-0.2610.03<br />

0.3010.03<br />

0.1410 .03<br />

-0. 2310 .03<br />

Z Predicted<br />

yield<br />

-0.0610 .03<br />

-0.5310.02<br />

-0.5310.02<br />

-0.5310.02<br />

-0 .6910. 02<br />

0.5110.02<br />

0.52!0.O2<br />

0 .0810.03<br />

0.75r0.02<br />

Age<br />

-0.14r0.03<br />

-0.1010 .0 3<br />

-0.22t0.03<br />

-0.1110.03<br />

-0.19r0 .03<br />

0.0910.03<br />

0.03r0.03<br />

0.01r0.03<br />

0 .1510 .03<br />

0.21:0.03<br />

.Þ.<br />

co


,o<br />

AJ<br />

et 41. (L969), Roy er al. (1968), Enfield <strong>and</strong> \,,rharley (1961), Fahmy<br />

<strong>and</strong> Bernard (f970) <strong>and</strong> Swiger er al. (1979).<br />

As expected, the correlations between grade <strong>in</strong>dex <strong>and</strong> back fat<br />

thickness measurements v/eïe highly negative which agreed r¡ith the basic<br />

pr<strong>in</strong>ciple <strong>of</strong> the Canadian market hog <strong>in</strong>dex system. The relationships<br />

between grade <strong>in</strong>dex <strong>and</strong> percent ham rveight, ham surface area <strong>and</strong> percent<br />

predicted yield r¡/ere positive.<br />

The carcasses with lower shoulder<br />

or lo<strong>in</strong> fat thickness r¿ill have higheï percent ham weight. Ham surface<br />

area !)as negatively correlated i^rith three back fat thickness measurements<br />

<strong>and</strong> percent ham weighr, but was highly posÍtively correlated<br />

with percent predícted yield.<br />

The negative association between age to market weight <strong>and</strong> the<br />

three back fat measure<strong>in</strong>ents <strong>in</strong>dicated that faster groi+<strong>in</strong>g pigs were<br />

somer,¡hat fatter.<br />

This f<strong>in</strong>d<strong>in</strong>g corresponds to the result described<br />

earlier where faster grow<strong>in</strong>g pigs <strong>in</strong> group A had higher back fat<br />

measltLements <strong>and</strong> ¡^rere lower <strong>in</strong> carcass grade <strong>in</strong>dex <strong>in</strong> conseqrlence. The<br />

positive correlatíons betv¡een age to market rveight <strong>and</strong> h:m surface area<br />

<strong>and</strong> percent predicted yield implied that pígs requir<strong>in</strong>g the longer time<br />

to reach market weight would have larger hem surface area <strong>and</strong> higher<br />

percent predicted yíeld <strong>in</strong> carcasses.<br />

IV. Genetic correlations<br />

Genetic correlations among the<br />

components <strong>of</strong> variance <strong>and</strong> covaríance,<br />

traits, calculated from síre<br />

are presented <strong>in</strong> Table 20.<br />

The <strong>genetic</strong> correlaËions among<br />

eleven traiLs behaved si_ur_ilarly


Table 20. Genetic correlatlons among carc¿rss measurement.s <strong>and</strong> age to rnarket welght<br />

Tral-t<br />

Shoulder<br />

faE<br />

Back fat.<br />

Loln faË<br />

Total fat.<br />

Lo<strong>in</strong> eye<br />

area<br />

Grade<br />

lndex<br />

Z Ham<br />

wefgh E<br />

Ham surface<br />

area<br />

Z Predlcted<br />

y1eld<br />

Àge<br />

Carcass length<br />

Shoulder fat<br />

Mfd-back fat<br />

Loln fat<br />

Tolal fat<br />

Lo<strong>in</strong> eye area<br />

Grade lndex<br />

Z Ham welght<br />

Han surface<br />

area<br />

Z Predlcred<br />

yleld<br />

-0.17r0 .18<br />

-0.0110.32 -0.24!0.L7<br />

]. 40r0.67 0.5610.18<br />

L.42!0.58<br />

-0.1410.16 -7.07!o.46<br />

0.8810.06 0.1810.47<br />

1 .5010. 53 -0.0110. 65<br />

0 .9210.06 0 .5110.55<br />

0.2L!0 .42<br />

O.22!O.22<br />

-1 . 0410 .13<br />

-1 .5510 .71<br />

-1 .3010.21<br />

-1. 2510.18<br />

-1 .0210. 91<br />

0 ,0210 .1 7<br />

-0.3610.24<br />

-0.7610.4 9<br />

-0.20!o.24<br />

-0. 3510 .21<br />

-0.19r0.42<br />

0.6210. 30<br />

-0. 6010 .16<br />

-0.49!O.24<br />

-0.6110.48<br />

-0.1410. 24<br />

-0.4610.20<br />

0.64t0.32<br />

o.L2!0 .32<br />

0 .1610. 23<br />

-0.43t0. 19<br />

-0.86t0.14<br />

-1.3010.53<br />

-0 .5510.18<br />

-0.8510 .10<br />

0.2810.36<br />

0. 78t0.20<br />

0.3010. 24<br />

0.8310.10<br />

-0 . 27r0 .16<br />

-0.6110.28<br />

-0. 9610 . 5B<br />

-0.18r0.19<br />

-0.57!0,22<br />

0.1210.38<br />

0.79t0.4?<br />

0.1310.24<br />

0.3310.23<br />

0.5510.25<br />

L¡I<br />

O


51<br />

to <strong>phenotypic</strong> correlations <strong>in</strong> most cases although the <strong>genetic</strong> correlations<br />

were higher. Several values outsíde the theoretical range (rG , 1 o,<br />

tG ' - 1) were found, i.e. mid-back fat with shoulder fat, lo<strong>in</strong> fat<br />

<strong>and</strong> total fat, carcass length with lo<strong>in</strong> eye area, grade índex with three<br />

back faË thickness measurenents <strong>and</strong> total fat thickness <strong>and</strong> lo<strong>in</strong> eye<br />

area' mid-back fat with percent predÍcted yíeld.<br />

coefficients are high <strong>in</strong> st<strong>and</strong>ard error.<br />

Most <strong>genetic</strong><br />

The back fat thÍckness measurements at three different po<strong>in</strong>ts were<br />

highly positively correlated with each orher. A si_milar f<strong>in</strong>d<strong>in</strong>g has<br />

been reported by smith et a1. (L962). selection for 1or¿er back faË<br />

thickness at one location will reduce thickness at other areas <strong>and</strong><br />

average back fat.<br />

Carcass length had moderately negative correlations with shoulder<br />

fat, loÍn faÈ, total fat <strong>and</strong> age to markeË weight. The correlations<br />

betr¿een carcass length <strong>and</strong> ham surface area <strong>and</strong> percent predicted yield<br />

were highly negarive. snith er a1. (Lg62), smith <strong>and</strong> Ross (1965),<br />

Jensen et al. (1967), Flock (L970), siers <strong>and</strong> Thomson (L972), Enfield<br />

<strong>and</strong> I^Ihatley (1961) <strong>and</strong> Roy eÈ a1. (196g) also showed that negarive<br />

correlatÍons existed between carcass length <strong>and</strong> carcass back fat <strong>and</strong><br />

percent lean cuts. Lo<strong>in</strong> eye area was positively correlated Ì,¡ith lo<strong>in</strong><br />

fat which suggested that selection for lower back fat at lo<strong>in</strong> would<br />

reduce lo<strong>in</strong> eye area simultaneously. This result is not <strong>in</strong> agreement<br />

wÍth reports from previ-ous research.<br />

Percent han weight \474s negatively correlated with a1l three back<br />

fat thickness measurements <strong>and</strong> 1oÍn eye area <strong>and</strong> the values ranged from<br />

medium to hÍgh, but it was positively correlated with ham surface area,


52<br />

percent predicted yield, grade <strong>and</strong> age to r¡arket weíght, the coefficients<br />

ranged from low to hígh.<br />

The relationships between ham sur_<br />

face <strong>and</strong> shoulder fat, mid-back fat <strong>and</strong> total back fat thickness measure*<br />

mentswere highly negative' whíle the relationshÍp betr¿een ham surface<br />

area <strong>and</strong> percent predicted yield was highly positive which suggested<br />

that selection for larger hau surface area would. <strong>in</strong>crease percent predicred<br />

yield.<br />

The high negatíve correlations between percent predicted yield <strong>and</strong><br />

