26.12.2013 Views

Analyse fonctionnelle du rôle de la chromatine dans le contrôle de l ...

Analyse fonctionnelle du rôle de la chromatine dans le contrôle de l ...

Analyse fonctionnelle du rôle de la chromatine dans le contrôle de l ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

UNIVERSITÉ DE PERPIGNAN VIA DOMITIA<br />

ECOLE DOCTORALE SIBAGHE<br />

Laboratoire Génome et Développement <strong>de</strong>s P<strong>la</strong>ntes CNRS/IRD/UP 5096<br />

THÈSE<br />

Pour obtenir <strong>le</strong> gra<strong>de</strong> <strong>de</strong><br />

DOCTEUR DE LʼUNIVERSITÉ DE PERPIGNAN VIA DOMITIA<br />

Discipline Biologie Intégrative <strong>de</strong>s P<strong>la</strong>ntes<br />

présentée et soutenue publiquement par<br />

Marcelina GARCIA-AGUILAR<br />

<strong>le</strong> 28 Janvier 2010<br />

ANALYSE FONCTIONNELLE DU RÔLE DE LA CHROMATINE<br />

DANS LE CONTRÔLE DE LʼAPOMIXIE ET DE LA SEXUALITÉ<br />

Thèse dirigée par Daniel GRIMANELLI & A<strong>la</strong>in GHESQUIERE<br />

Jury:<br />

Thomas DRESSELHAUS!! ! ! ! ! ! Rapporteur<br />

Raphäel MERCIER! ! ! ! ! ! ! Rapporteur<br />

Jean-Marc DERAGON! ! ! ! ! ! ! Examinateur<br />

Célia BAROUX! ! ! ! ! ! ! ! Examinateur<br />

A<strong>la</strong>in GHESQUIERE! ! ! ! ! ! ! Directeur <strong>de</strong> Thèse<br />

Daniel GRIMANELLI! ! ! ! ! ! ! Directeur <strong>de</strong> Thèse


“Todas <strong>la</strong>s personas al comienzo <strong>de</strong> su juventud, saben cual es su<br />

<strong>le</strong>yenda personal. En ese momento <strong>de</strong> <strong>la</strong> vida todo es c<strong>la</strong>ro, todo es<br />

posib<strong>le</strong>, y el<strong>la</strong>s no tienen miedo <strong>de</strong> soñar y <strong>de</strong>sear todo aquello que<br />

<strong>le</strong>s gustaría hacer en sus vidas. El alma <strong>de</strong>l mundo es alimentada por<br />

<strong>la</strong> felicidad <strong>de</strong> <strong>la</strong>s personas. O por <strong>la</strong> infelicidad, <strong>la</strong> envidia, los celos.<br />

Cumplir su <strong>le</strong>yenda personal es <strong>la</strong> única obligación <strong>de</strong> los hombres.<br />

Y cuando una persona <strong>de</strong>sea realmente algo, el universo entero<br />

conspira para que pueda realizar su sueño”<br />

Paolo Coelho<br />

<br />

2


A <strong>la</strong> memoria <strong>de</strong> mi Padre,<br />

Por enseñarme que <strong>la</strong> motivación es el mejor<br />

camino para lograr nuestros sueños, porque<br />

siempre viviste compartiendo tu a<strong>le</strong>gría, por<br />

heredarme tu amor al maíz.<br />

Don<strong>de</strong> estés, Te amo Papá.<br />

3


Résumé<br />

De nombreuses données expérimenta<strong>le</strong>s suggèrent que <strong>le</strong>s phases <strong>de</strong> transition au cours <strong>de</strong><br />

<strong>la</strong> repro<strong>du</strong>ction sexuée sont régulées épigénétiquement par <strong>de</strong>s modifications <strong>de</strong> <strong>la</strong> structure<br />

<strong>de</strong> <strong>la</strong> <strong>chromatine</strong>. Chez <strong>le</strong>s Angiospermes, l’apomixie est un mo<strong>de</strong> <strong>de</strong> repro<strong>du</strong>ction asexuée<br />

par graines con<strong>du</strong>isant à <strong>la</strong> pro<strong>du</strong>ction <strong>de</strong> <strong>de</strong>scendances génétiquement i<strong>de</strong>ntiques à <strong>la</strong> p<strong>la</strong>nte<br />

mère. Contrairement à ceux obtenus par repro<strong>du</strong>ction sexuée, qui résultent <strong>de</strong> l’union <strong>de</strong> <strong>de</strong>ux<br />

pro<strong>du</strong>its <strong>de</strong> <strong>la</strong> méiose, <strong>le</strong>s embryons apomictiques sont pro<strong>du</strong>its sans méiose ni fécondation.<br />

L’objectif <strong>de</strong> cette étu<strong>de</strong> était <strong>de</strong> déterminer <strong>le</strong> <strong>rô<strong>le</strong></strong> <strong>de</strong> <strong>la</strong> structure <strong>de</strong> <strong>la</strong> <strong>chromatine</strong> au cours<br />

<strong>de</strong> <strong>la</strong> repro<strong>du</strong>ction <strong>de</strong>s p<strong>la</strong>ntes et <strong>de</strong> tester l’hypothèse d’un lien fonctionnel entre<br />

l’établissement <strong>de</strong> ces structures chromatidiennes et <strong>la</strong> différentiation entre sexualité chez <strong>le</strong><br />

maïs et apomixie chez son apparenté sauvage, Tripsacum. Dans un crib<strong>le</strong> portant sur 319<br />

enzymes modificatrices <strong>la</strong> <strong>chromatine</strong> (CME), nous avons pu i<strong>de</strong>ntifier six loci dont<br />

l’expression <strong>dans</strong> <strong>le</strong>s ovu<strong>le</strong>s diffère entre p<strong>la</strong>ntes sexuées et p<strong>la</strong>ntes apomictiques. Quatre<br />

d'entre eux co<strong>de</strong>nt pour <strong>de</strong>s protéines homologues <strong>de</strong> composants <strong>de</strong> <strong>la</strong> voie <strong>de</strong> méthy<strong>la</strong>tion <strong>de</strong><br />

l'ADN dépendante <strong>de</strong> l'ARN (RdDM) chez Arabidopsis thaliana. L’analyse <strong>fonctionnel<strong>le</strong></strong> <strong>de</strong><br />

DMT102, l’homologue <strong>de</strong> CHROMOMETHYLASE 3, et <strong>de</strong> DMT103, l’homologue <strong>de</strong><br />

DOMAIN REARRANGED METHYLTRANSFERASE 2, montre qu’une perte <strong>de</strong> fonction<br />

in<strong>du</strong>it <strong>la</strong> pro<strong>du</strong>ction <strong>de</strong> gamètes non-ré<strong>du</strong>its et <strong>la</strong> formation <strong>de</strong> sacs embryonnaires multip<strong>le</strong>s<br />

<strong>dans</strong> l'ovu<strong>le</strong>, <strong>de</strong>ux aspects clés <strong>du</strong> développement apomictique. Des expériences<br />

d'immunolocalisation <strong>dans</strong> <strong>de</strong>s ovu<strong>le</strong>s <strong>de</strong> maïs indiquent que DMT102 est impliquée <strong>dans</strong> <strong>la</strong><br />

définition d’un état <strong>de</strong> quiescence transcriptionel<strong>le</strong> affectant un nombre limité <strong>de</strong> cellu<strong>le</strong>s, y<br />

compris <strong>le</strong> gamète femel<strong>le</strong>, et que <strong>la</strong> perte <strong>de</strong> méthy<strong>la</strong>tion <strong>de</strong> l'ADN observée <strong>dans</strong> <strong>le</strong> mutant<br />

DMT102 con<strong>du</strong>it à une altération <strong>de</strong> cet état répressif. Fina<strong>le</strong>ment, <strong>la</strong> formation au sein <strong>de</strong><br />

l’ovu<strong>le</strong> d’un domaine cellu<strong>la</strong>ire restreint, renfermant <strong>le</strong>s cellu<strong>le</strong>s repro<strong>du</strong>ctrices et<br />

transcriptionel<strong>le</strong>ment quiescent, est abolie au cours <strong>du</strong> développement apomictique chez<br />

Tripsacum. Ces observations suggèrent que <strong>le</strong> mutant dmt102 repro<strong>du</strong>it l’état chromatidien<br />

préva<strong>le</strong>nt <strong>dans</strong> <strong>le</strong>s ovu<strong>le</strong>s apomictiques. Nos résultats montrent qu’une voie <strong>de</strong> type RdDM<br />

spécifique <strong>de</strong>s gamétophytes est impliquée chez <strong>le</strong> maïs <strong>dans</strong> <strong>la</strong> définition <strong>de</strong>s cellu<strong>le</strong>s<br />

repro<strong>du</strong>ctrices et que son altération participe à <strong>la</strong> différenciation entre repro<strong>du</strong>ction sexuée et<br />

repro<strong>du</strong>ction apomictique.<br />

Mots c<strong>le</strong>fs: repro<strong>du</strong>ction sexuée, apomixis, structure <strong>de</strong> <strong>la</strong> <strong>chromatine</strong>, regu<strong>la</strong>tion<br />

epigénétique, maïs, Tripsacum.<br />

4


FUNCTIONAL AND COMPARATIVE ANALYSIS OF CHROMATIN CHANGES<br />

ASSOCIATED WITH THE CONTROL OF SEXUAL AND APOMICTIC REPRODUCTION<br />

5


Summary<br />

Several lines of evi<strong>de</strong>nces suggest that transitions <strong>du</strong>ring sexual p<strong>la</strong>nt repro<strong>du</strong>ction are<br />

epigenetically control<strong>le</strong>d through dynamic changes in chromatin structure. In asexual<br />

repro<strong>du</strong>ction by seed, or apomixis, fema<strong>le</strong> gametes avoid meiosis and doub<strong>le</strong> fertilization,<br />

<strong>de</strong>veloping by parthenogenesis offspring that are genetically i<strong>de</strong>ntical to the mother p<strong>la</strong>nt. It<br />

has been hypothesized that apomixis could be a temporal or spatial <strong>de</strong>regu<strong>la</strong>tion of the sexual<br />

repro<strong>du</strong>ctive pathway. Our objective was to <strong>de</strong>termine the ro<strong>le</strong> of chromatin dynamics <strong>du</strong>ring<br />

p<strong>la</strong>nt repro<strong>du</strong>ction, and in the mo<strong>le</strong>cu<strong>la</strong>r switch between sexual repro<strong>du</strong>ction in maize, and<br />

apomictic <strong>de</strong>velopment in maize-Tripsacum hybrids. In a transcriptional screening of 319<br />

chromatin-modifying enzymes (CME), we i<strong>de</strong>ntified six loci that are specifically downregu<strong>la</strong>ted<br />

in ovu<strong>le</strong>s of apomictic p<strong>la</strong>nts. Four of them share strong homology with members of<br />

the RNA directed DNA methy<strong>la</strong>tion (RdDM) pathway, which in Arabidopsis is involved in<br />

genes si<strong>le</strong>ncing via DNA methy<strong>la</strong>tion. The functional analysis of p<strong>la</strong>nts <strong>de</strong>fective for<br />

DMT102 (homologous to Arabidopsis CHROMOMETHYLASE 3) and DMT103 (homologous<br />

to DOMAIN REARRANGED METHYLTRANSFERASE 2) reveals pro<strong>du</strong>ction of unre<strong>du</strong>ced<br />

gametes, and formation of multip<strong>le</strong> embryo sacs in the mutant ovu<strong>le</strong>s, both key features of<br />

apomictic <strong>de</strong>velopment. Immunolocalization experiments indicate that DMT102 is involved<br />

in regu<strong>la</strong>ting chromatin state and transcription in a few cells in the maize ovu<strong>le</strong>, including the<br />

fema<strong>le</strong> gametes. Loss of DNA methy<strong>la</strong>tion in a DMT102 mutant line results in the localized<br />

re<strong>le</strong>ase of a repressive chromatin state, which also mimics features of apomictic ovu<strong>le</strong>s. Our<br />

results suggest that repro<strong>du</strong>ctive <strong>de</strong>velopment in maize requires an gametophyte-specific<br />

RdDM-like pathway, whose regu<strong>la</strong>tory ro<strong>le</strong> is critical to the differentiation between apomictic<br />

and sexual repro<strong>du</strong>ction.<br />

Key words: sexual repro<strong>du</strong>ction, apomixis, chromatin structure, epigenetic regu<strong>la</strong>tion,<br />

maize, Tripsacum.<br />

6


TABLE OF CONTENTS<br />

ABBREVIATIONS 9<br />

CHAPTER 1. General Intro<strong>du</strong>ction 11<br />

1.1. Background information 12<br />

1.1.1. Developmental Events During Sexual P<strong>la</strong>nt Repro<strong>du</strong>ction 12<br />

1.1.2. Acquisition of Cell Fate in the Ovu<strong>le</strong> and the Fema<strong>le</strong> Gametophyte 14<br />

1.1.3. Apomictic Developments 16<br />

1.1.4. The Genetic Control of Apomixis 19<br />

1.1.5. Ro<strong>le</strong> of Hybridization and Polyploidy in Apomicts 21<br />

1.1.6. Epigenetic, Cell Fate and Apomixis 21<br />

1.1.7. Mechanisms of Chromatin Dynamics 23<br />

1.1.8. Modifying Enzymes and Chromatin Dynamics 25<br />

1.1.8.1. DNA methy<strong>la</strong>tion 25<br />

1.1.8.2. Histone modifications 27<br />

1.1.8.2.1. Histone acety<strong>la</strong>tion 28<br />

1.1.8.2.2. Histone methy<strong>la</strong>tion 29<br />

1.1.8.2.3. Phosphory<strong>la</strong>tion 29<br />

1.1.8.2.4. Ubiquity<strong>la</strong>tion and SUMOy<strong>la</strong>tion 30<br />

1.1.8.3. ATP-<strong>de</strong>pen<strong>de</strong>nt chromatin remo<strong>de</strong>ling 30<br />

1.2. Thesis Proposal: Chromatin dynamics, an unexplored frontier toward<br />

un<strong>de</strong>rstanding asexuality in p<strong>la</strong>nts 31<br />

CHAPTER 2. Expression of Chromatin Modifying Enzymes <strong>du</strong>ring Apomictic<br />

and sexual Development 33<br />

2.1. Intro<strong>du</strong>ction 34<br />

2.2. Results 34<br />

2. 2.1. Se<strong>le</strong>ction of Chromatin Modifying Enzymes (CME) from ChromDB 34<br />

2.2.2. Microarray analysis of Chromatin Modifying Enzymes (CME) 38<br />

2.2.3. Preliminary analysis of se<strong>le</strong>cted genes 40<br />

2.3. Discussion 42<br />

CHAPTER 3. Inactivation of a Repro<strong>du</strong>ctive DNA Methy<strong>la</strong>tion Pathway in<br />

Maize Results in Apomixis-Like Phenotypes 44<br />

3.1. Intro<strong>du</strong>ction 47<br />

3.2 Results 49<br />

3.2.1. I<strong>de</strong>ntification of CMEs differentially expressed in sexual and apomictic p<strong>la</strong>nts 49<br />

7


3.2.2. Apomixis corre<strong>la</strong>tes with the downregu<strong>la</strong>tion of CMT3 and DRM1/2 homologues in<br />

both Tripsacum and Boechera 53<br />

3.2.3. dmt102 and dmt103 are expressed in the repro<strong>du</strong>ctive cells in the maize ovu<strong>le</strong> 53<br />

3.2.4. Downregu<strong>la</strong>tion of dmt102 and dmt103 in sexual maize promotes the formation of<br />

unre<strong>du</strong>ced gametes 54<br />

3.2.5. Downregu<strong>la</strong>tion of dmt102 and dmt103 in sexual maize in<strong>du</strong>ces the formation of<br />

multip<strong>le</strong> embryo sacs in the ovu<strong>le</strong> 57<br />

3.2.6. Patterns of chromatin modification in dmt102 mutant lines mimic the effect of<br />

apomixis <strong>du</strong>ring sporogenesis and gametogenesis 60<br />

3.2.7. Transcription patterns in the mature ES and the early seed suggest quiescence in the<br />

egg cell and the sexual zygote, but strong activity in the apomictic pro-embryos 62<br />

3.2.8. Parthenogenetic pro-embryos have lost gametic i<strong>de</strong>ntity, but have not established<br />

embryonic patterning 65<br />

3.3 Discussion 66<br />

3.4 Methods 71<br />

3.4.1. P<strong>la</strong>nt Materials 71<br />

3.4.2. Genotyping 71<br />

3.4.3. Se<strong>le</strong>ction of CMEs for RT-PCR analysis 72<br />

3.4.5. RT-PCR 72<br />

3.4.6. Imaging of histone modifications and transcriptional activity in ovu<strong>le</strong>s and seed<br />

tissues 73<br />

3.4.7. Who<strong>le</strong> mount c<strong>le</strong>aring of ovu<strong>le</strong> samp<strong>le</strong>s 74<br />

3.4.8. Who<strong>le</strong> mount in-situ mRNA hybridizations 74<br />

3.5. Tab<strong>le</strong>s 75<br />

3.6. Supp<strong>le</strong>mental tab<strong>le</strong>s and figures 78<br />

CHAPTER 4. Discussion and Perspectives 90<br />

ACKNOWLEDGMENTS 95<br />

REFERENCES 97<br />

8


ABBREVIATIONS<br />

AdoMet: S-a<strong>de</strong>nosyl-L-methionine<br />

AGO1: ARGONAUTE1<br />

AGO4: ARGONAUTE 4<br />

Arg/R: Arginine<br />

ATO: ATROPOS<br />

ATP: A<strong>de</strong>nosine Triphosphate<br />

ChIP: Chromatin ImmuniPrecipitation<br />

ChromDB: Chromatin Database<br />

CLO: CLOTHO<br />

CME: Chromatin Modifying Enzymes<br />

CMT: Chromomethyltransferases<br />

CMT3: CHROMOMETHYLASE 3<br />

DAP: Days After Pollination<br />

DCL3: DICER-LIKE 3<br />

DDM1: DECREASE IN DNA METHYLATION1<br />

DMT: DNA methyltransferases<br />

DMT102: DNA Methyltransferase 102<br />

DMT103: DNA Methyltransferase 103<br />

DMS3: DEFECTIVE IN MERISTEM SILENCING3<br />

DRD1: DEFECTIVE IN RNA-DIRECTED DNA METHYLATION1<br />

DRM: Domains Rearranged Methyl Transferases<br />

DRM2: DOMAIN REARRANGED METHYLTRANSFERASE 2<br />

dsRNA: doub<strong>le</strong> strand RNA<br />

ES:<br />

Embryo Sac<br />

FIE1: FERTILIZATION INDEPENDENT ENDOSPERM1<br />

FIS:<br />

FERTILIZATION INDEPENDENT SEED<br />

FIS2: FERTILIZATION INDEPENDENT SEED2<br />

H1: Histone 1<br />

H2A: Histone 2A<br />

H2B: Histone 2B<br />

H3: Histone 3<br />

H4: Histone 4<br />

9


HAT: Histones Acetyltransferase<br />

HDAC: Histone Deacety<strong>la</strong>se<br />

HDA6: HISTONE DEACETYLASE 6<br />

H3K9: H3 methy<strong>la</strong>tion lysine 9<br />

HME: Histone Modifiers Enzymes<br />

HMT: Histone Methyltransferases<br />

K: Lysine<br />

KYP: KRYPTONITE<br />

LIS:<br />

LACHESIS<br />

Lys:<br />

Lysine<br />

MEA: MEDEA<br />

MET1: METHYLTRANSFERASE1<br />

m5C: Cytosine 5 methy<strong>la</strong>ted<br />

MMC: Megaspore Mother Cell<br />

MOM: MORPHEUS MOLECULE 1<br />

PCR2: Polycomb Comp<strong>le</strong>x 2<br />

PKL: PICKLE<br />

RdDM: RNA-<strong>de</strong>pen<strong>de</strong>nt DNA Methy<strong>la</strong>tion<br />

RDR2: RNA-DEPENDENT RNA POLYMERASE 2<br />

RDR6: RNA-DEPENDENT RNA POLYMERASE 6<br />

RPD1: RNA POLYMERASE D1<br />

RT-PCR: Reverse Transcription Polymerase Chain Reaction<br />

SDC: SUPRESSOR of drm1drm2cmt3<br />

SAM: S-a<strong>de</strong>nosyl-L-methionine<br />

SDE3: SILENCING DEFECTIVE 3<br />

Ser:<br />

Serine<br />

SET:<br />

Su(var)3-9, E(Z) and Trithorax<br />

SGS3: SUPPRESSOR OF GENE SILENCING 3<br />

siRNA: small interfering RNA<br />

SUVH: Su(var)3-9 Homologs<br />

SYD: SPLAYED<br />

10


CHAPTER 1. General Intro<strong>du</strong>ction


The unique p<strong>la</strong>nts life strategy, with alterning sporophytic and gametophytic generations,<br />

requires the correct activation or repression of transcriptional programs specific to each<br />

<strong>de</strong>velopmental stage. In p<strong>la</strong>nts and other eukaryots, <strong>de</strong>velopmental programs imply preestablished<br />

transcription patterns mediated through an epigenetic cellu<strong>la</strong>r memory, which is<br />

control<strong>le</strong>d by dynamic changes or alterations at the chromatin structural <strong>le</strong>vel (Hsieh and<br />

Fisher, 2005). These processes have been extensively studied at the mechanistic <strong>le</strong>vel. For<br />

examp<strong>le</strong>, in flowering p<strong>la</strong>nts, Polycomb group proteins are involved in the epigenetic control<br />

of genes throughout a repressive Polycomb comp<strong>le</strong>x 2 (PCR2) regu<strong>la</strong>ting vegetative and<br />

repro<strong>du</strong>ctive programs (Leroy et al., 2007; Review in Pien and Grossnik<strong>la</strong>us, 2007). Although<br />

it is also known that significant transcriptional changes occur <strong>du</strong>ring the switch between the<br />

diploid sporophytic and haploid gamethophytic generation (Poethig, 2009), a key remaining<br />

question is to <strong>de</strong>fine the mechanisms controlling the or<strong>de</strong>rly transitions <strong>du</strong>ring the<br />

repro<strong>du</strong>ctive process. In both Arabidopsis and maize, in particu<strong>la</strong>r, chromatin remo<strong>de</strong>ling is<br />

involved in controlling the or<strong>de</strong>rly progression of vegetative <strong>de</strong>velopment; however their<br />

potential ro<strong>le</strong> <strong>du</strong>ring fema<strong>le</strong> meiosis, gametogenesis and fertilization remains poorly<br />

un<strong>de</strong>rstood. Here, we studied the epigenetic mechanisms controlling <strong>de</strong>velopmental<br />

transitions <strong>du</strong>ring repro<strong>du</strong>ction in flowering p<strong>la</strong>nts. The results also shed light onto the<br />

mo<strong>le</strong>cu<strong>la</strong>r and cellu<strong>la</strong>r events <strong>le</strong>ading to asexual repro<strong>du</strong>ction in apomixis, a promising highvalue<br />

trait for crops biotechnology.<br />

1.1. BACKGROUND INFORMATION<br />

1.1.1. Developmental Events During Sexual P<strong>la</strong>nt Repro<strong>du</strong>ction<br />

The repro<strong>du</strong>ctive cyc<strong>le</strong> of flowering p<strong>la</strong>nts occurs in specialized repro<strong>du</strong>ctive organs, the<br />

anthers and the ovu<strong>le</strong>s. There, sexuality <strong>de</strong>pends on the <strong>de</strong>velopment of an haploid<br />

(gametophytic) generation in which haploid gametes are formed by means of two consecutive<br />

steps: sporogenesis (spore formation) and gametogenesis (gamete formation). The<br />

gametophytic generation consists of specialized multicellu<strong>la</strong>r structures cal<strong>le</strong>d gametophytes,<br />

whose formation arises from cell fate changes turning somatic sporophytic cells into<br />

primordial germ cells. The ma<strong>le</strong> gametophytes (or pol<strong>le</strong>n grains) <strong>de</strong>velop into the anthers. In<br />

the archesporial tissue of the anther, a <strong>la</strong>rge number of microspore mother cells differentiate<br />

(Figure 1A). Each of those cells un<strong>de</strong>rgoes a meiotic division to pro<strong>du</strong>ce four haploid<br />

12


microspores. All four meiotic pro<strong>du</strong>cts then go through two consecutive mitoses to pro<strong>du</strong>ced<br />

two spermatic cells enclosed into the cytop<strong>la</strong>sm of a vegetative cell, that col<strong>le</strong>ctively form the<br />

mature pol<strong>le</strong>n grain (McCormick, 1993). In the ovu<strong>le</strong>, megasporogenesis or fema<strong>le</strong><br />

sporogenesis is initiated with the differentiation of the megaspore mother cell (MMC) within<br />

the nucellus (Figure 1B).<br />

Figure 1. Sporogenesis and gametogenesis in ma<strong>le</strong> (A) and fema<strong>le</strong> (B) repro<strong>du</strong>ctive organs of<br />

flowering p<strong>la</strong>nts.<br />

In the ma<strong>le</strong> repro<strong>du</strong>ctive organs, sporogenesis initiates with the differentiation of numerous pol<strong>le</strong>n<br />

mother cells (PMCs) within the tapetum of the anther; fema<strong>le</strong> sporogenesis in the ovu<strong>le</strong> takes p<strong>la</strong>ce in<br />

a sing<strong>le</strong> cell, the megaspore mother cell (MMC). The outcome of meiosis in both PMCs and MMCs is<br />

a tetrad of micro- and megaspores, respectively. A) Development of the ma<strong>le</strong> gametophyte (taken<br />

from McCormick 2004). In the ma<strong>le</strong> organs, each free microspore un<strong>de</strong>rgoes mitosis I, pro<strong>du</strong>cing the<br />

bicellu<strong>la</strong>r pol<strong>le</strong>n grain. The second mitosis gives rise to a tri-cellu<strong>la</strong>r mature pol<strong>le</strong>n grain containing<br />

two cell types, a vegetative cell and two gametes or spermatic cells. (B) Fema<strong>le</strong> megagametogenesis<br />

occurs only in the functional megaspore, and three consecutive mitosis give rise to the mature embryo<br />

sac or fema<strong>le</strong> gametophyte.<br />

Only a sing<strong>le</strong> MMC differentiates in each ovu<strong>le</strong>, and un<strong>de</strong>rgoes meiosis. As a result of<br />

meiosis, four haploid megaspores are formed, three of them <strong>de</strong>generate and only one, at the<br />

cha<strong>la</strong>zal po<strong>le</strong>, differentiates as a functional megaspore to give rise to the embryo sac (ES) or<br />

fema<strong>le</strong> gametophyte. In the Polygonum type of ES <strong>de</strong>velopment, the most common in<br />

13


angiosperms (including maize and Arabidopsis) the nuc<strong>le</strong>us of the functional megaspore<br />

un<strong>de</strong>rgo three rounds of free nuc<strong>le</strong>ar divisions to pro<strong>du</strong>ce eight haploid nuc<strong>le</strong>i. Shortly after,<br />

these nuc<strong>le</strong>i initiate cellu<strong>la</strong>rization, which is concomitant to the acquisition of cell fate. At the<br />

end of gametogenesis, the resulting mature ES contains seven cells: two synergids cells, three<br />

antipods and two kinds of fema<strong>le</strong> gametes, the haploid egg cell, and the homo-diploid (or dihaploid)<br />

central cell, resulting from the fusion of the two haploid po<strong>la</strong>r nuc<strong>le</strong>i (Figure 2).<br />

At fertilization, the diploid sporophytic generation is reestablished after the pol<strong>le</strong>n tube<br />

reached the embryo sac and the doub<strong>le</strong> fertilization takes p<strong>la</strong>ce. The two spermatic cells are<br />

re<strong>le</strong>ased into the ES; one fuses with the egg cell and the other fuses with the central cell,<br />

pro<strong>du</strong>cing the diploid zygote and the triploid endosperm respectively. Then, the fertilized<br />

ovu<strong>le</strong> gives rise to the seed by the synchronized growth of the embryo, the endosperm, and<br />

the surrounding maternal tissues.<br />

Ovary<br />

Synergid<br />

Mature Embryo Sac<br />

Antipods<br />

Central Cell<br />

Synergid<br />

Egg Cell<br />

Figure 2. Schematic representation of<br />

a Polygonum type mature embryo<br />

sac.<br />

In the ovary, a mature ovu<strong>le</strong> containing<br />

the cellu<strong>la</strong>rized embryo sac. Two<br />

synergids together with the fema<strong>le</strong><br />

gamete form the egg apparatus. The egg<br />

cell contains a prominent vacuo<strong>le</strong><br />

localized toward the micropy<strong>la</strong>r po<strong>le</strong>.<br />

Three antipods are differentiated at the<br />

cha<strong>la</strong>zal end whi<strong>le</strong> in the center the binuc<strong>le</strong>ated<br />

central cell constitutes the<br />

biggest cell of the mature embryo sac.<br />

1.1.2. Acquisition of Cell Fate in the Ovu<strong>le</strong> and the Fema<strong>le</strong> Gametophyte<br />

Contrary to animals, which set asi<strong>de</strong> their germ cells early <strong>du</strong>ring embryonic <strong>de</strong>velopment<br />

by establishing c<strong>le</strong>arly <strong>de</strong>fined germ lines (Seydoux and Braun, 2006; Nokamura and<br />

Seydoux, 2008), p<strong>la</strong>nts <strong>de</strong>fine their repro<strong>du</strong>ctive cells <strong>la</strong>te <strong>du</strong>ring <strong>de</strong>velopment, and do not<br />

have germ-lines as such (Walbot and Evans, 2003). Rather, somatic cells switch<br />

14


<strong>de</strong>velopmental programs to pro<strong>du</strong>ce repro<strong>du</strong>ctive cells. The resulting Polygonum type of<br />

fema<strong>le</strong> gametophyte has four cell types showing particu<strong>la</strong>r attributes, and fulfilling<br />

specialized functions <strong>du</strong>ring the repro<strong>du</strong>ctive process (Figure 2).<br />

One egg and two synergids form col<strong>le</strong>ctively the egg apparatus, which is localized at the<br />

micropy<strong>la</strong>r end of the ovu<strong>le</strong>. Cytological <strong>de</strong>scriptions of the egg reveal a highly po<strong>la</strong>rized<br />

cytop<strong>la</strong>sm content. Whi<strong>le</strong> ultrastructural <strong>de</strong>scriptions of the egg cytop<strong>la</strong>sm vary among<br />

species, a re<strong>la</strong>tive physiological quiescence is consistently <strong>de</strong>tected in the unfertilized eggs<br />

(Huang et al., 1992; Russell, 1993). The egg is f<strong>la</strong>nked by two synergids cells that function in<br />

the attraction of pol<strong>le</strong>n tube and constitute the target site for spermatic cells <strong>de</strong>livery<br />

(Higashiyama, 2002; Marton et al., 2005). Synergids differ in size, cytop<strong>la</strong>sm, and nuc<strong>le</strong>us<br />

po<strong>la</strong>rity with respect to the egg cell. Whi<strong>le</strong> in some species they are indistinguishab<strong>le</strong> from the<br />

egg, in others species, like maize, mature synergids are characterized by a filiform apparatus,<br />

a cell ingrowths with unc<strong>le</strong>ar function. The central cell is the <strong>la</strong>rgest cell in the embryo sac,<br />

and a big vacuo<strong>le</strong> fills almost 80% of its volume. The central cell contains two haploid nuc<strong>le</strong>i<br />

that may or may not be fused before fertilization, but are invariably positioned close to the<br />

egg cell. Finally, three antipodal cells are localized to the cha<strong>la</strong>zal end of the ovu<strong>le</strong> (opposite<br />

si<strong>de</strong> from the micropy<strong>le</strong>). They disp<strong>la</strong>y particu<strong>la</strong>r characteristics like a <strong>de</strong>nse cytop<strong>la</strong>smic<br />

content and small vacuo<strong>le</strong>s and nuc<strong>le</strong>i. Cytochemical data also reveals high metabolic activity<br />

but no c<strong>le</strong>ar function has been assigned to these cells. In some species they <strong>de</strong>generate before<br />

fertilization but in others, for examp<strong>le</strong> maize, they proliferate before fertilization. Antipods<br />

and synergids cells are ephemerals, they col<strong>la</strong>pse and <strong>de</strong>generate <strong>du</strong>ring early stages of seed<br />

<strong>de</strong>velopment, presumably by following a (not well un<strong>de</strong>rstood) cell <strong>de</strong>ath program (Wu and<br />

Cheung, 2000).<br />

The mechanisms <strong>de</strong>termining the transition from somatic to germinal fate, and the number<br />

of germ cells in the ma<strong>le</strong> and fema<strong>le</strong> archesporial tissues is not un<strong>de</strong>rstood yet, even though<br />

some mutants <strong>de</strong>veloping more than one MMC have been <strong>de</strong>scribed in Poaceae (Nonomura et<br />

al., 2003; Sheridan et al., 1996). Cell fate <strong>de</strong>terminism in the fema<strong>le</strong> gametophyte is better<br />

<strong>de</strong>fined. It has been shown that it <strong>de</strong>pends on nuc<strong>le</strong>i positioning along its cha<strong>la</strong>zal-micropi<strong>la</strong>r<br />

axis, whose establishment is linked to auxin distribution within the gametophyte, the auxin<br />

gradient acting as a morphogen (Pagnussat et al., 2007; Pagnussat et al., 2009). Whi<strong>le</strong> these<br />

results suggest a mo<strong>de</strong>l for gametophyte patterning in Arabidopsis, the mechanisms regu<strong>la</strong>ting<br />

this intra-cellu<strong>la</strong>r po<strong>la</strong>rization of auxin, and the acquisition of indivi<strong>du</strong>al cell i<strong>de</strong>ntity in the<br />

embryo sac remain unc<strong>le</strong>ar. Arabidopsis mutants affecting the LACHESIS (LIS) gene switch<br />

15


central cell to egg cell i<strong>de</strong>ntity. LIS, and two other mutants in the same c<strong>la</strong>ss, CLOTHO (CLO)<br />

and ATROPOS (ATO) are also necessary for the restricted expression of egg- and central-cell<br />

fate. All three genes are core spliceosomal components, suggesting that pre-mRNA splicing<br />

mechanisms regu<strong>la</strong>te temporal and spatial cell fate in the fema<strong>le</strong> gametophyte (Grob-Hardt et<br />

al., 2007; Kägi and Grob-Hardt, 2007; Moll et al., 2008). The re<strong>la</strong>tionship between<br />

spliceosome activity and cell i<strong>de</strong>ntity is unc<strong>le</strong>ar, though. Col<strong>le</strong>ctively, our un<strong>de</strong>rstanding of<br />

cell fate <strong>de</strong>terminism <strong>du</strong>ring repro<strong>du</strong>ctive <strong>de</strong>velopment is thus extremely limited.<br />

1.1.3. Apomictic Developments<br />

Bi-parental sexual repro<strong>du</strong>ction is overly dominant in flowering p<strong>la</strong>nts. Alternatively, some<br />

p<strong>la</strong>nt species have modified their repro<strong>du</strong>ctive process and acquired means of repro<strong>du</strong>cing<br />

asexually. One such strategy is apomixis, a natural process of cloning by seeds (Nog<strong>le</strong>r,1984).<br />

In apomictic p<strong>la</strong>nts, fema<strong>le</strong> germ cells avoid the two hallmark components of sexual<br />

repro<strong>du</strong>ction, meiosis and fertilization (Figure 3). This results in the pro<strong>du</strong>ction of embryos<br />

that are genetically i<strong>de</strong>ntical to their mother p<strong>la</strong>nts.<br />

There are two main apomictic mechanisms (reviewed in Nog<strong>le</strong>r, 1984; Grimanelli et al.,<br />

2001; Koltunow and Grossnik<strong>la</strong>us, 2003), involving either somatic (sporophytic apomixis)<br />

and/or repro<strong>du</strong>ctive cells (gametophytic apomixis). In sporophytic apomixis, somatic cells in<br />

the mature ovu<strong>le</strong> acquire the ability to pro<strong>du</strong>ce adventitious embryos, without the formation<br />

of a gametophytic generation. The embryo arises spontaneously from the nucel<strong>la</strong>r cells <strong>du</strong>ring<br />

early stages of the sexual embryo <strong>de</strong>velopment. Like zygotic embryos, survival of the<br />

adventitious embryos <strong>de</strong>pend of the normal growth of an endosperm and therefore, most, if<br />

not all of these embryos co-exist with sexual <strong>de</strong>velopment within the seed, and emerge in<br />

positions adjacent to the sexually <strong>de</strong>rived ES.<br />

Two different manners of gametophytic apomixis, apospory and diplospory, have been<br />

<strong>de</strong>scribed in diverse apomictic species. Both apospory and diplospory <strong>de</strong>velop an unre<strong>du</strong>ced<br />

embryo sac, originated from either a megaspore mother cell (diplospory) or a somatic cell<br />

from the ovu<strong>le</strong> (apospory). In the diplosporous type of apomixis, which occurs for examp<strong>le</strong> in<br />

Tripsacum dactyloi<strong>de</strong>s (Leb<strong>la</strong>nc et al., 1995), a wild re<strong>la</strong>tive of maize, or Boechera holboellii<br />

(Naumova et al., 2001), that is re<strong>la</strong>ted to Arabidopsis, the MMC differentiates but fails to<br />

initiate or comp<strong>le</strong>te meiosis. Instead, meiosis is substituted by apomeiosis, a mitotic-like<br />

division characteristic of apomicts. These apomeiotic MMCs, or <strong>de</strong>rivatives, acquire the<br />

i<strong>de</strong>ntity of a functional megaspore, and simi<strong>la</strong>rly to sexual p<strong>la</strong>nts, they follow a wild type<br />

