25.12.2013 Views

Itô's integrated formula for strict local martingales with ... - HAL - INRIA

Itô's integrated formula for strict local martingales with ... - HAL - INRIA

Itô's integrated formula for strict local martingales with ... - HAL - INRIA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Itô’s <strong>integrated</strong> <strong><strong>for</strong>mula</strong> <strong>for</strong> <strong>strict</strong> <strong>local</strong> <strong>martingales</strong> <strong>with</strong><br />

jumps.<br />

Oleksandr Chybiryakov ∗<br />

Abstract<br />

This note presents some properties of positive càdlàg <strong>local</strong> <strong>martingales</strong> which are not<br />

<strong>martingales</strong> - <strong>strict</strong> <strong>local</strong> <strong>martingales</strong> - extending the results from [MY05] to <strong>local</strong> <strong>martingales</strong><br />

<strong>with</strong> jumps. Some new examples of <strong>strict</strong> <strong>local</strong> <strong>martingales</strong> are given. The construction<br />

relies on absolute continuity relationships between Dunkl processes and absolute<br />

continuity relationships between semi-stable Markov processes.<br />

Key Words: Strict <strong>local</strong> <strong>martingales</strong>, <strong>local</strong> time, semi-stable Markov processes, Dunkl Markov<br />

processes.<br />

Mathematics Subject Classification (2000): 60G44, 60J75, 60J55, 60J25.<br />

1 Main results.<br />

Let (Ω, F, F t , P) be a filtered probability space. On Ω × R + we denote by O and P respectively<br />

- the optional and predictable sigma fields and by B (R) the Borel sigma field. Consider (S t ) t≥0<br />

- an R + valued <strong>local</strong> martingale <strong>with</strong> respect to the filtration (F t ) t≥0<br />

. For the definitions of<br />

<strong>local</strong> time <strong>for</strong> discontinuous <strong>local</strong> <strong>martingales</strong> we follow ([TL78], p. 17-22 (see also [Mey76] and<br />

[Pro05]). For each a ∈ R there exists a continuous increasing process (L a t , t ≥ 0) , such that<br />

Tanaka’s <strong><strong>for</strong>mula</strong> holds:<br />

(S t − a) + = (S 0 − a) + +<br />

which we write equivalently:<br />

+ ∑<br />

0a}dS u<br />

0+<br />

[<br />

1{Su− >a} (S u − a) − + 1 {Su− ≤a} (S u − a) +] + 1 2 La t , (1)<br />

(S t − a) + = (S 0 − a) + +<br />

∫ t<br />

0+<br />

1 {Su− >a}dS u + 1 2 La t .<br />

∗ Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, 175 rue du Chevaleret,<br />

F-75013 Paris. chyb@ccr.jussieu.fr<br />

1


Furthermore, there exists a B (R)×O measurable version of L, a.s. càdlàg in t, and a B (R)×P<br />

measurable version of L, which is a.s. continuous in t. We will only consider such versions. Also<br />

note that <strong>for</strong> any f ≥ 0, Borel,<br />

∫ t<br />

0<br />

f (X s ) d 〈X c , X c 〉 s<br />

=<br />

∫ +∞<br />

−∞<br />

f (a) L a t da.<br />

We shall say that T is a (F t ) stopping time which reduces the <strong>local</strong> martingale S if (S t∧T ) is<br />

a uni<strong>for</strong>mly integrable martingale. We shall say that a process X is in class (D) if the family<br />

{X τ , τ - a.s. finite (F t ) stopping time} is uni<strong>for</strong>mly integrable.<br />

The following Theorem is a straight<strong>for</strong>ward generalization of Theorem 1 in [MY05].<br />

Theorem 1 Let τ be an (F t ) stopping time such that τ < +∞ a.s. and K ≥ 0. Then there is<br />

the following identity<br />

where c S (τ) := E (S 0 − S τ ),<br />

J K τ : = ∑<br />

and ( L K t<br />

)<br />

t≥0<br />

E (S τ − K) + = E (S 0 − K) + + EJ K τ + 1 2 ELK τ − c S (τ) , (2)<br />

= 1 2<br />

0K} (S u − K) − + ∑<br />

is the (continuous) <strong>local</strong> time at K of S.<br />

)<br />

0K}dS u + ∑<br />

0K} (S u − K) − + ∑<br />

0K}dS u + S 0 − S t<br />

0+<br />

)<br />

is a <strong>local</strong> martingale. Since (S t≥0 t − K) + − S t = −S t ∧ K, one has<br />

−N K t = S t ∧ K − S 0 ∧ K + J K t + 1 2 LK t .<br />

In order to get (2) it is enough to prove that Nt K is in class (D) , i.e. the family Nτ K 1 {τK}dS u .