back fat thíckness measurernents <strong>in</strong>dicat.ed that selection for lower<br />

back fat thiekness would signifícantly <strong>in</strong>crease the percent predicted<br />

yÍeld. selection for larger ro<strong>in</strong> eye area, percent ham weight, ham<br />

surface area or grade <strong>in</strong>dex should lead to an <strong>in</strong>crease <strong>in</strong> peïcent predicted<br />

yÍeld.<br />

The correlations betr¿een age to markeÈ weÍght <strong>and</strong> backfat thíckness<br />

measurements rùere highly negative except for lo<strong>in</strong> fat which Índicated<br />

that sel-ection for fasL growth rate would Íncrease back fat thickness<br />

<strong>and</strong> decrease carcass grade <strong>in</strong>dex <strong>in</strong> consequence. The relationships<br />

between age Lo market weight <strong>and</strong> grade <strong>in</strong>dex, ham surface area <strong>and</strong> percent<br />

predícted yield were positive <strong>and</strong> high.<br />

These f<strong>in</strong>d<strong>in</strong>gs suggested<br />

that selectíon for lower back fat or hÍgher grade <strong>in</strong>dex or srnaller ham<br />

surface area or higher percent predicted yield would tend to <strong>in</strong>crease<br />

age to market weight unless the traits \¡/ere comb<strong>in</strong>ed <strong>in</strong> a selectÍon<br />

i-ndex.


53<br />

SI]MMARY AND CONCLUSION<br />

Data from L,268 first<br />

parity gilts <strong>and</strong> from r,455 rnarket pigs <strong>of</strong><br />

the Managra breed were analyzed to estimate <strong>phenotypic</strong> <strong>and</strong>. <strong>genetic</strong><br />

parameLers for five reproductive trairs,<br />

ten carcass measurements <strong>and</strong><br />

age at 90 kg live weight.<br />

Heritability<br />

estimates v¡ere calculated from Ëhe sire coûponent<br />

<strong>of</strong> variance. Three litter<br />

size traits <strong>in</strong>clud<strong>in</strong>g total number <strong>of</strong> pigs<br />

born, nurnber <strong>of</strong> pigs born alive <strong>and</strong> number <strong>of</strong> pigs weaned had lor¿ heritabilities<br />

i¿hich <strong>in</strong>dicate that litt1e response would be expected from<br />

selection.<br />

Average birth weÍght <strong>and</strong> wean<strong>in</strong>g weíght had moderate heritabilities<br />

which reveals that about 40"Á <strong>of</strong> the differences <strong>in</strong> these traits<br />

r'¡ere attributable to geneLic causes <strong>and</strong> r¡ould be expected to be transruitted<br />

to <strong>of</strong>fspr<strong>in</strong>g from parents. Phenotypic correlations among three<br />

litter<br />

size traits were hÍgh1y positíve <strong>and</strong> generally agreed with the<br />

results from previous research. Average birth weight was moderately<br />

correlated <strong>phenotypic</strong>ally with average wean<strong>in</strong>g weÍght. <strong>phenotypic</strong> correlations<br />

between litter<br />

sÍze tralts <strong>and</strong> average pig weight at birth <strong>and</strong><br />

wean<strong>in</strong>g were moderately negative except the correlation between<br />

nr:mber weaned <strong>and</strong> average pig birth weight. Genetic correlations between<br />

total number born <strong>and</strong> average birth weight <strong>and</strong> average r+ean<strong>in</strong>g weight<br />

were 0.3010.46 <strong>and</strong> O.92t0.A9, respectively.<br />

Genetíc correlations between<br />

average pig wean<strong>in</strong>g weÍght <strong>and</strong> nr-rmber <strong>of</strong> pÍgs weaned <strong>and</strong> average birth<br />

weight were 0.52!L.05 <strong>and</strong> O.L7XO.2L, respectively.<br />

Heri'tability<br />

estimates for carcass neasurements <strong>and</strong> age at 90 kg<br />

live weÍght T/¡ere anaLyzed by hierarchÍcal .analysis<br />

<strong>of</strong> varíance. Three<br />

carcass back fat thícknesses (maximum shoulder fat, m<strong>in</strong>imum mid-back


54<br />

fat <strong>and</strong> lo<strong>in</strong> fat), total back fat thíckness, grade <strong>in</strong>dex, T" ]'am weight<br />

<strong>and</strong> ham surface area \¡/ere moderaËely heritable. The heritabilities <strong>of</strong><br />

carcass length, lo<strong>in</strong> eye area, "/" preð.icted yield <strong>and</strong> age at 90 kg live<br />

weight were high <strong>and</strong> ranged from 0.53-0.62. Moderate <strong>and</strong> high response<br />

would be expected from selection <strong>of</strong> those traits.<br />

<strong>phenotypic</strong> <strong>and</strong><br />

<strong>genetic</strong> correlations vrere calculated from analysis <strong>of</strong> covariance.<br />

Phenotypic correlations <strong>of</strong> carcass length with three back fat thicknesses,<br />

loj-n eye area, ham surface area <strong>and</strong> age at 90 kg live weÍght<br />

r{ere negatÍve but smaIl. The <strong>phenotypic</strong> correlations among three back<br />

faÈ thicknesses were positÍve <strong>and</strong> <strong>in</strong>termediate. Lo<strong>in</strong> eye area \¡/as<br />

negatively correlated i¡Íth three back fat thicknesses but was positively<br />

correlated with grade <strong>in</strong>dex, T" ]r,am weight, ham surface area <strong>and</strong> % predicted<br />

yield-<br />

Grade <strong>in</strong>dex was highly negatively correlated r¿ith three<br />

back fat thicknesses <strong>and</strong> was positively correlated r¿ith Z :ham weíght,<br />

ham surface area <strong>and</strong> % predicted yierd.<br />

Ham surface area 'sas<br />

negatively<br />

correlated ¡¿ith back fat thÍcknesses <strong>and</strong> "/" :ham weÍghË but was<br />

positively correlated with Z predicted yíeld.<br />

Phenotypic correlations<br />

<strong>of</strong> age at 90 kg live weight r¿ith three back fat thicknesses Trere<br />

negative but sroall. The relationship <strong>of</strong> age at 90 kg rive r^¡eight \^/ith<br />

ham surface area <strong>and</strong> "/" predicted yÍe1d was positive.<br />

Genetic correlatíons<br />

among carcass measurement <strong>and</strong> age at ng ut live weighÈ<br />

generally behaved siurilarly to the phenotypíc correlations but v¡ere<br />

higher <strong>in</strong> rnagnÍtude. Most <strong>of</strong> the <strong>genetic</strong> correlations had hÍgh st<strong>and</strong>ard<br />

errors.<br />

In conclusion, most carcass traÍts \,Jere<br />

each other whÍch <strong>in</strong>dicates that selection for<br />

favorabl-y correlated with<br />

one carcass trait would


55<br />

also improve Ëhe others where several carcass traits \,rere considered<br />

simultaneously <strong>in</strong> a breed<strong>in</strong>g program. The relationshipsbeiween growth<br />

rate i.e. age at 90 kg líve weight <strong>and</strong> carcass traits r¿ere unfavorable.


56<br />

LITERATJRE CITED<br />

Arganosa, V.G., I.T. Orntvedt <strong>and</strong> L.E. Walters.<br />

genetypic <strong>parameters</strong> <strong>of</strong> some carcass traits<br />

An. Sci. 28:I6B-L14.<br />

L969. Phenorypic <strong>and</strong><br />

<strong>in</strong> sw<strong>in</strong>e. J. <strong>of</strong><br />

Baik, D.H., Y.K. Park, B.K, Ohh <strong>and</strong> S.i^I. Han. Ig74. Heritabilities<br />

repeatabllÍties, <strong>and</strong> geneiic correlations among litter size,<br />

1Ítter weight, <strong>and</strong> gestaLion length Ín sw<strong>in</strong>e. Korean J. <strong>of</strong> An.<br />

Sci. L6(2):L52-I57 .<br />

Becker, W.A. L967. Manual <strong>of</strong> procedures <strong>in</strong><br />

(2nd ed.), I^lashfngton State University<br />

University, pullman, I,Iash<strong>in</strong>gton.<br />

quantitative geneties<br />

Press, InJash<strong>in</strong>gton State<br />

Beresk<strong>in</strong>, 8., c.E. shelby <strong>and</strong> L.N. Hazel. Lg7L. carcass traits <strong>of</strong><br />

purebred Duroc <strong>and</strong> yorkshires <strong>and</strong> their crosses. J. <strong>of</strong> An.<br />