16


megagametogenesis to pro<strong>du</strong>ce a Polygonum type of embryo sac. Cell fate and organization<br />

in the apomeiotic embryo sac is broadly simi<strong>la</strong>r in sexually and apomictically <strong>de</strong>rived<br />

gametophyte. However, specific abnormalities, such as <strong>la</strong>ck of po<strong>la</strong>rization <strong>du</strong>ring<br />

megagametogenesis, number and/or size of free nuc<strong>le</strong>i, inverted embryo sacs or abnormal<br />

location of the egg and central cells are frequently found in apomicts (Bicknell and Koltunow,<br />

2004). Apomeiosis is often consi<strong>de</strong>red as a fema<strong>le</strong>-specific repro<strong>du</strong>ctive phenotype, but<br />

unre<strong>du</strong>ced pol<strong>le</strong>n grains formation has also been reported in apomictic Boechera (Schranz et<br />

al., 2006) and Tripsacum (Grimanelli et al., 2003), suggesting that ma<strong>le</strong> and fema<strong>le</strong> gametes<br />

are affected in simi<strong>la</strong>r ways.<br />

At the end of the formation of the diplosporous fema<strong>le</strong> gametophyte, autonomous divisions<br />

of the unfertilized egg cell pro<strong>du</strong>ce a parthenogenetic pro-embryo, whi<strong>le</strong> the unre<strong>du</strong>ced<br />

central cell either requires (pseudogamy) or does not require (autonomous) fertilization to<br />

initiate endosperm <strong>de</strong>velopment. In indivi<strong>du</strong>al ovu<strong>le</strong>s, diplosporic <strong>de</strong>velopment recruits the<br />

MMC to apomixis, and thus exclu<strong>de</strong>s sexual embryo sac formation. In some species,<br />

however, displosporous <strong>de</strong>velopment coexists with aposporic embryo sac formation (Bonil<strong>la</strong><br />

and Quarin, 1997).<br />

Aposporic embryo sacs, by contrast, originate from somatic cells, and therefore often<br />

coexist with a sexual embryo sacs <strong>de</strong>rived from the MMC. Here, megasporogenesis is omitted<br />

and one or more functional megaspores <strong>de</strong>velop directly from somatic cells in the nucellus<br />

(aposporous initials), arising adjacent to the meiotically re<strong>du</strong>ced megaspore. As in diplospory,<br />

the aposporous initials proceed normally through megagametogenesis, and several unre<strong>du</strong>ced<br />

embryo sacs are seen in indivi<strong>du</strong>al ovu<strong>le</strong>s. The structural abnormalities found in diplospory<br />

are usually found with a higher frequency in apospory. Simi<strong>la</strong>rly, the embryo <strong>de</strong>velops<br />

parthenogenetically and the endosperm is either pseudogamous, or autonomous.<br />

In most, if not all documented cases, apomixis and sexuality are not mutually exclusive<br />

since they usually coexist in the same ecotypes with varying <strong>le</strong>vels of re<strong>la</strong>tive expression<br />

(Nog<strong>le</strong>r, 1984; Bicknell et al., 2003; Barcaccia et al., 2006). Simi<strong>la</strong>rly, in the case of<br />

gametophytic apomixis, the formation of multip<strong>le</strong> embryo sacs is a hallmark of aposporous<br />

apomixis, but some diplosporous p<strong>la</strong>nts also <strong>de</strong>velop extra embryo sac-like structures. This<br />

col<strong>le</strong>ctively suggests that the frontier between both types of apomixis, and between apomixis<br />

and sexually, is re<strong>la</strong>tively blurry, fueling the perception that apomixis might be a <strong>de</strong>regu<strong>la</strong>ted<br />

form of sexual repro<strong>du</strong>ction rather than a new function (Grimanelli et al., 2001; Grimanelli et<br />

17


al., 2003; Tucker et al., 2003; Koltunow and Grossnik<strong>la</strong>us, 2003; Ozias-Akins and Van Dijk,<br />

2007).<br />

Figure 3. Alterations of the sexual repro<strong>du</strong>ctive pathway in the different apomictic routes<br />

(from Bicknell and Koltunow, 2004). The typical progression of the sporophytic and gametophytic<br />

generations are schematically represented <strong>du</strong>ring the life cyc<strong>le</strong> of sexual p<strong>la</strong>nts (yellow line). The<br />

gametophytic routes of apomixis, diplospory (purp<strong>le</strong> line) and apospory (red line) bypass both meiosis<br />

(megasporogenesis) and doub<strong>le</strong> fertilization but they follow the successive <strong>de</strong>velopmental steps of the<br />

life cyc<strong>le</strong>. In the sporophytic type (or adventitious embryony; green line), somatic embryos are formed<br />

from somatic cells of the ovu<strong>le</strong> and <strong>de</strong>velop alongsi<strong>de</strong> the normal, re<strong>du</strong>ced, fema<strong>le</strong> gametophyte..<br />

Whi<strong>le</strong> bi-parental sexual repro<strong>du</strong>ction is overly dominant, in both p<strong>la</strong>nts and animals, it<br />

also entails short-term disadvantages over asexual repro<strong>du</strong>ction (Partridge and Hurst, 1998).<br />

Chiefly, obligate meiosis in sexually repro<strong>du</strong>cing organisms prevents the perpetuation of<br />

phenotypes with exceptional fitness. In asexual repro<strong>du</strong>ction, by contrast, organisms<br />

perpetuate themselves without need of a partner, <strong>le</strong>ading to offspring that are genetically<br />

i<strong>de</strong>ntical. This provi<strong>de</strong>s a strong se<strong>le</strong>ctive advantage to exceptionally fit asexual ecotypes.<br />

The evolutionary theory, however, also predicts that the long-term cost of asexuality in<br />

wild popu<strong>la</strong>tion will erase its immediate benefits. In control<strong>le</strong>d environments or experimental<br />

popu<strong>la</strong>tions, however, cloning has c<strong>le</strong>ar values, be it in medicine (therapeutic cloning), and<br />

agriculture (p<strong>la</strong>nt and animal pro<strong>du</strong>cts). The potential applications of apomixis in agriculture<br />

18


are quite obvious in terms of p<strong>la</strong>nt breeding and seed pro<strong>du</strong>ction methods, and have been<br />

discussed in <strong>de</strong>tails in several reviews (for examp<strong>le</strong> Spil<strong>la</strong>ne et al., 2001; Spil<strong>la</strong>ne et al.,<br />

2004). However, although apomixis occurs in more than 400 angiosperm species, it is not<br />

found in major agriculture crops, and attempts to intro<strong>du</strong>ce or engineer apomixis in otherwise<br />

sexual p<strong>la</strong>nts have proved difficult.<br />

The work <strong>de</strong>scribed in this document uses maize, and Tripsacum, as its key experimental<br />

systems. Only few agriculturally important species have close apomictic re<strong>la</strong>tives (Bicknell<br />

and Koltunow, 2004). This inclu<strong>de</strong>s maize (Zea mays), a crop which has a wi<strong>de</strong>r range of uses<br />

than any other cereal, and constitutes the stap<strong>le</strong> food in many American and African countries.<br />

In Mexico, maize is in fact much more than food or feed. Rather, it has been at the root of its<br />

cultural heritage since the Maya and Aztec civilizations (Mangelsdorf, 1974), and is an<br />

essential component of the pre-colonial cosmogony. Tripsacum is an apomictic wild re<strong>la</strong>tive<br />

of maize, en<strong>de</strong>mic of Mesoamerica. Both species are genetically quite close, and apomictic<br />

maize-Tripsacum hybrid p<strong>la</strong>nt can be obtained re<strong>la</strong>tively easily (Leb<strong>la</strong>nc et al., 1996).<br />

Apomictic hybrids obtained with maize and Tripsacum repro<strong>du</strong>ce by diplosporous,<br />

pseudogamous gametophytic apomixis. Giving the wealth of genetic, genomic and cell<br />

biology tools avai<strong>la</strong>b<strong>le</strong> in maize, such combination of a good experimental system together<br />

with a close apomictic re<strong>la</strong>tive provi<strong>de</strong>s an attractive mo<strong>de</strong>l to study apomixis. Our group has<br />

been using this mo<strong>de</strong>l for a long time, and contributed some interesting data regarding the<br />

genetic control of apomixis (Leb<strong>la</strong>nc et al., 1995; Leb<strong>la</strong>nc et al., 1996; Leb<strong>la</strong>nc et al., 2009;<br />

Grimanelli et al., 1998a; Grimanelli et al., 1998b; Grimanelli et al., 2001; Grimanelli et al.,<br />

2003; Grimanelli et al., 2005).<br />

1.1.4. The Genetic Control of Apomixis<br />

It is wi<strong>de</strong>ly accepted that apomixis is un<strong>de</strong>r genetic control. The inheritance of apomixis<br />

has been studied using segregating popu<strong>la</strong>tion in diverse species. The results indicate<br />

commonalities, but also divergences (Reviewed in Ozias-Akins and Van Dijk, 2007).<br />

Inheritance and mapping studies in aposporic species such as Pennisetum (Ozias Akins et al.,<br />

1998), Paspalum (Martinez et al., 2001) and Hieracium (Bicknell et al., 2000) indicate that<br />

apomixis segregates as a sing<strong>le</strong> dominant genomic region, suggesting monogenic inheritance,<br />

or at <strong>le</strong>ast a limited number of dominant al<strong>le</strong><strong>le</strong>s. However, in other species such as Taraxacum<br />

officina<strong>le</strong>, or Poa pratensis, segregation of the different components of apomixis imply<br />

several in<strong>de</strong>pen<strong>de</strong>nt genes contributing to the entire apomictic process (van Dijk et al., 2003;<br />

19


Matzk et al., 2000). Furthermore, studies in Tripsacum (Grimanelli et al., 1998a), <strong>la</strong>ter<br />

confirmed in other species, including Pennisetum (Ozias-Akins et al., 1998) and Paspalum<br />

(Martinez et al., 2003), indicate that the chromosomal segment co-segregating with apomixis<br />

is likely a <strong>la</strong>rge block of non-recombining DNA, presumably consisting mostly of gene-poor<br />

heterochromatin (Conner et al., 2008). Overall, our un<strong>de</strong>rstanding of apomixis from a genetic<br />

standpoint remains thus extremely limited.<br />

Interestingly, some studies showed that apomixis and sexuality share key regu<strong>la</strong>tory<br />

mechanisms (Tuckey et al., 2003). Thus, it has been proposed that apomixis could result from<br />

a temporal or spatial <strong>de</strong>regu<strong>la</strong>tion of the transcriptional programs controlling sexual<br />

repro<strong>du</strong>ction (Koltunow and Grossnik<strong>la</strong>us 2003; Grimanelli et al., 2003; Bicknell and<br />

Koltunow, 2004; Brad<strong>le</strong>y et al., 2007). The mo<strong>de</strong>l postu<strong>la</strong>tes that sexual repro<strong>du</strong>ction involves<br />

several transitions (from somatic cells to repro<strong>du</strong>ctive cells, from sporogenesis to<br />

gametogenesis, from gametogenesis to embryogenesis) whose or<strong>de</strong>rly progression is altered<br />

in apomicts, resulting in heterochronic expression of the core <strong>de</strong>velopmental programs.<br />

Several comparative transcriptome profiling experiments have been carried out between<br />

sexual and apomictic p<strong>la</strong>nts with the aim of recovering «switches» differentiating sexual and<br />

apomictic repro<strong>du</strong>ction (Albertini et al., 2004; Grimanelli et al., 2005; Sharbel et al., 2009).<br />

The results showed that only an surprisingly re<strong>du</strong>ced proportion of the global transcript<br />

popu<strong>la</strong>tions are differentially expressed between sexual and apomictic p<strong>la</strong>nts. In<strong>de</strong>ed, only<br />

few candidate genes have been i<strong>de</strong>ntified, and their involvement in the control of apomixis<br />

remains <strong>la</strong>rgely specu<strong>la</strong>tive.<br />

Thus, neither genetic nor profiling approaches have helped much unlocking the mo<strong>le</strong>cu<strong>la</strong>r<br />

<strong>de</strong>terminants of apomixis. By contrast, however, the analysis of sexual Arabidopsis mutants<br />

exhibiting phenotypes that resemb<strong>le</strong> apomixis in some ways, and particu<strong>la</strong>rly diplospory, have<br />

generated interesting candidates, possibly involved in regu<strong>la</strong>ting key e<strong>le</strong>ments of apomixis<br />

(Ravi et al., 2008; d’Erfuth et al., 2009). Still at early stages, these alternative approaches,<br />

toward the engineering of <strong>de</strong> novo versions of apomixis by combining mutant phenotypes in<br />

sexual mo<strong>de</strong>l species, promise an interesting alternative for manipu<strong>la</strong>ting apomixis.<br />

20


1.1.5. Ro<strong>le</strong> of Hybridization and Polyploidy in Apomicts<br />

The natural occurrence of apomixis has been linked to so-cal<strong>le</strong>d «genomic shocks», that is,<br />

genome wi<strong>de</strong> changes in genome structure and dynamic, following major disruptive events,<br />

such as interspecific hybridization, or changes of polyploidy. The argument was initially<br />

suggested by the fact that most apomictic species are polyploid and highly heterozygous,<br />

often of interspecific origin (Carman, 1997). The ro<strong>le</strong> of ploidy response or hybridization as<br />

causes or consequences of apomixis however, have never been fully, functionally tested.<br />

The close simi<strong>la</strong>rities between sexual and apomictic repro<strong>du</strong>ction were emphasized in an<br />

evolutionary theory of apomixis proposed by J. Carman (1997), “the <strong>du</strong>plicate-gene<br />

asynchrony hypothesis”. This hypothesis postu<strong>la</strong>tes that apomixis result from the<br />

hybridization of re<strong>la</strong>ted species showing differences in repro<strong>du</strong>ctive behavior. Carman<br />

suggested that specific combinations of hybrid genomes may result in unstab<strong>le</strong> expression of<br />

repro<strong>du</strong>ctive traits, and consequently, alterations in the temporal and/or spatial patterns of<br />

repro<strong>du</strong>ctive genes expression. Indirect support for this hypothesis can be found in hybrids of<br />

sexual progenitors disp<strong>la</strong>ying distinct repro<strong>du</strong>ctive anomalies as a result of changes in genes<br />

expression patterns following for examp<strong>le</strong> allopolyploid formation (Chen and Ni, 2006; Chen,<br />

2007; Chen et al., 2008). Simi<strong>la</strong>rly, abnormal meiotic behavior can be found in autotetraploids<br />

(Carvalho et al., 2009), and heterochronic expression of repro<strong>du</strong>ctive traits is a common<br />

observation in sexual diploid Tripsacum accessions (Brad<strong>le</strong>y et al., 2007). More recently it<br />

has been proposed that mechanisms affecting the fate of orthologous and homoeologous<br />

genes in allopolyploids could provi<strong>de</strong> a f<strong>le</strong>xib<strong>le</strong> mean to respond to polyploid and genomic<br />

shock in hybrids (Chen, 2007; Gaeta et al., 2007; Gaeta et al., 2009), allowing polyploid<br />

hybrids to adapt to new repro<strong>du</strong>ctive strategies, possibly including apomixis. This p<strong>la</strong>ces<br />

hybridization and ploidy as consequences rather than cause of apomixis.<br />

1.1.6. Epigenetic, Cell Fate and Apomixis<br />

Un<strong>de</strong>rlying all the previous assumptions, c<strong>le</strong>arly, is the concept that genomic shocks acts to<br />

modify the epigenetic background in which repro<strong>du</strong>ctive <strong>de</strong>velopment operates. Starting with<br />

the <strong>la</strong>ndmark characterization of the FIS (FERTILIZATION INDEPENDENT SEED) c<strong>la</strong>ss of<br />

genes in Arabidopsis (reviewed in Baroux et al., 2007, Autran et al., 2005), the i<strong>de</strong>a that<br />

epigenetic-<strong>le</strong>vel regu<strong>la</strong>tion might p<strong>la</strong>y a critical ro<strong>le</strong> in differentiating apomixis and sexual<br />

repro<strong>du</strong>ction has gained consi<strong>de</strong>rab<strong>le</strong> traction. The FIS c<strong>la</strong>ss of genes MEA (MEDEA;<br />

Grossnik<strong>la</strong>us et al., 1998), an enhancer of Zeste-like SET-domain protein, FIE1<br />

21


(FERTILIZATION INDEPENDENT ENDOSPERM, Ohad et al., 1999), WD-40 repeat protein,<br />

and FIS2, a Zinc-finger transcription factor (Luo et al., 1999), were initially i<strong>de</strong>ntified in<br />

genetic screens for apomixis-like behavior. They are involved in the regu<strong>la</strong>tion of cell division<br />

in the fema<strong>le</strong> gametophyte by the Polycomb Group comp<strong>le</strong>x, to whom both MEDEA and FIS2<br />

belong, and their mutant al<strong>le</strong><strong>le</strong>s pro<strong>du</strong>ce partial seed <strong>de</strong>velopment in absence of fertilization.<br />

Both MEDEA and FIS2 are imprinted, that is, show parent of origin specific expression.<br />

Col<strong>le</strong>ctively, they offered the first clues that epigenetic regu<strong>la</strong>tors were important to seed<br />

<strong>de</strong>velopment.<br />

Epigenetic control has been known for a long time to p<strong>la</strong>y a crucial ro<strong>le</strong> in <strong>de</strong>fining cell<br />

fate in both p<strong>la</strong>nts and animals (Bernstein et al., 2006; Buszczack and Spradling, 2006; Costa<br />

and Shaw, 2006; Caro et al., 2007; Hajkova et al., 2008; Gereige and Mikko<strong>la</strong>, 2009). Such<br />

epigenetic regu<strong>la</strong>tion involves changes in gene expression without changes in DNA sequence,<br />

and <strong>de</strong>pends on stab<strong>le</strong>, mitotically (and eventually meiotically) heritab<strong>le</strong> marks on DNA or<br />

chromatin (see below). In the ovu<strong>le</strong> as in any organs, the <strong>de</strong>finition of each cell lineage is the<br />

consequence of a finely tuned control of “on” and “off” gene expression states, a process<br />

which is intrinsically epigenetic. Conceptually, at <strong>le</strong>ast three transitions take p<strong>la</strong>ce <strong>du</strong>ring<br />

repro<strong>du</strong>ctive <strong>de</strong>velopment involving changes in cell i<strong>de</strong>ntity, and each could differ between<br />

apomictic and sexual p<strong>la</strong>nts: (1) the transition from the soma to the germ cells, at the<br />

beginning of megasporogenesis, (2) the transition between the meiotic pro<strong>du</strong>cts and the<br />

functional megaspore, at the beginning of megagametogenesis, and (3) the transition from the<br />

gamete to the zygote, at the initiation of embryo <strong>de</strong>velopment.<br />

A phenomenon akin to transdifferentiation (the conversion to a cell or one tissue lineage<br />

into a cell of a comp<strong>le</strong>tely different lineage; Costa and Shaw, 2006) has been proposed for a<br />

long time to exp<strong>la</strong>in apomixis (Peacock, 1992; Carman, 1997). It offers an exp<strong>la</strong>nation for the<br />

cellu<strong>la</strong>r fate of apomeiotic MMCs, or the direct <strong>de</strong>termination of an unre<strong>du</strong>ced functional<br />

megaspore from the nucel<strong>la</strong>r cells, and eventually, the triggering of parthenogenesis in the<br />

unre<strong>du</strong>ced germ cell.<br />

So could the orchestration of the transition between these different states by epigenetic<br />

means p<strong>la</strong>y a ro<strong>le</strong> in <strong>de</strong>fining apomixis? Recent studies have c<strong>le</strong>arly <strong>de</strong>monstrated that in<strong>de</strong>ed,<br />

epigenetic mechanisms have a crucial ro<strong>le</strong> in <strong>de</strong>velopmental transitions <strong>du</strong>ring vegetative<br />

growth (Poethig, 2003; Peragine et al., 2004; Bezhani et al., 2007; Poethig, 2009). Simi<strong>la</strong>rly,<br />

several lines of evi<strong>de</strong>nces suggest that transitions <strong>du</strong>ring repro<strong>du</strong>ction and early seed<br />

<strong>de</strong>velopment are epigenetically control<strong>le</strong>d through dynamic changes in chromatin state<br />

22


(Huanca-Mamani et al., 2005; Xiao et al., 2006; Baroux et al., 2007; Curtis and Grossnik<strong>la</strong>us,<br />

2008). The hypothesis is c<strong>le</strong>arly attractive, but whether alterations in the epigenetic regu<strong>la</strong>tion<br />

orchestrating these transitions converge in a cellu<strong>la</strong>r transdifferentiation, and whether they are<br />

involved in the differentiation between apomictic and sexual repro<strong>du</strong>ction is currently<br />

unknown.<br />

1.1.7. Mechanisms of Chromatin Dynamics<br />

Chromatin represents the compacted form of genomic DNA in the nuc<strong>le</strong>us and its basic<br />

unit is the nuc<strong>le</strong>osome (Figure 4A). The nuc<strong>le</strong>osome is composed by a core partic<strong>le</strong> consisting<br />

of an octamer of histones, that are surrounding by 147 pb of DNA wrapped in 1.65 turns. The<br />

octamer contains two mo<strong>le</strong>cu<strong>le</strong>s each of the highly conserved histone proteins, H2A, H2B, H3<br />

and H4. Toward their C termini region, the histones have fold domains of about 70 amino<br />

acids, which mediate the interactions between the core of histones and between histones and<br />

DNA. The nuc<strong>le</strong>osomes are interconnected by a linker of 10-80 pb DNA. The H1 histone<br />

connects the outsi<strong>de</strong> region of the core partic<strong>le</strong> and interact with about 20 pb of linker DNA.<br />

Its function is associated with the mo<strong>du</strong><strong>la</strong>tion of chromatin compaction (C<strong>la</strong>usell et al., 2009).<br />

The N terminal region of the core histones has lysine-rich tails which are highly conserved<br />

between species and are the target sites of a high variety of cova<strong>le</strong>nt modifications. These tails<br />

p<strong>la</strong>y an important ro<strong>le</strong> in the highest-or<strong>de</strong>r of chromatin structure, as their cova<strong>le</strong>nt<br />

modifications altering significantly the stability of the nuc<strong>le</strong>osome. The combination of these<br />

cova<strong>le</strong>nt modifications represent a key feature of epigenetic marking, and is often referred to<br />

as the «histone co<strong>de</strong>» (Strahl and Allis, 2000; Jenuwein and Allis, 2001), which p<strong>la</strong>ys a<br />

functional ro<strong>le</strong> in nuc<strong>le</strong>us organization, the control of transcription, and the <strong>de</strong>finition of cell<br />

fate (Lee et al., 2006; Costa and Shaw, 2007; Ear<strong>le</strong>y et al., 2007; Corpet and Almouzni, 2009;<br />

Hublitz et al., 2009; Mohn and Schübe<strong>le</strong>r, 2009).<br />

Two distinct states of chromatin are traditionally <strong>de</strong>fined (although these states are in fact<br />

highly dynamic structures), euchromatin and heterochromatin (Figure 4B). Heterochromatin<br />

is a highly con<strong>de</strong>nsed state of chromatin, associated to <strong>la</strong>te replication, mainly localized at<br />

centromeres and telomeres. It usually presents a low gene content, a high content of repetitive<br />

sequences, re<strong>du</strong>ced meiotic recombination and low transcriptional activity. In Arabidopsis,<br />

the factors implicated in heterochromatin formation are repetitious DNA, DNA methy<strong>la</strong>tion,<br />

H3 methy<strong>la</strong>tion on lysine 9 (H3K9), and small RNAs (Grewal and Moazed, 2003; Grewal and<br />

Elgin, 2007; Grewal and Jia, 2007; Ha<strong>le</strong> et al., 2009; Hublitz et al., 2009). Genes found in<br />

23


constitutive heterochromatin are usually uniform in their nuc<strong>le</strong>osome array and can remain in<br />

an inactive state as heterochromatin permanently. By contrast, facultative heterochromatin<br />

can switch to a euchromatic state and allow gene expression, by removing the histones<br />

modifications and the proteins associated with the inactive state. The euchromatin is a generich<br />

chromatin, <strong>le</strong>ss con<strong>de</strong>nsed, localized at the chromosome arms, is enriched in unique<br />

sequences, replicated throughout S phase, broadly constitutes the transcriptionally active<br />

component of the genome, and recombines <strong>du</strong>ring meiosis (Grewal and Elgin, 2007).<br />

Chromatin structure represents a highly dynamic system in which arrays of nuc<strong>le</strong>osomes<br />

are disrupted, modified or removed by the chromatin remo<strong>de</strong>ling factors (Jerzmanowski,<br />

2007), and histone proteins modified by different chemical groups. Temporal and/or spatial<br />

chromatin modifications provi<strong>de</strong> a variety of mechanisms to control switch <strong>du</strong>ring cell<br />

differentiation and <strong>de</strong>velopment (Corpet and Almouzni, 2009). Such dynamic state, which is<br />

<strong>de</strong>termined by chromatin modifying enzymes (CME), tunes the accessibility of the DNA<br />

mo<strong>le</strong>cu<strong>le</strong> to a high variety of regu<strong>la</strong>tory enzymes, including transcription factor (Greval and<br />

Moazed, 2003). Genome-wi<strong>de</strong> analysis in both p<strong>la</strong>nts (Zilberman et al., 2007) and animals<br />

(Schübe<strong>le</strong>r et al., 2004, and numerous references since then) have confirmed the<br />

inter<strong>de</strong>pen<strong>de</strong>nt re<strong>la</strong>tionship between dynamic chromatin structures and transcription. Here, we<br />

will briefly summarize the state of the art regarding two key modifications that are important<br />

to this work, DNA methy<strong>la</strong>tion and Histone tail modifications. The field is an extremely<br />

dynamic one, and this presentation is necessarily partial.<br />

24


A<br />

B<br />

Heterochromatin<br />

Me<br />

Me<br />

Me<br />

Transcription<br />

repression<br />

Euchromatin<br />

Ac<br />

Ac<br />

Ac<br />

Transcription<br />

activation<br />

Figure 4. Chromatin Structure. A) Genomic DNA is packaged into the nuc<strong>le</strong>osomes; an indivi<strong>du</strong>al<br />

nuc<strong>le</strong>osome is composed by the core of histones which is formed by two mo<strong>le</strong>cu<strong>le</strong>s each of H2A,<br />

H2B, H3 and H4. The histone octamer together with 147 bp of DNA and other proteins constitute the<br />

chromatin structure; image taken from Morgan, 2008. B) The genome is organized into different<br />

compartments, corresponding to different <strong>le</strong>vels of chromatin organization.<br />

1.1.8. Modifying Enzymes and Chromatin Dynamics<br />

1.1.8.1. DNA methy<strong>la</strong>tion<br />

In eukaryots, cytosine resi<strong>du</strong>es are modified by methy<strong>la</strong>tion, one of the most studied<br />

epigenetic mechanisms (for a textbook: Allis, Jenuwein and Reinberg, 2007). The process<br />

involves the cova<strong>le</strong>nt addition of a methyl group to the cytosine five (C5m) by DNA<br />

methyltransferases, which transfer a methyl group from S-a<strong>de</strong>nosyl-L-methionine (AdoMet)<br />

to cytosine resi<strong>du</strong>es. DNA methy<strong>la</strong>tion occurs at genes sequences, repeated and transposon<br />

sequences. Methy<strong>la</strong>tion at 5’ control regions is generally associated with transcriptional<br />

repression and/or si<strong>le</strong>ncing of genes. Biological consequences of loss of DNA methy<strong>la</strong>tion<br />

inclu<strong>de</strong> arrest of embryo <strong>de</strong>velopment, switch-on of apoptotic effects, and usually <strong>le</strong>thality in<br />

mammals. Numerous effects on morphology and <strong>de</strong>velopment have been also reported in<br />

p<strong>la</strong>nts (Gehring and Henikoff, 2007).<br />

25


Whi<strong>le</strong> many p<strong>la</strong>nt and animal species use DNA methy<strong>la</strong>tion as an epigenetic mark, p<strong>la</strong>nt<br />

DNA methy<strong>la</strong>tion has unique features. DNA methy<strong>la</strong>tion in p<strong>la</strong>nts takes p<strong>la</strong>ce on all three<br />

possib<strong>le</strong> cytosine contexts: CG, CHG and CHH, where H represent A,T, or C. Repeats in<br />

general are highly associated with non-CG methy<strong>la</strong>tion (but also CG), whi<strong>le</strong> genes are<br />

characterized by CG (and limited non-CG) methy<strong>la</strong>tion. The ro<strong>le</strong> of CG methy<strong>la</strong>tion in the<br />

coding region of the genes is not absolutely c<strong>le</strong>ar.<br />

In Arabidopsis, where the process is best un<strong>de</strong>rstood, at <strong>le</strong>ast three c<strong>la</strong>sses of DNA<br />

cytosine methyltransferases (DMTs) intervene in methy<strong>la</strong>tion pathways: DRM, CMT, and<br />

MET. DRM1 and DRM2 (DOMAINS REARRANGED METHYL TRANSFERASE1 and 2) take<br />

part in the so cal<strong>le</strong>d RdDM (RNA-directed DNA methy<strong>la</strong>tion) pathway and are the main <strong>de</strong><br />

novo DMTs involved in all sequence contexts (Cao and Jacobsen, 2002). DRMs also p<strong>la</strong>y a<br />

ro<strong>le</strong>, together with CMT3 (CHROMOMETHYLTRANSFERASE3), in the maintenance of<br />

methy<strong>la</strong>tion at non-CG sites (Cao et al., 2003) and are required for maintaining genes<br />

si<strong>le</strong>ncing (Lindroth et al., 2001). Curiously, it is only in a trip<strong>le</strong> drm1drm2cmt3 mutant that a<br />

loss-of-function of DRM genes have any phenotypic effects. The effects results from the loss<br />

of non-CG methy<strong>la</strong>tion at the endogenous gene SUPRESSOR of drm1drm2cmt3 (SDC;<br />

Hen<strong>de</strong>rson and Jacobsen, 2008). Phenotypic effects of CMT3 are mild, and only <strong>de</strong>tected<br />

<strong>du</strong>ring early embryogenesis (Xiao et al., 2006). Finally, MET1 (METHYLTRANSFERASE1) is<br />

involved in maintaining DNA methy<strong>la</strong>tion at CG dinuc<strong>le</strong>oti<strong>de</strong>s, is required to maintain<br />

methy<strong>la</strong>tion patterns <strong>du</strong>ring ma<strong>le</strong> and fema<strong>le</strong> gametogenesis (Saze et al., 2003; Saze, 2008)<br />

and is essential for transgenerational stability of epigenetic information (Mathieu, et al.,<br />

2007). Additionally, DDM1 (DECREASE IN DNA METHYLATION1), a SWI2/SNF2-like<br />

chromatin-remo<strong>de</strong>ling factor, also participates in the maintenance of methy<strong>la</strong>tion at both CG<br />

and non-GC sites (Jed<strong>de</strong>loh et al., 1999). Mutations in DDM1 cause a loss of both DNA and<br />

H3K9 methy<strong>la</strong>tion in somatic tissues (Johnson et al., 2002; Gendrel et al., 2002; Schoft et al.,<br />

2009), and p<strong>la</strong>y a crucial ro<strong>le</strong> in maintaining genome integrity in the sperm cells <strong>du</strong>ring<br />

genome reprogramming (Slotkin et al., 2009; Schoft et al., 2009). Remarkably, gametophytic<br />

effects in DRM1, DRM2, CMT3 or DDM1 have not been reported (Saze, 2008), which would<br />

suggest that DNA methy<strong>la</strong>tion is fully dispensab<strong>le</strong> <strong>du</strong>ring gametogenesis, or, alternatively,<br />

that an additional, repro<strong>du</strong>ction-specific pathway comp<strong>le</strong>ments the «somatic» (DRM2, CMT3<br />

<strong>de</strong>pen<strong>de</strong>nt) pathways.<br />

Col<strong>le</strong>ctively with DMTs, small interfering RNAs (siRNAs), histone modifying enzymes<br />

and RNAi proteins, the RdDM pathway is involved in mediating both DNA and histone<br />

26


methy<strong>la</strong>tion (Huettel et al., 2007). This mechanism establishes <strong>de</strong> novo DNA methy<strong>la</strong>tion in<br />

all sequences contexts (Matzke at al., 2007; Saze, 2008), protecting the genome from<br />

transgenerational epigenetic <strong>de</strong>fects (Texeira et al., 2009). In Arabidopsis RdDM initiate<br />

when siRNA are generated by the action of the putative DNA-directed RNA polymerase Pol<br />

IV, RDR2 (RNA-<strong>de</strong>pen<strong>de</strong>nt RNA polymerase 2), and DCL3 (DICER-LIKE3) (Matzke et al.,<br />

2009). Then, the siRNAs are loa<strong>de</strong>d into ARGONAUTE proteins (AGO4 mainly) to direct<br />

DNA methy<strong>la</strong>tion by DRM2 (Figure 5). In addition, others components as an SNF2-like<br />

chromatin remo<strong>de</strong>ling protein DRD1, and an SMC-like protein DMS3 (Kanno et al., 2008),<br />

p<strong>la</strong>y ro<strong>le</strong>s in dsRNA-in<strong>du</strong>ced <strong>de</strong> novo methy<strong>la</strong>tion at non-CG contexts (Saze, 2008). The<br />

si<strong>le</strong>ncing effect of the RdDM pathway is reinforced by the establishment of repressive histone<br />

marks, in particu<strong>la</strong>r methy<strong>la</strong>tion of lysine 9 on histone H3 (H3K9me), by the activity of KYP<br />

(KRYPTONITE), the main H3K9 methyltransferase in Arabidopsis (Jackson et al., 2002), and<br />

HDA6 (HISTONE DEACETYLASE 6) (Probst et al., 2004).<br />

1.1.8.2. Histone modifications<br />

The amino-terminal tails of histones is the second major cova<strong>le</strong>nt regu<strong>la</strong>tory system of<br />

chromatin controlling genes expression (see Allis et al., 2007, for <strong>de</strong>tai<strong>le</strong>d informations).<br />

Histone tails may be modified by acety<strong>la</strong>tion, methy<strong>la</strong>tion, phosphory<strong>la</strong>tion, ubiquitination, or<br />

SUMOy<strong>la</strong>tion (Figure 6). Patterns of these post-trans<strong>la</strong>tional modifications in the<br />

nuc<strong>le</strong>osomes constitute a histone co<strong>de</strong>, which <strong>de</strong>fines chromatin states as either con<strong>du</strong>cive<br />

(permissive) or inhibitory (repressive) to transcription (Jenuwein and Allis, 2001). Histone<br />

modifications and DNA methy<strong>la</strong>tion are not in<strong>de</strong>pen<strong>de</strong>nt processes, as the histone co<strong>de</strong> is<br />

characterized by a close interaction between both chromatin marks (Jackson et al., 2002). The<br />

«comp<strong>le</strong>te» co<strong>de</strong> also inclu<strong>de</strong>s the effect of numerous other proteins. Their comp<strong>le</strong>te<br />

<strong>de</strong>scription is beyond the scope of this intro<strong>du</strong>ction, and only a short summary is provi<strong>de</strong>d<br />

below.<br />

27


Arabidopsis thaliana<br />

DNA methy<strong>la</strong>tion occurs at CG and non-<br />

CG (CHG, CHH) sequences contexts<br />

(yellow boxes). In Arabidopsis,<br />

establishment or <strong>de</strong> novo methy<strong>la</strong>tion is an<br />

exclusive activity of the DNA<br />

methyltransferases D O M A I N S<br />

REARRANGED METHYLTRANSFERASE<br />

1 and 2 (DRM1/DRM2). Maintenance of<br />

methy<strong>la</strong>tion requires not only DNA<br />

methyltransferases but also other CMEs,<br />

including at CG sites a histone <strong>de</strong>acety<strong>la</strong>se<br />

( H D A 6 ) , a S W I / S N F c h r o m a t i n<br />

remo<strong>de</strong>ling DECREASE IN DNA<br />

METHYLATION 1 (DDM1) and the DNA<br />

m e t h y l t r a n s f e r a s e<br />

METHYLTRANSFERASE 1 (MET1).<br />

Maintenance of methy<strong>la</strong>tion at non-CG<br />

RNAgenerating<br />

pathway<br />

RDR2<br />

DCL3<br />

RPD1<br />

AGO4<br />

RDR6<br />

SGS3<br />

SDE3<br />

AGO1<br />

Other?<br />

RNA proteins<br />

DNA methyltransferases<br />

SWI/SNF chromatin remo<strong>de</strong>ling ATP-<strong>de</strong>pending<br />

Histone methyltransferases<br />

Histone <strong>de</strong>acety<strong>la</strong>ses<br />

Establishment<br />

si RNA<br />

DRM1<br />

DRM2<br />

CHH<br />

CHG<br />

DDM1<br />

CG<br />

Maintenance<br />

DRM1/DRM2<br />

CMT3<br />

MET1<br />

HDA6<br />

si RNA<br />

KYP<br />

SUVH4<br />

SUVH?<br />

Figure 5. DNA methy<strong>la</strong>tion pathways in<br />

sites involves CHROMOMETHYLASE 3<br />

(CMT3) and DRM1/DRM2. CMT3 methy<strong>la</strong>tion is directed by KRYPTONITE (KYP) and other<br />

unknown histone methyltransferases. All methy<strong>la</strong>tion pathways, but maintenance of methy<strong>la</strong>tion at<br />

CG, involve siRNA generated from different branches of the RNAi pathway (dark blue boxes). AGO1,<br />