Let (τ n ) n≥1<br />

(τ n → +∞ a.s.) be a sequence of (F t ) stopping times which reduces both (S t )<br />

( t≥0<br />

∫ t<br />

and 1 0+ {S u− >K}dS u . Then one gets<br />

)t≥0<br />

Finally, by Beppo-Levi:<br />

EJ K t∧τ n<br />

+ 1 2 ELK t∧τ n<br />

= E [ (S t∧τ n<br />

− K) + − (S 0 − K) +] ≤ ES t∧τ n<br />

= ES 0 .<br />

EJ K t + 1 2 ELK t ≤ ES 0<br />

and<br />

EJ K ∞ + 1 2 ELK ∞ ≤ ES 0 ,<br />

then <strong>for</strong> any (F t ) stopping time τ<br />

∣<br />

∣N τ K 1 ∣<br />

{τ λ = lim λ<br />

λ→∞ 2 P [S, S] 1/2<br />

τ<br />

> λ .<br />

Besides as a consequence of (2) one obtains<br />

c S (τ) = lim<br />

K→∞<br />

< ∞<br />

(<br />

EJ K τ<br />

Let τ be an a.s. finite (F t ) stopping time. Define<br />

+ 1 2 ELK τ<br />

)<br />

.<br />

C <strong>strict</strong> (K, τ) := lim<br />

n→∞<br />

E (S τ∧Tn − K) + , (4)<br />

where T n → ∞ a.s., T n reduces (S t ) t≥0<br />

. The following proposition shows that this limit exists<br />

and does not depend on the reducing sequence T n , n ≥ 1.<br />

Proposition 2 Let τ be an a.s. finite (F t ) stopping time. Then<br />

C <strong>strict</strong> (K, τ) = E (S 0 − K) + + EJ K τ + 1 2 ELK τ . (5)<br />

Furthermore, if the process (∆S t ) t≥0<br />

is in class (D) , then<br />

where S ∗ t := sup 0≤u≤t S u .<br />

C <strong>strict</strong> (K, τ) = E [ (S τ − K) +] + lim<br />

n→∞<br />

nP (S ∗ τ > n) ,<br />

3


Proof. By Tanaka’s <strong><strong>for</strong>mula</strong><br />

(S t − K) + − (S 0 − K) + =<br />

∫ t<br />

0+<br />

1 {Su− >K}dS u + J K t + 1 2 LK t ,<br />

where J K t<br />

is defined by (3) . Since (S t ) t≥0<br />

is a <strong>local</strong> martingale,<br />

S K t :=<br />

∫ t<br />

1 {Su− >K}dS u<br />

0+<br />

is also a <strong>local</strong> martingale. We have seen in the proof of Theorem 1 that<br />

N K t =<br />

∫ t<br />

0+<br />

is a uni<strong>for</strong>mly integrable martingale, then<br />

1 {Su− >K}dS u + S 0 − S t<br />

S K t := N K t + S t − S 0<br />

is the sum of a uni<strong>for</strong>mly integrable martingale and a <strong>local</strong> martingale (S t ) t≥0<br />

. There<strong>for</strong>e a<br />

stopping time which reduces (S t ) t≥0<br />

reduces ( )<br />

St<br />

K as well.<br />

Let T be an (F t ) stopping time which reduces (S t ) t≥0<br />

. Then S t∧T and St∧T K are uni<strong>for</strong>mly<br />

integrable <strong>martingales</strong>. For any τ - an a.s. finite (F t ) stopping time one gets<br />

t≥0<br />

E (S τ∧T − K) + = E (S 0 − K) + + EJ K τ∧T + 1 2 ELK τ∧T , (6)<br />

now taking <strong>for</strong> T a stopping time T n , such that T n → ∞ a.s. and T n reduces (S t ) t≥0<br />

, one<br />

obtains that<br />

C <strong>strict</strong> (K, τ) := lim<br />

n→∞<br />

E (S τ∧Tn − K) +<br />

exists and does not depend on the sequence of stopping times reducing (S t ) t≥0<br />