Sci. 32:4L3-4L9.<br />

Boylan, w.J., trrr.E. Remper <strong>and</strong> R.E. comstock. Lg6r. Heritability<br />

litter size <strong>in</strong> sw<strong>in</strong>e. J. <strong>of</strong> An. ScÍ. 20:566_568.<br />

<strong>of</strong><br />

Enfield, F.D. <strong>and</strong> J-4. Idhatley, Jr. 1961. Heritability <strong>of</strong> carcass<br />

length' carcass backfat thíckness <strong>and</strong> lo<strong>in</strong> lean area <strong>in</strong> swíne.<br />

J. <strong>of</strong> An. Sei. 20:63I-634.<br />

Edwards, R.L. <strong>and</strong> r.T. ûntvedt. Lg7L. Genetic anarysÍs <strong>of</strong> a sr¿<strong>in</strong>e<br />

populatÍon. rr. Estimates <strong>of</strong> population paraÐeters. J. <strong>of</strong> An.<br />

Sci. 32:185-190.<br />

Fahmy, M.H. <strong>and</strong> C.S. Bernard. Ig7O.<br />

score on the <strong>genetic</strong> improvement<br />

Can. J. <strong>of</strong> An. Sci. 50:585-592.<br />

Effect <strong>of</strong> selectíon for carcass<br />

<strong>of</strong> its components <strong>in</strong> sw<strong>in</strong>e.<br />

Fahny, M.H. <strong>and</strong> C.S. Bernard. Lg7O.<br />

pre- <strong>and</strong> post-wean<strong>in</strong>g weights <strong>and</strong><br />

An. Sci. 50:593-599.<br />

Genetic <strong>and</strong> <strong>phenotypic</strong> study <strong>of</strong><br />

ga<strong>in</strong>s <strong>in</strong> sr¿<strong>in</strong>e. Can. J. <strong>of</strong><br />

Fahmy, M.H. <strong>and</strong> c.s. Bernard. Lg7z. rnterrelations between some<br />

reproductive traïts <strong>in</strong> sw<strong>in</strong>e. can. J. <strong>of</strong> An. sci. 52239-45.<br />

Fahny, M"H. <strong>and</strong> c.s. Bernard. Lg72. Reproductive performance<br />

gilts<br />

<strong>of</strong><br />

from l<strong>in</strong>es selected for feed utilízatíon <strong>and</strong> carcass score.<br />

Can. J. An. Sci. 52:267_27L.<br />

Falconer, D.s. 1960. rntroduetion to quantitative <strong>genetic</strong>s. Eighth<br />

Pr<strong>in</strong>t<strong>in</strong>g, Ronald press, New.york.


57<br />

Flock, D.K. 1970. Genetic <strong>parameters</strong> <strong>of</strong> German L<strong>and</strong>race pigs estimated<br />

fron different relationships. J. <strong>of</strong> An, Sci. 30 :839-843.<br />

Huntsberger, D.V. <strong>and</strong> p. Bill<strong>in</strong>gsley.<br />

<strong>in</strong>ference (4ttr ed.), pp. 2j4_277.<br />

Lg77 " Elements <strong>of</strong><br />

s tat is tical<br />

Jensen, P., H.B. craig <strong>and</strong> O.tr^r. Robison. 1967. <strong>phenotypic</strong> <strong>and</strong> genetÍc<br />

associations among carcass traits <strong>of</strong> swíne. J. <strong>of</strong> An, scí.<br />

26:I252-L260 .<br />

Krotch, K.M. 1975 - The effects <strong>of</strong> sire <strong>and</strong> <strong>of</strong> <strong>in</strong>breed<strong>in</strong>g <strong>of</strong> the dam <strong>and</strong><br />

<strong>of</strong> the litter on pre\^Tean<strong>in</strong>g traits <strong>in</strong> a <strong>closed</strong> breed <strong>of</strong> si¿<strong>in</strong>e.<br />

M.Sc. Thesis, University <strong>of</strong>. l"fanitoba.<br />

Parker, R-J. 197L. Development <strong>of</strong> the Managra - A new breed <strong>of</strong> sw<strong>in</strong>e.<br />

Dept. <strong>of</strong> Animal science, university <strong>of</strong> r"r¿nitoba (unpublished<br />

paper) .<br />

Revelle, T.J. <strong>and</strong> o.I^I. Robison. L973. An ex,olanation for the 1ow<br />

heritability <strong>of</strong> litter síze <strong>in</strong> sw<strong>in</strong>e. J. <strong>of</strong> An. Sci.37:668-615.<br />

Robertson, A. L959. The sampl<strong>in</strong>g variance <strong>of</strong> the <strong>genetic</strong> correlation<br />

coefficient. Biometrics. L5:469-485.<br />

Roy, G.L., i^I .J. Boylan <strong>and</strong> M,E. Sea1e. 1968. Estirnates <strong>of</strong> <strong>genetic</strong><br />

correlat.ions among certa<strong>in</strong> carcass <strong>and</strong> performance traits <strong>in</strong><br />

sw<strong>in</strong>e. Can. J. <strong>of</strong> An. Sci. 48:1-6.<br />

siers, D.G. <strong>and</strong> G.M. Thomson. Lglz. Heritabilities <strong>and</strong> <strong>genetic</strong> correlations<br />

<strong>of</strong> carcass <strong>and</strong> growth traits <strong>in</strong> sw<strong>in</strong>e. J. An. scÍ.<br />

35 : 311-316.<br />

s'ith, c., J.I^l .8. K<strong>in</strong>g <strong>and</strong> N. Gilbert. L962. Genetic <strong>parameters</strong> <strong>of</strong><br />

British Large l^Ihite bacon pigs. An. prod. 4zLZB-L43.<br />

s*ith, c. <strong>and</strong> G.J.s. Ross. 1965. Genetíc <strong>parameters</strong> <strong>of</strong> British<br />

L<strong>and</strong>race bacon pigs. An. prod.7:29I-30L.<br />

snedecor, G.w. <strong>and</strong> i,J.G. cochran. Lg76. statistical Merhods.<br />

sixth Edition. The roi¿a state uníversity press, Ames, rowa.<br />

stockhausen, c.w.F. <strong>and</strong> LrI.J. Boylan. L966. Heritability <strong>and</strong> <strong>genetic</strong><br />

correlation estimates <strong>in</strong> a ne\¡r breed <strong>of</strong> sw<strong>in</strong>e. can. J. <strong>of</strong> An.<br />

Sci. 46:21L-2I6.'<br />

strang, G-s. <strong>and</strong> J.I,I.B. K<strong>in</strong>g. Lg7o. LiLter productivity <strong>in</strong> Large<br />

hlhite pigs. An. Prod. L2(Z) 2235-243.


58<br />

swiger, L.A. '<br />

G.A. rsrer <strong>and</strong> i^I .R. Harvey. rg7g. postwean<strong>in</strong>g <strong>genetic</strong><br />

parâmeters <strong>and</strong> <strong>in</strong>dexes for sw<strong>in</strong>e. J. An. sci. 48:1096-1100.<br />

Urban, Lï.E., Jr., C.E. Shelby, A.B. Chapman, J.A. irì.hatley, Jr. <strong>and</strong><br />

V'A' Garwood. L966. Genetíc <strong>and</strong> environmental r"på"t" <strong>of</strong> litter<br />

size <strong>in</strong> sw<strong>in</strong>e" J. <strong>of</strong> Arr. Sci. 25:1148_1153.<br />

Young, L.D., R.A. pumfrey, p.J. Cunn<strong>in</strong>gham <strong>and</strong> D.R. Zímmerman. L978.<br />

HerÍtabilities <strong>and</strong> <strong>genetic</strong> <strong>and</strong> <strong>phenotypic</strong> correlations for prepr<strong>in</strong>ciple<br />

components.<br />

breed<strong>in</strong>g traits, reproductive traits <strong>and</strong><br />

J. <strong>of</strong> Än. Sci. 46:937-949.


APPENDIX<br />

s9


Appendix r. Analysis <strong>of</strong> variance <strong>of</strong> reproductive traits<br />