ARGONAUTE1; AGO4, ARGONAUTE 4; DCL3, DICER-LIKE 3; RDR2, RNA-DEPENDENT RNA<br />

POLYMERASE 2; RDR6, RNA-DEPENDENT RNA POLYMERASE 6; RPD1, RNA POLYMERASE<br />

D1; SDE3, SILENCING DEFECTIVE 3; SGS3, SUPPRESSOR OF GENE SILENCING 3. siRNA,<br />

small interfering RNA; SUVH, Su(var)3-9 homologs. Figure modified from Chan et al., 2005.<br />

1.1.8.2.1. Histone acety<strong>la</strong>tion<br />

Acetyl groups are ad<strong>de</strong>d by histones acetyltransferases (HATs), which catalyze the transfer<br />

of the acetyl moiety acetyl-CoA to the E-amino group of lysine (Lys) resi<strong>du</strong>es (Lahm et al.,<br />

2007). Histones can be acety<strong>la</strong>ted at multip<strong>le</strong> sites. H4 for examp<strong>le</strong> is acety<strong>la</strong>ted at Lys5,<br />

Lys8, Lys12, and Lys16, and H3 is acety<strong>la</strong>ted at Lys9, 14, 18, 23 and 27, with the list growing<br />

rapidly. In the cell, the acety<strong>la</strong>tion state can be dynamic and ref<strong>le</strong>ct the ba<strong>la</strong>nce of HATs and<br />

histone <strong>de</strong>acety<strong>la</strong>ses (HDACs) activity. Together, HAT and HDAC p<strong>la</strong>y a key ro<strong>le</strong> in<br />

transcriptional regu<strong>la</strong>tion, since strong corre<strong>la</strong>tion has been established using chromatin<br />

Immuniprecipitation (ChIP) between transcriptional activity and the distribution patterns of<br />

histone acety<strong>la</strong>tion (Bhat et al., 2003; Ng et al., 2006; Ear<strong>le</strong>y et al., 2007).<br />

28


1.1.8.2.2. Histone methy<strong>la</strong>tion<br />

The histone methyltransferases (HMTs) are responsib<strong>le</strong> for the transfer of methyl group<br />

donor from S-a<strong>de</strong>nosyl-L-methionine (SAM) to either lysine (Lys,K) or arginine (Arg/R)<br />

resi<strong>du</strong>es. Lysines can be mono-, di- or three-methy<strong>la</strong>ted whi<strong>le</strong> arginines can be mono- and<br />

dimethy<strong>la</strong>ted. These histone modifications have been corre<strong>la</strong>ted with both transcriptionally<br />

si<strong>le</strong>nced or active chromatin states, but the ru<strong>le</strong>s are comp<strong>le</strong>x. For instance, H3K9 methy<strong>la</strong>tion<br />

is associated with si<strong>le</strong>nced promoters on the inactive X chromosome in mammals, whereas<br />

H3K4 methy<strong>la</strong>tion is found at active genes (Boggs et al., 2002). Changes in histone<br />

methy<strong>la</strong>tion are mediated by the activity of histone <strong>de</strong>methy<strong>la</strong>ses acting in the coordinated<br />

cross-talk of the chromatin states. KYP is the main H3K9 methyltransferase in Arabidopsis.<br />

1.1.8.2.3. Phosphory<strong>la</strong>tion<br />

Histone phospory<strong>la</strong>tion is mediated by kinases, and has been associated with chromosomal<br />

con<strong>de</strong>nsation and segregation, and also with genes regu<strong>la</strong>tion. Phosphory<strong>la</strong>tion is particu<strong>la</strong>rly<br />

found in threonines, and serine (Ser) 10 and 28 of H3 where has been associated to<br />

transcriptional activity. This modification is frequently co<strong>de</strong>pen<strong>de</strong>nt on histone acety<strong>la</strong>tion.<br />

Figure 6. Histone modifications<br />

The figure illustrates the main known cova<strong>le</strong>nt modifications at the amino-terminal domain of the<br />

histones. Some modification occurs also at the globu<strong>la</strong>r domain (blue sphere at H2A-H2B, and green<br />

Me hexagone at H3). Active marks inclu<strong>de</strong> acety<strong>la</strong>tion (turquoise f<strong>la</strong>g), arginine methy<strong>la</strong>tion (yellow<br />

hexagon) and some lysine methy<strong>la</strong>tion (green hexagon). Repressive marks are represented as red<br />

hexagons. Numbers below the protein sequence indicate the position of the modified aminoacid. Figure<br />

taken from Allis et al., 2007.<br />

29


In H4 it is only found in Ser1 (Berger and Gaudin, 2003). Dynamic phosphory<strong>la</strong>tion is<br />

provi<strong>de</strong>d by phosphatases which remove phosphate groups (Berger, 2007).<br />

1.1.8.2.4. Ubiquity<strong>la</strong>tion and SUMOy<strong>la</strong>tion<br />

In contrast to Acety<strong>la</strong>tion, methy<strong>la</strong>tion and phosphory<strong>la</strong>tion which modify chromatin with<br />

small chemical groups, ubiquity<strong>la</strong>tion and SUMOy<strong>la</strong>tion add <strong>la</strong>rge moieties of around twothirds<br />

the size of the histone proteins. Ubiquity<strong>la</strong>tion forms an isopepti<strong>de</strong> bond with ubiquitin<br />

at the histone lysine resi<strong>du</strong>es. Ubiquity<strong>la</strong>tion is associated with transcriptionally active<br />

chromatin state in H2B Lys 123, but it corre<strong>la</strong>tes with repressed chromatin in H2A Lys 119<br />

(Berger, 2007). SUMOy<strong>la</strong>tion corre<strong>la</strong>tes with repressive chromatin and it seems to be<br />

mutually exclusive of acety<strong>la</strong>ted chromatin. This modification occurs in H2A and H2B where<br />

it is corre<strong>la</strong>ted with transcription repression.<br />

1.1.8.3. ATP-<strong>de</strong>pen<strong>de</strong>nt chromatin remo<strong>de</strong>ling<br />

This chromatin modification is performed by a multiprotein comp<strong>le</strong>xes which modify<br />

histone-DNA interactions using ATP hydrolysis. They <strong>de</strong>stabilize nuc<strong>le</strong>osome structure by<br />

intro<strong>du</strong>cing superhelical torsion into DNA, <strong>le</strong>ading temporal accessibility to other modifier<br />

factors or specific enzymatic reactions. Although the Arabidopsis genome enco<strong>de</strong>s more than<br />

40 SNF2-like proteins, most of them have been no analyzed yet. However, some studies<br />

carried out in PICKLE (PKL), DDM1, MOM and SPLAYED (SYD), suggest important ro<strong>le</strong>s<br />

<strong>du</strong>ring p<strong>la</strong>nt <strong>de</strong>velopment (Ogas et al., 1999; Vongs et al., 1993; Ame<strong>de</strong>o et al., 2000; Wagner<br />

and Meyerowitz, 2002).<br />

30


1.2. THESIS PROPOSAL: CHROMATIN DYNAMICS, AN UNEXPLORED FRONTIER TOWARD<br />

UNDERSTANDING ASEXUALITY IN PLANTS<br />

Results that we obtained and published prior to formally initiating this PhD program were<br />

essential for the <strong>de</strong>sign of this project. These results suggested two important hypotheses. The<br />

first point was that apomixis is the result of a spatial and/or temporal <strong>de</strong>regu<strong>la</strong>tion of the<br />

or<strong>de</strong>rly progression of <strong>de</strong>velopmental transitions that occurs <strong>du</strong>ring sexual repro<strong>du</strong>ction.<br />

(Grimanelli, D., Garcia-Agui<strong>la</strong>r, M., et al. 2003. Heterochronic expression of sexual<br />

repro<strong>du</strong>ctive programs <strong>du</strong>ring apomictic <strong>de</strong>velopment in Tripsacum. Genetics 165: 1521–<br />

1531). The paper presents data suggesting the <strong>de</strong>regu<strong>la</strong>tion of sexual repro<strong>du</strong>ctive programs<br />

<strong>du</strong>ring apomictic repro<strong>du</strong>ction in Tripsacum, and the i<strong>de</strong>a that apomixis might be a c<strong>la</strong>ssical<br />

case of heterochronic mutation.<br />

The second point was that, simi<strong>la</strong>rly to vegetative <strong>de</strong>velopment, the key <strong>de</strong>velopmental<br />

transitions <strong>du</strong>ring repro<strong>du</strong>ction might be mediated by epigenetic, chromatin-based regu<strong>la</strong>tory<br />

processes. (Huanca-Mamani, W., Garcia-Agui<strong>la</strong>r, M., et al. 2005. CHR11, a chromatinremo<strong>de</strong>ling<br />

factor essential for nuc<strong>le</strong>ar proliferation <strong>du</strong>ring fema<strong>le</strong> gametogenesis in<br />

Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 102: 17231-17236). This paper presents<br />

data suggesting a crucial ro<strong>le</strong> for chromatin-based regu<strong>la</strong>tion at the sporogenesisgametogenesis<br />

transition.<br />

The following document is therefore mostly the <strong>de</strong>scription of our efforts in trying to<br />

connect the dots between both papers. The purpose in this work was to analyze the ro<strong>le</strong> of<br />

chromatin dynamics in the control of <strong>de</strong>velopmental transitions in repro<strong>du</strong>ctive cells of sexual<br />

and apomictic p<strong>la</strong>nts, and to i<strong>de</strong>ntify candidate chromatin-<strong>le</strong>vel regu<strong>la</strong>tors of apomixis. To<br />

achieve this, we addressed the three following questions:<br />

(1) are the various <strong>de</strong>velopmental transitions characterized by specific chromatin states?<br />

(2) are there differences in chromatin states between sexual and apomictic p<strong>la</strong>nts?<br />

(3) could these variations be causal factors in <strong>de</strong>termining whether a p<strong>la</strong>nt repro<strong>du</strong>ces<br />

sexually or apomictically?<br />

31


In the second chapter, we <strong>de</strong>scribe a profiling experiment used to i<strong>de</strong>ntify CMEs showing<br />

differential expression in sexual and apomictic ovu<strong>le</strong>s. Out of 319 CMEs, we se<strong>le</strong>cted 56<br />

candidates for further profiling <strong>du</strong>ring key <strong>de</strong>velopmental steps of sexual and apomictic<br />

repro<strong>du</strong>ction. This work <strong>le</strong>d to the i<strong>de</strong>ntification of a limited number of candidates out of<br />

which two, DMT102 and DMT103, were further characterized using both genetical and<br />

immunochemical approaches. The results of these functional analyses are presented in<br />

Chapter 3, as a manuscript submitted for publication. In Chapter 4, we discuss the hypothesis<br />

we put forward for a siRNA si<strong>le</strong>ncing pathway acting specifically in p<strong>la</strong>nt ovu<strong>le</strong>s and<br />

controlling repro<strong>du</strong>ctive cells differentiation.<br />

32


CHAPTER 2. Expression of Chromatin<br />

Modifying Enzymes <strong>du</strong>ring Apomictic and sexual Development<br />

33


2.1. INTRODUCTION<br />

To summarize, we know that apomixis can be achieved through diverse, comp<strong>le</strong>x<br />

pathways, all of which affect the or<strong>de</strong>rly progression of the key <strong>de</strong>velopmental transitions that<br />

take p<strong>la</strong>ce <strong>du</strong>ring sexual repro<strong>du</strong>ction: megaspore mother cell differentiation,<br />

megagametogenesis and embryogenesis. Although several studies have documented the ro<strong>le</strong><br />

of chromatin-mediated control in genes expression <strong>du</strong>ring early seed <strong>de</strong>velopment (reviewed<br />

in Baroux et al., 2007), the ro<strong>le</strong> of chromatin in the earlier stages of repro<strong>du</strong>ctive <strong>de</strong>velopment<br />

(from the ovu<strong>le</strong> primordium until the formation of the mature gametophyte) is poorly<br />

un<strong>de</strong>rstood. We used two sources of information to screen maize chromatin modifying<br />

enzymes (CMEs) for candidates involved in the regu<strong>la</strong>tion of transitional changes <strong>du</strong>ring<br />

sexual repro<strong>du</strong>ction. The first one was the Chromatin Database (ChromDB, University of<br />

Arizona; www.chromdb.org). The second one was a set of microarray data comparing mRNA<br />

popu<strong>la</strong>tions extracted from sexual maize and apomictic maize-Tripsacum ovu<strong>le</strong>s. Col<strong>le</strong>ctively,<br />

we i<strong>de</strong>ntified 56 candidate CMEs for further transcriptional analyses <strong>du</strong>ring p<strong>la</strong>nt<br />

repro<strong>du</strong>ction, with a particu<strong>la</strong>r emphasis on the key steps that differentiate sexuality in maize<br />

from the apomictic pathway in Tripsacum.<br />

2.2. RESULTS<br />

2. 2.1. Se<strong>le</strong>ction of Chromatin Modifying Enzymes (CME) from ChromDB<br />

ChromDB contains 358 expressed CME sequences belonging to 74 proteins families<br />

(updated data as of April 2007; Tab<strong>le</strong> 2.2.1). Of these, 185 correspon<strong>de</strong>d to fully sequenced<br />

and annotated genes whi<strong>le</strong> only partial information was provi<strong>de</strong>d for the remaining 173 genes.<br />

Expression data was avai<strong>la</strong>b<strong>le</strong> for 79 entries in maize, including RNA expression patterns for<br />

several tissues (ear, tassel, kernel, seedling <strong>le</strong>af, callus and mature <strong>le</strong>af), and 23 genes for<br />

which RNAi lines are avai<strong>la</strong>b<strong>le</strong> from the Maize Genetic Stock Center (McGinnis et al., 2007).<br />

We used RNA expression patterns as the main criterion for se<strong>le</strong>ction, discarding genes<br />

showing no expression in repro<strong>du</strong>ctive tissues. However, <strong>du</strong>e to the growing evi<strong>de</strong>nce for a<br />

regu<strong>la</strong>tory ro<strong>le</strong> for chromatin in cell fate differentiation, and the hypothesis of a causal effect<br />

of apomixis on somatic cell i<strong>de</strong>ntity, we also retained genes specifically expressed in<br />

undifferentiated callus tissues, assuming that the capability for totipotency might contribute to<br />

apomixis expression (ex. CHR106, CHR120, HAG102). The figure 2.2.1 repro<strong>du</strong>ces the<br />

expression pattern of several se<strong>le</strong>cted genes as shown on the ChromDB site. Furthermore, as a<br />

34


control for transcriptional behavior of constitutive genes into an apomictic background, we<br />

also inclu<strong>de</strong>d genes highly expressed in all tissues except mature <strong>le</strong>aves, such as HDT103 and<br />

NFA101 (Tab<strong>le</strong> 2.2.2). A total of 45 genes encoding CMEs, covering 15 of the 74 CME<br />

families and showing interesting expression in repro<strong>du</strong>ctive tissues were se<strong>le</strong>cted (Tab<strong>le</strong> 2.2.1,<br />

Tab<strong>le</strong> 2.2.2). Note that RNAi lines are avai<strong>la</strong>b<strong>le</strong> for 23 out of the 45 se<strong>le</strong>cted loci (Tab<strong>le</strong> 2.2.2<br />

and www.chromdb.org).<br />

Probe<br />

1 2 3 4 5 6<br />

BRAT 101<br />

CHR106<br />

NFE 101<br />

SDG 122<br />

Figure 2.2.1. Expression of several chromatin modifying enzymes in different maize tissues by<br />

Northern analyses. Original pictures and experimental protocols can be found at www.chromdb.org.<br />

1: ear, 2: tassel, 3: kernel, 4: seedling, 5: callus, 6: mature <strong>le</strong>af.<br />

35


Tab<strong>le</strong> 2.2.1. List of Chromatin Modifying Enzymes as provi<strong>de</strong>d by the Chromatin<br />

Database. 1 Annotations of protein c<strong>la</strong>ss according to ChromDB. 2 Genes number correspond<br />

to total i<strong>de</strong>ntified genes at ChromDB.<br />

Protein C<strong>la</strong>ss 1 Genes 2 No. Genes with RNA data No. Se<strong>le</strong>cted genes<br />

AGO 16 ND 0<br />

ARP 6 ND 0<br />

BRAT 1 1 1<br />

BRD 4 2 1<br />

CHB 4 2 1<br />

CHC 2 1 1<br />

CHE 1 ND 0<br />

CHR 44 11 8<br />

CPC 2 ND 0<br />

CPD 1 ND 0<br />

CPG 1 ND 0<br />

CPH 1 ND 0<br />

CRD 1 ND 0<br />

DCL 4 ND 0<br />

DMT 7 5 7<br />

DNG 4 ND 0<br />

DRB 6 ND 0<br />

EBP 5 ND 0<br />

EPL 1 1 0<br />

GTA 3 ND 0<br />

GTB 1 1 0<br />

GTC 1 1 0<br />

GTE 11 2 0<br />

GTF 1 ND 0<br />

GTG 1 ND 0<br />

HAC 5 1 1<br />

HAF 1 ND 0<br />

HAG 6 3 1<br />

HAM 2 ND 0<br />

HCP 2 ND 0<br />

HDA 10 4 2<br />

HDMA 3 ND 0<br />

HDT 4 4 3<br />

HEN 1 ND 0<br />

HF0 15 ND 0<br />

HIRA 2 ND 0<br />

HMGA 3 ND 0<br />

HMGB 11 6 0<br />

HON 6 4 2<br />

HTA 16 ND 0<br />

HTB 13 ND 0<br />

HTR 14 ND 0<br />

HUPA 1 ND 0<br />

HUPB 2 ND 0<br />

HXA 2 1 1<br />

JMJ 4 ND 0<br />

MBD 14 5 2<br />

MFP 1 ND 0<br />

NFA 5 2 2<br />

NFB 1 ND 0<br />

NFC 5 3 2<br />

NFE 1 1 1<br />

NFF 3 ND 0<br />

PAFA 1 ND 0<br />

PAFB 1 ND 0<br />

PAFC 1 ND 0<br />

PAFD 1 ND 0<br />

PAFE 1 ND 0<br />

PGE 2 1 0<br />

PRMT 2 ND 0<br />

RBL 2 ND 0<br />

RDR 4 ND 0<br />

RPDA 2 ND 0<br />

RHEL 2 ND 0<br />

SDG 35 15 7<br />

SGA 3 ND 0<br />

SGF 1 1 0<br />

SMH 6 ND 0<br />

SNT 2 ND 0<br />

SRT 1 ND 1<br />

SWDB 3 ND 0<br />

SWDC 2 ND 0<br />

TAFV 1 ND 0<br />

VEF 3 1 1<br />

36


Tab<strong>le</strong> 2.2.2. Genes se<strong>le</strong>cted from the Chromatin Database.<br />

Gene Protein Tissue<br />

RNAi<br />

Family Ear Tassel Kernel Seedling Callus Leaf line<br />

BRD101 Diverse bromodomain NSD NSD NSD NSD NSD NSD *<br />

BRAT101 Bromodomain ++ ++ ++ *<br />

CHB102 SWI/SNF (Swi3/Rsc8) ++ ++ + +<br />

CHC101 SWI/SNF (Swp73/Rsc6) NSD NSD NSD NSD NSD NSD *<br />

CHR101 SNF2 Super family ++ ++ ++<br />

CHR106 SNF2 Superfamily ++<br />

CHR110 SNF2 Superfamily ++ + +<br />

CHR112 SNF2 Superfamily +<br />

CHR113 SNF2 Superfamily ++ ++<br />

CHR120 SNF2 Superfamily + ++<br />

CHR125 SNF2 Superfamily + +<br />

CHR126 SNF2 Superfamily + + + + *<br />

DMT101 DNA Methyltransferase ++ + ++ ++ ++<br />

DMT102 DNA Methyltransferase + + + + *<br />

DMT103 DNA Methyltransferase ++ ++ ++ + ++ *<br />

DMT104 DNA Methyltransferase + + + +<br />

DMT105 DNA Methyltransferase ND ND ND ND ND ND<br />

DMT106 DNA Methyltransferase ++ + + + ++<br />

DMT107 DNA Methyltransferase ND ND ND ND ND ND<br />

HXA102 Hist. acetyltransferase ++ ++ ++ + + *<br />

HAG102 Hist. acetyltransferase + *<br />

HAC 101 Hist. acetyltransferase ++ + ++ + +<br />

HDA102 Histone <strong>de</strong>acety<strong>la</strong>se ++ ++ ++ ++ *<br />

HDA110 Histone <strong>de</strong>acety<strong>la</strong>se + + + *<br />

HDT101 Histone <strong>de</strong>acety<strong>la</strong>se + + ++ + + *<br />

HDT103 Histone <strong>de</strong>acety<strong>la</strong>se +++ +++ +++ +++ +++ + *<br />

HDT104 Histone <strong>de</strong>acety<strong>la</strong>se +++ +++ +++ +++<br />

SRT101 Histone <strong>de</strong>acety<strong>la</strong>se ND ND ND ND ND ND *<br />

HON101 Histone H1 +++ + ++ ++ + +<br />

HON104 Histone H1 +<br />

MBD101 Methyl binding domain +++ + + + ++ *<br />

MBD109 Methyl binding domain +++ +++ + ++ ++ + *<br />

NFA101 Nuc<strong>le</strong>osome assembly +++ +++ +++ +++ +++ *<br />

NFA104 Nuc<strong>le</strong>osome assembly ++ + + + *<br />

NFC102 NURF comp<strong>le</strong>x +++ +++ +++ +++ *<br />

NFC104 NURF comp<strong>le</strong>x +<br />

NFE101 Nuc<strong>le</strong>osome positioning +++ ++ ++<br />

SDG101 SET domain +++ + +<br />

SDG102 SET domain ND ND ND ND ND ND *<br />

SDG107 SET domain + + + + + *<br />

SDG110 SET domain +++ +++ + + + *<br />

SDG118 SET domain + *<br />

SDG122 SET domain +<br />

SDG129 SET domain +<br />

VEF101 VEF family ++ +++ + + ++ + *<br />

Levels of RNA expression is indicated by (+) weak, (++) medium and (+++) strong expression.<br />

NSD no signal <strong>de</strong>tected. ND no data<br />

37


2.2.2. Microarray analysis of Chromatin Modifying Enzymes (CME)<br />

A key feature of apomictic p<strong>la</strong>nts in Tripsacum is the precocious <strong>de</strong>velopment of the<br />

unre<strong>du</strong>ced egg cell, which divi<strong>de</strong>s several days prior to fertilization to form a "proembryo"<br />

consisting of 8 to 64 cells, and then remains quiescent until the endosperm <strong>de</strong>velops following<br />

fertilization (Grimanelli et al., 2003). We used dissected ovu<strong>le</strong>s of wild type maize and<br />

apomicts maize-Tripsacum hybrids to compare on a genome sca<strong>le</strong> gene expression at 0 DAP<br />

(i.e. mature unfertilized ovu<strong>le</strong>s) between apomictic (containing a proembryo) and sexual<br />

p<strong>la</strong>nts (contain an egg cell). The arrays were kindly provi<strong>de</strong>d and hybridized at the Syngenta<br />

Biotechnology Institute (RTP, North Carolina) by Tong Zhu. We used custom-ma<strong>de</strong> 45K<br />

maize Affymetrix chips, which contain a <strong>la</strong>rge representation of the maize transcriptome, and<br />

inclu<strong>de</strong> most expressed maize CMEs. The experiment consisted of 2 biological repetitions<br />

mixed together for each samp<strong>le</strong> and of 2 technical repetitions and allowed the comparison of<br />

c.a. 45,000 probes between apomictic and sexual p<strong>la</strong>nts. Normalization was performed<br />

according to standard Affymetrix protocols, and differentially expressed genes were i<strong>de</strong>ntified<br />

using ANOVA as <strong>de</strong>scribed in Grimanelli et al. (2005). Using BLAST analyses, we then<br />

extracted from the raw data set the probes corresponding to CME candidates.<br />

Tab<strong>le</strong> 2.2.3. CME families and numbers of candidates i<strong>de</strong>ntified based on microarrays<br />

analyses.<br />

PROTEIN FAMILY # of CMEs DIFF.EXPRESSION<br />

BROMODOMAIN 19 0<br />

SWI/NSF2 AND RSC COMPLEX 1 0<br />

SNF2 SUPERFAMILY 4 1<br />

DNA METHYLTRANSFERASE 3 0<br />

HISTONE ACETYLTRANSFERASE 82 5<br />

HISTONE DEACETYLASE (HD2 FAMILY) 27 2<br />

HISTONEH1 15 0<br />

METHYLBINDING PROTEIN 4 0<br />

POLYCOMB GROUP 8 0<br />

NURF COMPLEX 8 1<br />

SET DOMAIN 69 5<br />

Total 240 14<br />

38


Histone Acetyltransferase<br />

SNF2<br />

ZM018126_AT<br />

ZM051672_AT<br />

ZM076171_AT<br />

ZM043878_AT<br />

ZM002094_AT<br />

ZM064220_AT<br />

ZM011705_AT<br />

ZM011153_AT<br />

ZM015023_AT<br />

0 100 200 300 400 500 600 700 800 900<br />

ZM079691_AT<br />

NURF comp<strong>le</strong>x<br />

ZMU16254_AT<br />

ZM072252_AT<br />

ZM023133_AT<br />

ZM073333_AT<br />

0 100 200 300 400 500 600 700 800<br />

ZM064192_AT<br />

SET domain<br />

AY093418_AT<br />

ZM037415_AT<br />

AF545814_AT<br />

ZM019715_AT<br />

ZM052636_AT<br />

ZM022324_AT<br />

ZM022595_AT<br />

ZM021320_AT<br />

ZM016159_AT<br />

Histone Deacety<strong>la</strong>se<br />

ZM074706_X_AT<br />

AF384033_AT<br />

ZM016392_S_AT<br />

ZM047050_AT<br />

ZM069978_X_AT<br />

ZM069978_AT<br />

ZM076663_AT<br />

AF384034_AT<br />

ZM013552_AT<br />

0 50 100 150 200 250 300 350<br />

0 100 200 300 400 500 600 700 800 900<br />

0 100 200 300 400 500<br />

SEXUAL<br />

APOMICTIC<br />

Figure 2.2.2. Expression profi<strong>le</strong>s within CMEs families that contain members showing differential<br />

expression in microarrays analyses. x axis: expression values (fluorescence units). y axis: gene ID<br />

(note that names are not shown for all probes analyzed). See also Tab<strong>le</strong> 2.2.4.<br />

Col<strong>le</strong>ctively, on the 45k sli<strong>de</strong>s, differentially expressed genes represented only c.a. 1% of<br />

the transcriptome, a very low proportion, but consistent with previously published work<br />

(Grimanelli et al., 2005; Sharbel et al., 2009). Differential expression could be observed for a<br />

limited number of CME probes (n=14) for which BLAST analyses revea<strong>le</strong>d that they<br />

39


elonged to 5 CME families only (Tab<strong>le</strong> 2.2.3 and 2.2.4): histone acety<strong>la</strong>ses, histone<br />

<strong>de</strong>acety<strong>la</strong>ses (HDAs), SET domain proteins, NURF comp<strong>le</strong>x, and SNF2 superfamily.<br />

Expression data are presented Figure 2.2.2. Interestingly, most differences correspon<strong>de</strong>d to a<br />

comp<strong>le</strong>te down regu<strong>la</strong>tion in the ovu<strong>le</strong>s of apomicts (e.g. #ZM064192) whi<strong>le</strong> the opposite<br />

seldom occurred (e.g. HDA #ZM076663).<br />

Tab<strong>le</strong> 2.2.4. Description of CMEs se<strong>le</strong>cted from microarrays experiments.<br />

Maize ID<br />

BLAST/ all organism DB<br />

BLAST/ P<strong>la</strong>nt DB<br />

NSF2<br />

ZM011153_AT<br />

HAT<br />

ZM001919_AT<br />

Simi<strong>la</strong>r to A.thaliana; SWI2/SNF2-Like protein<br />

Simi<strong>la</strong>r to O.sativa genomic DNA, chromosome 1<br />

Simi<strong>la</strong>r to putative DNA <strong>de</strong>pen<strong>de</strong>nt ATPase (Oryza sativa)<br />

Simi<strong>la</strong>r to O.sativa putative taxadien-5-alpha-ol O-AT<br />

ZM020825_S_AT Simi<strong>la</strong>r to ANASP Q8yva8 a arginine biosynthesis probab<strong>le</strong> glutamate/ornithine acetyltransferase<br />

ZM013490_S_AT Simi<strong>la</strong>r to Yeast Q03503 Saccharomyces cerevisiaeSimi<strong>la</strong>r to At2g38130(GCN5-re<strong>la</strong>ted N-acetyltransferase)<br />

ZM071056_AT<br />

ZM076568_AT<br />

HDA<br />

ZM076663_AT<br />

Simi<strong>la</strong>r to O.sativa genomic DNA chromosome 7<br />

Simi<strong>la</strong>r to O. sativa genomic DNA,chromosome 7<br />

Simi<strong>la</strong>r to Zea mays HD2 type histone <strong>de</strong>acety<strong>la</strong>seHDA106<br />

Simi<strong>la</strong>r to N-acetyltransferase (Oryza sativa)<br />

No <strong>de</strong>scription<br />

No <strong>de</strong>scription<br />

ZM033694_AT<br />

NURF COMPLEX<br />

ZM064192_AT<br />

SET DOMAIN<br />

ZM019715_S_AT<br />

AF545813_AT<br />

ZM047301_AT<br />

No <strong>de</strong>scription<br />

Simi<strong>la</strong>r to Zea Mays NFC102; WD40 proteins<br />

Simi<strong>la</strong>r to A. thaliana unknow protein<br />

Zea mays Set domain protein (sdg 113)<br />

No Description<br />

Simi<strong>la</strong>r to HDAC_Maize probab<strong>le</strong> histone <strong>de</strong>acety<strong>la</strong>se<br />

Putative DNA polymerase (O. sativa)<br />

Simi<strong>la</strong>r to SET domain-containing protein-like (O. sativa)<br />

Simi<strong>la</strong>r to SET domain 113<br />

Simi<strong>la</strong>r to SET domain-containing protein-like (O. sativa)<br />

ZM023509_AT Simi<strong>la</strong>r to A.thaliana BAC F16A14 from Chrom 1 Simi<strong>la</strong>r to SET domain-containing protein-like (O. sativa)<br />

ZM080896_AT<br />

Simi<strong>la</strong>r to mez2<br />

Simi<strong>la</strong>r to MAIZE protein EZ2<br />

2.2.3. Preliminary analysis of se<strong>le</strong>cted genes<br />

Preliminary validation by RT-PCR was performed using ovu<strong>le</strong> tissues col<strong>le</strong>cted from<br />

sexual maize and apomictic maize-Tripsacum, precisely timed at three critical <strong>de</strong>velopmental<br />

stages: megasporogenesis, mature embryo sac and 3 days after pollination (DAP). A <strong>de</strong>tai<strong>le</strong>d<br />

<strong>de</strong>scription of the most interesting candidates is provi<strong>de</strong>d in Chapter 3. The results presented<br />

here focus on the comparison of the global transcription behavior of the 56 se<strong>le</strong>cted CMEs<br />

between apomictic and sexual <strong>de</strong>velopments, and between <strong>de</strong>velopmental stages within each<br />

repro<strong>du</strong>ctive pathway.<br />

In sexual p<strong>la</strong>nts, overall transcriptional activity (steady-state RNA <strong>le</strong>vels) for all 56 genes<br />

appeared surprisingly stab<strong>le</strong> across all three <strong>de</strong>velopmental stages, with only a few genes<br />

40


changing expression profi<strong>le</strong>s as <strong>de</strong>velopment procee<strong>de</strong>d (in this case, si<strong>le</strong>nced or showing<br />

re<strong>du</strong>ced expression; Figure 2.3.1).<br />

The situation looked very different in apomictic p<strong>la</strong>nts, particu<strong>la</strong>rly <strong>du</strong>ring early<br />

<strong>de</strong>velopment. We <strong>de</strong>tected 9 CMEs that were totally down-regu<strong>la</strong>ted <strong>du</strong>ring apomeiosis,<br />

inclu<strong>de</strong>d in a total of 20 CMEs with some re<strong>du</strong>ction in expression <strong>du</strong>ring apomeiosis. It is<br />

remarkab<strong>le</strong> that only one locus showed up-regu<strong>la</strong>ted expression at this stage. Surprisingly, this<br />

trend towards globally re<strong>du</strong>ced CME activity in apomicts vanished <strong>du</strong>ring <strong>la</strong>ter stages. In<br />

mature embryo sacs, 9 of the 20 down-regu<strong>la</strong>ted candidates recovered i<strong>de</strong>ntical expression in<br />

apomictic and sexual p<strong>la</strong>nts (Tab<strong>le</strong> 2.2.5). At 3 DAP both repro<strong>du</strong>ctive mo<strong>de</strong>s disp<strong>la</strong>yed<br />

simi<strong>la</strong>r transcriptional patterns within ovu<strong>le</strong>s (Figure 2.3.1), with only few exceptions.<br />

Interestingly, only 7 CMEs remained down-regu<strong>la</strong>ted <strong>du</strong>ring all three <strong>de</strong>velopmental<br />

stages, and only one, HXA102, remained up-regu<strong>la</strong>ted <strong>du</strong>ring all three stages of apomictic<br />

<strong>de</strong>velopment. The analysis of over-expressed chromatin regu<strong>la</strong>tors could <strong>le</strong>ad to interesting<br />

insights into apomictic repro<strong>du</strong>ction, since apomixis has been <strong>la</strong>rgely conceived as a gain of<br />

function phenotype.<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

3<br />

3<br />

3<br />

5<br />

42<br />

9<br />

7<br />

2<br />

11<br />

27<br />

2<br />

2<br />

6<br />

44<br />

Sexual 1 Apo 2 Sexual 3 Apo 4 Sexual 5 Apo6<br />

7<br />

1<br />

9<br />

38<br />

4<br />

1<br />

6<br />

9<br />

36<br />

7<br />

5<br />

1<br />

7<br />

36<br />

Série5<br />

Série4<br />

Série3<br />

Série2<br />

Série1<br />

MEIO<br />

MES<br />

3DAP<br />

Figure 2.3.1. Global transcription patterns of se<strong>le</strong>cted CMEs in sexual and apomictic (Apo) ovu<strong>le</strong>s<br />

col<strong>le</strong>cted at three <strong>de</strong>velopmental stages: megasporogenesis (MEIO), mature embryo sac (MES), and 3<br />

DAP. Transcription <strong>le</strong>vels were <strong>de</strong>termined by RT-PCR and c<strong>la</strong>ssified according to the sca<strong>le</strong> shown on<br />

right. Pictures illustrate repro<strong>du</strong>ctive stages and were obtained from c<strong>le</strong>ared ovu<strong>le</strong>s.<br />

41


Tab<strong>le</strong> 2.2.5. Chromatin Modifying Enzymes Deregu<strong>la</strong>ted <strong>du</strong>ring Apomictic Development.<br />

EXPRESSION<br />

STAGES<br />

PROFILE APOMEIOSIS MES 3DAP<br />

CHB102 CHB102 CHR106<br />

CHR106 CHR106 CHR120<br />

CHR20 CHR120 DMT102<br />

CHR125 DMT102 DMT103<br />

DMT102 DMT103 DMT105<br />

DMT103 DMT105 BT066941<br />

DMT105 HON101 HDT104<br />

DMT107 MBD109 HON101<br />

Down<br />

HAG102 NFC104 NFA104*<br />

HAG101 SDG118* NFC104<br />

BT066941 AW288923 DR959742*<br />

AY110756<br />

EE168341*<br />

HDT104<br />

EC897242<br />

HON101<br />

MBD109<br />

NFC104<br />

SDG129<br />

AW288923<br />

EC897242<br />

VEF101<br />

HXA102 HXA102 BRD101<br />

AC157319 CHR126<br />

AY104727 HXA102<br />

HDT104 HAG102<br />

Over<br />

SDG107 SDG102<br />

SDG107<br />

SDG110<br />

AW288923<br />

VEF101<br />

(*) CME not registered in apomeiosis<br />

2.3. DISCUSSION<br />

A commonly accepted hypothesis for the mo<strong>le</strong>cu<strong>la</strong>r bases of apomixis advocates that it<br />

results from the <strong>de</strong>regu<strong>la</strong>tion of genes controlling sexual repro<strong>du</strong>ction (reviewed Koltunow<br />

and Grosnik<strong>la</strong>us, 2003). Surprisingly then, global transcription profiling of sexual and<br />

apomictic ecotypes in different systems have not in past experiments revea<strong>le</strong>d many<br />

significant differences (Grimanelli et al., 2005; Sharbel et al., 2009; Yamada-Akiyama et al.,<br />

2009).<br />

Results presented here point out a simi<strong>la</strong>r behavior; on the comp<strong>le</strong>te 45k arrays, the<br />

differences between apomictic and sexual ovu<strong>le</strong>s represented c.a. 1% of the transcriptome,<br />

below our false discovery rate. Only 6% of the CMEs analyzed using microarrays (before<br />

validation) showed differential expression. This is much higher than the overall RNA<br />

popu<strong>la</strong>tion, but remains a low proportion. These results might suggest that only a few key<br />

42


genes, acting on regu<strong>la</strong>tory <strong>de</strong>velopmental checkpoints, are altered in apomicts. Alternatively,<br />

this might suggest that the key differences might occur at a post-transcriptional <strong>le</strong>vel. Another<br />

exp<strong>la</strong>nation is that the differentiation between apomixis and sexuality occurs at a much earlier<br />

stage of <strong>de</strong>velopment, and does not require significant transcriptional changes at <strong>la</strong>ter stages.<br />

Global differences became more evi<strong>de</strong>nt, in fact, when analyzing more closely for se<strong>le</strong>cted<br />