. Furthermore,<br />

C <strong>strict</strong> (K, τ) = E (S 0 − K) + + EJ K τ + 1 2 ELK τ .<br />

In order to move further suppose that the process (∆S t ) t≥0<br />

is in class (D). Take<br />

T n := inf {u > 0 |S u > n} .<br />

Since (S t ) t≥0<br />

is an adapted càdlàg process, T n is an (F t ) stopping time and T n → ∞ a.s. Since<br />

|S t∧Tn | ≤ n + ∆S Tn ,<br />

(S t∧Tn ) t≥0<br />

is in class (D) and subsequently is a uni<strong>for</strong>mly integrable martingale. In particular<br />

T n is an (F t ) stopping time which reduces (S t ) t≥0<br />

. Now one can get <strong>for</strong> any τ - an a.s. finite<br />

(F t ) stopping time<br />

E (S τ∧Tn − K) + = E [ (S τ − K) + 1 {τ≤Tn}]<br />

+ E<br />

[<br />

(STn − K) + 1 {τ>Tn}]<br />

.<br />

4


The left hand side converges and equals C <strong>strict</strong> (K, τ) . The first expression on the right hand side<br />

converges as well (by Beppo-Levi) to E [ (S τ − K) +] . Hence E [ (S Tn − K) + 1 {τ>Tn}]<br />

converges<br />

as well. Besides one has <strong>for</strong> n > K<br />

(n − K) P (τ > T n ) ≤ E [ (S Tn − K) + 1 {τ>Tn}]<br />

≤ (n − K) P (τ > Tn ) + E [ ]<br />

∆S Tn 1 {τ>Tn}<br />

and<br />

E [ (S Tn − K) + [<br />

1 {τ>Tn }]<br />

− E ∆STn 1 {τ>Tn }]<br />

≤ (n − K) P (τ > Tn ) ≤ E [ (S Tn − K) + 1 {τ>Tn }]<br />

.<br />

Since ( )<br />

∆S Tn 1 {τ>Tn } is a uni<strong>for</strong>mly integrable family E [ ∆S<br />

n≥1 Tn 1 {τ>Tn }]<br />

→ 0, as n → ∞, and<br />

lim E [ (S Tn − K) + ]<br />

1 {τ>Tn } = lim (n − K) P (τ > T n ) = lim nP (Sτ ∗ > n) .<br />

n→∞ n→∞ n→∞<br />

Finally<br />

lim E (S τ∧T n<br />

− K) + = E [ (S τ − K) +] + lim nP (Sτ ∗ > n) ,<br />

n→∞ n→∞<br />

where St ∗ := sup 0≤u≤t S u .<br />

Remark 3 Note that from Theorem 1 and Proposition 2 <strong>for</strong> any positive <strong>local</strong> martingale S,<br />

such that (∆S t ) t≥0<br />

is in class (D) , and <strong>for</strong> any a.s. finite (F t ) stopping time τ<br />

c S (τ) = lim<br />

n→∞<br />

nP (S ∗ τ > n) .<br />

Remark 4 Under the conditions of Proposition 2<br />

C <strong>strict</strong> (K, τ) =<br />

sup E (S σ∧τ − K) + . (7)<br />

σ-(F t ) stopping time<br />

Proof. From (6) one obtains that <strong>for</strong> any pair of (F t ) stopping times τ, σ and a sequence<br />

of stopping times R n , such that R n → ∞ a.s. and R n reduces (S t ) t≥0<br />

Then by Fatou’s Lemma<br />

E (S τ∧σ∧Rn − K) + = E (S 0 − K) + + EJ K τ∧σ∧R n<br />

+ 1 2 ELK τ∧σ∧R n<br />

.<br />

E (S τ∧σ − K) + ≤ E (S 0 − K) + + lim inf<br />

n→∞<br />

Now (7) follows from (5) and (4) .<br />

= E (S 0 − K) + + EJ K τ∧σ + 1 2 ELK τ∧σ<br />

≤ E (S 0 − K) + + EJ K τ + 1 2 ELK τ .<br />

[EJ K τ∧σ∧R n<br />

+ 1 2 ELK τ∧σ∧R n<br />

]<br />

Remark 5 The original proof of Proposition 2 in [MY05] differs a little from ours. In order<br />

to obtain (6) the fact, that the stopping time which reduces (S t ) t≥0<br />

reduces as well ( )<br />

St<br />

K , is t≥0<br />

not used. Let us go through this other proof and see that there is no contradiction.<br />