Mean squares<br />

Source <strong>of</strong><br />

varíation<br />

Year<br />

Group/yr.<br />

Sire/group/yr.<br />

LitËer/si re / gr o:up / yr,<br />

D. F.<br />

9<br />

20<br />

4LB<br />

B1_6<br />

Total no.<br />

born<br />

l_7 . 83<br />

29 .47<br />

5 .08<br />

4.84<br />

No. born<br />

alive<br />

No.<br />

weaned<br />

15 .67 13.58<br />

30 .23 26.24<br />

4.58 4 .69<br />

4.53 4.68<br />

Ave.<br />

birth wt.<br />

0 .18<br />

0 .18<br />

0"04<br />

0 .03<br />

Ave.<br />

wn. wt"<br />

l-6.53<br />

10 .71<br />

2"75<br />

2.L4<br />

2<br />

ú<br />

S<br />

0.084<br />

0 .018 0 .006<br />

0.003<br />

0.22<br />

2<br />

6 "w<br />

4.84<br />

4.53<br />

4.68<br />

0 .03<br />

2.r4<br />

Or<br />

O


Appendix rr. Anal-ysis <strong>of</strong> covarÍance <strong>of</strong> reproducti_ve traits<br />

Mean cross products<br />

Source <strong>of</strong><br />

covariance<br />

Year<br />

GrouB/yr.<br />

D.F.<br />

9<br />

20<br />

Total no.<br />

born <strong>and</strong><br />

no. born<br />

alÍve<br />

15.97<br />

29.L5<br />

Total- no.<br />

born <strong>and</strong><br />

no. weaned<br />

I .70<br />

23.84<br />

Total no.<br />

born <strong>and</strong><br />

ave. bírth<br />

wt.<br />

-L.L2<br />

0.74<br />

Total no.<br />

born <strong>and</strong><br />

ave .h7n.I,It.<br />

-3 .48<br />

-3.43<br />

No. born<br />

alive <strong>and</strong><br />

no. weaned<br />

9 .13<br />

25.23<br />

Sire/group/yr .<br />

Litter/sire/<br />

group/yr<br />

Cov,<br />

418<br />

816<br />

4.47<br />

4.22<br />

0 .09<br />

2.85<br />

2.98<br />

-0.05<br />

-0. l-5<br />

-0 .16<br />

0.005<br />

-0.34<br />

-0. 6B<br />

0.I2<br />

3.09<br />

3.27<br />

-0 .07<br />

Cov"<br />

4.22<br />

2.98<br />

-0.16<br />

-0.68<br />

3.27<br />

o\<br />

F


Appendix II (Contínued)<br />

Mean cross products<br />

Source <strong>of</strong><br />

covariance<br />

Year<br />

Group/yr.<br />

Sire/grouplyr.<br />

Litter/síre/<br />

gtoupf y'r.<br />

Cov,<br />

D.F.<br />

9<br />

20<br />

418<br />

816<br />

No. born<br />

alÍve <strong>and</strong><br />

ave.bírth<br />

vüt.<br />

-r.04<br />

0. 70<br />

-0. 13<br />

-0.16<br />

0. 01<br />

No. born<br />

alive <strong>and</strong><br />

ave " T.{Tr.<br />

I^rt .<br />

-4.L6<br />

-4.53<br />

-0.27<br />

-0.61<br />

0.L2<br />

No. weaned<br />

<strong>and</strong> ave.<br />

birth rn¡t.<br />

-0.03<br />

0. 84<br />

-0 .002<br />

-0.06<br />

0.02<br />

No. weaned<br />

<strong>and</strong> ave.<br />

wn. wt.<br />

-4.60<br />

_t 70<br />

L.l )<br />

-0.34<br />

-0. 39<br />

0 .02<br />

Ave. birth<br />

wt. <strong>and</strong><br />

aVe "vm.r,¡t.<br />

0.39<br />

0.68<br />

0 .10<br />

0.09<br />

0 .005<br />

Cov,<br />

-0. 16<br />

-0 .61<br />

-0.06<br />

-0. 39<br />

0 .09<br />

o\<br />

N)


Appendlx rrr'<br />

Ànalysfs <strong>of</strong> varlance <strong>of</strong> carcass neasurements <strong>and</strong> age to harket wefght<br />

Source <strong>of</strong><br />

varLaÈion<br />

Year<br />

Group/year<br />

Slre/group/yr.<br />

Da¡/efre/group/<br />

D. F.<br />

6<br />

13<br />

269<br />

yr. 368<br />

Progeny/dan/<br />

elre/group/<br />

yr. 798<br />

2<br />

os<br />

)<br />

oD<br />

Carcaeg<br />

length<br />

3.901<br />

5.055<br />

L.497<br />

o.676<br />

0.523<br />

0.t62<br />

0.074<br />

Shoulder<br />

faE<br />

0.157<br />

0.277<br />

0 .046<br />

0.033<br />

0.o25<br />

0 .002<br />

0.004<br />

Mfd-back<br />

faE<br />

Loln<br />

fat<br />

0.887 0.254<br />

0.153 0.095<br />

0.020 0.028<br />

0.018 0.020<br />

0.013 0.o18<br />

0.0004 0.0016<br />

0.0022 0.0010<br />

Total<br />

fat<br />

Mean gquares<br />

Loln eye<br />

area<br />

L.263 4.283<br />

0.932 2.105<br />

0.203 0.418<br />

0.132 0.344<br />

0.099 0.209<br />

0.013 0.011<br />

0 .016 0.066<br />

Grade<br />

lndex<br />

PercenÈ<br />

hau wt.<br />

28.6]-2 85.599<br />

42.438 30.891<br />

I0.822 2.649<br />

8.571 1.840<br />

5.594 t.694<br />

0.360 0.159<br />

t.443 0.071<br />

Ham eurface<br />

area<br />

295.333<br />

60.943<br />

5.192<br />

3.481<br />

2.7L8<br />

0.323<br />

0.370<br />

Percerrt<br />

pred.yfeld Ape<br />

146.259 1869.03<br />

55.901 2134.2r<br />

7.442 380.84<br />

5.246 255.15<br />

3.355 162.02<br />

0.385 22.56L<br />

0.91 7 45 .L40<br />

ot.¡<br />

0.523<br />

0.025<br />

0.0130 0.0183<br />

0.099 0.209<br />

5.594 1.694<br />

2.7L8<br />

3.355 162.020<br />

o\<br />

(¡J


Appendlx IV. Analysls <strong>of</strong> covarlance <strong>of</strong> carcass neasurements <strong>and</strong> age to market welght<br />