CMEs. The most striking differences between apomictic and sexual p<strong>la</strong>nts were found at very<br />

early stages (meiosis vs. apomeiosis). This either suggests a <strong>de</strong>regu<strong>la</strong>tion in apomeiosis or<br />

alternatively indicates that many of these CMEs are specific or highly expressed at meiosis<br />

and thus not found in apomictic p<strong>la</strong>nts. Remarkably, more that half of the CMEs differentially<br />

expressed <strong>du</strong>ring sporogenesis recovered i<strong>de</strong>ntical expression <strong>du</strong>ring gametogenesis, and<br />

virtually all of them did so <strong>du</strong>ring early embryogenesis.<br />

By contrast, only marginal differences were <strong>de</strong>tected between <strong>de</strong>velopmental stages <strong>du</strong>ring<br />

sexual repro<strong>du</strong>ction. This might suggest, but requires additional analyses, either that the bulk<br />

of CME transcripts is <strong>de</strong>posited early in the repro<strong>du</strong>ctive cells, and carried over throughout<br />

the gametophytic phase, or, alternatively, that most changes in the recruitment of specific<br />

genes occurs at the post-transcriptional <strong>le</strong>vel. In any case, these data suggest certainly that the<br />

key differences between apomixis and sexuality are established early <strong>du</strong>ring repro<strong>du</strong>ctive<br />

<strong>de</strong>velopment, likely <strong>du</strong>ring or before sporogenesis, with consequences throughout<br />

repro<strong>du</strong>ction.<br />

Most CMEs with differential patterns showed a down-regu<strong>la</strong>tion phenotype in apomictic<br />

p<strong>la</strong>nts when compared to sexual ones. Only a re<strong>du</strong>ced group (6), sharing simi<strong>la</strong>r functions<br />

(see chapter 4), remained downregu<strong>la</strong>ted <strong>du</strong>ring all <strong>de</strong>velopmental stages. Only one<br />

(HXA102) remained up-regu<strong>la</strong>ted <strong>du</strong>ring the who<strong>le</strong> apomictic <strong>de</strong>velopment. The follow step,<br />

thus, was to assess the functional link between changes in the activity of these CMEs and<br />

apomixis. For this, we are using two different approaches. For the genes that are up-regu<strong>la</strong>ted<br />

in apomictic p<strong>la</strong>nts, we are using transgenic RNAi maize line to in<strong>du</strong>ce dominant loss-offunction<br />

al<strong>le</strong><strong>le</strong>s into an apomictic background, using a crossing strategy previously <strong>de</strong>scribed<br />

(Leb<strong>la</strong>nc et al., 1996). Alternatively, as will be presented in the next chapter, we are using<br />

loss-of-function maize mutants to analyze the effect of down-regu<strong>la</strong>ting candidates in a sexual<br />

context.<br />

43


CHAPTER 3.<br />

Inactivation of a Repro<strong>du</strong>ctive DNA Methy<strong>la</strong>tion<br />

Pathway in Maize Results in Apomixis-Like Phenotypes<br />

(manuscript currently un<strong>de</strong>r revision for publication)<br />

44


Inactivation of a Repro<strong>du</strong>ctive DNA Methy<strong>la</strong>tion Pathway in<br />

Maize Results in Apomixis-Like Phenotypes.<br />

Marcelina Garcia-Agui<strong>la</strong>r, Olivier Leb<strong>la</strong>nc and Daniel Grimanelli*<br />

Institut <strong>de</strong> Recherche pour <strong>le</strong> Développement, UMR 5096 (IRD/CNRS/Université <strong>de</strong><br />

Perpignan), Montpellier, France<br />

Correspondance to Daniel Grimanelli, Institut <strong>de</strong> Recherche pour <strong>le</strong> Développement,<br />

UMR5096, 911 Avenue Agropolis, 34394 Montpellier France. T: +33 (0)4 67 41 63 76.<br />

daniel.grimanelli@ird.fr<br />

Running titt<strong>le</strong>: Regu<strong>la</strong>tion of DNA Methy<strong>la</strong>tion and Apomixis<br />

Estimated <strong>le</strong>nght: 12 pages<br />

The author responsib<strong>le</strong> for distribution of materials integral to the findings presented in this<br />

artic<strong>le</strong> in accordance with the policy <strong>de</strong>scribed in the Instructions for Authors is: Daniel<br />

Grimanelli, daniel.grimanelli@ird.fr<br />

45


SUMMARY<br />

Apomictic p<strong>la</strong>nts repro<strong>du</strong>ce asexually through seeds by avoiding both meiosis and<br />

fertilization. Although apomixis is genetically control<strong>le</strong>d, its core genetic component(s) has<br />

not been <strong>de</strong>termined yet. Using profiling experiments comparing sexual <strong>de</strong>velopment in<br />

maize (Zea mays) to apomixis in maize-Tripsacum hybrids, we i<strong>de</strong>ntified six loci that are<br />

specifically downregu<strong>la</strong>ted in ovu<strong>le</strong>s of apomictic p<strong>la</strong>nts. Four of them share strong homology<br />

with members of the RNA directed DNA methy<strong>la</strong>tion (RdDM) pathway, which in Arabidopsis<br />

is involved in si<strong>le</strong>ncing via DNA methy<strong>la</strong>tion. Analyzing loss-of-function al<strong>le</strong><strong>le</strong>s for two<br />

DNA methyltransferase genes, dmt102 and dmt103, respectively homologous to Arabidopsis<br />

CHROMOMETHYLASE3 (CMT3) and DOMAINS REARRANGED<br />

METHYLTRANSFERASE2 (DRM2), revea<strong>le</strong>d phenotypes highly reminiscent of apomictic<br />

<strong>de</strong>velopments, including the pro<strong>du</strong>ction of unre<strong>du</strong>ced gametes and formation of multip<strong>le</strong><br />

embryo sacs in the ovu<strong>le</strong>. Loss of DMT102 activity in ovu<strong>le</strong>s resulted in the establishment of<br />

a transcriptionally competent chromatin state in the archesporial tissue and in the egg cell that<br />

mimics the chromatin state found in apomicts. Interestingly, dmt102 and dmt103 expression in<br />

the ovu<strong>le</strong> is found in a restricted domain in and around the germ cells, indicating that a DNA<br />

methy<strong>la</strong>tion pathway active <strong>du</strong>ring repro<strong>du</strong>ction is essential for gametophyte <strong>de</strong>velopment in<br />

maize, and likely p<strong>la</strong>ys a critical ro<strong>le</strong> in the differentiation between apomictic and sexual<br />

repro<strong>du</strong>ction.<br />

46


3.1. INTRODUCTION<br />

Sexual repro<strong>du</strong>ction in angiosperms takes p<strong>la</strong>ce within a multicellu<strong>la</strong>r ovu<strong>le</strong> in which the<br />

formation of the fema<strong>le</strong> gametes entails two consecutive steps: megasporogenesis (spore<br />

formation) and megagametogenesis (gamete formation). Megasporogenesis initiates with the<br />

differentiation of the megaspore mother cell (MMC), which un<strong>de</strong>rgoes meiosis, pro<strong>du</strong>cing<br />

four haploid spores. Three of them usually <strong>de</strong>generate, <strong>le</strong>aving a sing<strong>le</strong> functional megaspore.<br />

In the Polygonum type of megagametogenesis, the most common in angiosperms, the<br />

megaspore un<strong>de</strong>rgoes three rounds of mitotic divisions to form the embryo sac (ES)<br />

containing the fema<strong>le</strong> gametes (the egg cell and the central cell), two synergids at the<br />

micropy<strong>la</strong>r po<strong>le</strong> and three antipodal cells at the cha<strong>la</strong>zal po<strong>le</strong> (Reiser and Fischer, 1993). In<br />

ma<strong>le</strong> repro<strong>du</strong>ctive organs (the anthers), all four meiotic pro<strong>du</strong>cts form ma<strong>le</strong> gametophytes<br />

(pol<strong>le</strong>n grains), which consist of two repro<strong>du</strong>ctive sperm cells embed<strong>de</strong>d in the vegetative<br />

cell. The fertilization of the egg cell and the central cell gives rise to the embryo and the<br />

endosperm respectively.<br />

Apomixis refers to a diverse group of repro<strong>du</strong>ctive behaviors, resulting in asexual<br />

repro<strong>du</strong>ction through seeds (Nog<strong>le</strong>r 1984). Apomictic p<strong>la</strong>nts bypass both meiotic re<strong>du</strong>ction (a<br />

process cal<strong>le</strong>d apomeiosis) and egg-cell fertilization (via parthenogenesis), thus pro<strong>du</strong>cing<br />

offspring that are exact genetic replicas of the mother p<strong>la</strong>nt. In the diplosporous type of<br />

apomixis, which occurs for examp<strong>le</strong> in Tripsacum (Leb<strong>la</strong>nc et al., 1995), a wild re<strong>la</strong>tive of<br />

maize, or Boechera species (Naumova et al., 2001), that are re<strong>la</strong>ted to Arabidopsis, the MMC<br />

differentiates but fails to comp<strong>le</strong>te meiosis and finally pro<strong>du</strong>ces an unre<strong>du</strong>ced functional<br />

megaspore. Megasporogenesis then proceeds simi<strong>la</strong>rly to sexual p<strong>la</strong>nts, but the embryo<br />

<strong>de</strong>velops from the unre<strong>du</strong>ced egg cell without fertilization, i.e. by parthenogenesis. In the<br />

aposporous type of apomixis, megasporogenesis is omitted and one or more ESs can <strong>de</strong>velop<br />

directly from somatic nucel<strong>la</strong>r cells (aposporous initials), adjacent to the surviving<br />

megaspore. The embryo then simi<strong>la</strong>rly <strong>de</strong>velops parthenogenetically. Development of the<br />

endosperm of apomictic p<strong>la</strong>nts is either pseudogamous, i.e. it arises from the fertilization of<br />

the central cell by one ma<strong>le</strong> sperm, or autonomous when it occurs without fertilization of the<br />

central cell.<br />

47


In many apomictic species, meiotic abnormalities are not restricted to the fema<strong>le</strong><br />

repro<strong>du</strong>ctive cells. Unre<strong>du</strong>ced pol<strong>le</strong>n grain formation has been reported for examp<strong>le</strong> in<br />

Boechera (Schranz et al., 2006) and Tripsacum (Grimanelli et al., 2003), suggesting that ma<strong>le</strong><br />

and fema<strong>le</strong> repro<strong>du</strong>ctive paths are affected in simi<strong>la</strong>r ways. Also, in most if not all<br />

documented cases, apomixis and sexuality are not mutually exclusive since they usually<br />

coexist in the same ecotypes with varying <strong>le</strong>vels of re<strong>la</strong>tive expressivity (Nog<strong>le</strong>r, 1984). Most<br />

diplosporous apomicts pro<strong>du</strong>ce apomeiotic (unre<strong>du</strong>ced) and meiotic (re<strong>du</strong>ced) spores and<br />

fema<strong>le</strong> gametes. Simi<strong>la</strong>rly, in the case of aposporous apomixis, the ovu<strong>le</strong> usually contains<br />

both meiotically <strong>de</strong>rived and apomeiotically <strong>de</strong>rived ESs. Interestingly, whi<strong>le</strong> the formation of<br />

multip<strong>le</strong> ESs is a hallmark of aposporous apomixis, some diplosporous p<strong>la</strong>nts also <strong>de</strong>velop<br />

extra embryo sac-like structures (e.g., Paspalum minus; Bonil<strong>la</strong> and Quarin, 1997). Therefore,<br />

the frontier between both types of apomixis and between apomixis and sexuality, appears<br />

re<strong>la</strong>tively blurry, fueling the perception that apomixis might be a <strong>de</strong>regu<strong>la</strong>ted form of sexual<br />

repro<strong>du</strong>ction rather than a new function. In<strong>de</strong>ed, previous studies showed that apomixis and<br />

sexuality share key regu<strong>la</strong>tory mechanisms (Tucker et al., 2003). Thus, it has been proposed<br />

that apomixis could result from a temporal or spatial <strong>de</strong>regu<strong>la</strong>tion of the transcriptional<br />

programs controlling sexual repro<strong>du</strong>ction (Koltunow and Grossnik<strong>la</strong>us 2003; Grimanelli et<br />

al., 2003; Bicknell and Koltunow, 2004; Brad<strong>le</strong>y et al., 2007). The mo<strong>de</strong>l postu<strong>la</strong>tes that<br />

sexual repro<strong>du</strong>ction involves several transitions (from somatic cells to repro<strong>du</strong>ctive cells,<br />

from the sporogenesis to the gametogenesis, from gametogenesis to embryogenesis) whose<br />

or<strong>de</strong>rly progression is altered in apomicts, resulting in ectopic or heterochronic expression of<br />

the core <strong>de</strong>velopmental program.<br />

Recent studies have further <strong>de</strong>monstrated the crucial ro<strong>le</strong> of chromatin-based regu<strong>la</strong>tion in<br />

vegetative <strong>de</strong>velopmental transitions (Poethig, 2003; Bezhani et al., 2007). Simi<strong>la</strong>rly, several<br />

lines of evi<strong>de</strong>nce suggest that transitions <strong>du</strong>ring repro<strong>du</strong>ction and early seed <strong>de</strong>velopment are<br />

epigenetically control<strong>le</strong>d through dynamic changes in chromatin state (Huanca-Mamani et al.,<br />

2005; Xiao et al., 2006; Baroux et al., 2007; Curtis and Grossnik<strong>la</strong>us, 2008). Whether<br />

alterations in the epigenetic regu<strong>la</strong>tion orchestrating these transitions are involved in the<br />

differentiation between apomictic and sexual repro<strong>du</strong>ction is currently unknown.<br />

In this study, we compared the expression patterns of diverse chromatin modifying<br />

enzymes (CMEs) <strong>du</strong>ring repro<strong>du</strong>ction in sexual and apomictic p<strong>la</strong>nts to i<strong>de</strong>ntify possib<strong>le</strong><br />

chromatin-<strong>le</strong>vel regu<strong>la</strong>tors of apomixis. Two key mechanisms affecting the transcriptional<br />

competence of chromatin are cova<strong>le</strong>nt modifications of histone tail resi<strong>du</strong>es and DNA<br />

48


(Cytosine) methy<strong>la</strong>tion (Vail<strong>la</strong>nt and Paskowski, 2007). DNA methy<strong>la</strong>tion in p<strong>la</strong>nts takes<br />

p<strong>la</strong>ce on CG, CNG and CNN. In Arabidopsis, where the process is best un<strong>de</strong>rstood, at <strong>le</strong>ast<br />

three c<strong>la</strong>sses of DNA methyltransferases (DMTs) intervene in methy<strong>la</strong>tion pathways. DRM2<br />

(DOMAINS REARRANGED METHYL TRANSFERASE2) is the main <strong>de</strong> novo DMT, involved<br />

in all sequence contexts (Cao and Jacobsen, 2002). DRM2 also p<strong>la</strong>ys a ro<strong>le</strong>, together with<br />

CMT3 (CHROMOMETHYLTRANSFERASE3), in the maintenance of methy<strong>la</strong>tion at non-CG<br />

sites (Cao et al., 2003) Another methyltransferase, MET1 (METHYLTRANSFERASE1), is<br />

involved in maintaining DNA methy<strong>la</strong>tion at CG dinuc<strong>le</strong>oti<strong>de</strong>s. Finally, DDM1 (DECREASE<br />

IN DNA METHYLATION1), a SWI2/SNF2-like chromatin-remo<strong>de</strong>ling factor, also participates<br />

in maintenance of methy<strong>la</strong>tion at both CG and non-GC sites (Jed<strong>de</strong>loh et al., 1999). Along<br />

with DMTs, small interfering RNAs (siRNAs), histone modifying enzymes and RNAi<br />

proteins are involved in mediating both DNA and histone methy<strong>la</strong>tion via the so-cal<strong>le</strong>d RNAdirected<br />

DNA methy<strong>la</strong>tion (RdDM) pathway (Huettel et al., 2007). The si<strong>le</strong>ncing effect of the<br />

RdDM pathway is reinforced by the establishment of repressive histone marks, in particu<strong>la</strong>r<br />

methy<strong>la</strong>tion of lysine 9 on histone H3 (H3K9me), by the activity of KYP (KRYPTONITE), the<br />

main H3K9 methyltransferase in Arabidopsis (Jackson et al., 2002).<br />

Here, we show that apomictic and sexual <strong>de</strong>velopment differ for the expression of a few<br />

CMEs that are specifically expressed in repro<strong>du</strong>ctive cells of maize and downregu<strong>la</strong>ted in<br />

ovu<strong>le</strong>s of apomictic ecotypes. We further <strong>de</strong>monstrate that dmt102 and dmt103, respectively<br />

homologous to CMT3 and DRM2 in Arabidopsis, p<strong>la</strong>y key ro<strong>le</strong>s in ovu<strong>le</strong> <strong>de</strong>velopment in<br />

maize. Loss-of-function mutants result in phenotypes that are strikingly reminiscent of<br />

apomictic <strong>de</strong>velopment, suggesting that, in addition to a crucial ro<strong>le</strong> in gametophyte<br />

<strong>de</strong>velopment, DNA methy<strong>la</strong>tion in the maize ovu<strong>le</strong> might regu<strong>la</strong>te transcriptional expression<br />

of genes involved in the differentiation between apomixis and sexuality.<br />

3.2 RESULTS<br />

p<strong>la</strong>nts<br />

3.2.1. I<strong>de</strong>ntification of CMEs differentially expressed in sexual and apomictic<br />

To address the possib<strong>le</strong> ro<strong>le</strong> of chromatin structure in the regu<strong>la</strong>tion of apomixis, we first<br />

performed a comparative analysis of transcription activity of CMEs <strong>du</strong>ring sexual and<br />

apomictic repro<strong>du</strong>ction. We used the B73 maize inbreed as a sexual control. The apomictic<br />

p<strong>la</strong>nt used in this analysis, referred to as 38C, is an apomictic hybrid obtained from an<br />

original F1 p<strong>la</strong>nt between maize and its apomictic re<strong>la</strong>tive, Tripsacum dactyloi<strong>de</strong>s 65-1234,<br />

49


and expresses apomixis with high penetrance (>99%). 38C p<strong>la</strong>nts contain one diploid set of<br />

chromosomes from maize (2n=2x=20) and one haploid set of chromosomes from Tripsacum<br />

(1n=1x=18). They repro<strong>du</strong>ce via diplospous apomixis; an unre<strong>du</strong>ced ES is <strong>de</strong>rived from a<br />

MMC and premature divisions of the unre<strong>du</strong>ced egg cell result in a precocious,<br />

parthenogenetic pro-embryo, formed before fertilization. This apomictic mo<strong>de</strong>l p<strong>la</strong>nt has been<br />

<strong>de</strong>scribed in previous publications (Leb<strong>la</strong>nc et al., 1996; Grimanelli et al., 2003; Grimanelli et<br />

al., 2005; Leb<strong>la</strong>nc et al., 2009).<br />

We re-analyzed a set of microarray data comparing non-pollinated mature ovu<strong>le</strong>s of maize<br />

and 38C to i<strong>de</strong>ntify maize CMEs expressed <strong>du</strong>ring sexual and apomictic <strong>de</strong>velopment<br />

(Grimanelli et al., 2005). In addition, we inclu<strong>de</strong>d in the analysis a set of CMEs reported in<br />

The Chromatin Database (www.chromdb.org) as expressed in maize ears. Both data sets<br />

contained col<strong>le</strong>ctively 384 loci annotated in the B73 genome as CMEs (Supp<strong>le</strong>mental Tab<strong>le</strong><br />

1). Based on data indicative of expression within repro<strong>du</strong>ctive tissues (see Methods), we<br />

se<strong>le</strong>cted 56 loci, belonging to 15 different protein families (Supp<strong>le</strong>mental Tab<strong>le</strong> 2). We then<br />

used RT-PCR to monitor, at precise stages of fema<strong>le</strong> repro<strong>du</strong>ctive <strong>de</strong>velopment, the<br />

expression of the corresponding maize al<strong>le</strong><strong>le</strong>s in sexual maize and after their intro<strong>du</strong>ction in<br />

the 38C apomictic background. These stages inclu<strong>de</strong>d: dissected ovu<strong>le</strong>s <strong>du</strong>ring sporogenesis<br />

(including thus meiosis and apomeiosis), mature ESs before fertilization (containing either an<br />

egg cell or a parthenogenetic pro-embryo in sexual and apomictic p<strong>la</strong>nts, respectively) and<br />

seeds col<strong>le</strong>cted 3 days after pollination (DAP) (Supp<strong>le</strong>mental Figure 1). Differences in<br />

expression profi<strong>le</strong>s therefore indicated that the intro<strong>du</strong>ction of a given maize al<strong>le</strong><strong>le</strong> in the<br />

apomictic p<strong>la</strong>nts resulted in altered expression at the same <strong>de</strong>velopmental stages, and served<br />

as markers to screen for loci subjected to differential regu<strong>la</strong>tions potentially linked, directly or<br />

indirectly, to divergent repro<strong>du</strong>ctive behaviors.<br />

As previously <strong>de</strong>scribed (Grimanelli et al., 2005), global expression profi<strong>le</strong>s between<br />

apomictic and sexual p<strong>la</strong>nts differed only marginally and, accordingly, we i<strong>de</strong>ntified only six<br />

loci with c<strong>le</strong>ar qualitative differential expression between the two repro<strong>du</strong>ctive mo<strong>de</strong>s<br />

(Supp<strong>le</strong>mental Figure 2). For all six loci, the PCR primer pairs amplified both the maize and<br />

Tripsacum al<strong>le</strong><strong>le</strong>s on genomic DNA, suggesting that the differences in expression affected<br />

both the maize and Tripsacum al<strong>le</strong><strong>le</strong>s. Four of the six loci showed comp<strong>le</strong>te downregu<strong>la</strong>tion at<br />

all stages whi<strong>le</strong> the two remaining ones exhibited heterochronic expression (Figure 1A).<br />

BLAST analyzes against the Arabidopsis and maize databases indicated probab<strong>le</strong> functions<br />

for all six proteins (Tab<strong>le</strong> 1). dmt102 and dmt105 enco<strong>de</strong> DMT enzymes, both homologous to<br />

50


Arabidopsis CMT3 (Supp<strong>le</strong>mental Figure 3). DMT102 is required for cytosine methy<strong>la</strong>tion at<br />

CNG sites and it is likely involved in a maintenance function (Papa et al 2001; Makarevich et<br />

al., 2007). dmt103 is a close homologue of DRM1 and 2 (Supp<strong>le</strong>mental Figure 3); it enco<strong>de</strong>s a<br />

putative DMT that shows rearranged catalytic domains conserved in others eukaryotic<br />

proteins, but its function remains uncharacterized in maize. chr106 is homologous to<br />

Arabidopsis DDM1. All four genes were broadly expressed <strong>du</strong>ring sexual <strong>de</strong>velopment in<br />

maize, but totally absent <strong>du</strong>ring apomictic repro<strong>du</strong>ction. The set of <strong>de</strong>regu<strong>la</strong>ted genes also<br />

inclu<strong>de</strong>d hdt104 a member of the p<strong>la</strong>nt-specific histone <strong>de</strong>acety<strong>la</strong>se family (homologous to<br />

AtHD2A), and hon101, a histone H1 linker protein gene. Furthermore, DMT102, DMT103,<br />

DMT105 and CHR106 are c<strong>le</strong>arly homologous to well-characterized enzymes involved in<br />

DNA methy<strong>la</strong>tion in Arabidopsis. Interestingly, dmt101, the closest homologue of the<br />

Arabidopsis MET1 gene, showed simi<strong>la</strong>r expression patterns <strong>du</strong>ring sexual and apomictic<br />

<strong>de</strong>velopments (Supp<strong>le</strong>mental Figure 2).<br />

Previous studies have linked changes in DNA methy<strong>la</strong>tion with changes in polyploidy<br />

<strong>le</strong>vels (Wang et al., 2004). It is also known that interspecific hybridizations can in<strong>du</strong>ce<br />

epigenetic variations (Madlung et al., 2002; Chen et al., 2008). Interestingly, both<br />

hybridization and polyploidy have been proposed as direct causes for the in<strong>du</strong>ction of<br />

apomixis, through unknown routes (Carman, 1997; Koltunow and Grossnik<strong>la</strong>us, 2003; Paun<br />

et al., 2006). Apomictic 38C was <strong>de</strong>rived by interspecific hybridization between maize and<br />

Tripsacum and it carries a polyploid set of chromosomes (Leb<strong>la</strong>nc et al., 1996). To evaluate<br />

the possibility that interspecific hybridization or polyploidy, or both, might have in<strong>du</strong>ced the<br />

expression patterns <strong>de</strong>tected in 38C, we compared the expression of dmt102, dmt103 and<br />

chr106 in mature embryo sacs of Tripsacum dactyloi<strong>de</strong>s 65-1234, the natural apomictic p<strong>la</strong>nt<br />

used to pro<strong>du</strong>ce the 38C hybrid, with that observed in diploid and tetraploid sexual maize<br />

(B73 inbreed and N108A stocks, respectively) and in the maize-Tripsacum 38C hybrid<br />

(Figure 1B). We found that expression of chr106 was i<strong>de</strong>ntical in diploid and tetraploid sexual<br />

maize lines. chr106 was also simi<strong>la</strong>rly downregu<strong>la</strong>ted in 65-1234 and 38C apomicts for both<br />

the maize and Tripsacum al<strong>le</strong><strong>le</strong>s. Thus, the <strong>de</strong>regu<strong>la</strong>tion of chr106 in apomicts is in<strong>de</strong>pen<strong>de</strong>nt<br />

of either polyploidy or interspecific hybridization. By contrast, whi<strong>le</strong> dmt102 and dmt103<br />

transcripts corresponding to maize and Tripsacum al<strong>le</strong><strong>le</strong>s were neither <strong>de</strong>tected in Tripsacum<br />

nor in 38C apomictic contexts, both genes were strongly expressed in diploid maize but<br />

downregu<strong>la</strong>ted in the autotetraploid. Their expression is therefore ploidy-<strong>de</strong>pen<strong>de</strong>nt, but is<br />

in<strong>de</strong>pen<strong>de</strong>nt of interspecific hybridization effects.<br />

51


A<br />

chr106<br />

B73 sexual<br />

SPO MES 3DAP<br />

38C apomict<br />

SPO MES 3DAP<br />

dmt102<br />

dmt103<br />

dmt105<br />

htd104<br />

hon101<br />

actin1<br />

B<br />

gDNA<br />

cDNA<br />

38C Td<br />

H 2<br />

O B73<br />

38C Td<br />

4x H 2<br />

O B73<br />

dmt102<br />

dmt103<br />

chr106<br />

actin1<br />

C<br />

A.thaliana B.holboellii gDNA<br />

SPO MES SPO MES At Bh<br />

DRM1<br />

DRM2<br />

CMT3<br />

DDM1<br />

ACTIN11<br />

Figure 1. RT-PCR of CMEs <strong>de</strong>regu<strong>la</strong>ted <strong>du</strong>ring apomictic repro<strong>du</strong>ction.<br />

(A) Expression of CMEs in ovu<strong>le</strong>s <strong>du</strong>ring sporogenesis (SPO), in ovu<strong>le</strong>s containing mature embryo<br />

sacs (MES) and in 3 DAP seeds in maize (B73) and apomictic 38C p<strong>la</strong>nts.<br />

(B) Effect of ploidy and inter-specific hybridization on the expression of dmt102, dmt103 and chr106<br />

in apomictic (38C and Td) and sexual (B73 and 4x) ovu<strong>le</strong>s containing mature embryo sacs. gDNA:<br />

genomic DNA. Td: Tripsacum dactyloi<strong>de</strong>s ecotype 65-1234. 4x: autotetraploid of B73.<br />

(C) Expression of DRM1, DRM2, CMT3 and DDM1 in Arabidopsis thaliana and its apomictic re<strong>la</strong>tive<br />

Boechera holboellii using ovu<strong>le</strong>s containing megaspore mother cells (SPO) and mature embryos sacs<br />

(MES). gDNA: genomic DNA. At: Arabidopsis thaliana. Bh: Boechera holboellii.<br />

52


3.2.2. Apomixis corre<strong>la</strong>tes with the downregu<strong>la</strong>tion of CMT3 and DRM1/2<br />

homologues in both Tripsacum and Boechera<br />

Apomixis in p<strong>la</strong>nts can occur by different <strong>de</strong>velopmental routes and it is an open question<br />

whether the different f<strong>la</strong>vors of apomictic <strong>de</strong>velopment rely on simi<strong>la</strong>r or unre<strong>la</strong>ted regu<strong>la</strong>tory<br />

pathways. To address this, we analyzed the expression of DRM1 and DRM2, CMT3, and<br />

DDM1 in growing ovu<strong>le</strong>s of Arabidopsis thaliana and of Boechera holboellii, a diplosporous<br />

apomictic re<strong>la</strong>tive. We performed RT-PCR on ovu<strong>le</strong>s dissected at the MMC and mature ES<br />

stages using primer pairs that amplified genomic fragments in both species (Figure 1C). We<br />

found that both DRM genes were <strong>de</strong>regu<strong>la</strong>ted, though in a different manner, in apomictic<br />

Boechera when compared to sexual Arabidopsis. DRM2 was downregu<strong>la</strong>ted <strong>du</strong>ring<br />

sporogenesis in apomeiotic ovu<strong>le</strong>s of Boechera but not in mature embryo sacs. DRM1 on the<br />

other hand showed c<strong>le</strong>ar expression at both stages in sexual p<strong>la</strong>nts but no expression in<br />

apomictic ovu<strong>le</strong>s. Finally, CMT3 and DDM1 had simi<strong>la</strong>r expression patterns in both species,<br />

suggesting differential regu<strong>la</strong>tion in maize and Arabidopsis. However, we cannot discard a<br />

possib<strong>le</strong> downregu<strong>la</strong>tion specifically within Boechera gametophytes that would not affect<br />

expression in the surrounding somatic tissues, and more <strong>de</strong>tai<strong>le</strong>d studies are required to assess<br />

their ro<strong>le</strong> in apomixis in Boechera. These results nonethe<strong>le</strong>ss show that at <strong>le</strong>ast DRM1 and<br />

DMR2, or their homologues, are <strong>de</strong>regu<strong>la</strong>ted in two unre<strong>la</strong>ted apomictic species.<br />

3.2.3. dmt102 and dmt103 are expressed in the repro<strong>du</strong>ctive cells in the maize ovu<strong>le</strong><br />

RT-PCR (Figure 1; Supp<strong>le</strong>mental Figure 2) showed that in sexual maize dmt102 and<br />

dmt103 are not expressed in somatic tissue such as <strong>le</strong>aves, and are mainly expressed <strong>du</strong>ring<br />

early repro<strong>du</strong>ctive stages, including in ma<strong>le</strong> gametophytes (data not shown). To further<br />

characterize their expression patterns in repro<strong>du</strong>ctive tissues, we performed in situ RNA<br />

hybridization in ovu<strong>le</strong>s of wild-type maize p<strong>la</strong>nts (Figure 2). Both were expressed in a<br />

restricted portion of the nucellus <strong>du</strong>ring megasporogenesis. dmt102 expression domain<br />

encompassed the repro<strong>du</strong>ctive cell and a few <strong>la</strong>yers of nucel<strong>la</strong>r cells around it, whi<strong>le</strong> dmt103<br />

was <strong>de</strong>tected only in the epi<strong>de</strong>rmal <strong>la</strong>yer and integuments of the growing ovu<strong>le</strong>. dmt102<br />

conserved the same spatial expression <strong>du</strong>ring early gametogenesis, whi<strong>le</strong> dmt103 expression<br />

expan<strong>de</strong>d to inclu<strong>de</strong> the ES. At the end of gametogenesis, the expression of both genes<br />

became confined to the ES area with stronger signals in the cha<strong>la</strong>zal region. In Arabidopsis,<br />

the <strong>de</strong>tai<strong>le</strong>d expression pattern of CMT3 or DRM1/2 <strong>du</strong>ring repro<strong>du</strong>ctive <strong>de</strong>velopment have<br />

not been reported. However, consistent with their maintenance function, these genes are<br />

53


oadly expressed in somatic tissues (e.g., <strong>le</strong>aves, seedlings) according to the Arabidopsis<br />

expression databases (http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi), by contrast to<br />

dmt102 and dmt103, as shown here. This suggests a specialization in the maize genome of at<br />

<strong>le</strong>ast a subset of DNA methy<strong>la</strong>tion enzymes to repro<strong>du</strong>ctive functions.<br />

3.2.4. Downregu<strong>la</strong>tion of dmt102 and dmt103 in sexual maize promotes the<br />

formation of unre<strong>du</strong>ced gametes<br />

To further <strong>de</strong>fine the biological ro<strong>le</strong> of this DNA methy<strong>la</strong>tion pathway in repro<strong>du</strong>ctive<br />

<strong>de</strong>velopment, we wanted to analyze the phenotypes of loss-of-function lines for dmt102 and<br />

dmt103 in sexual maize. For dmt102, we used a previously characterized mutant line. It<br />

carries a Mutator e<strong>le</strong>ment inserted within the DMT domain and pro<strong>du</strong>ces an aberrant protein<br />

(Papa et al., 2001). The mutant line has no apparent morphological or seed phenotype and the<br />

dmt102::Mu a<strong>le</strong>l<strong>le</strong> was normally transmitted via both ma<strong>le</strong> and fema<strong>le</strong> gametes in reciprocal<br />

crosses to wild type (B73 line) p<strong>la</strong>nts. For dmt103, we analyzed two dmt103-specific RNAi<br />

lines, hereafter referred to herein as D103-2 and D103-4, pro<strong>du</strong>ced by the Maize Chromatin<br />

Consortium (McGinnis et al., 2005) and one EMS al<strong>le</strong><strong>le</strong> (dmt103-6) recovered from the maize<br />

TILLING popu<strong>la</strong>tion that contains two non-synonymous substitutions in the coding region of<br />

54


the gene (R49I and R272Q). None of these dmt103 loss-of-function lines showed<br />

morphological phenotypes <strong>du</strong>ring vegetative <strong>de</strong>velopment. T3 progenies of both RNAi lines<br />

exhibited severe effects on seed morphology. When used as fema<strong>le</strong>s, all seeds pro<strong>du</strong>ced by<br />

heterozygous D103-4 T3 lines were at <strong>le</strong>ast partially <strong>de</strong>fective, with miniature and aborted<br />

kernels, the <strong>la</strong>tter representing 53% of the kernels (Supp<strong>le</strong>mental Figure 4). Crossing<br />

heterozygous D103-2 with wild type pol<strong>le</strong>n resulted in normal (21%), miniature (37%) and<br />

aborted (42%, n=169) kernels (Supp<strong>le</strong>mental Figure 4). This suggests at <strong>le</strong>ast a maternal<br />

sporophytic effect of Dmt103 inactivation when the RNAi-in<strong>du</strong>cing sequence is driven by the<br />

35S promoter. However, additional gametophytic effects could not be exclu<strong>de</strong>d.<br />

The three dmt102 and the dmt103 mutant lines pro<strong>du</strong>ced abundant pol<strong>le</strong>n grains following<br />

normal anther <strong>de</strong>hiscence. However, cytological analyses of ma<strong>le</strong> gametophytes in<br />

dmt102::Mu mutants and in D103 lines revea<strong>le</strong>d a high proportion of abnormally <strong>la</strong>rge pol<strong>le</strong>n<br />

grains, i.e. ~40% and ~25% respectively (Figure 3A-B-C). To verify whether <strong>la</strong>rge pol<strong>le</strong>n size<br />

corre<strong>la</strong>ted with unre<strong>du</strong>ced gametes formation, we quantified DNA contents in bulks of mature<br />

pol<strong>le</strong>n grains by flow cytometry. Quantification of re<strong>la</strong>tive fluorescence intensity confirmed<br />

the pro<strong>du</strong>ction of re<strong>du</strong>ced, but also unre<strong>du</strong>ced and aneuploid pol<strong>le</strong>n grains at a frequency that<br />

matched the proportion of <strong>la</strong>rge gametophytes (Figure 3C-D). This indicates that<br />

downregu<strong>la</strong>tion of both dmt102 and dmt103 resulted in the pro<strong>du</strong>ction of unre<strong>du</strong>ced ma<strong>le</strong><br />

gametes.<br />

Whether unre<strong>du</strong>ced fema<strong>le</strong> gametes were also pro<strong>du</strong>ced was technically more difficult to<br />

assess. All the viab<strong>le</strong> seeds pro<strong>du</strong>ced in both mutants contained diploid embryos when<br />

pollinated by wild type pol<strong>le</strong>n (data not shown), showing that the viab<strong>le</strong> embryos originated<br />

from re<strong>du</strong>ced fema<strong>le</strong> gametes. dmt102::Mu homozygous lines pro<strong>du</strong>ced nearly full seed sets,<br />

indicating that most, if not all fema<strong>le</strong> gametes were meiotically <strong>de</strong>rived. In contrast, the high<br />

proportion of abortive seeds in D103 lines might ref<strong>le</strong>ct endosperm <strong>de</strong>fects resulting from<br />

altered genome parental dosage <strong>du</strong>e to the occurrence of unre<strong>du</strong>ced or aneuploid fema<strong>le</strong><br />

gametes, or poor viability of unre<strong>du</strong>ced or aneuploid gametes (Birch<strong>le</strong>r, 1993). Interestingly,<br />

c<strong>le</strong>ared ovu<strong>le</strong>s from both D103 lines at the mature gametophyte stage exhibited surprisingly<br />

<strong>la</strong>rge fema<strong>le</strong> gametes (Figure 3E). Whether they ref<strong>le</strong>ct non-re<strong>du</strong>ction is unc<strong>le</strong>ar and requires<br />

further examination.<br />

55


A<br />

B73<br />

1C<br />

B<br />

dmt102::Mu<br />

B73<br />

1C<br />

200<br />

D103-4<br />

2C<br />

100<br />

dmt102::Mu<br />

0<br />

dmt102::Mu<br />

Dmt103-4<br />

WT<br />

C<br />

B73<br />

D103-4<br />

EC<br />

PN<br />

EC<br />

PN<br />

Figure 3. dmt102 and dmt103 mutants pro<strong>du</strong>ce unre<strong>du</strong>ced ma<strong>le</strong> gametes.<br />

(A) From <strong>le</strong>ft to right: morphology, and 1C DNA contents in wild type pol<strong>le</strong>n grains.<br />

(B) From <strong>le</strong>ft to right: morphology, DNA contents in mutant pol<strong>le</strong>n grains (the 2C peak represents<br />

unre<strong>du</strong>ced and aneuploid pol<strong>le</strong>n grains), and size distribution (gray bars: small grains; white bars:<br />

<strong>la</strong>rge grains).<br />

(C) Who<strong>le</strong> mount ovu<strong>le</strong> c<strong>le</strong>aring of a D103-4 mature ovu<strong>le</strong> and wild type maize; an abnormally<br />

<strong>la</strong>rge fema<strong>le</strong> gamete is visib<strong>le</strong> at the micropy<strong>la</strong>r po<strong>le</strong>; EC: egg cell; PN: po<strong>la</strong>r nuc<strong>le</strong>i.<br />

DNA content in pol<strong>le</strong>n grain were <strong>de</strong>termined by flow cytometry. The peak corresponding to<br />

haploid DNA content (1C) is <strong>de</strong>termined in the B73 samp<strong>le</strong>. The extra peak <strong>de</strong>tected in the mutant<br />

is centered on 2C. x axis: re<strong>la</strong>tive fluoresecence intensity. y axis: number of nuc<strong>le</strong>i. Bars: 100!m.<br />

56


3.2.5. Downregu<strong>la</strong>tion of dmt102 and dmt103 in sexual maize in<strong>du</strong>ces the formation<br />

of multip<strong>le</strong> embryo sacs in the ovu<strong>le</strong><br />

To better characterize the effect of dmt102 and dmt103 loss of function on ES<br />

<strong>de</strong>velopment, we c<strong>le</strong>ared ovu<strong>le</strong>s of the mutant lines at different <strong>de</strong>velopmental stages.<br />

Interestingly, we observed re<strong>la</strong>ted phenotypes in ESs of both mutants. We found that ESs of<br />

dmt102::Mu p<strong>la</strong>nts exhibited normal <strong>de</strong>velopment until cellu<strong>la</strong>rization. The mature ES<br />

conserved the Polygonum type organization occurring in maize. In particu<strong>la</strong>r, the three<br />

antipodal cells proliferated before pollination (Figure 4A), thus pro<strong>du</strong>cing an ephemeral<br />

structure of approximately 50-100 cells, which shares protop<strong>la</strong>sm content because of<br />

incomp<strong>le</strong>te cell wall formation (Diboll and Larson, 1966). ESs in dmt102::Mu/dmt102::Mu<br />

ovu<strong>le</strong>s followed the wild type behavior with antipodal cells proliferation. However, at <strong>la</strong>te<br />

stages (mature ES), we observed the <strong>de</strong>velopment at the cha<strong>la</strong>zal po<strong>le</strong> of <strong>la</strong>rge structures (in<br />

c.a. 25% of ES; Figure 4B), presumably originating from abnormal growth of antipodal cells<br />

and strongly resembling small uni-nuc<strong>le</strong>ated ESs, as typically seen before the first division of<br />

the functional megaspore. No further <strong>de</strong>velopment was observed since they remained arrested<br />

as <strong>la</strong>rge cha<strong>la</strong>zal cells until the multicellu<strong>la</strong>r antipodal structure <strong>de</strong>generated. This suggests<br />

that DMT102 might be involved in the maintenance of antipodal cell fate <strong>du</strong>ring <strong>la</strong>te<br />

gametogenesis.<br />

In D103 lines, a simi<strong>la</strong>r but much more severe phenotype was found and, <strong>de</strong>spite normal<br />

<strong>de</strong>velopment of ovu<strong>le</strong> primordia at early stages, we observed remarkab<strong>le</strong> sporophytic and<br />

gametophytic <strong>de</strong>fects by the time megagametogenesis took p<strong>la</strong>ce (Figure 4; Tab<strong>le</strong> 2 and 3).<br />

First, we noticed an incomp<strong>le</strong>te ovu<strong>le</strong> rotation that caused drastic changes in ovu<strong>le</strong> po<strong>la</strong>rity<br />

and in ES position, which frequently extru<strong>de</strong>d from the nucellus or col<strong>la</strong>psed on the ovary<br />

wall (Supp<strong>le</strong>mental Figure 4). Furthermore, the total number of gametophytic nuc<strong>le</strong>i was<br />

unpredictab<strong>le</strong>. These were clustered in central position within ESs, eventually acquiring the<br />

typical shape and <strong>la</strong>rge nuc<strong>le</strong>oli associated with po<strong>la</strong>r nuc<strong>le</strong>i (Figure 4C). In particu<strong>la</strong>r,<br />

indivi<strong>du</strong>al ES with up to 8 unfused po<strong>la</strong>r nuc<strong>le</strong>i were observed. Proliferating nuc<strong>le</strong>i of unc<strong>le</strong>ar<br />

i<strong>de</strong>ntity were also observed in atypical positions within central cells (Figure 4E), simi<strong>la</strong>r to<br />

what has been <strong>de</strong>scribed in the ig1 (in<strong>de</strong>terminate gametophyte1) mutant of maize (Evans,<br />

2007). Extra egg cells, however, were not seen in indivi<strong>du</strong>al ESs. In addition, loss of po<strong>la</strong>rity<br />

of the ES was observed in morphologically normal ovu<strong>le</strong>s, resulting in an inverted orientation<br />

of the cells (Figure 4D). Strikingly, D103-2 indivi<strong>du</strong>als also showed frequent pro<strong>du</strong>ction of<br />

57


extra ESs, usually positioned at the cha<strong>la</strong>zal po<strong>le</strong> (Figure 4E-K, Tab<strong>le</strong> 2). The number,<br />

position and size of these extra ESs were variab<strong>le</strong>, but the presence of differentiated egg and<br />

po<strong>la</strong>r nuc<strong>le</strong>i was a consistent feature of these structures. Contrary to the ES positioned at the<br />

micropy<strong>le</strong>, the apical-basal po<strong>la</strong>rity of extra ESs usually was inverted (Figure 4G). The<br />

multip<strong>le</strong> ES phenotype was c<strong>le</strong>ar in D103-2 but rare for D103-4 p<strong>la</strong>nts (Tab<strong>le</strong> 2). However,<br />

observation of c<strong>le</strong>ared sections of dmt103-6 ovu<strong>le</strong>s also revea<strong>le</strong>d abnormal gametophytic<br />

<strong>de</strong>velopment, including multip<strong>le</strong> ESs formation (Tab<strong>le</strong> 2). Col<strong>le</strong>ctively, this suggests that<br />

DMT103 is essential for several aspects of gametophytic <strong>de</strong>velopment in maize, with a<br />

specific ro<strong>le</strong> in limiting the number of ES in the ovu<strong>le</strong>.<br />

An important question regarding the extra ESs is whether they originated from haploid<br />

gametophytic cells or from diploid somatic (nucel<strong>la</strong>r) cells in the ovu<strong>le</strong>. Our observations<br />

suggest that both <strong>de</strong>velopments are possib<strong>le</strong>. At maturity, it was hard to differentiate ESs<br />

originating from either cell types, because the supernumerary gametophytes occupied a <strong>la</strong>rge<br />

nucel<strong>la</strong>r volume adjacent to the micropy<strong>la</strong>r ES (Figure 4F-G) and col<strong>la</strong>psed antipodal and<br />

nucel<strong>la</strong>r cells were difficult to characterize. However, a <strong>la</strong>rge proportion of the mature ESs<br />

seen in the most severely affected dmt103 RNAi line (D103-2) was <strong>de</strong>prived of antipodal<br />

cells. Instead, and very simi<strong>la</strong>r to the dmt102::Mu mutant, <strong>la</strong>rge undifferentiated cells were<br />

localized at the cha<strong>la</strong>zal po<strong>le</strong>, in the position normally occupied by the antipodal cells (Figure<br />

4I-J). This suggests that the extra ESs were <strong>de</strong>rived from the cellu<strong>la</strong>rized gametophyte, either<br />

before or after the <strong>de</strong>finition of the antipodal cells. However, we also observed the<br />

<strong>de</strong>velopment of <strong>la</strong>rge undifferentiated cells in the nucellus, simi<strong>la</strong>r to uninuc<strong>le</strong>ate ESs in wild<br />

type p<strong>la</strong>nts. They were separated from the ES proper by one or a small number of cell <strong>la</strong>yers<br />

and thus c<strong>le</strong>arly distinct from the antipodal cells (Figure 4I-J). At even earlier stages, we also<br />

noticed the formation of multip<strong>le</strong> uninuc<strong>le</strong>ate ESs, arising from distinct cells (Figure 4K).<br />

This indicates that extra ESs can be pro<strong>du</strong>ced from both the gametophytic cells and the<br />

nucel<strong>la</strong>r cells at the cha<strong>la</strong>zal po<strong>le</strong> of the ovu<strong>le</strong>.<br />

To further investigate the function of DMT102 and DMT103, we generated Dmt102/<br />

dmt102::Mu indivi<strong>du</strong>als carrying the RNAi transgene from D103-4. Whi<strong>le</strong> Dmt103<br />

inactivation in the D103-4 line showed lower frequency of multip<strong>le</strong> ESs compared to that of<br />

D103-2, these p<strong>la</strong>nts exhibited an increased severity of the dmt103 RNAi phenotype as the<br />

frequency of multip<strong>le</strong> ESs increased significantly (from 15% to 40%; Tab<strong>le</strong>s 2 and 3). Thus,<br />

combining loss of function for both genes significantly enhanced the phenotypic effect<br />

observed in D103-4. We next examined segregating F2 families <strong>de</strong>rived from two F1<br />

59


indivi<strong>du</strong>als (F2#3 and F2#12). We found that 78% of the p<strong>la</strong>nts pro<strong>du</strong>ced unre<strong>du</strong>ced ma<strong>le</strong><br />

gametophytes, but without additive effects since the proportion of unre<strong>du</strong>ced gametophytes<br />

remained simi<strong>la</strong>r in the doub<strong>le</strong> or simp<strong>le</strong> mutants. Multip<strong>le</strong> ES <strong>de</strong>velopment was found in<br />

28% of the F2s and co-segregated with the RNAi transgene only (Figure 5). These data<br />

indicate that DMT102 and DMT103 likely act on a common process in the ovu<strong>le</strong>, consistent<br />

with their mRNA colocalisation in this tissue, but that the formation of fully <strong>de</strong>veloped<br />

supernumerary ESs seems to be more specific of dmt103 loss of function.<br />

3.2.6. Patterns of chromatin modification in dmt102 mutant lines mimic the effect<br />

of apomixis <strong>du</strong>ring sporogenesis and gametogenesis<br />

Since key DMT proteins were <strong>de</strong>regu<strong>la</strong>ted in apomictic 38C, we were interested in<br />

comparing DNA methy<strong>la</strong>tion patterns in the repro<strong>du</strong>ctive cells of sexual, mutant and<br />

apomictic p<strong>la</strong>nts. The restricted domains of expression of both Dmt102 and Dmt103 within<br />

60


A<br />

H3K9ac<br />

DAPI<br />

B<br />

H3K9ac<br />

DAPI<br />

An<br />

B73<br />

B73<br />

An<br />

dmt102::Mu<br />

dmt102::Mu<br />

D<br />

CC<br />

H3K9me2<br />

Syn<br />

38C<br />

EC<br />

C<br />

CC<br />

H3K9me2<br />

EC<br />

DAPI<br />

Re<strong>la</strong>tive Intensity, EC/CC<br />

2-<br />

1-<br />

0-<br />

DAPI<br />

B73 B73<br />

dmt102::Mu<br />

H3K9me2<br />

dmt102::Mu<br />

Figure 6. Patterns of H3K9 acety<strong>la</strong>tion and dimethy<strong>la</strong>tion in dmt102::Mu mutant lines mimic the<br />

effect of apomixis <strong>du</strong>ring sporogenesis and gametogenesis.<br />

(A) H3K9 acety<strong>la</strong>tion in the ovu<strong>le</strong> <strong>du</strong>ring sporogenesis. The dash lines indicate the nucel<strong>la</strong>r domain<br />

enclosed within the inner integuments.<br />

(B) H3K9 acety<strong>la</strong>tion in mature ovu<strong>le</strong>s. An: antipodal cells nuc<strong>le</strong>i.<br />

(C, D) H3K9 dimethy<strong>la</strong>tion in ESs of wild type (C) and mutant (D) p<strong>la</strong>nts; EC: egg cell nuc<strong>le</strong>us;<br />

CC: central cell nuc<strong>le</strong>i; Syn: synergid nuc<strong>le</strong>us; Quantification of signals intensity measures the<br />

ration of egg cell to central signal per unit of DNA, to take into account the dihaploid nature of the<br />

central cell. The same measure performed for DAPI signals pro<strong>du</strong>ced the expected 1:1 ratio. The<br />

quantification shows a significant re<strong>du</strong>ction of re<strong>la</strong>tive H3K9me2 in the egg cell in the mutant<br />

p<strong>la</strong>nt.<br />

the ovu<strong>le</strong>, however, ren<strong>de</strong>red chromatin-IP or re<strong>la</strong>ted experiments technically chal<strong>le</strong>nging.<br />

Alternatively, we used immunolocalization experiments to <strong>de</strong>termined chromatin states <strong>du</strong>ring<br />

sporo- and gametogenesis by checking the global distribution of two antagonist marks,<br />

61


dimethy<strong>la</strong>tion of H3K9 (a repressive mark) and acety<strong>la</strong>tion of H3K9 (a permissive mark).<br />

Previous studies in Arabidopsis have <strong>de</strong>monstrated the close interp<strong>la</strong>y of DNA and histone K9<br />

cova<strong>le</strong>nt modifications (Jackson et al. 2002; Soppe et al., 2002; Tariq et al., 2003; Lindroth et<br />

al., 2004; Mathieu et al., 2005; Johnson et al., 2007). For these experiments, we used the<br />

stab<strong>le</strong> dmt102::Mu mutant line rather than the D103 RNAi lines, reasoning that the re<strong>la</strong>tive<br />

instability of RNAi in<strong>du</strong>ction might result in excessive variability when comparing indivi<strong>du</strong>al<br />

ovu<strong>le</strong>s.<br />

H3K9 acety<strong>la</strong>tion (H3K9ac) patterns differed markedly between wild type and<br />

dmt102::Mu maize ovu<strong>le</strong>s. During sporogenesis in wild type ovu<strong>le</strong>s, the repro<strong>du</strong>ctive cells, as<br />

well as surrounding somatic cells, were conspicuously <strong>de</strong>prived of H3K9ac signals (Figure<br />

6A, n>25). This pattern followed closely the spatial localization of Dmt102 mRNA, as<br />

observed by in situ hybridization analysis at the same <strong>de</strong>velopmental stage (Figure 2). In<br />

contrast, H3K9ac signals in dmt102::Mu line, were c<strong>le</strong>arly visib<strong>le</strong> in the repro<strong>du</strong>ctive cells<br />

and the surrounding somatic cells (Figure 6A, n>25). Thus DMT102 is necessary to maintain<br />

a <strong>de</strong>acety<strong>la</strong>ted H3K9 state in a spatially limited domain of the ovu<strong>le</strong>, which contains the<br />

repro<strong>du</strong>ctive cells and expresses Dmt102 in sexual maize. Strikingly, the pattern seen in the<br />

dmt102::Mu mutant line was also observed <strong>du</strong>ring apomeiosis and gametogenesis in<br />

apomictic 38C p<strong>la</strong>nts (Figure 6A, n>25), with the spatial domain encompassing the<br />

archespore/MMC simi<strong>la</strong>rly hyperacety<strong>la</strong>ted.<br />

Patterns of H3K9me2 in wild type B73 and dmt102::Mu ovu<strong>le</strong>s were simi<strong>la</strong>r <strong>du</strong>ring<br />

gametophyte <strong>de</strong>velopment (Supp<strong>le</strong>mental Figure 5). However, H3K9me2 signals in<br />

dmt102::Mu mature ESs differed from that observed in wild type (Figure 6, n=25). In wild<br />

type mature ES, H3K9me2 signal was enhanced in the egg cell as compared to the central<br />

cell. By contrast, in dmt102::Mu, H3K9me2 in the egg cell was significantly re<strong>du</strong>ced re<strong>la</strong>tive<br />

to central cell, suggesting that DMT102 activity is important for maintaining a repressive state<br />

of egg cell chromatin.<br />

3.2.7. Transcription patterns in the mature ES and the early seed suggest<br />

quiescence in the egg cell and the sexual zygote, but strong activity in the apomictic proembryos<br />

The differences <strong>de</strong>tected at the <strong>le</strong>vel of histone marks suggested that apomictic and sexual<br />

p<strong>la</strong>nts likely differ in transcriptional activity in and around the germ cells in the ovu<strong>le</strong>. To test<br />

this prediction, we analyzed global transcriptional patterns in ovu<strong>le</strong>s and early seeds of sexual<br />

62


p<strong>la</strong>nts (Methods and Supp<strong>le</strong>mental Figure 5). Staining of ovu<strong>le</strong>s containing a mature ES with<br />

4H8, an antibody against the heptamer repeats in the C-terminal domain of the main subunit<br />

of RNA POLYMERASE II (POLII), showed that most cells within the ovu<strong>le</strong> contained some<br />

<strong>de</strong>gree of POLII (n>25), including the egg cell and the central cell (Figure 7A). However, a<br />

c<strong>le</strong>ar difference could be observed between both cell types when immunostained with H5,<br />

which recognizes the same heptamers as 4H8 when phosphory<strong>la</strong>ted on serine 2.<br />

Phosphory<strong>la</strong>tion of ser2 occurs concomitantly with transcript elongation and, therefore, H5 is<br />

a mark of POLII mo<strong>le</strong>cu<strong>le</strong>s engaged in transcription (Pa<strong>la</strong>nca<strong>de</strong> and Bensaume, 2003). Whi<strong>le</strong><br />

central cells showed strong staining for both 4H8 and H5, egg cells never pro<strong>du</strong>ced a signal<br />

<strong>de</strong>tectab<strong>le</strong> above background <strong>le</strong>vel with H5 (Figure 7A, n>25). Simi<strong>la</strong>r results were obtained<br />

with an antibody against and H3K9ac and H3K4me3, two marks also broadly associated with<br />

a transcriptionally competent chromatin state. This is consistent with the pattern of the<br />

repressive mark H3K9me2 indicating a much higher <strong>le</strong>vel of repressed chromatin in the egg<br />

cell than in the central cell (Figure 6 C, D). Thus, comp<strong>le</strong>mentary information suggests that<br />

the two gametes in the ES have very distinct transcriptional activity, with an active central cell<br />

and a more quiescent egg cell coexisting in the ES.<br />

To <strong>de</strong>termine whether these two patterns were maintained following fertilization, we<br />

probed 1 and 2 DAP seeds. Patterns of H5 (Figure 7B) were simi<strong>la</strong>r and consistent: the<br />

dividing endosperm nuc<strong>le</strong>i pro<strong>du</strong>ced a strong signal, which was not <strong>de</strong>tected in the zygote.<br />

This indicates that the egg cell-to-zygote transition occurs without massive transcriptional<br />

activation of the embryo genome.<br />

To <strong>de</strong>termine more precisely the timing of zygotic genome activation, we probed growing<br />

seeds at various stages from 3 to 6 DAP with the same antibodies. The results showed that<br />

most embryos at 3 DAP (>90%, n>50) had staining patterns simi<strong>la</strong>r to the zygote (Figure 7C),<br />

suggesting that zygotic transcriptional quiescence <strong>la</strong>sted at <strong>le</strong>ast until 3 DAP. A striking<br />

contrast, however, was c<strong>le</strong>arly visib<strong>le</strong> with most (>90%, n>50) embryos at 5 DAP where most<br />

if not all cells in the embryo showed strong H5 (Figure 7C) and H3K4me3 staining.<br />

Consistent with these observations, H3K9me2 staining showed a marked re<strong>du</strong>ction at 5 DAP<br />

(Figure 7C). These data col<strong>le</strong>ctively suggest that between 3 and 5 DAP the embryo genome in<br />

sexual maize un<strong>de</strong>rgoes massive chromatin changes involving the re<strong>le</strong>ase of repressive marks<br />

and global transcriptional activation.<br />

63


To further compare apomictic and sexual p<strong>la</strong>nts, we looked at transcriptional activity in<br />

64


parthenogenetic embryos of the apomictic 38C ecotype. Pro-embryos in 38C <strong>de</strong>velop<br />

precociously as part of the maturation of the ES. Thus, the mature ES contains a pro-embryo,<br />

arrested at the 16 to 64-cell stage, and an unfertilized central cell (Figure 7D). These<br />

precocious arrested proembryos resume <strong>de</strong>velopment following fertilization of the central<br />

cell. Immunostaining of H5 and H3K4me3 (Figure 7D) showed a strong signal in all<br />

proembryos (n>50) regard<strong>le</strong>ss of their size (from 16 to c.a. 60 cells). These results<br />

<strong>de</strong>monstrate that the precocious parthenogenetic embryos are transcriptionally active.<br />

3.2.8. Parthenogenetic pro-embryos have lost gametic i<strong>de</strong>ntity, but have not<br />

established embryonic patterning<br />

During embryo <strong>de</strong>velopment, specific patterns of genes expression are tightly regu<strong>la</strong>ted in<br />

a spatial and temporal manner to either maintain or initiate changes in cell fate and<br />

<strong>de</strong>velopment. We were thus interested in checking whether the differences that we observed<br />

between apomictic and sexual <strong>de</strong>velopment corre<strong>la</strong>ted with changes in the expression patterns<br />

of gametic or embryonic cell i<strong>de</strong>ntity markers. In particu<strong>la</strong>r, it remained unc<strong>le</strong>ar based on the<br />

above results whether the precocious embryo is an embryo or an over-proliferating gamete.<br />

We analyzed the expression of a reporter gene consisting of the promoter region of the Zea<br />

mays embryo sac1 (Zm ES1) gene fused to the green fluorescent protein gene (Cordts et al.,<br />

2001; Figure 8A). In sexual maize, Zm ES1 is specific to the egg apparatus and its expression<br />

<strong>de</strong>creases strongly immediately after fertilization (Cordts et al., 2001). In the apomictic<br />

ecotype, expression was visib<strong>le</strong> in the ES at the stage when the apomictic «gamete» consisted<br />

of a sing<strong>le</strong> cell, but was absent in apomictic pro-embryos (n=20) (Figure 8A). This indicates<br />

that pro-embryos lost egg cell i<strong>de</strong>ntity as they transitioned from unicellu<strong>la</strong>r to multicellu<strong>la</strong>r<br />

structures. To verify whether they acquired proper embryonic i<strong>de</strong>ntity, we further used in situ<br />

hybridization and localized transcripts of Zea mays WUSCHEL-re<strong>la</strong>ted homeobox2 (Zm<br />

Wox2) in parthenogenetic and sexual pro-embryo (Figure 8B). Zm Wox2 has been previously<br />

characterized in maize (Nardmann et al., 2007) and shows a pattern simi<strong>la</strong>r to its Arabidopsis<br />

homologue: it is expressed specifically in the apical cells of the pro-embryo and marks the<br />

acquisition of c<strong>le</strong>ar apical-basal po<strong>la</strong>rity in the embryo proper. Here, we found that Zm Wox2<br />

expression was not specific to the apical cells in the apomictic pro-embryo but rather<br />

expressed in the entire pro-embryo (Figure 8B). This suggests that the parthenogenetic proembryos<br />

have not acquired the organization typically found in the sexual embryo.<br />

65


3.3 DISCUSSION<br />

By comparing transcription profi<strong>le</strong>s of a diverse set of maize CMEs in sexual and<br />

apomictic ovu<strong>le</strong>s, we i<strong>de</strong>ntified a limited set of enzymes showing qualitative expression<br />

differences between both repro<strong>du</strong>ctive strategies. Four of these CMEs (CHR106, DMT102,<br />

DMT105 and DMT103) are predicted, or have been shown to control DNA methy<strong>la</strong>tion and<br />

share close homology with the Arabidopsis DDM1, CMT3 and DRM2 proteins, respectively.<br />

DDM1 is involved in the maintenance of methy<strong>la</strong>tion at both CG and non-CG sites, whi<strong>le</strong><br />

66


CMT3 and DRM2 genes act re<strong>du</strong>ndantly to maintain non-CG methy<strong>la</strong>tion. Finally, <strong>de</strong> novo<br />

methy<strong>la</strong>tion is also a function of DRM2 in all sequences contexts (Cao and Jacobsen, 2002;<br />

Cao et al., 2003). Among the many different families of CMEs tested, the differentially<br />

expressed genes were not se<strong>le</strong>cted ex ante based on predicted functions and, therefore, it is<br />

remarkab<strong>le</strong> that most of them function in DNA methy<strong>la</strong>tion.<br />

It has been advocated that apomixis might be a consequence of «epigenomic shocks», such<br />

as interspecific hybridization and polyploidization, resulting in a broad <strong>de</strong>regu<strong>la</strong>tion of<br />

repro<strong>du</strong>ctive <strong>de</strong>velopment. Because our experimental mo<strong>de</strong>l consists in an apomictic hybrid<br />

of polyploid nature (as virtually all known apomictic p<strong>la</strong>nts) and interspecific origin, some or<br />

all the variation <strong>de</strong>tected in gene expression patterns might be only indirectly re<strong>la</strong>ted to<br />

apomixis. However, three arguments suggest otherwise. First, simi<strong>la</strong>r <strong>de</strong>regu<strong>la</strong>tion pattern of<br />

DRM genes occurred in the two mo<strong>de</strong>ls we tested, Tripsacum dactyloi<strong>de</strong>s and Boechera<br />

holbellii, indicating that it might <strong>de</strong>note a conserved feature among apomictic p<strong>la</strong>nts. Second,<br />

<strong>de</strong>regu<strong>la</strong>tion affected genes with c<strong>le</strong>ar repro<strong>du</strong>ctive expression as dmt102 and dmt103<br />

transcription domains in maize ovu<strong>le</strong>s were confined to the germ cells and a few surrounding<br />

somatic nucel<strong>la</strong>r cells. Finally, we also found that indivi<strong>du</strong>al or combined downregu<strong>la</strong>tion of<br />

both genes resulted in phenotypes highly reminiscent of apomictic <strong>de</strong>velopments. DMT102<br />

loss-of-function resulted in the pro<strong>du</strong>ction of unre<strong>du</strong>ced ma<strong>le</strong> gametes and in abnormal<br />

patterns of antipodal cell differentiation. It further resulted, as in apomictic 38C, in a<br />

hyperacety<strong>la</strong>ted state of H3K9 in the archesporial domain of the ovu<strong>le</strong>. Simi<strong>la</strong>r but more<br />

severe phenotypes were observed for dmt103 mutant lines, which additionally resulted in<br />

strong <strong>de</strong>fects in ovu<strong>le</strong> <strong>de</strong>velopment: ESs with supernumerary gametes, formation of extra<br />

ESs, possibly of both somatic and gametophytic origins, unre<strong>du</strong>ced ma<strong>le</strong> gametes, and<br />

possibly unre<strong>du</strong>ced fema<strong>le</strong> gametes. The presence of multip<strong>le</strong> ESs suggests that DMT103,<br />

and possibly DMT102, function in nucel<strong>la</strong>r cells to ensure that a sing<strong>le</strong> gametophyte <strong>de</strong>velops<br />

within each ovu<strong>le</strong>. In addition, the occurrence of either differentiated or undifferentiated extra<br />

nuc<strong>le</strong>i indicates that they might also regu<strong>la</strong>te both cell i<strong>de</strong>ntity and cell proliferation patterns<br />

<strong>du</strong>ring megagametogenesis. In addition to this novel ro<strong>le</strong> in gametophytic <strong>de</strong>velopment,<br />

observation of unre<strong>du</strong>ced gametes and supernumerary ESs is strikingly reminiscent of<br />

apomictic repro<strong>du</strong>ction. Therefore, we propose that the inactivation of this specific set of<br />

genes might represent a crucial difference between apomixis and sexuality. Further work will<br />

require to <strong>de</strong>monstrate that restoring their activity in an apomictic background can re-install<br />

sexual repro<strong>du</strong>ction.<br />

67


Interestingly, the extra ES phenotype observed in dmt103 mutants is suggestive of<br />

aposporous <strong>de</strong>velopment, which is not found in diplosporous Tripsacum. It has been an open<br />

question whether the different mo<strong>de</strong>s of apomictic <strong>de</strong>velopment are genetically re<strong>la</strong>ted. The<br />

strongest argument for a close re<strong>la</strong>tionship between apospory and diplospory is the<br />

coexistence of both forms in some species, for examp<strong>le</strong> in Paspalum minus (Bonil<strong>la</strong> and<br />

Quarin, 1997). Whi<strong>le</strong> it is possib<strong>le</strong> that mutations allowing both <strong>de</strong>velopments might have<br />

accumu<strong>la</strong>ted in<strong>de</strong>pen<strong>de</strong>ntly in the same ecotypes, our data support the more parsimonious<br />

hypothesis that <strong>de</strong>regu<strong>la</strong>ting DNA methy<strong>la</strong>tion in repro<strong>du</strong>ctive cells participates in both<br />

phenotypes.<br />

The restricted expression domains of dmt102 and dmt103 also suggest the specialization, at<br />

<strong>le</strong>ast in maize, of a DNA methy<strong>la</strong>tion pathway acting specifically in repro<strong>du</strong>ctive cells.<br />

DMT102 in maize and the Arabidopsis homolog of DMT103 are involved in non-CG<br />

methy<strong>la</strong>tion (Papa et al., 2001; Vail<strong>la</strong>nt and Paskowski, 2007). Interestingly, DMT101, the<br />

maize homolog of MET1 (the key enzyme for the maintenance of methy<strong>la</strong>tion at CG sites)<br />

showed no difference in expression pattern in sexual and apomictic ovu<strong>le</strong>s. Although a direct<br />

effect on non-CG methy<strong>la</strong>tion of DMT103 still requires confirmation, this points to a specific<br />

ro<strong>le</strong> for non-CG methy<strong>la</strong>tion, and our results suggest that, <strong>du</strong>ring apomictic <strong>de</strong>velopment in<br />

Tripsacum, a small ovu<strong>le</strong> domain containing the repro<strong>du</strong>ctive cells possibly en<strong>du</strong>res<br />

alterations in DNA methy<strong>la</strong>tion patterns at non-CG sites. Additionally, DRM2 is the main <strong>de</strong><br />

novo methyltransferase in all sequences contexts, and we cannot exclu<strong>de</strong> the possibility that<br />

<strong>de</strong> novo methy<strong>la</strong>tion activity might also be affected in apomictic progenies. In<strong>de</strong>ed, previous<br />

data showed that apomictic repro<strong>du</strong>ction faithfully repro<strong>du</strong>ces the genome through<br />

generations, but often fails to properly replicate DNA methy<strong>la</strong>tion patterns (Leb<strong>la</strong>nc et al.,<br />

2009).<br />

Comparative cell-specific analysis of chromatin states within ovu<strong>le</strong>s revea<strong>le</strong>d differences<br />

between sexual maize on the one hand and dmt mutants and apomictic 38C hybrids on the<br />

other. First, we observed that, in contrast to sexual maize, apomictic 38C p<strong>la</strong>nts and<br />

dmt102::Mu lines suffered ectopic H3K9 hyper-acety<strong>la</strong>tion in a nucel<strong>la</strong>r domain over<strong>la</strong>pping<br />

that of dmt102 transcription. Whi<strong>le</strong> changes in H3K9ac are likely an indirect consequence of<br />

DMT102 loss of function or apomixis, it represents a well-established mark of<br />

transcriptionally competent chromatin. Thus, this indicates that transcriptional activity in and<br />

around the germ cells in the ovu<strong>le</strong> likely differs between apomictic and sexual p<strong>la</strong>nts.<br />

Second, transcriptional activity in the early sexual embryo and the parthenogenetic embryo at<br />

68


a simi<strong>la</strong>r stage of <strong>de</strong>velopment strongly differed. Consistently with the aforementioned H3K9<br />

hyper-acety<strong>la</strong>tion, methy<strong>la</strong>tion states at H3K9 and H3K4 indicated that the mature fema<strong>le</strong><br />

gamete and the early seed in sexual maize are re<strong>la</strong>tively quiescent until at <strong>le</strong>ast 3DAP, when a<br />

major burst of transcriptional activity takes p<strong>la</strong>ce. By contrast, parthenogenetic embryos<br />

showed active transcription at early stages. We previously <strong>de</strong>monstrated using microarray<br />

analysis (Grimanelli et al., 2005) that the mRNA popu<strong>la</strong>tions present in ovu<strong>le</strong>s containing a<br />

parthenogenetic embryo and in sexual maize ovu<strong>le</strong>s are essentially simi<strong>la</strong>r. This showed that<br />

transcriptional activity in precocious pro-embryos was not the result of an early zygotic<br />

genome activation. Furthermore, this heterochronic activation of transcription does not<br />

correspond to the prolongation of a gametic program, as shown by the loss of egg cell-specific<br />

marker expression, and likely interferes with the correct expression of embryo patterning<br />

genes such as Zm WOX2. Whether the same difference in transcriptional activity occurs at<br />

earlier stages of <strong>de</strong>velopment was indirectly suggested by the differences observed for<br />

H3K9ac <strong>du</strong>ring sporogenesis. Although technically difficult, <strong>de</strong>termining directly the extent<br />

of transcriptional repression <strong>du</strong>ring repro<strong>du</strong>ctive <strong>de</strong>velopment remains critical in the<br />

un<strong>de</strong>rstanding of both sexual and apomictic repro<strong>du</strong>ction.<br />

What could be the ro<strong>le</strong> of a re<strong>la</strong>tive quiescence in the repro<strong>du</strong>ctive cells? In animals,<br />

POLII-<strong>de</strong>pen<strong>de</strong>nt transcription is repressed in the germ cells, a phenomenon which involves<br />

both inhibition of phosphory<strong>la</strong>tion in the CTD of POLII and <strong>la</strong>rge sca<strong>le</strong> chromatin<br />

remo<strong>de</strong>ling. This repression is thought to be important for the establishment and maintenance<br />

of germ-line fate, by preventing somatic differentiation (Seydoux and Braun, 2006). When<br />

transcription is not repressed, germ cells do not form, <strong>du</strong>e to the transformation of their<br />

precursors into somatic cells. Transcriptional repression may also be key to establish<br />

transcriptional profi<strong>le</strong>s compatib<strong>le</strong> with totipotency (Seydoux and Braun, 2006). P<strong>la</strong>nts do not<br />

have germ-lines as such. Rather, somatic cells switch programs <strong>la</strong>te <strong>du</strong>ring <strong>de</strong>velopment to<br />

pro<strong>du</strong>ce repro<strong>du</strong>ctive cells. Furthermore, the pro<strong>du</strong>cts of meiosis, which directly <strong>de</strong>velop into<br />

gametes in animals, un<strong>de</strong>rgo additional cell division and differentiation steps to form<br />

multicellu<strong>la</strong>r gametophytes containing the gametes. Despite these differences, recent data<br />

indicate that animal and p<strong>la</strong>nt germ cells <strong>de</strong>velopment share mechanistic simi<strong>la</strong>rities, as<br />

illustrated by the essential si<strong>le</strong>ncing function of DDM1 in p<strong>la</strong>nt ma<strong>le</strong> gametes, reminiscent of<br />

piRNA pathway function in animals (Slotkin et al., 2009) and the importance of Argonaute<br />

proteins members in both systems (Nonomura et al., 2007; Yin and Lin, 2007). Thus, is a<br />

re<strong>la</strong>tive transcriptional quiescence required for (sexual) p<strong>la</strong>nt fema<strong>le</strong> gametes <strong>de</strong>finition?<br />

69


Here, we observed that parthenogenetic embryos, which <strong>de</strong>velop without fertilization, are<br />

transcriptionally active, by contrast to sexual ones. Whether continuous transcription is<br />

sufficient to in<strong>du</strong>ce parthenogenesis is unc<strong>le</strong>ar; such a gain-of-function phenotype does not<br />

offer c<strong>le</strong>ar functional evi<strong>de</strong>nces. Yet, the data on both dmt- mutants suggest strongly that both<br />

gametophyte and egg cell <strong>de</strong>velopment requires transcriptional quiescence.<br />

The genetic mechanism(s) un<strong>de</strong>rlying apomictic <strong>de</strong>velopments in p<strong>la</strong>nts remains<br />

un<strong>de</strong>termined. Specific genes or al<strong>le</strong><strong>le</strong>s controlling apomixis expression in any p<strong>la</strong>nt species<br />

have yet to be discovered. Although important advances have been ma<strong>de</strong> recently with the<br />

engineering of apomeiotic genotypes in Arabidopsis (Ravi et al., 2008; d'Erfurth et al., 2009),<br />

it is still unc<strong>le</strong>ar whether these phenotypes are re<strong>la</strong>ted to apomixis in wild species.<br />