Mean cross products<br />

Source <strong>of</strong><br />

covarlance<br />

Yeãr<br />

Group/yr.<br />

SIre/ group/yr.<br />

D. F.<br />

Darn/ slre / group /<br />

yr. 368<br />

6<br />

13<br />

269<br />

ProEeny / dan/<br />

eLre/ Eroupf<br />

yr. 798<br />

Carcass length<br />

<strong>and</strong><br />

shoulder fat<br />

0.379<br />

0.580<br />

-0.048<br />

-0 "029<br />

-0.017<br />

Carcass length<br />

<strong>and</strong><br />

m1d-back fat<br />

-0.454<br />

0.44'J.<br />

-0.030<br />

-0 .0 28<br />

-0.019<br />

Carcass length<br />

<strong>and</strong><br />

1o1n fat<br />

0.381<br />

0.118<br />

-0 .03s<br />

-0 . 017<br />

-0.024<br />

Carcass length<br />

<strong>and</strong><br />

total fat<br />

0.333<br />

T.T26<br />

-0.109<br />

-0.076<br />

-0 .060<br />

Carcass lengLh<br />

<strong>and</strong><br />

loln eye area<br />

-0.475<br />

-1. 386<br />

-0.223<br />

-0 .006<br />

-0 .011<br />

Cov^ò<br />

Cov- l)<br />

Cov,,<br />

-0 .00 3<br />

-0 .006<br />

-0.017<br />

-0 .0001<br />

-0.0046<br />

-0.0l-89<br />

-0.0040<br />

0.0030<br />

-0.0237<br />

-0.0062<br />

-0.0076<br />

-0 .0602<br />

-0.Ot |tt<br />

0.0021<br />

-0.0107<br />

. Con t lnued<br />

o¡\<br />

¡-


Appendlx IV (Conr<strong>in</strong>ued)<br />

Mean cross products<br />

Source <strong>of</strong><br />

covarlance<br />

D. F.<br />

Carcass l-ength<br />

<strong>and</strong><br />

grade lndex<br />

Carcass length<br />

<strong>and</strong><br />

% ham ¡¿t.<br />

Carcass length<br />

<strong>and</strong> ham<br />

surface area<br />

Carcass l.ength<br />

<strong>and</strong><br />

% pred. yleld<br />

Carcass length<br />

<strong>and</strong><br />

agg__<br />

Year<br />

6<br />

-3.744<br />

-rt.027<br />

-1.948<br />

-tr.202<br />

B. 180<br />

Group/yr.<br />

L3<br />

-6 .090<br />

4.265<br />

-I2.725<br />

-11.866<br />

-82.937<br />

Slre/group/yr.<br />

269<br />

0.797<br />

-0 .085<br />

-0.759<br />

-0 .389<br />

-4.895<br />

Daml eLrel group/yr.<br />

368<br />

0.507<br />

-0.080<br />

-0.071<br />

0.133<br />

-1.993<br />

Progeny/darn ls'Ixel<br />

group I yr .<br />

798<br />

0.313<br />

-0.036<br />

0.002<br />

0,r29<br />

0.2L6<br />

Covr'<br />

0.053<br />

0 .000 3<br />

-0.1382<br />

-0.1069<br />

-o.522<br />

Covo<br />

0.094<br />

-0.0213<br />

-0.0354<br />

0.0019<br />

-1.071<br />

Cov,<br />

0.313<br />

-0.03s9<br />

0.0021<br />

o.1292<br />

o.2t6<br />

cr\<br />

Ln


Appendlx IV (Contlnued)<br />

Mean cross rrroducts<br />

Source <strong>of</strong><br />

covariance<br />

Year<br />

Group/yr.<br />

Slre/group/yr.<br />

Dam/ eíre / group /yr .<br />

Progeny/dam / sLre/<br />

group/yr.<br />

Cov,<br />

D. F.<br />

6<br />

13<br />

269<br />

368<br />

798<br />

Shoui.der fat<br />

<strong>and</strong><br />

mld-back fat<br />

-0.080<br />

0.077<br />

0 .016<br />

0.009<br />

0.006<br />

0.0013<br />

Shoulder fat<br />

<strong>and</strong><br />

lo<strong>in</strong> fat<br />

0.113<br />

0 .097<br />

0.021<br />

0 .015<br />

0 .010<br />

0.0011<br />

Shoulder fac<br />

<strong>and</strong><br />

toEal faE<br />

0.182<br />

0.430<br />

0 ,082<br />

0 .0s5<br />

0.039<br />

0.0049<br />

Shoulder fat<br />

<strong>and</strong> lo<strong>in</strong><br />

eye area<br />

-0.030<br />

0.028<br />

-0.032<br />

-0.032<br />

-0.009<br />

0 .0009<br />

Shoulder fat<br />

<strong>and</strong><br />

grade <strong>in</strong>dex<br />

-1. 386<br />

-3.182<br />

-0,560<br />

-0. 395<br />

-0.290<br />

-0.0301<br />

CovO<br />

0 .0016<br />

0.0024<br />

0.0077<br />

-0.0114<br />

-0.050 7<br />

Cov"<br />

0.0056<br />

0.0102<br />

0.0393<br />

-0.0088<br />

-0.2903<br />

o.<br />

cl\


Appendlx IV (Conrlnued)<br />

Mean cross Droducts<br />

Source <strong>of</strong><br />

covarlance<br />

Year<br />

Group/yr.<br />

Slre/group/yr.<br />

Dam/ sfte/ group /yr .<br />

Progeny/dan I strel<br />

gxoup /yr .<br />

Cov,<br />

D. F.<br />

6<br />

13<br />

269<br />

368<br />

798<br />

Shoulder fat<br />

<strong>and</strong><br />

Z ham wt.<br />

-0.953<br />

0.489<br />

-0.088<br />

-0.049<br />

-0 .019<br />

-0.0069<br />

Shoulder fat<br />

<strong>and</strong> ham<br />

gurface area<br />

7 .443<br />

-o.644<br />

-0.128<br />

-0 .060<br />

-0.049<br />

-0.0135<br />

Shoulder fat<br />

<strong>and</strong> Z<br />

pred, vle1d<br />

-1 .041<br />

-t.3r2<br />

-0. 388<br />

-0.247<br />

-0.160<br />

-o.0257<br />

Shoulder fat<br />

<strong>and</strong><br />

åge<br />

-0.416<br />

-9.79r<br />

-0.631<br />

0.024<br />

-0.180<br />

-0. 1403<br />

Mld-back far<br />

<strong>and</strong><br />

l<strong>of</strong>n fat<br />

0.005<br />

0.044<br />

0.014<br />

0.009<br />

0.006<br />

0.0011<br />

CovO<br />

Cov*<br />

-0.0146<br />

-0.0190<br />

-0.0053<br />

-0.0492<br />

-o.0423<br />

-0 .1600<br />

0.0991<br />

-0.1801<br />

0.0013<br />

0 .0060<br />

Con t lnu ed<br />

cl'<br />

!