Furthermore, the genotypes generated so far in Arabidopsis alter sporogenesis without<br />

affecting gametogenesis or embryogenesis. Here, we took the reverse approach and analyzed<br />

apomixis regu<strong>la</strong>tion in an artificial interspecific hybrid as well as in natural ecotypes. Our<br />

data suggest that the downregu<strong>la</strong>tion of a repro<strong>du</strong>ctive RdDM-like pathway can result in both<br />

sporogenesis (unre<strong>du</strong>ced gametes) and gametogenesis (extra embryo sacs) alterations. This is<br />

in line with the fact that apomeiosis and parthenogenesis in Tripsacum are genetically linked<br />

(Leb<strong>la</strong>nc et al., 2009). On the other hand, neither DMT102 nor DMT103 inactivation resulted<br />

in the pro<strong>du</strong>ction of fully apomictic maize progenies. To validate our hypothesis that the<br />

downregu<strong>la</strong>tion of an ovu<strong>le</strong>-specific chromatin-based si<strong>le</strong>ncing pathway in maize would<br />

generate apomictic repro<strong>du</strong>ction, it will be necessary to i<strong>de</strong>ntify the other members involved<br />

in this pathway and to explore the effects of their inactivation either indivi<strong>du</strong>ally or all at<br />

once.<br />

70


3.4 METHODS<br />

3.4.1. P<strong>la</strong>nt Materials<br />

The 38C apomictic maize-Tripsacum hybrid has been previously <strong>de</strong>scribed in <strong>de</strong>tails<br />

(Leb<strong>la</strong>nc et al., 1996; Grimanelli et al., 2003, Leb<strong>la</strong>nc et al., 2009). Transgenic version of 38C<br />

expressing pES1-GFP were pro<strong>du</strong>ced as <strong>de</strong>scribed by Leb<strong>la</strong>nc et al. (1996) using a pZm ES1-<br />

GFP maize line provi<strong>de</strong>d by Thomas Dresselhaus (University of Regensburg, Germany).<br />

P<strong>la</strong>nts carrying a dmt102::Mu <strong>de</strong>fective al<strong>le</strong><strong>le</strong> (zmet2-m1::Mu; Papa et al., 2001) were<br />

provi<strong>de</strong>d by SM Kaepp<strong>le</strong>r. In all experiments, we used seeds <strong>de</strong>rived from a sing<strong>le</strong><br />

dmt102::Mu/dmt102::Mu p<strong>la</strong>nt. The dmt103 RNAi materials (D103-2 and D103-4) were<br />

generated by the Maize Chromatin Consortium (for vectors and proce<strong>du</strong>res, see McGinnis et<br />

al., 2005). These lines, the dmt103-6 tilling al<strong>le</strong><strong>le</strong>, stocks for the B73 maize inbreed and<br />

N108A stocks (autotetraploid line <strong>de</strong>rived from B73) were provi<strong>de</strong>d by the Maize Genetic<br />

Cooperation Stock Center. The Tripsacum dactyloi<strong>de</strong>s 65-1234, which was used to <strong>de</strong>rive 38C<br />

is maintained at CIMMYT, Mexico. Experiments in Arabidopsis thaliana were done with the<br />

Col(0) ecotype. The apomictic Boechera holbollii accession was obtained from Enrico Perotti<br />

(Australian National University, Canberra).<br />

3.4.2. Genotyping<br />

The genotype of dmt102 locus was <strong>de</strong>termined by PCR using a Mu specific primer and a<br />

dmt102 internal primer as <strong>de</strong>scribed in Papa et al. (2001). To genotype dmt103 RNAi lines,<br />

we took advantage of the herbici<strong>de</strong> resistance gene present in the transgenic construct<br />

(McGinnis et al., 2005). We first screened for herbici<strong>de</strong> resistance a pool of T2 p<strong>la</strong>nts and<br />

verified by PCR the presence of the transgene. We then maintained hemizygous p<strong>la</strong>nts by<br />

crossing transgenic T2 p<strong>la</strong>nts as ma<strong>le</strong> or fema<strong>le</strong> progenitors with B73 p<strong>la</strong>nts. All subsequent<br />

analyzes were performed in the resulted T3 segregating progeny, following the same<br />

proce<strong>du</strong>re (herbici<strong>de</strong> resistance and transgene genotyping). Genotyping of the TILLed<br />

dmt103-6 al<strong>le</strong><strong>le</strong> is <strong>de</strong>scribed elsewhere (www.genome.pur<strong>du</strong>e.e<strong>du</strong>/maizetilling). Primers<br />

sequences for genotype analysis are listed in Supp<strong>le</strong>mental Tab<strong>le</strong> 3.<br />

71


3.4.3. Se<strong>le</strong>ction of CMEs for RT-PCR analysis<br />

To i<strong>de</strong>ntify CMEs expressed <strong>du</strong>ring sexual and/or apomictic ovu<strong>le</strong> <strong>de</strong>velopment, we reanalyzed<br />

a set of microarrays from which global transcription profi<strong>le</strong>s have been previously<br />

reported (Grimanelli et al., 2005). The original experiment compared differential expression<br />

between ovu<strong>le</strong>s at the mature embryo sac stage in apomictic and sexual p<strong>la</strong>nts. We used the<br />

results of BLAST searches to i<strong>de</strong>ntify probes in the arrays corresponding to CMEs expressed<br />

either in sexual p<strong>la</strong>nts, apomictic p<strong>la</strong>nts, or both. Out of these, we se<strong>le</strong>cted all loci (11)<br />

showing putative differential expression between the two repro<strong>du</strong>ctive mo<strong>de</strong>s. Next, we<br />

i<strong>de</strong>ntified using The Chromatin Database (www.chromdb.org) an additional set of 45 genes,<br />

with avai<strong>la</strong>b<strong>le</strong> RNA expression patterns suggesting higher expression in repro<strong>du</strong>ctive tissues<br />

than in vegetative parts. ID, loci accession numbers and the corresponding protein<br />

c<strong>la</strong>ssification are shown in Supp<strong>le</strong>mental Tab<strong>le</strong> 1 and 2.<br />

3.4.5. RT-PCR<br />

Immature ovaries were col<strong>le</strong>cted and carefully dissected to eliminate non-repro<strong>du</strong>ctive<br />

tissues. Bulks of iso<strong>la</strong>ted ovu<strong>le</strong>s were directly frozen in liquid nitrogen for further nuc<strong>le</strong>ic acid<br />

extraction. In or<strong>de</strong>r to precisely <strong>de</strong>termine the <strong>de</strong>velopmental stage within bulks (see<br />

Supp<strong>le</strong>mental Figure 1 for maize), small samp<strong>le</strong>s were set apart prior to freezing and c<strong>le</strong>ared<br />

using benzyl:benzoate solutions (maize and Tripsacum; Leb<strong>la</strong>nc et al., 1995) or Herrs’s<br />

solution (Arabidopsis and Boechera) to precisely <strong>de</strong>termine the <strong>de</strong>velopmental stage of each<br />

samp<strong>le</strong>. RNA extractions were performed with TRIZOL reagent (Invitrogen) followed by<br />

DNAse treatment (Deoxyribonuc<strong>le</strong>ase I, Invitrogen). RNA was reverse transcribed using the<br />

SUPERSCRIPT III RT-PCR kit (Invitrogene), following the provi<strong>de</strong>r’s instructions. For PCR,<br />

we used 10µl reactions containing 1µl of cDNA, 2µl of ReadyMix TM Taq PCR Reaction Mix<br />

(Sigma-Aldrich), 1µl of 10µM each forward and reverse primers and 5µl Millipore water.<br />

PCR cycling program inclu<strong>de</strong>d 35 cyc<strong>le</strong>s of 94 o C for 30s, 60 o C for 30s and 72 o C for 30s,<br />

followed by an additional cyc<strong>le</strong> of 2min at 72 o C. For all experiments, we used maize actin1 or<br />

Arabidopsis ACTIN11 as a cDNA amplification control. Primers were <strong>de</strong>signed to span an<br />

intron, when possib<strong>le</strong>, in or<strong>de</strong>r to i<strong>de</strong>ntify genomic DNA contaminations. Primer sequences<br />

are provi<strong>de</strong>d in Supp<strong>le</strong>mental Tab<strong>le</strong> 3.<br />

72


3.4.6. Imaging of histone modifications and transcriptional activity in ovu<strong>le</strong>s and<br />

seed tissues<br />

We used an approach first <strong>de</strong>scribed by Laurie et al. (1999), referred to as "semi-iso<strong>la</strong>ted"<br />

ESs. Fresh ovu<strong>le</strong>s or 1 DAP seeds were sliced with a vibratome (LeicaVT1000E) to pro<strong>du</strong>ce<br />

sections containing intact ESs or <strong>de</strong>veloping embryos and endosperms. As <strong>de</strong>scribed in the<br />

original artic<strong>le</strong>, these sections contain living materials that can be either fixed for further<br />

processing or grown onto a basic growth medium. In our hands, most in vitro cultured<br />

sections harvested post fertilization (>60%, n>100) mimicked normal seed <strong>de</strong>velopment<br />

<strong>du</strong>ring at <strong>le</strong>ast 6 DAP, therefore covering the time frame of our experiments. This allowed<br />

precise sampling and 3D imaging of intact, who<strong>le</strong>-mount ES, <strong>de</strong>veloping embryos and<br />

syncitial endosperm tissue (Supp<strong>le</strong>mental Figure 6). We thus combined this proce<strong>du</strong>re and<br />

immunostaining to monitor transcriptional activity and histone modifications <strong>du</strong>ring<br />

repro<strong>du</strong>ctive cells <strong>de</strong>velopment. To achieve this, we used commercial antibodies (Abcam)<br />

avai<strong>la</strong>b<strong>le</strong> for transcriptional activity (4H8 and H5) and for several histone marks, i.e.<br />

H3K9me2, H3K9ac and H3K4me3. All these antibodies are routinely used in other organisms<br />

and pro<strong>du</strong>ced (see below) results consistent with the literature (Supp<strong>le</strong>mental Figure 6).<br />

Embryo sacs and early seeds were prepared following Laurie et al. (1999). Vibratome sections<br />

(c.a. 300 µm) were fixed for 3 hours in 4% paraformal<strong>de</strong>hy<strong>de</strong>: 1xPBS: 2% Triton fixative,<br />

washed twice in 1xPBS. Samp<strong>le</strong>s were digested in a enzymatic solution (1% drise<strong>la</strong>se, 0,5%<br />

cellu<strong>la</strong>se, 1% pectolyase, 1%BSA, all from Sigma) for 15 to 45 min at RT, <strong>de</strong>pending on the<br />

<strong>de</strong>velopmental stage, subsequently rinsed 3 times in 1xPBS and permeabilized for 1 to 2 h in<br />

1xPBS, 2% Triton, 1% BSA. They were then incubated overnight at 4°C with the primary<br />

antibodies (all from Abcam), used at the following concentrations: 1:400 for H3K9ac, 1:200<br />

for 4H8, H5, H3K9me2 and H3K4me3, The sections were washed daylong in 1xPBS; 0,2%<br />

Triton and incubated with secondary antibodies (either FITC conjugate or Cy3 conjugate,<br />

both from Sigma, or A<strong>le</strong>xa Fluor 488 conjugate, Mo<strong>le</strong>cu<strong>la</strong>r Probes) used at 1:400 dilution.<br />

After washing in 1xPBS; 0,2% Triton for a minimum of 6 h, the sections were incubated with<br />

DAPI (1ug/ml in 1xPBS) for 1h, washed for 1h in 1xPBS and mounted in PROLONG<br />

medium (Mo<strong>le</strong>cu<strong>la</strong>r Probes). A minimum of 50 ovu<strong>le</strong>s or seeds with interpretab<strong>le</strong> staining<br />

patterns was scored for each <strong>de</strong>velopmental stage reported in this paper. Images were captured<br />

on a LEICA epifluorescence microscope equipped with a color CCD Leica camera and<br />

appropriate DAPI, FITC or Cy3 filters. 3D ovu<strong>le</strong> images were captured on a <strong>la</strong>ser scanning<br />

confocal microscope (Leica SP2) equipped for 405nm (DAPI), 488 nm (FITC/A<strong>le</strong>xa488) and<br />

73


525 nm (Cy3/A<strong>le</strong>xa568) excitation and either 20X, 40X or 63X objectives. Maximumintensity<br />

projections of se<strong>le</strong>cted optical sections were generated for this report and then edited<br />

using Graphic Converter (<strong>le</strong>mkeSOFT).<br />

3.4.7. Who<strong>le</strong> mount c<strong>le</strong>aring of ovu<strong>le</strong> samp<strong>le</strong>s<br />

Ovaries were fixed in FAA (50% absolute ethanol, 5% g<strong>la</strong>cial acetic acid, 10%<br />

formal<strong>de</strong>hy<strong>de</strong> and 35% H2O) for 24h at RT and stored in ethanol 70%. Fixed ovaries were<br />

sectioned by vibratome as <strong>de</strong>scribed above. Then, sections were <strong>de</strong>hydrated throughout<br />

successively ethanol dilutions of 70%, 85% and 100% and c<strong>le</strong>ared according to Leb<strong>la</strong>nc et al.<br />

(1995). C<strong>le</strong>ared sections were mounted in the c<strong>le</strong>aring solution between two blocks of<br />

coverslips with simi<strong>la</strong>r thickness to that of samp<strong>le</strong>s and covered by a third coverslip. Samp<strong>le</strong>s<br />

were observed with differential interference-contrast optics (DIC) in a ZEISS Axio Imager.A1<br />

microscopy.<br />

3.4.8. Who<strong>le</strong> mount in-situ mRNA hybridizations<br />

Vibratome sections of fresh ovaries were recovered and fixed as for immunolocalization<br />

assays. We then followed the standard in situ protocol as <strong>de</strong>scribed Garcia Agui<strong>la</strong>r et al.,<br />

(2005) using (LNA) DNA probes which substitutions were as follows: dmt102:<br />

TAGGAALTGTCZCGTCCLAC, dmt103: TCGATCTZGTGATZGGTGGEAGTC, Zm<br />

Wox2: CGCCGLGCCCPGCTCTCCEGC, with E=A-LNA, L=C-LNA, Z=T-LNA, P=G-<br />

LNA.<br />

74


3.5. TABLES<br />

Tab<strong>le</strong> 1. BLAST analysis of se<strong>le</strong>cted maize CMEs with the Arabidopsis protein database.<br />

The maize locus nomenc<strong>la</strong>ture is according to CHROMDB. % of i<strong>de</strong>ntity was calcu<strong>la</strong>ted<br />

using the comp<strong>le</strong>te <strong>le</strong>ngth of the predicted maize protein.<br />

Protein Maize At homologue At gene Function % E values<br />

Family locus<br />

I<strong>de</strong>ntity<br />

SNF2 chr106 AT5G66750 DDM1 Maintenance of Cyt methy<strong>la</strong>tion 63 e-126<br />

DMT dmt102 AT1G69770 CMT3 Maintenance of CNG methy<strong>la</strong>tion 50 0<br />

DMT dmt103 AT5G14620 DRM2 <strong>de</strong> novo methy<strong>la</strong>tion 51 e-151<br />

DMT dmt103 AT5G 15380 DRM1 <strong>de</strong> novo methy<strong>la</strong>tion 51 e-149<br />

DMT dmt105 AT4G19020 CMT3 Maintenance of CNG methy<strong>la</strong>tion 51 0<br />

HDA hdt104 AT3G44750 HD2A Histone Deacety<strong>la</strong>se 42 2e-51<br />

Histone hon101 AT2G18050 HIS1-3 Histone linker 52 e-24<br />

75


Tab<strong>le</strong> 2. Ovu<strong>le</strong> phenotypes observed in indivi<strong>du</strong>als from dmt103 sing<strong>le</strong> and doub<strong>le</strong><br />

mutants. ES: embryo sacs<br />

PHENOTYPES<br />

Lines # WT Abnormal Aborted Extra ES n<br />

D103-2 4 28 6 0 4 38<br />

D103-2 7 10 0 4 0 14<br />

D103-2 11 22 12 2 7 43<br />

D103-2 16 25 2 0 2 29<br />

D103-2 22 22 3 0 1 26<br />

Total 107 23 6 14 150<br />

% 71 15 4 9<br />

D103-4 2 21 5 0 0 26<br />

D103-4 3 2 0 33 0 35<br />

D103-4 4 17 13 0 0 30<br />

D103-4 6 30 0 0 0 30<br />

D103-4 8 1 12 0 0 13<br />

D103-4 9 9 2 0 0 11<br />

D103-4 10 6 0 0 1 7<br />

Total 86 32 33 1 152<br />

% 57 21 22 1<br />

dmt103-6 1 3 15 0 3 21<br />

dmt103-6 4 7 14 0 1 22<br />

dmt103-6 6 5 12 0 4 21<br />

Total 15 41 0 8 64<br />

% 23 64 0 13<br />

Dmt102/dmt102::Mu D103.4 12 9 0 0 8 17<br />

% 53 0 0 47<br />

F2#3 1 16 1 0 0 17<br />

F2#3 6 18 1 0 0 19<br />

F2#3 11 19 0 1 0 20<br />

F2#3 12 28 0 2 0 30<br />

Total 81 2 3 0 86<br />

% 94 2 3 0<br />

F2#12 1 10 6 0 0 16<br />

F2#12 2 9 4 1 0 14<br />

F2#12 3 4 6 0 1 11<br />

F2#12 4 6 1 1 2 10<br />

F2#12 5 12 1 0 11 24<br />

F2#12 6 8 2 0 0 10<br />

F2#12 7 28 0 0 0 28<br />

Total 77 20 2 14 113<br />

% 68 18 2 12<br />

76


Tab<strong>le</strong> 3. Embryo sac phenotypes observed in indivi<strong>du</strong>als from dmt103 sing<strong>le</strong> and doub<strong>le</strong><br />

mutants. nuc: nucellus; ES: embryo sacs; An: antipods<br />

PHENOTYPES<br />

Lines # Normal Extra nuc. Inverted ES Abnormal An Multip<strong>le</strong> ES n<br />

D103-2 1 28 2 0 0 2 32<br />

D103-2 6 25 0 0 0 1 26<br />

D103-2 11 22 2 1 0 8 33<br />

D103-2 16 25 0 0 2 0 27<br />

D103-2 17 18 0 0 2 0 20<br />

D103-2 18 27 0 0 1 0 28<br />

D103-2 22 22 1 0 0 2 25<br />

D103-2 23 13 1 0 2 0 16<br />

D103-2 24 21 0 0 1 0 22<br />

Total 201 6 1 8 13 229<br />

% 88 3 0 3 6<br />

DMT103-4 4 6 0 0 0 1 7<br />

DMT103-4 8 1 0 0 0 0 1<br />

DMT103-4 9 9 0 2 0 0 11<br />

Total 16 0 2 0 1 19<br />

% 84 0 11 0 5<br />

Dmt102/dmt102::Mu<br />

D103.4 12 10 0 0 0 7 17<br />

% 59 0 0 0 41<br />

77


3.6. SUPPLEMENTAL TABLES AND FIGURES<br />

Supp<strong>le</strong>mental Figure 1. Definition of <strong>de</strong>velopmental stages in the ovu<strong>le</strong>.<br />

Supp<strong>le</strong>mental Figure 2. Expression patterns of se<strong>le</strong>cted CMEs <strong>du</strong>ring sexual and apomictic<br />

repro<strong>du</strong>ction as <strong>de</strong>termined by RT-PCR.<br />

Supp<strong>le</strong>mental Figure 3. C<strong>la</strong>dogram showing the re<strong>la</strong>tionship among se<strong>le</strong>cted DMTs in maize<br />

and homologs in Arabidopsis.<br />

Supp<strong>le</strong>mental Figure 4. Phenotypes of D103 mutant lines.<br />

Supp<strong>le</strong>mental Figure 5. H3K9me2 <strong>de</strong>tection <strong>du</strong>ring megagametogenesis in sexual maize<br />

(B73) and dmt102 mutant lines and in 38C apomicts.<br />

Supp<strong>le</strong>mental Figure 6. Analysis of chromatin states in who<strong>le</strong> mount seed tissues.<br />

Supp<strong>le</strong>mental Tab<strong>le</strong> 1. List of CMEs evaluated for for repro<strong>du</strong>ctive tissue expression.<br />

Supp<strong>le</strong>mental Tab<strong>le</strong> 2. CMEs se<strong>le</strong>cted for transcriptional analysis.<br />

Supp<strong>le</strong>mental Tab<strong>le</strong> 3. List of primers.<br />

78


MMC<br />

INT<br />

Early sporogenesis<br />

Mature embryo sac<br />

PN<br />

Embryo<br />

Early embryogenesis<br />

Supp<strong>le</strong>mental Figure 1. Definition of <strong>de</strong>velopmental stages in the ovu<strong>le</strong>.<br />

79


A<br />

GENE SEXUAL APOMICTIC<br />

SPO MES 3DAP LEAF SPO MES 3DAP LEAF<br />

brd101<br />

brat101<br />

chb102<br />

chc101<br />

chr101<br />

chr106<br />

chr110<br />

chr112<br />

chr113<br />

chr120<br />

chr125<br />

chr126<br />

dmt101<br />

dmt102<br />

dmt103<br />

dmt104<br />

dmt105<br />

dmt106<br />

dmt107<br />

hxa102<br />

hag102<br />

hac 101<br />

AC157319<br />

BT066941<br />

AY110756<br />

AY104727<br />

EY951031<br />

hda102<br />

hda110<br />

hdt101<br />

hdt103<br />

hdt104<br />

DR958383<br />

srt101<br />

hon101<br />

hon104<br />

mbd101<br />

mbd109<br />

nfa101<br />

nfa104<br />

nfc102<br />

nfc104<br />

nfe101<br />

sdg101<br />

sdg102<br />

sdg107<br />

sdg110<br />

sdg118<br />

sdg122<br />

sdg129<br />

DT942012<br />

AW288923<br />

DR959742<br />

EE168341<br />

EC897242<br />

vef101<br />

4<br />

3<br />

2<br />

1<br />

0<br />

B<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

SPOROGENESIS<br />

3<br />

3<br />

3<br />

5<br />

42<br />

sexual<br />

9<br />

7<br />

2<br />

11<br />

27<br />

apo<br />

MATURE EMBRYO SAC<br />

2 7<br />

2<br />

2<br />

1<br />

6<br />

9<br />

44<br />

sexual<br />

3 DAP<br />

38<br />

apo<br />

4<br />

1<br />

7<br />

6<br />

5<br />

1<br />

9 7<br />

36 36<br />

sexual<br />

apo<br />

Supp<strong>le</strong>mental Figure 2. Expression patterns of se<strong>le</strong>cted CMEs <strong>du</strong>ring sexual and apomictic<br />

repro<strong>du</strong>ction as <strong>de</strong>termined by RT-PCR.<br />

(A) Profiling of indivi<strong>du</strong>al CMEs in ovu<strong>le</strong>s at three <strong>de</strong>velopmental stages and in <strong>le</strong>af tissue as<br />

sporophytic control. SPO: meiosis/apomeiosis, MES: mature embryo sac, DAP: days after pollination.<br />

Color co<strong>de</strong> for the c<strong>la</strong>ssification of transcription expression is shown below. Red (0) indicates null<br />

amplification whi<strong>le</strong> dark green (4) represents the highest expression <strong>le</strong>vels..<br />

(B)Global transcriptional behavior <strong>du</strong>ring sporogenesis, mature ES and 3 DAP in sexual and apomictic<br />

p<strong>la</strong>nts. The number of genes corresponding to each color co<strong>de</strong> is indicated in bars.<br />

80


Supp<strong>le</strong>mental Figure 3. C<strong>la</strong>dogram showing the re<strong>la</strong>tionship among se<strong>le</strong>cted DMTs in maize and<br />

homologs in Arabidopsis. The tree was build using MacVector version 7.2 (ClustalW proce<strong>du</strong>re,<br />

Neighbor Joining method). Numbers indicate distance.<br />

81


A<br />

B73<br />

B<br />

B73<br />

ES<br />

B73 X D103-2<br />

Ov<br />

D103-2<br />

ES<br />

Ov<br />

B73 X D103-2<br />

D103-4 X B73<br />

D103-2<br />

Ov<br />

ES<br />

D103-4 X B73<br />

Supp<strong>le</strong>mental Figure 4. Phenotypes of D103 mutant lines.<br />

(A) Ears from reciprocal crosses between wild type maize (B73) and D103 lines.<br />

(B) Abnormal ovu<strong>le</strong> <strong>de</strong>velopment resulting in mispositioned of mature ESs in D103-2 lines. In both<br />

cases, rotation<br />

Supp<strong>le</strong>mental<br />

in the ovu<strong>le</strong><br />

Figure<br />

fails<br />

4.<br />

to<br />

Phenotypes<br />

comp<strong>le</strong>te,<br />

of<br />

and<br />

D103<br />

<strong>de</strong>velopment<br />

mutant lines.<br />

of the gametophyte is arrested at early<br />

stage. ES: (A) embryo Ears from sac; reciprocal Ov: ovary. crosses between wild type maize (B73) and D103 lines.<br />

(B) Abnormal ovu<strong>le</strong> <strong>de</strong>velopment resulting in mispositioned of mature ESs in D103-2 lines. In both<br />

cases, rotation in the ovu<strong>le</strong> fails to comp<strong>le</strong>te, and <strong>de</strong>velopment of the gametophyte is arrested at<br />

early stage. ES: embryo sac; Ov: ovary.<br />

82


B73 dmt102::Mu 38C<br />

Supp<strong>le</strong>mental Figure 5. H3K9me2 <strong>de</strong>tection <strong>du</strong>ring megagametogenesis in sexual maize (B73)<br />

and dmt102 mutant lines and in 38C apomicts. Green: H3K9me2; Blue: DAPI.<br />

83


A<br />

B<br />

End<br />

ES<br />

Emb<br />

C<br />

Nuc<br />

Ant<br />

4 DAP endosperm nuc<strong>le</strong>i<br />

4H8<br />

Mi<br />

DAPI<br />

Supp<strong>le</strong>mental Figure 6. Analysis of chromatin states in who<strong>le</strong> mount seed tissues.<br />

Who<strong>le</strong> mount tissues consisted in vibratome sections of living ovu<strong>le</strong>s or seeds. As shown in (A),<br />

ovu<strong>le</strong>s sections contained intact ESs within nucellus. Cultured sections pro<strong>du</strong>ced from 1DAP seeds<br />

and visualized after 4 days of growth recapitu<strong>la</strong>ted in vivo <strong>de</strong>velopment of both the endosperm (End)<br />

and the embryo (Emb) as shown in (B). (C) shows who<strong>le</strong> mount endosperm and embryo tissues after<br />

confocal imaging of a DAPI-stained seed section col<strong>le</strong>cted at 3 DAP (Ant: antipodal cells; Nuc:<br />

nucel<strong>la</strong>r cells; Mi: micropy<strong>le</strong>). Efficiency testing of immunostaining on vibratome sections of maize<br />

<strong>de</strong>veloping seeds was performed by examining the staining patterns of well characterized antibodies in<br />

dividing cells within the nucellus (the maternal tissue surrounding the fema<strong>le</strong> gametophyte) or in<br />

dividing endosperm nuc<strong>le</strong>i. Since mitosis involves a generalized repression of gene expression<br />

(reviewed in Gottesfeld and Forbes, 1997), we first used two antidodies raised against the carboxyterminal<br />

domain (CTD) repeats of the main sub-unit of RNA polymerase II (POLII) : H5 that<br />

recognizes the phosphory<strong>la</strong>ted form on serine 2 of the CDT, a wi<strong>de</strong>ly accepted <strong>la</strong>ndmark of POLII<br />

mo<strong>le</strong>cu<strong>le</strong>s engaged in transcription (Pa<strong>la</strong>nca<strong>de</strong> and Bensaume, 2003), and 4H8 that recognizes POLII<br />

CTD repeats regard<strong>le</strong>ss of ser2 phosphory<strong>la</strong>tion and thus <strong>de</strong>tects both isoforms (active and inactive) of<br />

the protein. The <strong>le</strong>vel of sequence conservation at the CTD of POLII among eukaryotes, as well as<br />

experimental evi<strong>de</strong>nces, indicate that both antibodies recognize simi<strong>la</strong>rly p<strong>la</strong>nt and animal POLII<br />

isoforms (Koiwa et al., 2004; Gul<strong>le</strong>rova et al., 2006). As shown in (D), 4H8 strongly stained<br />

84


interphase nuc<strong>le</strong>i (n>500) but showed <strong>de</strong>creasing staining patterns as nuc<strong>le</strong>i entered into mitosis and<br />

was finally un<strong>de</strong>tectab<strong>le</strong> on metaphase chromosomes (arrow). Simi<strong>la</strong>rly, H5 was never <strong>de</strong>tected on<br />

mitotic chromosomes. The pattern on interphase nuc<strong>le</strong>i was more comp<strong>le</strong>x, with a gra<strong>du</strong>ation from<br />

nuc<strong>le</strong>i showing a bright staining to un<strong>de</strong>tectab<strong>le</strong> signal. These results were then mirrored by the<br />

staining patterns of antibodies raised against posttrans<strong>la</strong>tional histone H3 modifications functionally<br />

associated with chromatin transcriptional competence: H3K4me and H3K9ac for active states and<br />

H3K9me2 for repression.<br />

85


Supp<strong>le</strong>mental Tab<strong>le</strong> 1. List of CMEs evaluated for repro<strong>du</strong>ctive tissue expression.<br />

Protein C<strong>la</strong>ss (1) Genes (2) Se<strong>le</strong>cted CME Protein C<strong>la</strong>ss (1) Genes (2) Se<strong>le</strong>cted CME<br />

AGO 16 0 HMGB 11 0<br />

ARP 6 0 HON 6 2<br />

BRAT 1 1 HTA 16 0<br />

BRD 4 1 HTB 13 0<br />

CHB 4 1 HTR 14 0<br />

CHC 2 1 HUPA 1 0<br />

CHE 1 0 HUPB 2 0<br />

CHR 44 8 HXA 2 1<br />

CPC 2 0 JMJ 4 0<br />

CPD 1 0 MBD 14 2<br />

CPG 1 0 MFP 1 0<br />

CPH 1 0 NFA 5 2<br />

CRD 1 0 NFB 1 0<br />

DCL 4 0 NFC 5 2<br />

DMT 7 7 NFE 1 1<br />

DNG 4 0 NFF 3 0<br />

DRB 6 0 PAFA 1 0<br />

EBP 5 0 PAFB 1 0<br />

EPL 1 0 PAFC 1 0<br />

GTA 3 0 PAFD 1 0<br />

GTB 1 0 PAFE 1 0<br />

GTC 1 0 PGE 2 0<br />

GTE 11 0 PRMT 2 0<br />

GTF 1 0 RBL 2 0<br />

GTG 1 0 RDR 4 0<br />

HAC 5 1 RPDA 2 0<br />

HAF 1 0 RHEL 2 0<br />

HAG 6 1 SDG 35 7<br />

HAM 2 0 SGA 3 0<br />

HCP 2 0 SGF 1 0<br />

HDA 10 2 SMH 6 0<br />

HDMA 3 0 SNT 2 0<br />

HDT 4 3 SRT 1 1<br />

HEN 1 0 SWDB 3 0<br />

HF0 15 0 SWDC 2 0<br />

HIRA 2 0 TAFV 1 0<br />

HMGA 3 0 VEF 3 1<br />

Protein c<strong>la</strong>ss information (1) and counts (2) are according to ChromDB.<br />

86


Supp<strong>le</strong>mental Tab<strong>le</strong> 2. CMEs se<strong>le</strong>cted for transcriptional analysis.<br />

LOCUS PROTEIN GROUP SOURCE<br />

brd101 Diverse bromodomain ChromDB<br />

brat101 Bromodomain with AAAATPase ChromDB<br />

chb102 SWI/SNF and RSC chromatin remo<strong>de</strong>ling comp<strong>le</strong>x (Swi3/Rsc8) ChromDB<br />

chc101 SWI/SNF and RSC chromatin remo<strong>de</strong>ling comp<strong>le</strong>x (Swp73/Rsc6) ChromDB<br />

chr101 SNF2 Super family ChromDB<br />

chr106 SNF2 Superfamily ChromDB<br />

chr110 SNF2 Superfamily ChromDB<br />

chr112 SNF2 Superfamily ChromDB<br />

chr113 SNF2 Superfamily ChromDB<br />

chr120 SNF2 Superfamily ChromDB<br />

chr125 SNF2 Superfamily ChromDB<br />

chr126 SNF2 Superfamily ChromDB<br />

dmt101 DNA Methyltransferase ChromDB<br />

dmt102 DNA Methyltransferase ChromDB<br />

dmt103 DNA Methyltransferase ChromDB<br />

dmt104 DNA Methyltransferase ChromDB<br />

dmt105 DNA Methyltransferase ChromDB<br />

dmt106 DNA Methyltransferase ChromDB<br />

dmt107 DNA Methyltransferase ChromDB<br />

hxa102 Histone acetyltransferase ChromDB<br />

hag102 Histone acetyltransferase ChromDB<br />

hac 101 Histone acetyltransferase ChromDB<br />

AC157319 Histone acetyltransferase Microarrays<br />

BT066941 Histone acetyltransferase Microarrays<br />

AY110756 Histone acetyltransferase Microarrays<br />

AY104727 Histone acetyltransferase Microarrays<br />

EY951031 Histone acetyltransferase Microarrays<br />

hda102 Histone <strong>de</strong>acety<strong>la</strong>se ChromDB<br />

hda110 Histone <strong>de</strong>acety<strong>la</strong>se ChromDB<br />

hdt101 Histone <strong>de</strong>acety<strong>la</strong>se ChromDB<br />

hdt103 Histone <strong>de</strong>acety<strong>la</strong>se ChromDB<br />

hdt104 Histone <strong>de</strong>acety<strong>la</strong>se Microarrays<br />

DR958383 Histone <strong>de</strong>acety<strong>la</strong>se Microarrays<br />

srt101 Histone <strong>de</strong>acety<strong>la</strong>se ChromDB<br />

hon101 Histone H1 ChromDB<br />

hon104 Histone H1 ChromDB<br />

mbd101 Methyl binding domain ChromDB<br />

mbd109 Methyl binding domain ChromDB<br />

nfa101 Nuc<strong>le</strong>osome/chromatin assembly comp<strong>le</strong>x ChromDB<br />

nfa104 Nuc<strong>le</strong>osome/chromatin assembly comp<strong>le</strong>x ChromDB<br />

nfc102 NURF comp<strong>le</strong>x ChromDB<br />

nfc104 NURF comp<strong>le</strong>x ChromDB<br />

nfe101 Nuc<strong>le</strong>osome positioning into regu<strong>la</strong>r spaced arrays ChromDB<br />

sdg101 SET domain ChromDB<br />

sdg102 SET domain ChromDB<br />

87


sdg107 SET domain ChromDB<br />

sdg110 SET domain ChromDB<br />

sdg118 SET domain ChromDB<br />

sdg122 SET domain ChromDB<br />

sdg129 SET domain ChromDB<br />

DT942012 SET domain Microarrays<br />

AW288923 SET domain Microarrays<br />

DR959742 SET domain Microarrays<br />

EE168341 SET domain Microarrays<br />

EC897242 SET domain Microarrays<br />

vef101 VEF family (VRN2,EMF2,FIS2) ChromDB<br />

88


Supp<strong>le</strong>mental Tab<strong>le</strong> 3. List of primers.<br />

PRIMERS SEQUENCES PRIMERS SEQUENCES<br />

Brd101F CTGGTTATGGGGGTACATGG Hdt103R TGCTACATCGAACGCATAGC<br />

Brd101R ATTGCTGGCTTGCTAATGCT Hdt104F TGAAGAGGTTGAACCCGATCT<br />

Brat101F CCCTCCAACCTTCCAGTTTT Hdt104R TATCGCTTGACACTTCATCTTCA<br />

Brat101R CAGAAACCAGCTGAGCAACA DR958383F GATGAGCCGAGCAATGTTAAG<br />

Chb102F TCATGGGACACAAGGAGGAT DR958383R CATGGGTCAGACTACCGTCA<br />

Chb102R GGGACGCCAAATTTAACAGA Srt101F GATGATGCTTTACCCCCTGA<br />

Chc101F GCCAACACAGAGAAGCACAA Srt101R AACAGCTGCAACCATCACTG<br />

Chc101R CACACCAAGCAACATTACGG Hon101F CATCTCCCTCTCCGAAATCA<br />

Chr101F CAAGGTGCAGGAAGAAGAGG Hon101R CACATAACACACCGCCTGAG<br />

Chr101R GGGTGTTCCAGTCAAAAGGA Hon104F AGGAGAAGAAGGCGAGGAAG<br />

Chr106F GAGCGGATCATCAAGAAAGC Hon104R GAGCGCATCACACCAGACTA<br />

Chr106R CATACACGCGGACACAAATC Mbd101F CCCCTCTCAGAGAAAACGAA<br />

Chr110F CTCATGCAAGCAAACCAGAA Mbd101F CGGGTTCGGCCCCCTCTCAG<br />

Chr110R GTGGTCAGCCTCTCTTACGC Mbd109F ACGGGCAAGATCAAGCTCTA<br />

Chr112F ATCGTGCGACCAGAGGATAC Mbd109R CGTCATCAACAAATGCAAGG<br />

Chr112R AGCTCGGCTGATAACCAGAA Nfa101F GCCATGAAAACAAACGAGGT<br />

Chr113F GCGAATGATGCAGCTTACAA Nfa101R CTTGCACAGCCTCACCAGTA<br />

Chr113R TGAAATGTCATCCTCCAATGAG Nfa104F ACACAGCGACGCTAAAAACC<br />

Chr120F GCTGCAAAGCACACTTACCA Nfa104R ATCTTGCACACCATCAGCAA<br />

Chr120R AACTTTGGCAGGTCACCATC Nfc102F TTTGGGATGTTGAAGCACAA<br />

Chr125F CCAGAAGTACCGGAGGTCAA Nfc102R TATGACCAGCGTGCTGAAAG<br />

Chr125R CTGCAGCACACCTCATCAGT Nfc104F AGGGTTATGGCTTGTCATGG<br />

Chr126F TCCAACGTTTTTGCCCTATC Nfc104R CTGGCTGCAGTGAACAAAAA<br />

Chr126R ACAAAAAGGGATGGTTGCAG Nfe101F AGTAAGGCCCAATGCAGATG<br />

Dmt101F TTGGGGATCTGCCTAAAGTG Nfe101R CCCTTATGGCAGAGGTTTCA<br />

Dmt101R CTTGAGCTTCCTCCCAAGTG Sdg101F AGACAGGAGATCGTGGTTGG<br />

Dmt102F GTTGGTTCTTCCGAGCAGAG Sdg101R TGCATGGAACACCTAGGACA<br />

Dmt102R GCTTTCTCATTTCGCACCTC Sdg102F CGAGAATGGGTCAACTGGAT<br />

Dmt103F CTTCTAGTTGTGCCCCCAAA Sdg102R TTCAACCCGTTCTGCTCTCT<br />

Dmt103R CCTTTTGGAGCAAGAGCAAC Sdg107F GGGTGCTGAAGGATGAAGAA<br />

Dmt104F CTATGTGCCTGAGCCTGACA Sdg107R TTCACGTTCTGCAGTCAAGC<br />

Dmt104R TCAACGGATCACAATTCCAA Sdg110F GCGGCCCTCTTTATCTCTCT<br />

Dmt105F TACTTGCCGTTGGTTTTTCC Sdg110R CCAGCCTTTTCATTGTCCAT<br />

Dmt105R GCTTTCTCATTTCGCACCTC Sdg118F AGCAAGAGGCTGAAGCTGAG<br />

Dmt106F AGCTTGAAGGAGGAGGAAGG Sdg118R ACCAGATGGAGGAACAGGTG<br />

Dmt106R ATAGACCATGGATCGCCAAG Sdg122F TCTTGAAGGTGCTCGATGTG<br />

Dmt 107F GACAGATCGCTGCCTACACA Sdg122R ATCTCTCATTGCGTGCCTCT<br />

Dmt 107R ACCTCTGGTGTGATCCTTGG Sdg129 F AGCATGATGACGCTGCTGT<br />

Hxa102F GGAATGTCGTTCTGCTGGAT Sdg129R TGTCACCCTAGGTGCTGATG<br />

Hxa102R GACCGTAGGCAACTCCACAT DT942012F CCACCAAGTGGCAACAGAAT<br />

Hag102F CATGGATGGGAAATGCTTCT DT942012R ATTTCTGCGGCGATAACATC<br />

Hag102R ATCTGCAACAGACGCTTCCT AW288923F GGAGAAGCATGACCAGAAGC<br />

Hac101F TCAATTGATGGATTGCCTGA AW288923R GTAAGCTGCCTCCATTACGC<br />

Hac101R AAGAGGCAAACATCCACACC DR959742F GTGCTATTTGGGAGGTCTGC<br />

AC157319F CTACGGCAACTCCATCTTCC DR959742R GCCTGTCAATGTCATGATCG<br />

AC157319R GCATCAACGAAACAGAAGCA EE168341F GCTCTTAGAGGACGGAGTCG<br />

BT066941F GAGAAGCCTGACTTGGCACT EE168341R TTCCTGGTGGGCATCATT<br />

BT066941R CACCAAGCATTGTTGCCATA EC897242F CCTCACTCGAGACAGACATGG<br />

AY110756F CGAGCCCTATTCCATCTTCA EC897242R ATGGTTAGCCGATTGCAAAA<br />

AY110756R GAAGCATGAACAGAGCGAAA Vef101F CATGCGAGGAGGAAAAAGAG<br />

AY104727F GGAAGGTTTCATGACTGCAA Vef101R GAACCCACAGCATCAACCTT<br />

AY104727R AAGCAAGGTAGAAGCAAGCA WAXYINTRONF CCACCCAAGAAACTGCTCCTTAAG<br />

EY951031F CCGAGGGAGTTTTAGGCAGT OCS3'R CGGCGGTAAGGATCTGAGCTACAC<br />

EY951031R TTGCTTGCAACTTGTCCATT ACT1F CCTGAAGATCACCCTGTGCT<br />

Hda102F TTCTTGCACCGGATAACTCC ACT1R GCAGTCTCCAGCTCCTGTTC<br />

Hda102R AGTTTCAACAGCCCAACACC DRM2F CCCACCTGAGTTTGTGGACT<br />

Hda110F CAATGCCAAATGTGGACAAG DRM2R CACTTCCCCACCACCAATAC<br />

Hda110R GAGGTCTTACCAGCGCAAAG DRM1F GGATGGGAGAACGAAGTTGA<br />

Hdt101F TGGCTACAAGTCCCCTGTTC DRM1R GAATCCTCCGTACTCGTCCA<br />

Hdt101R GATGGACTGCTTTGCAGGAT CMT3F CATGGGAGCCTATTGAAGGA<br />

Hdt103F CAGTTGCTGCACCTTCAAAA CMT3R TGCACCCCATAGAAAGAACC<br />

89


90<br />

CHAPTER 4. Discussion and Perspectives


In this study we showed that some CMEs are essential in regu<strong>la</strong>ting sexual <strong>de</strong>velopment in<br />

maize and, likely, in the phenotypic difference between sexual and apomictic repro<strong>du</strong>ction.<br />

Although transcription profi<strong>le</strong>s in sexual and apomictic ovu<strong>le</strong>s at the mature embryo sac stage<br />

showed limited significant differences, a number of CMEs were down regu<strong>la</strong>ted, specifically<br />

<strong>du</strong>ring apomeiosis. These CMEs are predicted to control both DNA and histone methy<strong>la</strong>tion,<br />

and enco<strong>de</strong> essential components of the RdDM pathway in Arabidopsis, a RNA si<strong>le</strong>ncing<br />

pathway involved in DNA methy<strong>la</strong>tion, imprinting, and p<strong>la</strong>nt <strong>de</strong>velopment. Our results<br />

<strong>de</strong>monstrate that loss of function of two DNA methyltransferases, DMT102 and DMT103,<br />

gives rise to apomictic features in sexual diploid maize. Loss of function in these genes results<br />

in aposporic-like embryo sac formation and in strong structural <strong>de</strong>fects of both the ovu<strong>le</strong> and<br />

the gametophyte, including the pro<strong>du</strong>ction of extra fema<strong>le</strong> gametes into indivi<strong>du</strong>al embryo<br />

sacs. In maize, only few gametophytic mutations have been characterized (Neuffer et al.,<br />

1997) and, among them, ig1 is of particu<strong>la</strong>r interest with regard to our observations: it causes<br />

the formation of multip<strong>le</strong> fema<strong>le</strong> gametes within embryo sacs that arise by extra mitosis<br />

<strong>du</strong>ring gametogenesis (Evans, 2007; Huang and Sheridan, 1996). By contrast, extra po<strong>la</strong>r<br />

nuc<strong>le</strong>i formation in dmt103 mutants occurs in the mature embryo sac, most likely from extra<br />

karyokinesis of po<strong>la</strong>r nuc<strong>le</strong>i once the central cell fate has been acquired. Determining<br />

precisely cell i<strong>de</strong>ntity in some extra nuc<strong>le</strong>i is a difficult task <strong>du</strong>e to the <strong>la</strong>ck of appropriate<br />

markers. However, using this approach in Arabidopsis, Johnston et al. (2008) showed that the<br />

retinob<strong>la</strong>stoma-re<strong>la</strong>ted protein RBR is essential for the differentiation of gametophytic cells:<br />

rbr mutations pro<strong>du</strong>ce numerous unfused po<strong>la</strong>r nuc<strong>le</strong>i, a phenotype, which strongly resemb<strong>le</strong>s<br />

that of dmt103. However, rbr mutants neither <strong>de</strong>velop extra embryo sacs nor affect ploidy<br />

<strong>le</strong>vels in pol<strong>le</strong>n and the effects on cellu<strong>la</strong>r differentiation are limited to indivi<strong>du</strong>al embryo sacs<br />

and to the vegetative cell in pol<strong>le</strong>n grains (Ebel et al., 2004; Johnston et al., 2008). Therefore,<br />

<strong>de</strong>spite simi<strong>la</strong>rities among the phenotypes disp<strong>la</strong>yed by the three mutants, we propose that<br />

DMT103 acts in an in<strong>de</strong>pen<strong>de</strong>nt regu<strong>la</strong>tory pathway of that of IG1 or RBR1.<br />

The fact that both dmt102 and dmt103 are exclusively expressed in and around the germ cells<br />

in the ovu<strong>le</strong> supports the hypothesis for a novel regu<strong>la</strong>tory pathway controlling the<br />

differentiation of repro<strong>du</strong>ctive cells. Immunolocalization experiments showed that loss of<br />

function for either genes results in ectopic H3K9 acety<strong>la</strong>tion in the germ cells and the<br />

surrounding tissues and, in alterations in the dimorphic transcriptional patterns observed in<br />

the egg and the central cell in wild type embryo sacs. Interestingly, ectopic transcription was<br />

91


also observed in unfertilized embryo sacs in apomicts suggesting that a loss of transcriptional<br />

quiescence might be implicated in precocious embryo <strong>de</strong>velopment. Concomitantly, cell<br />

i<strong>de</strong>ntity and transcriptional si<strong>le</strong>ncing marks in <strong>de</strong>veloping parthenogenetic proembryos were<br />

altered. The putative function of these genes in transcriptional si<strong>le</strong>ncing makes them attractive<br />

candidates to establish a functional re<strong>la</strong>tionship with apomixis. Curiously, their homologs in<br />

Arabidopsis and rice are expressed more constitutively (Sharma et al., 2009) and loss-offunction<br />

al<strong>le</strong><strong>le</strong>s disp<strong>la</strong>y no obvious phenotypes. In maize, however, the c<strong>le</strong>ar <strong>de</strong>velopmental<br />

phenotypes of DMT102 and DMT103 probably <strong>de</strong>fine, together with other as yet unknown<br />

proteins, a RdDM-like pathway specific to the germ line. Unexpectedly, the phenotypes<br />

observed in mature ovu<strong>le</strong>s of both mutants were re<strong>la</strong>ted to aposporic <strong>de</strong>velopment, rather than<br />

to our diplosporic apomictic mo<strong>de</strong>l, suggesting that natural apomictic systems might share<br />

simi<strong>la</strong>r regu<strong>la</strong>tory components of epigenetic nature, which may be crucial for dynamically<br />

(i.e., temporally and spatially) regu<strong>la</strong>ting gene expression <strong>du</strong>ring <strong>de</strong>velopment. This might<br />

provi<strong>de</strong> also an exp<strong>la</strong>nation for shared common abnormalities between both apomictic<br />

mechanisms (Bicknell and Koltunow, 2004).<br />

The in situ characterization of histone methy<strong>la</strong>tion and acety<strong>la</strong>tion resi<strong>du</strong>es revea<strong>le</strong>d that<br />

chromatin states strongly differ in the germ cells of apomictic and sexual p<strong>la</strong>nts. In particu<strong>la</strong>r,<br />

whi<strong>le</strong> the egg cell and early embryo of sexual p<strong>la</strong>nts appear mostly quiescent, the staining<br />

patterns in apomicts suggest strong transcriptional activity. The extent and ro<strong>le</strong> of early<br />

transcription <strong>du</strong>ring seed <strong>de</strong>velopment (which in apomicts will be necessarily maternal) is still<br />

a controversial topic. Several evi<strong>de</strong>nces in sexual p<strong>la</strong>nts, including expression data (such as<br />

maternal expression of marker genes in seeds <strong>du</strong>ring the first few days after fertilization) or<br />

genetic approach, point to a strong maternal control (Grossnik<strong>la</strong>us et al., 1998; Kinoshita et<br />

al., 1999; Luo et al., 2000; Moore, 2002; Guitton and Berger, 2005; Pagnussat et al., 2005; Ng<br />

et al., 2007; Viel<strong>le</strong>-Calzada et al., 2000). These conclusions, together with the characterization<br />

of epigenetic histone marks associated with transcriptional competence reported here, provi<strong>de</strong><br />

a dynamic image regarding genome-wi<strong>de</strong> transcriptional activation <strong>du</strong>ring <strong>de</strong>velopment. We<br />

observed that the <strong>de</strong>veloping maize embryo at 4 DAP un<strong>de</strong>rgoes a massive increase in<br />

transcriptional activity after a long transcriptional quiescent state in mature egg cell and early<br />

embryogenesis. Interestingly, the central cell and endosperm showed a markedly different<br />

transcriptional profi<strong>le</strong> with sustained activity before and after fertilization. Based on previous<br />

works indicating a predominance of maternal transcripts in the early endosperm (Viel<strong>le</strong>-<br />

92


Calzada et al., 2000; Grimanelli et al., 2005; Li and Dickinson, 2010) we assume that this<br />

early activity is mostly, if not strictly, maternal.<br />

In mammals, transcriptional quiescence is thought to be important for the establishment and<br />

maintenance of cell fate in the germ lines, by preventing somatic differentiation (Seydoux and<br />

Braun, 2006). When transcription is not repressed, germ cells do not form, <strong>du</strong>e to the<br />

transformation of their precursors to a somatic fate (Schaner and Kelly, 2006). Transcriptional<br />

repression may also be key to establish transcriptional profi<strong>le</strong>s compatib<strong>le</strong> with totipotency<br />

(Seydoux and Braun, 2006). In p<strong>la</strong>nts, somatic cells switch programs <strong>la</strong>te <strong>du</strong>ring <strong>de</strong>velopment<br />

to pro<strong>du</strong>ce repro<strong>du</strong>ctive cells. Furthermore, the pro<strong>du</strong>cts of meiosis suffer additional<br />

reprograming, which strongly differs from the gametes in animals, by un<strong>de</strong>rgoing additional<br />

cell divisions and differentiation steps to form a multicellu<strong>la</strong>r gametophyte containing the<br />

gametes. Despite these differences, some data indicates that animal and p<strong>la</strong>nt germ cell<br />

<strong>de</strong>velopment share mechanistic simi<strong>la</strong>rities as illustrated by the importance of Argonaute<br />

proteins members in both kingdoms (Nonomura et al., 2007). Neverthe<strong>le</strong>ss, the ro<strong>le</strong> in cell<br />

fate <strong>de</strong>termination of the re<strong>la</strong>tive transcriptional quiescence <strong>de</strong>tected in egg and early embryo<br />

in sexual p<strong>la</strong>nts remains to be examined. Interestingly, we observed here that, in contrast to<br />

sexual embryos, parthenogenetic embryos are transcriptionally active before fertilization.<br />

In<strong>de</strong>ed, we found that loss of cell fate occurs early in the <strong>de</strong>velopmental course of unre<strong>du</strong>ced<br />

egg cells. Therefore, whether both continuous transcription is sufficient to in<strong>du</strong>ce<br />

parthenogenesis in apomicts or cell fate <strong>de</strong>finition in sexual egg requires transcriptional<br />

quiescence is unc<strong>le</strong>ar.<br />

Here, neither DMT102 nor DMT103 loss of function pro<strong>du</strong>ces fully functional apomixis,<br />

indicating that it is not sufficient to promote the instalment of the trait in a sexual background.<br />

The simi<strong>la</strong>r behaviour of these two genes in two natural apomictic systems, however, supports<br />

the hypothesis that maintenance and/or establishment of DNA methy<strong>la</strong>tion might be one of<br />

the mechanisms involved in the switch from sexual to apomictic repro<strong>du</strong>ction. Moreover, we<br />

propose that the major effect of transcriptional repression as a regu<strong>la</strong>tor of germ cell<br />

specification and <strong>de</strong>velopment via a RdDM-like pathway in maize, might be directed to non-<br />

CG sequence sites.<br />

93


This study provi<strong>de</strong>s the first evi<strong>de</strong>nce that CMEs are likely crucial to apomictic <strong>de</strong>velopment.<br />

Our analysis remains however extremely preliminary. Whi<strong>le</strong> the proteins i<strong>de</strong>ntified here have<br />

c<strong>le</strong>ar homologues in Arabidopsis, it is unc<strong>le</strong>ar whether they actually <strong>de</strong>fine a RdDM, or a<br />

totally different pathway. A <strong>de</strong>tai<strong>le</strong>d characterization of this pathway is consequently required<br />

to <strong>de</strong>termine its ro<strong>le</strong> in apomixis, and will constitute an essential follow-up to this project. A<br />

more exhaustive analysis of the comp<strong>le</strong>te set of down and up regu<strong>la</strong>ted CMEs may provi<strong>de</strong><br />

additional interesting insights. From that perspective, a crucial test must be performed in an<br />

apomictic background, by overexpressing the downregu<strong>la</strong>ted CMEs; this will indicate<br />

whether their down-regu<strong>la</strong>tion is in<strong>de</strong>ed necessary for apomixis expression. Such experiments<br />

have been difficult in the past, <strong>du</strong>e to the <strong>la</strong>ck of appropriate promoters to drive gene<br />

expression in repro<strong>du</strong>ctive tissues. This work, however, <strong>de</strong>scribes a number of extremely<br />

interesting expression profi<strong>le</strong>s that will be used to <strong>de</strong>rive promoter for expression studies.<br />

The key remaining question, c<strong>le</strong>arly, is to <strong>de</strong>fine the target genes of this RdDM-like pathway.<br />

How many of these targets genes are involve in the apomictic features? Are their expression<br />

cause or consequence of apomixis?, Can they be used in a future engineer of artificial<br />

apomixis in crops? To answer these questions is therefore the next chal<strong>le</strong>nge to evaluate the<br />

full impact of chromatin dynamics in the regu<strong>la</strong>tion of epigenome activity and its efficacy in<br />

apomixis.<br />

94


ACKNOWLEDGMENTS<br />

I would like to express my gratitu<strong>de</strong> to the members of APOMIXIS group at IRD for giving<br />

me the opportunity to <strong>de</strong>velop my initial research proposal, and for all the re<strong>le</strong>vant<br />

suggestions to improve my final work.<br />

To:<br />

Daniel Grimanelli, for his patience and unconditional support,<br />

Olivier Leb<strong>la</strong>nc, for all the interesting discussions that <strong>le</strong>ad me toward new questions,<br />

Daphné Autran, for being a nice friend and a very good col<strong>le</strong>ague.<br />

Jerôme, Sha<strong>le</strong>m, Manjit, Marion and Caroline, for created such a nice and col<strong>la</strong>borative<br />

atmosphere in the <strong>la</strong>boratory.<br />

Special thanks to the members of my thesis committee: Thomas Dresselhaus, Raphäel<br />

Mercier, Jean-Marc Deragon, Celia Baroux and M. A<strong>la</strong>in Ghesquiere for <strong>de</strong>dicating their time<br />

to evaluate my work.<br />

Thank you so much to Olivier Hamant, Celia Baroux and Thierry Lagrange for the excel<strong>le</strong>nt<br />

advice <strong>du</strong>ring the thesis committee meetings.<br />

I would like to thank Stéphane Jouannic, Therry Joët, and Martine Devic for their helpful<br />

comments and suggestions in the artic<strong>le</strong> preparation.<br />

I am also grateful to T Dresselhaus, S Kaepp<strong>le</strong>r, M Sachs, the Maize Chromatin Consortium<br />

and the Maize TILLING project members for sharing materials.<br />

In the same way thank you so much to Martha Hernan<strong>de</strong>z and Pablo Alva for helping me in<br />

the col<strong>le</strong>ct of Tripsacum samp<strong>le</strong>s. Special thanks to Rigoberto Vicencio Perez for his<br />

encouragement and support.<br />

I am also grateful to the Apomixis Consortium grant from Pionner Hi Bred, Syngenta Seeds,<br />

Group Limagrain and IRD.<br />

Finally, I would like to thank CONACyT (the Mexican National Council for Science and<br />

Technology) for essential economical support.


AGRADECIMIENTOS<br />

Al pueblo <strong>de</strong> México quien a través <strong>de</strong>l CONACyT hizo posib<strong>le</strong> mis estudios <strong>de</strong> doctorado en<br />

Francia.<br />

Al Dr. Roberto Miranda Medrano, por recordarme y motivarme a insistir en el logro <strong>de</strong> mis<br />

sueños y proyectos.<br />

A mi Madre, el soporte firme <strong>de</strong> mi maravillosa familia, por su confianza, por creer en mi, por<br />

apoyarme, y por compren<strong>de</strong>rme.<br />

A Rigoberto Vicencio Pérez, Berenice García Ponce <strong>de</strong> León, Rosalinda Tapia, Dra. E<strong>le</strong>na<br />

Alvarez-Buyl<strong>la</strong>, y todos los miembros <strong>de</strong>l <strong>la</strong>boratorio <strong>de</strong> genética mo<strong>le</strong>cu<strong>la</strong>r <strong>de</strong>l <strong>de</strong>sarrollo y<br />

evolución <strong>de</strong> P<strong>la</strong>ntas, IE UNAM, quienes me brindaron un enorme apoyo, moral, económico<br />

y emocional <strong>du</strong>rante los momentos difíci<strong>le</strong>s <strong>de</strong> este proceso.<br />

Al Dr. Eulogio Pimienta, por su permanente motivación a mi superación profesional.<br />

A Ana Maria Soriano, Leticia Díaz, Martina López y Luci<strong>la</strong> Mén<strong>de</strong>z cuyo apoyo y<br />

comprensión me sostuvo <strong>du</strong>rante el mas difícil periodo <strong>de</strong> mi vida. Este logro, es gracias a<br />

Uds. chicas!<br />

A Rocío Guzmán Najera, por todas esas bonitas muestras <strong>de</strong> amistad incondicional.<br />

A mi poeta, por tu cariño, por tu ternura y por comp<strong>le</strong>tar mi vida.<br />

A todos mis amiguitos en Francia: Fabienne, Mauricio, Andrea, Harling, Pedro, De<strong>le</strong>ss,<br />

Gustave, Fre<strong>de</strong>ric, Marco, Amalia, Mi<strong>la</strong>, Philippe, Julie, Martine, Thom, Edwin, A<strong>le</strong>xandra,<br />

He<strong>le</strong>n, Antoin, Laurent and Laurence... por los buenos momentos.


REFERENCES


Albertini, E., Marconi, G., Barcaccia, G., Raggi, L., and Falcinelli, M. (2004). Iso<strong>la</strong>tion of<br />

candidate genes for apomixis in Poa pratensis L. P<strong>la</strong>nt Mol. Biol. 56: 879-894.<br />

Allis, C.D., Jenuwein, T., and Reinberg, D. (2007). Epigenetics (Chapter 3): Overview and<br />

concepts. Cold Spring Harbor Laboratory Press, pp 23-40.<br />

Ame<strong>de</strong>o, P., Habu, Y., Afsar, K., Scheid, O.M., and Paszkowski, J. (2000). Disruption of<br />

the p<strong>la</strong>nt gene MOM re<strong>le</strong>ases transcriptional si<strong>le</strong>ncing of methy<strong>la</strong>ted genes. Nature 405:<br />

203-206.<br />

Autran, D., Huanca-Mamani, W., and Viel<strong>le</strong>-Calzada, JP. (2005). Genomic imprinting in<br />

p<strong>la</strong>nts: the epigenetic version of an Oedipus comp<strong>le</strong>x. Curr Opin P<strong>la</strong>nt Biol. 8: 19-25.<br />

Barcaccia, G., Arzenton, F., Sharbel, T.F., Varotto, S., Parrini, P. and Lucchin, M. (2006).<br />

Genetic diversity and repro<strong>du</strong>ctive biology in ecotypes of the facultative apomictic<br />

Hypericum perforatum L. Heredity 96: 322-334.<br />

Baroux, C., Gagliardini, V., Page, D.R., and Grossnik<strong>la</strong>us, U. (2006). Dynamic regu<strong>la</strong>tory<br />

interactions of Polycomb group genes: MEDEA autoregu<strong>la</strong>tion is required for imprinted<br />

gene expression in Arabidopsis. Genes Dev. 20: 1081-1086.<br />

Baroux, C., Pien, S., and Grossnik<strong>la</strong>us, U. (2007). Chromatin modification and remo<strong>de</strong>ling<br />

<strong>du</strong>ring early seed <strong>de</strong>velopment. Curr Opin Genet Develop 17: 473-479.<br />

Berger, S.L. (2007). The comp<strong>le</strong>x <strong>la</strong>nguage of chromatin regu<strong>la</strong>tion <strong>du</strong>ring transcription.<br />

Nature 447: doi:1038/nature05916<br />

Berger, F., and Gaudin, V. (2003). Chromatin dynamics and Arabidopsis <strong>de</strong>velopment.<br />

Chrom Res 11: 277-304.<br />

Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B.,<br />

Meissner, A., Wernig, M., P<strong>la</strong>th, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber,<br />

S.L., and Lan<strong>de</strong>r, E.S. (2006). A biva<strong>le</strong>nt chromatin structure marks key <strong>de</strong>velopmental<br />

genes in embryo stem cells. Cell 125: 315-326.<br />

Bezhani, S., Winter, C., Hershman, S., Wagner, J.D., Kennedy, J.F., Kwon, C.S., Pfluger,<br />

J., Su, Y., and Wagner D. (2007). Unique, shared, and re<strong>du</strong>ndant ro<strong>le</strong>s for the Arabidopsis<br />

SWI/SNF chromatin remo<strong>de</strong>ling ATPases BRAHMA and SPLAYED. P<strong>la</strong>nt Cell 19:<br />

403-416.<br />

Bhat, R.A., Riehl, M., Santandrea, G., Ve<strong>la</strong>sco, R., Slocombe, S., Donn, G., Steinbiss, H-<br />

H., Thompson, R.D., and Becker, H-A. (2003). Alteration of GCN5 <strong>le</strong>vels in maize<br />

reveals dynamic responses to manipu<strong>la</strong>ting histone acety<strong>la</strong>tion. The P<strong>la</strong>nt Jour 33:<br />

455-469.<br />

Bicknell, R.A., Borst, N.K., and Koltunow, A.M. (2000). Monogenic inheritance of<br />

apomixis in two Hieracium species with distinct <strong>de</strong>velopmental mechanisms. Heredity 84:<br />

228-237.<br />

98


Bicknell, R.A., Lambie, S.C., and But<strong>le</strong>r, R.C. (2003). Quantification of progeny c<strong>la</strong>sses in<br />

two facultatively apomictic accessions of Hieracium. Hereditas 138: 11-20.<br />

Bicknell, R.A. and Koltunow, A.M. (2004). Un<strong>de</strong>rstanding apomixis: recent advances and<br />

remaining conundrums. P<strong>la</strong>nt Cell 16: S228-S245.<br />

Birch<strong>le</strong>r, J.A. (1993). Dosage analysis of maize endosperm <strong>de</strong>velopment. Annu Rev Genet.<br />

27: 181-204<br />

Boggs, B.A., Cheung, P., Heard, E., Spector, D.L., Chinault, A.C., and Allis, C.D. (2002).<br />

Differentially methyalted forms of histone h3 show unique association patterns with<br />

inactive human X chromosomes. Nature Genet 30: 73-76.<br />

Bonil<strong>la</strong>, J.R., and Quarin, C.L. (1997). Diplosporous and aposporous apomixis in a<br />

pentaploid race of Paspalum minus. P<strong>la</strong>nt Science 127: 97-104.<br />

Brad<strong>le</strong>y, J.E., Carman, G.C., Jamison, M.S. and Naumova, T.N. (2007). Heterochonic<br />

feactures of the fema<strong>le</strong> germline among several sexual diploid Tripsacum L.<br />

(Andropogoneae, Poaceae). Sex P<strong>la</strong>nt Reprod. 20: 9-17.<br />

Bro<strong>de</strong>rsen, P., and Voinnet, O. (2006). The diversity of RNA si<strong>le</strong>ncing pathways in p<strong>la</strong>nts.<br />

Trends Genet. 22: 268-280.<br />

Buszczak, M., and Spradling, A.C. (2006). Searching chromatin for stem cell i<strong>de</strong>ntity. Cell<br />

125: 233- 236.<br />

Cao, X., Springer, N.M., Muszynski, M.G., Phillips, R.L., Kaepp<strong>le</strong>r, S., and Jacobsen,<br />

S.E. (2000). Conserved p<strong>la</strong>nt genes with simi<strong>la</strong>rity to mammalian <strong>de</strong> novo DNA<br />

methyltransferases. Proc. Natl. Acad. Sci. USA 9: 4979-4984.<br />

Cao, X., and Jacobsen, S.E. (2002). Ro<strong>le</strong> of the Arabidopsis DRM methyltransferases in <strong>de</strong><br />

novo DNA methy<strong>la</strong>tion and gene si<strong>le</strong>ncing. Curr Biol. 12: 1138-1144.<br />

Cao, X., Aufsatz, W., Zilberman, D., Mette, M.F., Huang, M. S., Matzke, M., and<br />

Jacobsen, S. E. (2003). Ro<strong>le</strong> of the DRM and CMT3 methyltransferases in RNA-Directed<br />

DNA methy<strong>la</strong>tion. Curr Biol. 13: 2212-2217.<br />

Carman, J.G. (1997). Asynchronus expression of <strong>du</strong>plicate genes in angiosperms may cause<br />

apomixis, bispory, tetraspory, and polyembryony. Biol Jour Linn Soc 61: 51-94.<br />

Caro, E., Castel<strong>la</strong>no, M.M., and Gutierrez, C. (2007). A chromatin link that coup<strong>le</strong>s cell<br />

division to root epi<strong>de</strong>rmis patterning in Arabidopsis. Nature 447: 213-217.<br />

Carvalho, A., Delgado, M., Barâo., Frescatada, M., Ribeiro, E., Pikaard, C.S., Viegas,<br />

W., and Neves, N. (2009). Chromosome and DNA methy<strong>la</strong>tion dynamics <strong>du</strong>ring meiosis<br />

in the autotetraploid Arabidopsis arenosa. Sex P<strong>la</strong>nt Reprod DOI 10.1007/s00497-<br />

009-0115-2<br />

Chan, S.W-L., Hen<strong>de</strong>rson, I.R., and Jacobsen, S.E. (2005). Gar<strong>de</strong>ning the genome: DNA<br />

methy<strong>la</strong>tion in Arabidopsis Thaliana. Nature Rev Genet. 6: 351-360.<br />

99


Chen, M., Ha, M., Lackey, E., Wang, J., and Chen, J. (2008). RNAi of met1 re<strong>du</strong>ces DNA<br />

methy<strong>la</strong>tion and in<strong>du</strong>ces genome-specific changes in gene expression and centromeric<br />

small RNA accumu<strong>la</strong>tion in Arabidopsis allopolyploids. Genetics 178: 1845-1858.<br />

Chen, E.S., Zhang, K., Nico<strong>la</strong>s, E., Cam, H.P., Zofall, M., and Grewal, S.I.S. (2008). Cell<br />

cyc<strong>le</strong> control of centromeric repeat transcription and heterochromatin assembly. Nature<br />

451: 734-737.<br />

Chen, Z.F., and Ni, Z. (2006). Mechanisms of genetic rearrangements and gene expression<br />

changes in p<strong>la</strong>nt polyploids. Bioessays 28: 240-252.<br />

Chen, Z.F. (2007). Genetic and epigenetic mechanisms for gene expression and phenotypic<br />

variation in p<strong>la</strong>nts polyploids. Annu Rev P<strong>la</strong>nt Biol 58: 377-406.<br />

C<strong>la</strong>usell, J., Happel, N., Ha<strong>le</strong>, T.K., Doenecke, D., and Beato, M. (2009). Histone H1<br />

subtypes differentially mo<strong>du</strong><strong>la</strong>te chromatin con<strong>de</strong>nsation without preventing ATP<strong>de</strong>pen<strong>de</strong>nt<br />

remo<strong>de</strong>ling by SWI/SNF or NURF. Plos ONE 4: e0007243.doi:10.1371/<br />

journal.pone.0007243<br />

Conner, J.A., Goel, S., Gunawan, G., Cordonnier-Pratt, M.M., Johnson, V.E., Liang, C.,<br />

Wang, H., Pratt, L.H., Mul<strong>le</strong>t, J.E., DeBarry, J., Yang, L., Bennetzen, J.L., K<strong>le</strong>in, P.E.,<br />

and Ozias-Akins, P. (2008). Sequence analysis of bacterial artificial chromosome clones<br />

from the apospory-specific genomic region of Pennisetum and Cenchrus. P<strong>la</strong>nt Phys. 147:<br />

1396-1411.<br />

Cordts, S., Bantin, J., Wittich, P.E., Kranz, E., Lörz, H., Dresselhaus, T. (2001). ZmES<br />

genes enco<strong>de</strong> pepti<strong>de</strong>s with structural homology to <strong>de</strong>fensins and are specifically expressed<br />

in the fema<strong>le</strong> gametophyte of maize. P<strong>la</strong>nt J. 25:103-14<br />

Corpet, A., and Almouzni, G. (2009). Making copies of chromatin: the chal<strong>le</strong>nge of<br />

nuc<strong>le</strong>osomal organization and epigenetic information. Trends Cell Biol. 19: 29-41.<br />

Costa, S., and Shaw, P. (2007). ‘Open min<strong>de</strong>d’ cells: how cell can change fate. Trend Cell<br />

Biol. 17: 101-106.<br />

Curtis, M.D., and Grossnik<strong>la</strong>us, U. (2008). Mo<strong>le</strong>cu<strong>la</strong>r control of autonomous embryo and<br />

endosperm <strong>de</strong>velopment. Sex. P<strong>la</strong>nt Reprod. 21: 79-88.<br />

d'Erfurth, I., Jolivet, S., Froger, N., Catrice, O., Novatchkova, M., and Mercier, R.<br />

(2009). Turning meiosis into mitosis. PLoS Biol. 7: e1000124.<br />

Diboll, A.G., and Larson, D.A. (1966). An E<strong>le</strong>ctron Microscopic Study of the Mature<br />

Megagamethophyte in Zea Mays. Am. J. Bot. 53: 391-402.<br />

Ear<strong>le</strong>y, K.W., Shook, M.S., Brower-To<strong>la</strong>nd, B., Hicks, L., and Pikaard, C.S. (2007). In<br />

vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for<br />

histone hyperacety<strong>la</strong>tion in gene activation. The P<strong>la</strong>nt Jour 52: 615-626.<br />

Ebel, C., Mariconti, L., and Gruissem, W. (2004). P<strong>la</strong>nt retinob<strong>la</strong>stoma homologues control<br />

nuc<strong>le</strong>ar proliferation in the fema<strong>le</strong> gametophyte. Nature 429: 776-780<br />

100


Evans, M.M. (2007). The in<strong>de</strong>terminate gametophyte1 gene of maize enco<strong>de</strong>s a LOB<br />

Domain protein required for embryo sac and <strong>le</strong>af <strong>de</strong>velopment. P<strong>la</strong>nt Cell 19: 46-67.<br />

Gaeta, R.T., Pires, J.C., Iniguez-Luy, F., Leon, E., and Osborn, T.C. (2007). Genomic<br />

changes in resynthesized Brassica napus and their effect on gene expression and<br />

phenotype. P<strong>la</strong>nt Cell 19: 3403-3417.<br />

Gaeta, R.T., Yoo, S.Y., Pires, J.C., Doerge, R.W., Chen, Z.J., and Osborn, T.C. (2009).<br />

Analysis of gene expression in resynthesized Brassica napus Allopolyploids using<br />

arabidopsis 70mer oligo microarrays. PLoS One 4: e4760.<br />

García-Agui<strong>la</strong>r, M., Dorantes-Acosta, A., Pérez-España, V., and Viel<strong>le</strong>-Calzada, J.P.<br />

(2005). Who<strong>le</strong>-mount in situ mRNA localization in <strong>de</strong>veloping ovu<strong>le</strong>s and seeds of<br />

Arabidopsis. P<strong>la</strong>nt Mol. Biol. Rep. 23:279-289.<br />

Gehring, M., and Henikoff, S. (2007). DNA methy<strong>la</strong>tion dynamics in p<strong>la</strong>nt genomes. BBA<br />

1769: 276-286.<br />

Gend<strong>le</strong>r, K., Paulsen, T., and Napoli, C. (2008). ChromDB: the chromatin database. Nuc<strong>le</strong>ic<br />

Acids Res. 36: D298-D302.<br />

Gendrel, A-V., Lippman, Z., Yordan, C., Colot, V., and Martienssen, R.A. (2002).<br />

Depen<strong>de</strong>nce of heterochromatic histone H3 methy<strong>la</strong>tion patterns on the Arabidopsis gene<br />

DDM1. Science 297: 1871-1873.<br />

Gereige, L-M., and Mikko<strong>la</strong>, H.K.A. (2009). DNA methy<strong>la</strong>tion is a guardian of stem cell<br />

self-renewal and multipotency. Nature Genet. 41: 1164-1166.<br />

Grewal, S.I.S., and Moazed, D. (2003). Heterochromatin and epigenetic control of gene<br />

expression. Science 301: 19-23.<br />

Grewal, S.I.S., and Elgin, S.C.R. (2007). Transcription and RNA interference in the<br />

formation of heterochromatin. Nature 447: 1-8.<br />

Grewal, S.I.S., and Jia, S. (2007). Heterochromatin revisited. Nature Rev Genet. 8: 35-46.<br />

Grimanelli, D., Leb<strong>la</strong>nc, O., Espinosa, E., Perotti, E., Gonzá<strong>le</strong>z <strong>de</strong> León, D., and<br />