Appendlx IV (Contlnued)<br />

Mean ctoss products<br />

Source <strong>of</strong><br />

covarlance<br />

Year<br />

Group/yr.<br />

SLre/ Erorplyr .<br />

Dam/ eLre/ group /yr.<br />

. Progeny/dar¡.l she/<br />

group/yr.<br />

Cov,<br />

Cov'<br />

D.F.<br />

6<br />

13<br />

269<br />

368<br />

798<br />

Mld-back fac<br />

<strong>and</strong><br />

total faË<br />

0.77 4<br />

0.273<br />

0 .050<br />

0.032<br />

0.024<br />

0.0033<br />

0 .0039<br />

trfld-back fat<br />

<strong>and</strong> loln<br />

eve area<br />

-0.658<br />

-0.260<br />

-0.009<br />

-0.008<br />

-0.002<br />

-0 . 0000 3<br />

-0.0027<br />

Mld-back far<br />

<strong>and</strong><br />

prade lndex<br />

0.299<br />

-0.7 44<br />

-0.251<br />

-0.153<br />

-0.093<br />

-0.018<br />

-o.029<br />

I'fld-back far<br />

<strong>and</strong><br />

Z ha¡o r¿È,<br />

6. 785<br />

0.319<br />

-0.065<br />

-0.034<br />

-0.022<br />

-0.0058<br />

-0.005 7<br />

Mld-back fat<br />

<strong>and</strong> ham<br />

surface area<br />

-I4.387<br />

-I.9I7<br />

-0.065<br />

-0.031<br />

-0 .025<br />

-0.0067<br />

-0 .0032<br />

Cov"<br />

o.0243<br />

-0.0022<br />

-0.093<br />

-0.0224<br />

-0 .0248<br />

o\<br />

co


Appendlx IV (Contlnued)<br />

Mean cross products<br />

Source <strong>of</strong><br />

covariance<br />

Year<br />

Group /yr.<br />

Sire/group/yr.<br />

Daml elrel group/yr.<br />

Progeny/darn /al:el<br />

group/yr.<br />

Cov,<br />

D. P.<br />

6<br />

13<br />

269<br />

368<br />

798<br />

Mld-back fat<br />

<strong>and</strong><br />

% pred.yLeLð,<br />

-7.109<br />

-2.386<br />

-0.22L<br />

-0.138<br />

-0.096<br />

-0 .016<br />

Mld-back fat<br />

<strong>and</strong><br />

age<br />

-0. 705<br />

-9.653<br />

-0.683<br />

-0.274<br />

-0.41-1<br />

-0 .088<br />

Loln fat<br />

<strong>and</strong><br />

total fat<br />

0.359<br />

0. 239<br />

0 .065<br />

0.043<br />

0.034<br />

0.0042<br />

Lo<strong>in</strong> fat<br />

<strong>and</strong><br />

Lo<strong>in</strong> eye area<br />

-0.67L<br />

-0.079<br />

-0.019<br />

-0.026<br />

-0,005<br />

0.0021<br />

Loln fat<br />

<strong>and</strong><br />

Erade. lndex<br />

-2.259<br />

-t .339<br />

-0 .452<br />

-0.291<br />

-0.239<br />

-0.0309<br />

CovO<br />

-0.020<br />

0.066<br />

0.0042<br />

-0 .0100<br />

-0.0254<br />

Cov,<br />

-0.096<br />

-0 .411<br />

0.0343<br />

-0.0054<br />

-0.2385<br />

. Cont{nrrecl<br />

o\


Appendlx IV (Conrtnued)<br />

Mean crosg producÈs<br />

Source <strong>of</strong><br />

covarlânce<br />

Year<br />

Group/yr.<br />

Slre/g¡sup/y¡.<br />

Dam/ el¡e/group/yr.<br />

Progeny/dam / eLre/<br />

group/yr.<br />

Cov,<br />

D.F.<br />

6<br />

13<br />

269<br />

368<br />

798<br />

Lo<strong>in</strong> far<br />

<strong>and</strong><br />

Z han wt.<br />

-T.292<br />

-0.120<br />

-0 .07 4<br />

-0.054<br />

-0.020<br />

-0 .003<br />

Lo<strong>in</strong> fat<br />

<strong>and</strong> ham<br />

surface area<br />

o.776<br />

0.165<br />

-0.07 4<br />

-0.055<br />

-0 .031<br />

-0.003<br />

Loln fat<br />

<strong>and</strong> 7"<br />

pred, y1e1d<br />

-2.L04<br />

-0.719<br />

-0.278<br />

-0.201<br />

-0.130<br />

-0.013<br />

Loln fat<br />

<strong>and</strong><br />

aPe<br />

-8.803<br />

-3.551<br />

-0. 250<br />

-0.103<br />

-0.201<br />

-0 .033<br />

ToEal fat<br />

<strong>and</strong> 1o1n<br />

eve area<br />

-7.228<br />

-0.345<br />

-0.062<br />

-0.066<br />

-0 .016<br />

0.003<br />

CovO<br />

Cov"<br />

-0.016<br />

-0 .020<br />

-0 .012<br />

-0 .031<br />

-0.034<br />

-0.130<br />

0.048<br />

-0.201<br />

-0.024<br />

-0.016<br />

Contlnued<br />

\.1<br />

O


^Appendix IV (Cont<strong>in</strong>ued)<br />

Mea4 cross products<br />

Source <strong>of</strong><br />

covarfance<br />

Year<br />

Group/yr.<br />

SLre/ grç¡p/y¡.<br />

Dam/sfte/ Eroup /yr .<br />

Progeny/dam/s 1re /<br />

group /yr .<br />

Cov,<br />

CovO<br />

Cov"<br />

D. F.<br />

6<br />

13<br />

269<br />

368<br />

798<br />

Total fat<br />

<strong>and</strong><br />

grade lndex<br />

-3. 341<br />

-5.505<br />

-L.282<br />

-0.825<br />

-0.618<br />

-0 .0 86<br />

-0 .100<br />

-0.618<br />

ToEal fat<br />

<strong>and</strong>, 7"<br />

ham ¡+t.<br />

Toral fat<br />

<strong>and</strong> har¡<br />

surface area<br />

4 .116 _11 .409<br />

0, 868 _2,505<br />

-0.227 _o .298<br />

-0.137 _0.t42<br />

-0.058 _0 .098<br />

-0.016 -0 .030<br />

-0.038 _o .022<br />

-0.058 _0.098<br />

Total fat<br />

<strong>and</strong> 7.<br />

pred. yleld<br />

-9.586<br />

-4.496<br />

-0 .9l.B<br />

-0.589<br />

-0. 387<br />

-0 .060<br />

-0.098<br />

-0.387<br />

Total fat<br />

<strong>and</strong><br />

aEe<br />

-7 .064<br />

-)1 101<br />

-I .75tl<br />

-0.455<br />

-0 .81 7<br />

-0.276<br />

0.175<br />

-0.817


Appendlx fV (Conc<strong>in</strong>ued)<br />

Mean cross products<br />

Source <strong>of</strong><br />

covarlance<br />

D.F,<br />

Lo<strong>in</strong> eye area<br />

<strong>and</strong><br />

grade lndex<br />

Loln eye area<br />

<strong>and</strong><br />

% ham q't.<br />

Lo<strong>in</strong> eye area<br />

<strong>and</strong> han<br />

su¡face area<br />

Loln eye area<br />

anð "l<br />

pred. yield<br />

Loln eye area<br />

<strong>and</strong><br />

age<br />

Year<br />

6<br />

3.043<br />

-1.815<br />

14.011<br />

76.307<br />

7L.6tL<br />

Group/yr.<br />

13<br />

-0 .L7 4<br />

1.339<br />

4.3L2<br />

5 .592<br />

7t'raA<br />

SLre/ gtoup/yr.<br />

269<br />

0.337<br />

0.167<br />

0. 575<br />

0.957<br />

O.B89<br />

Dam/ sLre/ group /yr .<br />

368<br />

0.576<br />

0.184<br />

0 .360<br />

o.796<br />

0.497<br />

Progeny/dam / s1-re/<br />

group/yr.<br />

798<br />

0.134<br />

0.045<br />

0.150<br />

0.331<br />

-0.117<br />

Covr'<br />

-0.063<br />

-0.008<br />

0.037<br />

0.018<br />

0 .060<br />

Cov'<br />

0.2r4<br />

0.067<br />

0.102<br />

0.225<br />

0.298<br />

Cov"<br />

0.l_34<br />

0.045<br />

0.150<br />

0. 331<br />

-0.117<br />

. Contlnuecl<br />

! l.J


Appendix IV (Conctnued)<br />

Mean crosà products<br />

Source <strong>of</strong><br />

covarlance<br />

Year<br />

Group/yr.<br />

SLre/ group/yr.<br />

Dan/ elre/ group/yr ,<br />

Progeny/dan /el¡e/<br />

group /yr.<br />

Cov,<br />

D. F.<br />

6<br />

13<br />

269<br />

368<br />

198<br />

Grade lndex<br />

<strong>and</strong> Z ham<br />

wefght<br />

21.545<br />

-8.509<br />

r.654<br />

0.830<br />

0.249<br />

0.149<br />

Grade lndex<br />

<strong>and</strong> ham surface<br />

area<br />

Grade lndex<br />

<strong>and</strong> Z pred.<br />

yleld<br />

-22.901 8.823<br />

6.578 14.720<br />

r.647 5,633<br />

1.336 3.951<br />

0.595 2.384<br />

0.039 0.29L<br />

Grade lndex<br />

<strong>and</strong>'age<br />

-I8.292<br />

86.524<br />

6.24L<br />

-4 .001<br />

0.610<br />

2.239<br />

Z Ham welght<br />

<strong>and</strong> ham<br />

surface area<br />

-L02.382<br />

-22.326<br />

o.284<br />

0.039<br />

-0.376<br />

0.037<br />

CovO<br />

0.281<br />

0.359 0.760<br />

-2.234<br />

0. 201<br />

Cov--<br />

0.249<br />

0.s95 2.384<br />

0.6r 0<br />

-0.376<br />

. ContLnued<br />

!<br />

tt


Àppendlx IV (Contlnued)<br />

Mean cross products<br />

Source <strong>of</strong><br />

covarlance<br />

D.F.<br />

% Ham welght<br />

<strong>and</strong> %<br />

pred. yleld<br />

% Ham welght<br />

<strong>and</strong><br />

age<br />

Ham surface<br />

area <strong>and</strong> Z<br />

pred. yleld<br />

Ham surface<br />

area <strong>and</strong><br />

age<br />

7. Pred. yleld<br />

<strong>and</strong><br />

age<br />

Year<br />

Group/yr.<br />

SLre/gtoup/yr.<br />

Dam/ s|re/ group/yr,<br />

Progeny/darn /sl:e/<br />

group/yr.<br />

6<br />

13<br />

269<br />

368<br />

798<br />

-28.477<br />

-L6.435<br />

T.347<br />

0.873<br />

0. 250<br />

-7L664<br />

-25.617<br />

r.922<br />

0.643<br />

0 .443<br />

171.524<br />

50.019<br />

4.72L<br />

3.L30<br />

2.L72<br />

84.980<br />

247 .27_1<br />

7.053<br />

2 .600<br />

1.839<br />

168 .7 2r<br />

257 .900<br />

Lr.292<br />

3. 366<br />

3.555<br />

coys<br />

0 .075<br />

0.254<br />

o.293<br />

0.884<br />

r.622<br />

Cov'<br />

0,302<br />

0.097<br />

0 .464<br />

0. 367<br />

-0.092<br />

Cov*<br />

0.250<br />

0 .443<br />

2.77 2<br />

1.839<br />

3.555<br />

!


75<br />

Appendix V. Table <strong>of</strong> differentials<br />

for carcass grade índex<br />

Carcass weight (lb)<br />

Backfat <strong>in</strong>. 90<br />

L24<br />

l-25<br />

l-29<br />

130<br />

r39<br />

L40 150<br />

r49 159<br />

160 L70<br />

769 180<br />

181<br />

195<br />

796 Ridg<strong>and</strong><br />

l<strong>in</strong>g<br />

over<br />

- -1.9<br />

2.0-2.I<br />

2.2-2.3<br />

2.4-2.5<br />

B7<br />

B7<br />

B7<br />

87<br />

105<br />

103<br />

L02<br />

100<br />

109 110<br />

LO7 109<br />

105 707<br />

103 10s<br />

LL2 IL2<br />

110 LLz<br />

109 110<br />

r07 109<br />

LL2<br />

LL2<br />

110<br />

109<br />

9L<br />

9I<br />

91<br />

9T<br />

85<br />

85<br />

85<br />

B5<br />

67<br />

67<br />

67<br />

67<br />

2.6-2 "7<br />

B7<br />

9B<br />

L02 103<br />

r05 L07<br />

L07<br />

9L<br />

85<br />

67<br />

)Q_10<br />

3.0-3.1<br />

87<br />

B7<br />

97<br />

95<br />

100 L02<br />

98 100<br />

103 105<br />

LOz 103<br />

105<br />

103<br />

9T<br />

91<br />

Q(<br />

UJ<br />

B5<br />

67<br />

67<br />

3.2-3 .3<br />

B7<br />

92<br />

97 98<br />

100 r02<br />

ro2<br />

91<br />

85<br />

67<br />

3 .4-3. s<br />

3 .6-3.7<br />

87<br />

B7<br />

B8<br />

B8<br />

95 97<br />

92 95<br />

98 100<br />

97 98<br />

100<br />

9B<br />

9I<br />

9T<br />

B5<br />

85<br />

67<br />

67<br />

3. B-3.9<br />

4.0-4.L<br />

4.2-4.3<br />

87<br />

B7<br />

B7<br />

BB<br />

B8<br />

8B<br />

BB 92<br />

BB 88<br />

88 BB<br />

9s 97<br />

92 95<br />

BB 92<br />

97<br />

95<br />

92<br />

9L<br />

B7<br />

B7<br />

B5<br />

B2<br />

B2<br />

67<br />

67<br />

67<br />

4.4- +<br />

87<br />

B8<br />

88 88<br />

BB BB<br />

BB<br />

B7<br />

B2<br />

67


76<br />

Appendix VI. Adjustment table for age to market weíght<br />

Body wÈ.<br />

(ke)<br />

75<br />

76<br />

77<br />

78<br />

79<br />

80<br />

B1<br />

B2<br />

B3<br />

B4<br />

B5<br />

86<br />

B7<br />

8B<br />

89<br />

90<br />

91<br />

92<br />

93<br />

94<br />

95<br />

96<br />

97<br />

9B<br />

99<br />

100<br />

101<br />

702<br />

103<br />

104<br />

105<br />

155<br />

Ls4<br />

153<br />

L52<br />

151<br />

150<br />

L4B<br />

r47<br />

746<br />

L46<br />

L4s<br />

L44<br />

143<br />

L42<br />

141<br />

140<br />

139<br />

138<br />

l-37<br />

L37<br />

136<br />

135<br />

134<br />

134<br />

133<br />

r32<br />

131<br />

131<br />

r30<br />

130<br />

l-29<br />

159 l_67<br />

L56 L59<br />

r55 L57<br />

L54 156<br />

153 155<br />

r52 l.54<br />

151 153<br />

150 r52<br />

148 151<br />

148 150<br />

147 L49<br />

746 748<br />

L45 147<br />

L44 L46<br />

L43 145<br />

r42 744<br />

L4I L43<br />

r40 L42<br />

139 r4L<br />

139 ]-4L<br />

138 140<br />

137 139<br />

136 138<br />

136 138<br />

135 L37<br />

134 136<br />

133 135<br />

133 135<br />

132 L34<br />

r32 133<br />

131 732<br />

163 165<br />

L6L 163<br />

160 L62<br />

158 161<br />

L57 L59<br />

156 rs8<br />

155 L57<br />

754 156<br />

153 155<br />

L52 L54<br />

r51 153<br />

150 752<br />

L49 151<br />

148 1s0<br />

L47 L49<br />

L46 148<br />

r4s L47<br />

L44 l-46<br />

L43 L45<br />

r43 r4s<br />

L42 r44<br />

L41 L43<br />

140 142<br />

139 L4L<br />

138 L40<br />

138 L40<br />

L37 139<br />

L37 139<br />

136 138<br />

135 r37<br />

L34 L36<br />

usted<br />

L67 t69<br />

165 l-67<br />

L64 ]66<br />

L63 165<br />

L62 L64<br />

160 163<br />

159 L62<br />

r5B 160<br />

\57 L59<br />

156 158<br />

155 L57<br />

L54 156<br />

153 155<br />

r52 r54<br />

151 153<br />

150 152<br />

L49 151<br />

148 150<br />

1,47 L49<br />

L46 I4B<br />

L46 r47<br />

r45 L46<br />

144 l-46<br />

L43 A45<br />

L42 744<br />

142 L44<br />

L4L 143<br />

140 L42<br />

L40 l4r<br />

139 ]'4]-<br />

138 140<br />

L7I L74<br />

L69 L77<br />

168 I70<br />

167 L69<br />

L66 168<br />

L65 L67<br />

L64 166<br />

163 l-65<br />

I6L L64<br />

160 L62<br />

159 r6L<br />

158 160<br />

L57 159<br />

156 158<br />

155 L57<br />

r54 L56<br />

153 1s5<br />

L52 L54<br />

151 153<br />

150 L52<br />

1"49 151<br />

r4B 150<br />

148 150<br />

747 L49<br />

146 748<br />

146 L4B<br />

r45 L47<br />

144 L46<br />

L43 L4s<br />

L42 L44<br />

L4L L43<br />

L76 r78<br />

L75 I77<br />

L72 L76<br />

L7L L73<br />

L70 I72<br />

L69 L7L<br />

168 L70<br />

L67 169<br />

L66 168<br />

165 l-67<br />

163 L66<br />

L62 L64<br />

161 163<br />

160 L62<br />

159 L6r<br />

r5B 160<br />

L57 159<br />

156 158<br />

155 L57<br />

r54 156<br />

153 155<br />

L52 754<br />

r52 L54<br />

151 r53<br />

r50 L52<br />

L49 151<br />

L49 1s0<br />

148 150<br />

L47 L49<br />

L46 148<br />

L4s r47<br />

Cont<strong>in</strong>ued.