Savidan, Y. (1998a). Mapping diplosporous apomixis in tetraploid Tripsacum: one gene or<br />

several genes?. Heredity 80: 33-39.<br />

Grimanelli, D., Leb<strong>la</strong>nc, O., Espinosa, E., Perotti, E., Gonzá<strong>le</strong>z <strong>de</strong> León, D., and<br />

Savidan, Y. (1998b). Non-Me<strong>de</strong>lian transmission of apomixis in maize-Tripsacum hybrids<br />

caused by a transmission ratio distortion. Heredity 80: 33-39.<br />

Grimanelli, D., Leb<strong>la</strong>nc, O., Perotti, E., and Grossnik<strong>la</strong>us, U. (2001). Developmental<br />

genetics of gametophytic apomixis. Trends in Genet 17: 597- 604.<br />

Grimanelli, D., Garcia, M., Kaszas, E., Perotti, E. and Leb<strong>la</strong>nc, O. (2003). Heterochronic<br />

expression of sexual repro<strong>du</strong>ctive programs <strong>du</strong>ring apomictic <strong>de</strong>velopment in Tripsacum.<br />

Genetics 165: 1521–1531.<br />

101


Grimanelli, D., Perotti, E., Ramirez, J., and Leb<strong>la</strong>nc, O. (2005). Timing of the maternal-tozygotic<br />

transition <strong>du</strong>ring early seed <strong>de</strong>velopment in maize. P<strong>la</strong>nt Cell 17: 1061-72.<br />

Grob-Hardt, R., Kägi, C., Baumann, N., Moore, J.M., Baskar, R., Gagliano, W.B.,<br />

Jürgens, G., and Grossnik<strong>la</strong>us, U. (2007). LACHESIS restricts gametic cell fate in the<br />

fema<strong>le</strong> gametophyte of Arabidopsis. Plos Biol 5: 494-500<br />

Grossnik<strong>la</strong>us, U., Viel<strong>le</strong>-Calzada, J-P., Hoeppner, M.A., and Gagliano, W.B. (1998).<br />

Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis.<br />

Science 280: 446- 450.<br />

Hajkova, P., Ancelin, K., Waldmann, T., Lacoste, N., Lange, U.C., Cesari, F., Lee, C.,<br />

Almouzni, G., Schnei<strong>de</strong>r, R., and Surani, M.A. (2008). Chromatin dynamics <strong>du</strong>ring<br />

epigenetic reprogramming in the mouse germ line. Nature 452: 877-882.<br />

Ha<strong>le</strong>, C.J., Erhard, K.F.Jr., Lisch, D., and Hollick, J.B. (2009). Pro<strong>du</strong>ction and processing<br />

of siRNA precursor transcripts from the highly repetitive maize genome. Plos Genet. 5:<br />

e1000598.doi:10.1371/journal.pgen.1000598.<br />

Hen<strong>de</strong>rson, I.R., and Jacobsen, S.E. (2008). Tan<strong>de</strong>m repeats upstream of the Arabidopsis<br />

endogene SDC recruit non-CG DNA methy<strong>la</strong>tion and initiate siRNA spreading. Genes<br />

Dev. 22: 1597-1606.<br />

Higashiyama, T. (2002). The synergid cell: attractor and receptor of the pol<strong>le</strong>n tube for<br />

doub<strong>le</strong> fertilization. J P<strong>la</strong>nt Res. 115: 149-160.<br />

Huanca-Mamani, W., Garcia-Agui<strong>la</strong>r, M., León-Martínez, G., Grossnik<strong>la</strong>us, U., and<br />

Viel<strong>le</strong>-Calzada, J-P. (2005). CHR11, a chromatin-remo<strong>de</strong>ling factor essential for nuc<strong>le</strong>ar<br />

proliferation <strong>du</strong>ring fema<strong>le</strong> gametogenesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci.<br />

USA 102: 17231-17236.<br />

Huang, B-Q., Pierson, E.S., Russell, S.D., Tiezzi, A., and Cresti, M. (1992). Vi<strong>de</strong>o<br />

microscopic observations of living, iso<strong>la</strong>ted embryo sacs of Nicotiana and their component<br />

cells. Sex P<strong>la</strong>nt Reprod 5: 156-162.<br />

Huang, B-Q., and Sheridan, W.F. (1996). Embryo sac <strong>de</strong>velopment in the maize<br />

in<strong>de</strong>terminate gametophyte1 mutant: abnormal nuc<strong>le</strong>ar behavior and <strong>de</strong>fective microtubu<strong>le</strong><br />

organization. P<strong>la</strong>nt Cell 8: 1391-1404.<br />

Hublitz, P., Albert, M., and Peters, A.H.F. (2009). Mechanisms of transcriptional repression<br />

by histone lysine methy<strong>la</strong>tion. Int. J. Dev. Biol. 53: 335-354.<br />

Huettel, B., Kanno, T., Daxinger, L., Bucher, E.,van <strong>de</strong>r Win<strong>de</strong>n, J., Matzke, A.J.M., and<br />

Matzke, M. (2007). RNA-directed DNA methy<strong>la</strong>tion mediated by DRD1 and Pol IVb: a<br />

versati<strong>le</strong> pathway for transcriptional gene si<strong>le</strong>ncing in p<strong>la</strong>nts. Biochem. Biophys. Acta<br />

1769: 358-374.<br />

Hsieh, T-F., and Fischer, R.L. (2005). Biology of chromatin dynamics. Annu. Rev. P<strong>la</strong>nt<br />

Biol. 56: 327-351.<br />

102


Ingouff, M., Hamamura, Y., Gourgues, M., Higashiyama, T., and Berger, F. (2007).<br />

Distinct dynamics of HISTONE3 variants between the two fertilization pro<strong>du</strong>cts in p<strong>la</strong>nts.<br />

Curr Biol. 17: 1032-1037.<br />

Ito, M., Koike, A., Koizumi, N., and Sano, H. (2003). Methy<strong>la</strong>ted DNA-binding proteins<br />

from Arabidopsis. P<strong>la</strong>nt Phys. 133: 1747-1754.<br />

Jackson, P.J., Lindroth, A.M., Cao, X., and Jacobsen, S.E. (2002). Control of CpNpG<br />

DNA methy<strong>la</strong>tion by the KRYPTONITE histone H3 methyltransferase. Nature 416:<br />

556-560<br />

Jed<strong>de</strong>loh, J.A., Stokes, T.L., and Richards, E.J. (1999). Maintenance of genomic<br />

methy<strong>la</strong>tion requires a SWI2/SNF2-like protein. Nature Genet. 22, 94-97.<br />

Jenuwein, T., and Allis, D. (2001). Trans<strong>la</strong>ting the histone co<strong>de</strong>. Science 293: 1074-1080.<br />

Jerzmanowski, A. (2007). SWI/NSF chromatin remo<strong>de</strong>ling and linker histones in p<strong>la</strong>nts.<br />

BBA 1769: 330-345.<br />

Johnson, L., Cao, X., and Jacobsen, S. (2002). Interp<strong>la</strong>y between two epigenetic marks<br />

DNA methy<strong>la</strong>tion and Histone H3 lysine 9 methy<strong>la</strong>tion. Curr Biol 12: 1360-1367.<br />

Johnson, L.M., Bostick, M., Zhang, X., Kraft, E., Hen<strong>de</strong>rson, I., Callis, J., and Jacobsen,<br />

S.E. (2007). The SRA methyl-cytosine-binding domain links DNA and histone<br />

methy<strong>la</strong>tion. Curr. Biol. 17: 379-84.<br />

Johnston, A.J., Matveeva, E., Kirioukhova, O., Grossnik<strong>la</strong>us, U., and Gruissem, W.<br />

(2008). A dynamic reciprocal RBR-PCR regu<strong>la</strong>tory circuit controls Arabidopsis<br />

gametophyte <strong>de</strong>velopment. Curr Biol. 18: 1680-1686.<br />

Kägi, C., and GroB-Hardt, R. (2007). How fema<strong>le</strong>s become comp<strong>le</strong>x: cell differentiation in<br />

the gametophyte. Curr Opin P<strong>la</strong>nt Biol. 10: 633-638.<br />

Kanno, T., Bucher, E., Daxinger, L., Huettel, B., Böhmdorfer, G., Gregor, W., Kreil, D.P.,<br />

Matzke, M., and Matzke, A.J.M. (2008). A structural-maintenance-of-chromosomes<br />

hinge domain-containing protein is required for RNA-directed DNA methy<strong>la</strong>tion. Nature<br />

Genet. 40: 670-675.<br />

Koltunow, A.M., and Grossnik<strong>la</strong>us, U. (2003). Apomixis: A <strong>de</strong>velopmental perspective.<br />

Annu. Rev. P<strong>la</strong>nt Biol. 54: 547-574.<br />

Koltunow, A.M., and Tucker, R. (2008). Functional embryo sac formation in Arabidopsis<br />

without meiosis-one step towards asexual seed formation (apomixis) in crops?. J. Biosci.<br />

33: 309-311.<br />

Lahm, A., Paolini, C., Pal<strong>la</strong>oro, M., Nardi, M.C., Jones, P., Ned<strong>de</strong>rmann, P., Sambucini,<br />

S., Bottom<strong>le</strong>y, M.J., Lo Surdo, P., Carfi, A., Koch, U., De Francesco, R., Steinküh<strong>le</strong>r,<br />

C., and Gallinari, P. (2007). Unraveling the hid<strong>de</strong>n catalytic activity of vertebrate c<strong>la</strong>ss<br />

IIa histone <strong>de</strong>acety<strong>la</strong>ses. Proc. Natl. Acad. Sci. USA 104: 17335-17340.<br />

103


Laurie J.D., Zhang D., Mcgann L.E., Gordon-kamm W.J. and Cass D.D. (1999). A novel<br />

technique for the partial iso<strong>la</strong>tion of maize embryo sacs and subsequent regeneration of<br />

p<strong>la</strong>nts. In Vitro Cell. Dev. Biol. P<strong>la</strong>nt 3: 320–325.<br />

Latrasse, D., Benhamed, M., Henry, Y., Domenichini, S., Kim, W., Zhou, D-X., and<br />

De<strong>la</strong>rue, M. (2008). The MYT histone acetyltransferases are essential for gamethophyte<br />

<strong>de</strong>velopment in Arabidopsis. BMC P<strong>la</strong>nt Biol 8: 121<br />

Leb<strong>la</strong>nc, O., Peel, M.D., Carman, J.G. and Savidan, Y. (1995). Megasporogenesis and<br />

megagametogenesis in several Tripsacum species (Poaceae). Am. J. Bot. 82: 57-63.<br />

Leb<strong>la</strong>nc, O., Grimanelli, D., Is<strong>la</strong>m-Faridi, N., Berthaud, J., and Savidan, Y. (1996).<br />

Repro<strong>du</strong>ctive behavior in maize-Tripsacum polyhaploid p<strong>la</strong>nts: Implications for the<br />

transfer of apomixis into maize. J. Hered. 87 : 108–111.<br />

Leb<strong>la</strong>nc, O., Grimanelli, D., Hernan<strong>de</strong>z-Rodriguez, M., Galindo, P.A., Soriano-<br />

Martinez, A.M., and Perotti, E. (2009). Seed <strong>de</strong>velopment and inheritance stidies in<br />

apomictic maize-tripsacum hybrids reveal barriers for the transfer of apomixis into sexual<br />

crops. Int. J. Dev. Biol. 53: 585-596.<br />

Lee, T.I., Jenner, R.G., Boyer, L.A., Guenther, M.G., Levine, S.S.,Kumar, R.M.,<br />

Chevalier, B., Johnstone, S.E., Co<strong>le</strong>, M.F., Isono, K., Koseki, H., Fuchikami, T., Abe,<br />

K., Murray, H.L., Zucker, J.P., Yuan, B., Bell, G.W., Herbolsheimer, E., Hannett,<br />

N.M., Sun, K., Odom, D.T., Otte, A.P., Volkert, T.L., Bartel, D.P., Melton, D.A.,<br />

Gifford, D.K., Jaenisch, R., and Young, R.A. (2006). Control of <strong>de</strong>velopmental<br />

regu<strong>la</strong>tors by Polycomb in human embryonic stem cells. Cell 125: 301-313.<br />

Leroy, O., Hennig, L., Breuninger, H., Laux, T., and Köh<strong>le</strong>r, C. (2007). Polycomb group<br />

proteins function in the fema<strong>le</strong> gametophyte to <strong>de</strong>termine seed <strong>de</strong>velopment in p<strong>la</strong>nts.<br />

Development 134: 3639- 3648.<br />

Li, N., and Dickinson, H.G. (2010). Ba<strong>la</strong>nce between maternal and paternal al<strong>le</strong><strong>le</strong>s sets the<br />

timing of source accumu<strong>la</strong>tion in the maize endosperm. Proc Biol Sci. 277: 3-10.<br />

Lindroth, A.M., Cao, X., Jackson, J.P., Zilberman, D., McCallum, C.M., Henikoff, S.,<br />

and Jacobsen, S.E. (2001). Requirement of CHROMOMETHYLASE3 for maintenance of<br />

CpXpG methy<strong>la</strong>tion. Science 292: 2077-2080.<br />

Lindroth, A.M., Shultis, D., Jasencakova, Z., Fuchs, J., Johnson, L., Schubert, D.,<br />

Patnaik, D., Pradhan, S., Goodrich, J., Schubert, I., Jenuwein, T., Khorasaniza<strong>de</strong>h,<br />

S., and Jacobsen, S.E. (2004). Dual histone H3 methy<strong>la</strong>tion marks at lysines 9 and 27<br />

required for interaction with CHROMOMETHYLASE3. EMBO J. 23: 4286-4296.<br />

Luo, M., Bilo<strong>de</strong>au, P., Koltunow, A., Dennis, E.S., Peacock, W.J., and Chaudhury, A.M.<br />

(1999). Genes controlling fertilization-in<strong>de</strong>pen<strong>de</strong>nt seed <strong>de</strong>velopment in Arabidopsis<br />

thaliana. Proc. Natl. Acad. Sci. USA 96: 296-301.<br />

104


Madlung, A., Masuelli, R.W., Watson, B., Reynolds, S.H., Davison, J., and Comai, L.<br />

(2002). Remo<strong>de</strong>ling of DNA methy<strong>la</strong>tion and phenotypic and transcriptional changes in<br />

synthetic Arabidopsis allotetraploids. P<strong>la</strong>nt Physiol. 129: 733-746.<br />

Makarevitch, I., Stupar, R.M., Iniguez, A.L., Haun, W.J., Barbazuk, W.B., Kaepp<strong>le</strong>r,<br />

S.M., and Springer, N. (2007). Natural variation for al<strong>le</strong><strong>le</strong>s un<strong>de</strong>r epigenetic control by<br />

the maize chromomethy<strong>la</strong>se Zmet2. Genetics 177: 749-760.<br />

Mangelsdorf, P.C. (1974). Corn its origing, evolution, and improvement. The Belknap Press<br />

of Harvard University Press 262p.<br />

Martinez, E.J., Urbani, M.H., Quarin, C., and Ortiz, J.P. (2001). Inheritance of apospory<br />

in bahiagrass, Paspalum notatum. Hereditas 135: 19-25.<br />

Martinez, E.J., Hopp, H.E., Stein, J., Ortiz, J.P., and Quarin, L.C. (2003). Genetic<br />

characterization of apospory in tetraploid Paspalum notatum based on the i<strong>de</strong>ntification of<br />

linked mo<strong>le</strong>cu<strong>la</strong>r markers. Mol Breed 12: 319- 327.<br />

Mathieu, O., Probst, A.V., and Paszkowski, J. (2005). Distinct regu<strong>la</strong>tion of histone H3<br />

methy<strong>la</strong>tion at lysines 27 and 9 by CpG methy<strong>la</strong>tion in Arabidopsis. EMBO J. 24:<br />

2783-2791.<br />

Mathieu, O., Rein<strong>de</strong>rs, J., Caikovski, M., Smathajitt, C., and Paszkowski, J. (2007).<br />

Transgenerational stability of the Arabidopsis epigenome is coordinated by CG<br />

methy<strong>la</strong>tion. Cell 130: 851-862.<br />

Matzk, F., Meister, A., and Schubert, I. (2000). An efficient screen for repro<strong>du</strong>ctive<br />

pathways using mature seeds of monocots and dicots. The P<strong>la</strong>nt Jour 21: 97-108.<br />

Matzke, M., Kanno, T., Huettel, B., Daxinger, L., and Matzke, A.J.M. (2007). Targets of<br />

RNA-directed DNA methy<strong>la</strong>tion. Curr Opin P<strong>la</strong>nt Biol. 10: 512-519.<br />

Matzke, M., Kanno, T., Daxinger, L., Huettel, B., and Matzke, A.J.M. (2009). RNAmediated<br />

chromatin-based si<strong>le</strong>ncing in p<strong>la</strong>nts. Curr Opin Cell Biol. 21: 367-376.<br />

McCormick, S. (1993). Ma<strong>le</strong> gametophyte <strong>de</strong>velopment. P<strong>la</strong>nt Cell 5: 1255-1275.<br />

McCormick, S. (2004). Control of ma<strong>le</strong> gametophyte <strong>de</strong>velopment. P<strong>la</strong>nt Cell 16: S142-<br />

S153.<br />

McGinnis, K., Chand<strong>le</strong>r, V., Cone, K., Kaepp<strong>le</strong>r, H., Kaepp<strong>le</strong>r, S., Kerschen, A., Pikaard,<br />

C., Richards, E., Sidorenko, L., Smith, T., Springer, N., and Wu<strong>la</strong>n, T. (2005).<br />

Transgene-In<strong>du</strong>ced RNA Interference as a Tool for P<strong>la</strong>nt Functional Genomics. Methods<br />

Enzymology 392: 1-24.<br />

McGinnis, K., Murphy, N., Carlson, A.R., Aku<strong>la</strong>, A., Aku<strong>la</strong>, C., Basinger, H., Carlson,<br />

M., Hermanson, P., Kovacevic, N., McGill, M.A., Seshadri, v., Yoyokie, J., Cone, K.,<br />

Kaepp<strong>le</strong>r, H.F., Kaepp<strong>le</strong>r, S.M., and Springer, N.M. (2007). Assessing the efficiency of<br />

RNA interference for maize fucntional genomics. P<strong>la</strong>nt Phys. 143: 1441-1451.<br />

105


Mohn, F., and Schübe<strong>le</strong>r, D. (2009). Genetics and epigenetics: stability and p<strong>la</strong>sticity <strong>du</strong>ring<br />

cellu<strong>la</strong>r differentiation. Trends Genet. 25: 129-136.<br />

Moll, C., Lyncker, L.V., Zimmermann, S., Kägi, C., Baumann, N., Twell, D.,<br />

Grossnik<strong>la</strong>us, U., and GroB-Hardt, R. (2008). CLO/GFA1 and ATO are novel regu<strong>la</strong>tors<br />

of gametic cell fate p<strong>la</strong>nts. The P<strong>la</strong>nt Jour 56: 913-921.<br />

Moore, D.P., Page, A.W., Tang, T.T-L., Kerrebrock, A.W., and Orr-Weaver, T. (1998).<br />

The cohesion protein MEI-S332 localizes to con<strong>de</strong>nsed meiotic and mitotic centromeres<br />

until sister chromatids separate. The Jour Cell Biol 140: 1003-1012.<br />

Morgan, O.D. (2008). The cell cyc<strong>le</strong>. pp 297<br />

Nakamura, A., and Seydoux, G. (2008). Less is more: specification of the germline by<br />

transcriptional repression. Development 135: 3817-3827.<br />

Nardmann, J., Zimmermann, R., Durantini, D., Kranz, E., and Werr, W. (2007). WOX<br />

gene phylogeny in Poaceae: a comparative approach addressing <strong>le</strong>af and embryo<br />

<strong>de</strong>velopment. Mol. Biol. Evol. 24: 2474-84.<br />

Naumova, T.N., Van <strong>de</strong>r <strong>la</strong>ak, J., Osadtchiy, J., Matzk, F., Kravtchenko, A., Bergervoet,<br />

J., Ramulu, K.S. and Boutilier, K. (2001). Repro<strong>du</strong>ctive <strong>de</strong>velopment in apomictic<br />

popu<strong>la</strong>tions of Arabis holboellii (Brassicaceae). Sex. P<strong>la</strong>nt Reprod. 14: 195-200.<br />

Neuffer, M.G., Coe, E.H., and Wess<strong>le</strong>r, S.R. (1997). Mutants of maize. Cold Spring Harbor<br />

Laboratory Press. USA<br />

Ng, D.W-K., Chandrasekharan, M.B., and Hall, T.C. (2006). Or<strong>de</strong>red histone<br />

modifications are associated with transcriptional poising and activation of the phaseolin<br />

promoter. P<strong>la</strong>nt Cell 18: 119-132.<br />

Ng, D.W-K., Wang, T., Chandrasekharan, M.B., Aramayo, R., Kertbundit, S., and Hall,<br />

T.C. (2007). P<strong>la</strong>nt SET domain-containing proteins: structure function and regu<strong>la</strong>tion.<br />

BBA 1769: 316-329.<br />

Nog<strong>le</strong>r, G.A. (1984). Gametophytic apomixis. In embryology of angiosperms, B.M. Johri, ed<br />

(Berlin: Springer-Ver<strong>la</strong>g), pp. 475-518.<br />

Nonomura, K-I., Miyoshi, K., Eiguchi, M., Suzuki, T., Miyao, A., Hirochika, H., and<br />

Kurata, N. (2003). The MSP1 gene is necessary to restrict the number of cells entering<br />

into ma<strong>le</strong> and fema<strong>le</strong> sporogenesis and to initiate anther wall formation in rice. P<strong>la</strong>nt Cell<br />

15: 1728-1739.<br />

Nonomura, K.I., Morohoshi, A., Nakano, M., Eiguchi, M., Miyao, A., Hirochika, H. and<br />

Kurata, N. (2007). A germ cell specific gene of the ARGONAUTE family is essential for<br />

the progression of premeiotic mitosis and meiosis <strong>du</strong>ring sporogenesis in rice. P<strong>la</strong>nt Cell<br />

19, 2583-94.<br />

106


Ogas, J., Kaufmann, S., Hen<strong>de</strong>rson, J., and Somervil<strong>le</strong>, C. (1999). PICKLE is a CHD3<br />

chromatin-remo<strong>de</strong>ling factor that regu<strong>la</strong>tes the transition from embryonic to vegetative<br />

<strong>de</strong>velopment in Arabidopsis. Proc. Natl. Acad. Sci. USA 96: 13839-13844.<br />

Ohad, N., Ya<strong>de</strong>gari, R., Margossian, L., Hannon, M., Michaeli, D., Harada, J.J.,<br />

Goldberg, R.B., and Fischer, R.L. (1999). Mutations in FIE, a WD polycomb group<br />

gene, allow endosperm <strong>de</strong>velopment without fertilization. P<strong>la</strong>nt Cell 11: 407-415.<br />

Ozias-Akins, P., Roche, D., and Hanna, W.W. (1998). Tight clustering and hemizygosity of<br />

apomixis-linked mo<strong>le</strong>cu<strong>la</strong>r markers in Pennisetum squamu<strong>la</strong>tum implies genetic control of<br />

apospory by a divergent locus that may have no al<strong>le</strong>lic form in sexual genotypes. Proc.<br />

Natl. Acad. Sci. USA 95: 5127-5132.<br />

Ozias-Akins, P., and van Dijk, P. (2007). Men<strong>de</strong>lian genetics of apomixis in p<strong>la</strong>nts. Annu<br />

Rev Genet. 41: 509-537.<br />

Pagnussat, G.C., Yu, H-J., and Sundaresan, V. (2007). Cell-fate switch of synergid to egg<br />

cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-like<br />

homeodomain gene BLH1. P<strong>la</strong>nt Cell 19: 3578-3592.<br />

Pagnussat, G.C., A<strong>la</strong>n<strong>de</strong>te-Saez, M., Bowman, J.L., and Sundaresan, V. (2009). Auxin<strong>de</strong>pen<strong>de</strong>nt<br />

patterning and gamete specification in the Arabidopsis fema<strong>le</strong> gametophyte.<br />

Science 324: 1684-1689.<br />

Pa<strong>la</strong>nca<strong>de</strong>, B., and Bensau<strong>de</strong>, O. (2003). Investigating RNA polymerase II carboxylterminal<br />

domain (CTD) phosphory<strong>la</strong>tion. Eur J Biochem 270, 3859-70.<br />

Papa, C.M., Springer, N.M., Muszynski, M.G., Mee<strong>le</strong>y, R., and Kaepp<strong>le</strong>r S.M. (2001).<br />

Maize Chromomethy<strong>la</strong>se Zea methyltransferase2 Is Required for CpNpG Methy<strong>la</strong>tion.<br />

P<strong>la</strong>nt Cell 13: 1919-1929.<br />

Partridge, L., and Hurst, L.D. (1998). Sex and conflict. Science 281: 203-208.<br />

Paun, O., Stuessy, T.F., and Hörandl, E. (2006). The ro<strong>le</strong> of hybridization, polyploidization<br />

and g<strong>la</strong>ciation in the origin and evolution of the apomictic Ranunculus cassubicus<br />

comp<strong>le</strong>x. New Phytologist 171: 223-236.<br />

Peacock, W.J. (1992). Genetic engineering and mutagenesis for apomixis in rice. Apomixis<br />

News<strong>le</strong>tt 4: 3-7.<br />

Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H.L., and Poethig, R.S. (2004). SGS3 and<br />

SGS2/SDE1/RDR6 are required for juveni<strong>le</strong> <strong>de</strong>velopment and the pro<strong>du</strong>ction of transacting<br />

siRNAs in Arabidopsis. Genes Dev. 18: 2368:2379.<br />

Pien, S., and Grossnik<strong>la</strong>us, U. (2007). Polycomb group and trithorax group proteins in<br />

Arabidopsis. BBA 1769: 375-382.<br />

Poethig, R.S. (2003). Phase change and the regu<strong>la</strong>tion of <strong>de</strong>velopmental timing in p<strong>la</strong>nts.<br />

Science 301: 334-336.<br />

107


Poethig, R.S. (2009). Small RNAs and <strong>de</strong>velopmental timing in p<strong>la</strong>nts. Curr Opin Genet Dev<br />

19: 374-378.<br />

Probst, A.V., Fagard, M., Proux, F., Mourrain, P., Boutet, S., Ear<strong>le</strong>y, K., Lawrence, R.J.,<br />

Pikaard, C.S., Murfett, J., Fumer, I., Vaucheret, H., and Scheid, O.M. (2004).<br />

Arabidopsis histone <strong>de</strong>acety<strong>la</strong>se HDA6 is required for maintenance of transcriptional gene<br />

si<strong>le</strong>ncing and <strong>de</strong>termines nuc<strong>le</strong>ar organization of rDNA repeats. P<strong>la</strong>nt Cell 16: 1021-1034.<br />

Ravi, M., Marimuthu, M.P., and Siddiqi, I. (2008). Gamete formation without meiosis in<br />

Arabidopsis. Nature 451: 1121-1124.<br />

Reiser, L., and Fischer, R.L. (1993). The ovu<strong>le</strong> and the embryo sac. P<strong>la</strong>nt Cell 5: 1291-1301.<br />

Russell, S.D. (1993). The egg cell: <strong>de</strong>velopment and ro<strong>le</strong> in fertilization and early<br />

embryogenesis. P<strong>la</strong>nt Cell 5: 1349-1359.<br />

Saze, H., Scheid, O.M., and Paszkowski, J. (2003). Maintenance of CpG methy<strong>la</strong>tion is<br />

essential for epigenetic inheritance <strong>du</strong>ring p<strong>la</strong>nt gametogenesis. Nature Genet. 34: 65-69<br />

Saze, H. (2008). Epigenetic memory transmission through mitosis and meiosis in p<strong>la</strong>nts. Sem<br />

Cell Dev Biol. 19: 527-536.<br />

Schaner, C.E., and Kelly, W.G. (2006). Germline chromatin. WormBook: 1-14<br />

Schoft, V.K., Chumak, N., Mosio<strong>le</strong>k, M., Slusarz, L., Komnenovic, V., Brownfield, L.,<br />

Twell, D., kakutani, T., and Tamaru, H. (2009). in<strong>du</strong>ction of RNA-directed DNA<br />

methy<strong>la</strong>tion upon <strong>de</strong>con<strong>de</strong>nsation of constitutive heterochromatin. EMBO Rep. 10:<br />

1015-1021.<br />

Schübe<strong>le</strong>r, D., MacAlpine, D.M., Scalzo, D., Wirbe<strong>la</strong>uer, C., Kooperberg, C., van<br />

Leeuwen, F., Gottschling, D.E., O’Neill, L.P., Turner, B.M., Delrow, J., Bell, S.P., and<br />

Groudine, M. (2004). The histone modification pattern of active genes revea<strong>le</strong>d through<br />

genome-wi<strong>de</strong> chromatin analysis of a higher eukaryote. Genes Dev. 18: 1263-1261.<br />

Schranz, M.E., Kantama, L., <strong>de</strong> Jong, H. and Mitchell-Olds, T. (2006). Asexual<br />

repro<strong>du</strong>ction in a close re<strong>la</strong>tive of Arabidopsis: a genetic investigation of apomixis in<br />

Boechera (Brassicaceae). New Phytologist 171: 425-438.<br />

Seydoux, G., and Braun, R.E. (2006). Pathway to totipotency: <strong>le</strong>ssons from germ cells. Cell<br />

127: 891-904.<br />

Shaked, H., Avivi-Ragolsky, N., and Levy, A.A. (2006). Involvement of the Arabidopsis<br />

SWI/SNF2 chromatin remo<strong>de</strong>ling gene family in DNA damage response and<br />

recombination. Genetics 173: 985-994.<br />

Sharbel, T.F., Voigt, M-L., Corral, J.M., Thiel, T., Varshney, A., Kum<strong>le</strong>hn, J., Vogel, H.,<br />

and Rotter, B. (2009). Mo<strong>le</strong>cu<strong>la</strong>r signatures of apomictic and sexual ovu<strong>le</strong>s in the<br />

Boechera holboellii comp<strong>le</strong>x. The P<strong>la</strong>nt Jour 58: 870-882.<br />

Sharma, R., Singh, R.K.M., Malik, G., Deveshwar, P., Tyagy, A.K., Kapoor, S., and<br />

kapoor, M. (2009). Rice cytosine DNA methyltransferases-gene expression profiling<br />

108


<strong>du</strong>ring repro<strong>du</strong>ctive <strong>de</strong>velopment and abiotic stress. FEBS Jour 276: 6301-6311.<br />

Sheridan, W.F., Avalkina, N.A., Shamrow, I.I., Batygina, T.B., and Golubovskaya, I.N.<br />

(1996). The mac1 gene: controlling the commitment to the meiotic pathway in maize.<br />

Genetics 142: 1009-1020.<br />

Slotkin, R.K., Vaughn, M., Borges, F., Tanurdzić, M., Becker, J.D., Feijó, J.A., and<br />

Martienssen, R.A. (2009). Epigenetic reprogramming and small RNA si<strong>le</strong>ncing of<br />

transposab<strong>le</strong> e<strong>le</strong>ments in pol<strong>le</strong>n. Cell 136: 461-72.<br />

Soppe, W.J.J., Jasencakova, Z., Houben, A., Kakutani, T., Meister, A., Huang, M.S.,<br />

Jacobsen, S.E., Schubert, I., and Fransz, P.F. (2002). DNA methy<strong>la</strong>tion controls histone<br />

H3 lysine 9 methy<strong>la</strong>tion and heterochromatin assembly in Arabidopsis. EMBO J. 21:<br />

6549-6559.<br />

Spil<strong>la</strong>ne, C., Viel<strong>le</strong>-Calzada, J-P., and Grossnik<strong>la</strong>us, U. (2001). APO2001: A sexy<br />

apomixer in Como. P<strong>la</strong>nt Cell 13: 1480-1491.<br />

Spil<strong>la</strong>ne, C., Curtis, M.D., and Grossnik<strong>la</strong>us, U. (2004). Apomixis technology<br />

<strong>de</strong>velopment-virgin births in farmers’ fields? Nat Biotech 22: 687-691.<br />

Strahl, B.D., and Allis, D. (2000). The <strong>la</strong>nguage of cova<strong>le</strong>nt histone modifications. Nature<br />

403: 41-45.<br />

Tariq, M., Saze, H., Probst, A.V., Lichota, J., Habu, Y., and Paszkowski, J. (2003).<br />

Erasure of CpG methy<strong>la</strong>tion in Arabidopsis alters patterns of histone H3 methy<strong>la</strong>tion in<br />

heterochromatin. Proc. Natl. Acad. Sci. USA 100: 8823-7.<br />

Teixeira, F.K., Heredia, F., Sarazin, A., Roudier, F., Boccara, M., Ciaudo, C., Cruaud, C.,<br />

Pou<strong>la</strong>in, J., Berdasco, M., Fraga, M.F., Voinnet, O., Wincker, P., Estel<strong>le</strong>r, M., and<br />

Colot, V. (2009). A ro<strong>le</strong> of RNAi in the se<strong>le</strong>ctive correction of DNA methy<strong>la</strong>tion <strong>de</strong>fects.<br />

Science 323: 1600-1604.<br />

Tuckey, M.R., Araujo, A.C., Paech, N.A., Hecht, V., Schmidt, D.L., Rossell, J.B., <strong>de</strong> Vries,<br />

S.C. and Koltunow, M.G. (2003). Sexual and apomictic repro<strong>du</strong>ction in Hieracium<br />

subgenus Pilosel<strong>la</strong> are closely interre<strong>la</strong>ted <strong>de</strong>velopmental pathways. P<strong>la</strong>nt Cell 15:<br />

1524-1537.<br />

Vail<strong>la</strong>nt, I., and Paszkowski, J. (2007). Ro<strong>le</strong> of histone and DNA-methy<strong>la</strong>tion in gene<br />

regu<strong>la</strong>tion. Curr Opin P<strong>la</strong>nt Biol. 10: 528-33.<br />

van Dijk, P.J., van Baar<strong>le</strong>n, P., and Jong <strong>de</strong>, J.H. (2003). The occurrence of phenotypically<br />

comp<strong>le</strong>mentary apomixis-recombinants in crosses between sexual and apomictic<br />

dan<strong>de</strong>lions (Taraxacum officina<strong>le</strong>). Sex P<strong>la</strong>nt Reprod 16: 71-76.<br />

Vanyushin, B.F. (2005). Enzymatic DNA methy<strong>la</strong>tion is an epigenetic control for genetic<br />

function of the cell. Biochem (Moscow) 70: 488-499.<br />

Viel<strong>le</strong>-Calzada, J-P., Baskar, R., and Grossnik<strong>la</strong>us, U. (2000). De<strong>la</strong>yed activation of the<br />

parental genome <strong>du</strong>ring seed <strong>de</strong>velopment. Nature 404: 91-94.<br />

109


Vongs, A., Kakutani, T., Martienssen, R.A., and Richards, E.J. (1993). Arabidopsis<br />

thaliana DNA methy<strong>la</strong>tion mutants. Science 260: 1926-1928.<br />

Wagner, D., and Meyerowitz, E.M. (2002). SPLAYED, a Novel SWI/SNF ATPase homolog,<br />

controls repro<strong>du</strong>ctive <strong>de</strong>velopment in Arabidopsis. Curr Biol. 12: 85-94.<br />

Walbot, V., and Evans, M.S. (2003). Unique feactures of the p<strong>la</strong>nt life cyc<strong>le</strong> and their<br />

consequences. Nature Rev Genet 4: 369-379.<br />

Wang, L. T., Madlung, A., Lee, H-S., Chen, M., Lee, J.J., Watson, B., Kagochi, T.,<br />

Comai, L., and Chen, J. (2004). Stochastic and epigenetic changes of gene expression in<br />

Arabidopsis polyploids. Genetics 167: 1961-1973.<br />

Wu, H-M., and Cheung, A.Y. (2000). Programmed cell <strong>de</strong>ath in p<strong>la</strong>nt repro<strong>du</strong>ction. P<strong>la</strong>nt<br />

Mol Biol. 44: 267-281.<br />

Xiao, W., Custard, K.D., Brown, R.C., Lemmon, B.E., Harada, J.J., Goldberg, R.B., and<br />

Fischer, R.L. (2006). DNA methy<strong>la</strong>tion is critical for Arabidopsis embryogenesis and seed<br />

viability. P<strong>la</strong>nt Cell 18: 805-814.<br />

Yamada-Akiyama, H., Akiyama, Y., Ebina, M., Xu, Q., Tsuruta, S., Yazaki, J.,<br />

Kishimoto, N., Kikuchi, S., Takahara, M., Takamizo, T., Sugita, S., and Nakagawa, H.<br />

(2009). Analysis of expressed sequence tags in apomictic guineagrass (Panicum<br />

maximum). J P<strong>la</strong>nt Phys. 166: 750-761.<br />

Yin, H., and Lin, H. (2007). An epigenetic activation ro<strong>le</strong> of Piwi and a Piwi-associated<br />

piRNA in Drosophi<strong>la</strong> me<strong>la</strong>nogaster. Nature 450: 304-308.<br />

Zilberman, D., Gehring, M., Tran, R.K., Ballinger, T., and Henikoff, S. (2007). Genomewi<strong>de</strong><br />

analysis of Arabidopsis thaliana DNA methy<strong>la</strong>tion uncovers and inter<strong>de</strong>pen<strong>de</strong>nce<br />

between methy<strong>la</strong>tion and transcription. Nat Genet 39: 61-69.<br />

Zhou, C., Miki, B., and Wu, K. (2003). CHB2, a member of the SWI3 gene family, is a<br />

global regu<strong>la</strong>tor in Arabidopsis. P<strong>la</strong>nt Mol Biol. 52: 1125-1134.<br />

110

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!