77<br />

Appendix VI.<br />

(Cont<strong>in</strong>ued)<br />

Body wt.<br />

(kg)<br />

75<br />

76<br />

77<br />

78<br />

79<br />

BO<br />

BI<br />

82<br />

OJ<br />

B4<br />

B5<br />

B6<br />

B7<br />

B8<br />

B9<br />

90<br />

91<br />

92<br />

93<br />

94<br />

9s<br />

96<br />

97<br />

98<br />

99<br />

100<br />

101<br />

LO2<br />

103<br />

104<br />

105<br />

180 rB2 IB4 186 188<br />

t79 181 183 185 787<br />

I7B 1BO 182 T84 186<br />

L77 L79 1Bl 183 rB5<br />

r75 L77 779 181 183<br />

773 t76 r78 180 tB2<br />

L72 r74 L77 L79 181<br />

L7l- r73 L75 L78 180<br />

L70 L72 r74 L76 L79<br />

169 L7L L73 175 I77<br />

168 L70 772 L74 176<br />

166 168 I70 I72 L74<br />

165 T67 L69 l-7L L73<br />

L64 L66 168 L70 L72<br />

L63 165 L67 L69 L77<br />

162 L64 166 168 r70<br />

161 L63 165 l.67 ],69<br />

160 L62 764 L66 168<br />

159 161 163 L65 t67<br />

1s8 160 162 l.64 ]-66<br />

r57 159 161 163 ]'65<br />

156 ls8 160 L62 L64<br />

156 158 159 161 163<br />

155 L57 r59 160 L62<br />

r54 156 rs8 159 161<br />

153 155 L57 159 160<br />

t52 r54 156 158 160<br />

151 153 155 r57 159<br />

150 L52 154 156 158<br />

150 151 153 155 l-57<br />

749 1s1 1s2 Ls4 756<br />

Adjusted age <strong>in</strong> days<br />

190 l-92 r94<br />

189 191 L93<br />

188 190 L92<br />

L87 189 L9T<br />

185 IB7 189<br />

184 186 lBB<br />

183 185 LB7<br />

L82 rB4 186<br />

181 183 185<br />

r79 181 183<br />

L78 lBO IB2<br />

L76 L7B TBI<br />

L75 r77 T79<br />

T74 L76 L7B<br />

L73 r75 L77<br />

!72 1_74 176<br />

L7L L73 T75<br />

r70 r72 L74<br />

L69 T7L L73<br />

168 L70 172<br />

1"67 l69 L70<br />

166 168 L70<br />

165 t67 L69<br />

L64 166 168<br />

163 165 ]'67<br />

762 L64 L66<br />

L6L 163 165<br />

16r 162 L64<br />

160 161 163<br />

159 161 l-62<br />

158 160 162<br />

L96 198 200<br />

195 l'97 199<br />

L94 796 198<br />

193 195 Lg7<br />

LgL 193 195<br />

190 L92 L94<br />

189 191 193<br />

188 190 L92<br />

LB7 rB9 191<br />

185 rB7 r89<br />

LBî 186 188<br />

183 rB5 L87<br />

rB2 184 186<br />

180 I82 184<br />

r79 181 183<br />

L78 1BO LB2<br />

r77 L79 181<br />

L76 178 180<br />

175 L77 L79<br />

L74 L76 r78<br />

L72 L74 L76<br />

L7L T73 L75<br />

77L L72 L74<br />

L70 L72 173<br />

L69 t7L r72<br />

168 170 L72<br />

L67 L69 L7T<br />

166 168 L70<br />

16s 167 L69<br />

164 L66 168<br />

163 165 767<br />

ContÍnued.


7B<br />

Appendix VI.<br />

(Conr<strong>in</strong>ued)<br />

Body wt.<br />

(ke)<br />

75<br />

76<br />

77<br />

78<br />

79<br />

BO<br />

81<br />

B2<br />

83<br />

' .84<br />

85<br />

86<br />

B7<br />

B8<br />

B9<br />

90<br />

91<br />

92<br />

93<br />

94<br />

9s<br />

96<br />

97<br />

9B<br />

99<br />

r00<br />

101<br />

L02<br />

103<br />

104<br />

105<br />

202 204<br />

20L 203<br />

200 202<br />

L99 207<br />

L97 199<br />

L96 198<br />

195 L97<br />

L94 L96<br />

193 195<br />

191 193<br />

190 L92<br />

189 191<br />

1BB 190<br />

186 188<br />

185 r87<br />

L84 186<br />

183 185<br />

782 184<br />

181 183<br />

180 t_Bz<br />

I78 180<br />

777 L79<br />

176 r7B<br />

L75 l-77<br />

I74 l-76<br />

t73 r75<br />

L73 L74<br />

L72 L74<br />

L7T L73<br />

L70 L72<br />

t69 L7L<br />

206<br />

205<br />

204<br />

203<br />

207<br />

200<br />

l99<br />

19B<br />

L97<br />

195<br />

L94<br />

193<br />

L92<br />

190<br />

189<br />

lBB<br />

l-87<br />

186<br />

184<br />

184<br />

182<br />

181<br />

180<br />

l-79<br />

178<br />

t77<br />

L76<br />

L75<br />

175<br />

l-74<br />

l-73<br />

Adiusted a<br />

208 2lL0<br />

207 209<br />

206 208<br />

205 207<br />

203 205<br />

202 204<br />

20L 203<br />

20a 202<br />

r99 20L<br />

L97 A99<br />

796 198<br />

195 r97<br />

794 L96<br />

L92 L94<br />

191 193<br />

190 792<br />

189 191<br />

1BB 190<br />

186 1BB<br />

185 787<br />

184 186<br />

183 185<br />

182 rB4<br />

181 rB3<br />

180 l-82<br />

L79 181<br />

L78 180<br />

177 L79<br />

L76 L7B<br />

776 177<br />

L75 L76<br />

272<br />

277<br />

2LO<br />

209<br />

207<br />

206<br />

205<br />

204<br />

203<br />

20L<br />

200<br />

L99<br />

198<br />

L96<br />

195<br />

L94<br />

193<br />

L92<br />

190<br />

189<br />

1BB<br />

L8l<br />

IB6<br />

185<br />

184<br />

183<br />

r82<br />

1BI<br />

tB0<br />

1,79<br />

t77<br />

<strong>in</strong> da<br />

2L4<br />

21"3<br />

272<br />

2LL<br />

209<br />

208<br />

207<br />

206<br />

205<br />

203<br />

202<br />

20l-<br />

200<br />

198<br />

L97<br />

L96<br />

r95<br />

L94<br />

192<br />

191<br />

190<br />

189<br />

LB7<br />

L87<br />

186<br />

185<br />

184<br />

183<br />

I82<br />

lBl<br />

l-79<br />

2L6 2IB<br />

2L5 2L7<br />

2L4 2L6<br />

2L3 215<br />

zLL 2L3<br />

2L0 272<br />

209 2rr<br />

208 270<br />

207 209<br />

205 207<br />

204 206<br />

203 205<br />

202 204<br />

200 202<br />

L99 20I<br />

r98 200<br />

L97 L99<br />

L96 198<br />

L94 L96<br />

193 195<br />

L92 r94<br />

191 193<br />

189 191<br />

188 190<br />

1BB 189<br />

L87 189<br />

186 TBB<br />

185 rB7<br />

184 186<br />

183 185<br />

181 183<br />

220 222<br />

2L9 22L<br />

2r8 220<br />

2L7 2L9<br />

2L5 277<br />

2t4 216<br />

2L3 2L5<br />

2r2 2L4<br />

zLT 2L3<br />

209 21L<br />

208 2L0<br />

207 209<br />

206 208<br />

204 206<br />

203 205<br />

202 204<br />

20L 203<br />

200 202<br />

198 200<br />

r97 L99<br />

L96 198<br />

195 L97<br />

193 195<br />

L92 r94<br />

191 193<br />

190 L92<br />

189 LgL<br />

189 190<br />

1BB 190<br />

LB7 189<br />

r85 l-87<br />

Cont<strong>in</strong>ued.


79<br />

Appendix<br />

VI.<br />

(Cont<strong>in</strong>ued)<br />

Body wt.<br />

(ke)<br />

75<br />

76<br />

77<br />

7B<br />

79<br />

BO<br />

B1<br />

B2<br />

OJ<br />

B4<br />

B5<br />

B6<br />

B7<br />

BB<br />

B9<br />

90<br />

9L<br />

92<br />

93<br />

94<br />

95<br />

96<br />

97<br />

9B<br />

99<br />

100<br />

101<br />

L02<br />

103<br />

104<br />

105<br />

Adjusted age <strong>in</strong> days<br />

224 226 228 230 232 234 236 238<br />

223 225 227 229 23r 233 235 237<br />

222 224 226 228 230 232 234 236<br />

22I 223 225 227 229 237 233 235<br />

2L9 22L 223 225 227 229 23I 233<br />

2LB 220 222 224 226 228 230 .232<br />

277 2Ig 22L 223 225 227 22g 23L<br />

2L6 zLB 220 222 224 226 228 230<br />

2L5 2L7 279 22L 223 225 227 229<br />

2l-3 2L5 2L7 2L9 22L 223 225 227<br />

2L2 2I4 2L6 2IB 220 222 224 226<br />

27L 2L3 2L5 2L7 2L9 22L 223 225<br />

2L0 2L2 274 2L6 zLB 220 222 224<br />

208 zLO 2L2 2L4 2L6 zLB 220 222<br />

207 209 zIL 2L3 2L5 2L7 2L9 22I<br />

206 208 2I0 2L2 214 2l:6 2LB 220<br />

205 207 209 2LI 2L3 2l-5 2L7 2Lg<br />

204 206 208 2]I0 2L2 2L4 2L6 zLB<br />

202 204 206 208 2IO 2L2 2L4 216<br />

20L 203 205 207 209 zLL 2L3 2L5<br />

200 202 204 206 208 2I0 2L2 2I4<br />

L99 20I 203 205 207 209 2LL 2L3<br />

I97 L99 20L 203 205 207 209 2LL<br />

196 r9B 200 202 204 206 208 2LO<br />

195 197 199 20\ 203 205 207 2og<br />

L94 L96 198 200 202 204 206 208<br />

193 195 r97 r99 20L 203 205 207<br />

191 193 195 r97 L99 zOL 203 205<br />

191 L92 L94 L96 198 2OO 202 204<br />

191 191 193 195 r97 r99 20:- 203<br />

rB9 191 L92 r94 L96 r9B 200 202

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!