5


Proof. Let T be an (F t ) stopping time which reduces (S t ) t≥0<br />

and Tn K , n ≥ 1, Tn<br />

K → ∞ be<br />

a sequence of stopping times that reduce ( )<br />

St<br />

K . Then <strong>for</strong> any τ - an a.s. finite (F t≥0 t) stopping<br />

time - one gets<br />

E ( S τ∧T ∧T K n<br />

− K )+ = E (S 0 − K) + + EJ K τ∧T ∧T K n + 1 2 ELK τ∧T ∧T K n .<br />

On the right hand side one can pass to the limit as Tn<br />

K → ∞ by Beppo-Levi and get a finite<br />

limit as soon as we already know from the proof of Theorem 1 that<br />

EJ K ∞ + 1 2 ELK ∞ ≤ ES 0 .<br />

On the left hand side, ( S τ∧T ∧T K n<br />

)n≥1<br />

L 1 to S τ∧T . Finally one gets<br />

is a uni<strong>for</strong>mly integrable martingale, thus it converges in<br />

which is the same as (6) .<br />

E (S τ∧T − K) + = E (S 0 − K) + + EJ K τ∧T + 1 2 ELK τ∧T , (8)<br />

For any µ - a finite measure on R + define<br />

F µ (x) :=<br />

∫ +∞<br />

0<br />

µ (dK) (x − K) +<br />

and ¯µ := ∫ +∞<br />

0<br />

µ (dK) . As in [MY05] we have the following Proposition and Corollary (the<br />

proofs are the same as in the continuous case).<br />

Proposition 6 Under the notations and assumptions of Theorem 1<br />

[∫ +∞<br />

(<br />

E [F µ (S τ )] = F µ (S 0 ) + E µ (dK) Jτ<br />

K + 1 )]<br />

2 LK τ − ¯µc S (τ) .<br />

0<br />

Corollary 7 The process<br />

is a martingale.<br />

F µ (S t ) − F µ (S 0 ) −<br />

∫ +∞<br />

0<br />

(<br />

µ (dK) Jt<br />

K<br />

+ 1 2 LK t<br />

)<br />

− ¯µ (S t − S 0 ) , t ≥ 0<br />

2 Examples.<br />

One can trivially construct <strong>strict</strong> ( <strong>local</strong> ) <strong>martingales</strong> from continuous <strong>strict</strong> ( <strong>local</strong> ) <strong>martingales</strong>:<br />

indeed, M t := M (c)<br />

t + M (d)<br />

t and M (c)<br />

t is a <strong>strict</strong> <strong>local</strong> martingale and M (d)<br />

t is a uni<strong>for</strong>mly<br />

integrable martingale, then (M t ) is a <strong>strict</strong> <strong>local</strong> martingale.<br />

We now obtain(<br />

<strong>strict</strong> ) <strong>local</strong> <strong>martingales</strong> ( ) <strong>with</strong> jumps which are generalizations of the <strong>strict</strong><br />

<strong>local</strong> martingale , where is a Bessel process of dimension 3. As in the case of<br />

1/R (3)<br />

t<br />

R (3)<br />

t<br />

6


(<br />

1/R (3)<br />

t<br />

)<br />

such <strong>strict</strong> <strong>local</strong> <strong>martingales</strong> can be obtained from absolute continuity relationships<br />

between two Dunkl Markov processes instead of Bessel processes. For simplicity, we consider<br />

here only one dimensional Dunkl Markov processes (see [GY05]).<br />

The Dunkl Markov process (X t ) <strong>with</strong> parameter k is a Feller process <strong>with</strong> extended generator<br />

given <strong>for</strong> f ∈ C 2 (R) by<br />

L k f (x) = 1 ( )<br />

1<br />

2 f ′′ (x) + k<br />

x f ′ f (x) − f (−x)<br />

(x) − ,<br />

2x 2<br />

where k ≥ 0. Note that |X| is a Bessel process <strong>with</strong> index ν := k − 1 (k)<br />

. Denote by P<br />

2 x<br />

of (X t ) started at x ∈ R, and by ( )<br />

Ft<br />

X the natural filtration of X.<br />

the law<br />

Proposition 8 Let 0 ≤ k < 1 ≤ 2 k′ and x > 0. Define T 0 := inf {s ≥ 0 |X s− = 0 or X s = 0} .<br />

Then P x<br />

(k) (T 0 < +∞) = 1 and there is the following absolute continuity relationship:<br />

( ) k<br />

P (k′ )<br />

|Xt∧T0 |<br />

′ −k ( ) k<br />

′ Nt∧T0<br />

x ∣ =<br />

F<br />

X<br />

exp<br />

(− (k′ ) 2 − k 2 ∫ )<br />

t∧T0<br />

ds<br />

P (k) ∣<br />

x<br />

t |x| k<br />

2<br />

F<br />

X , (9)<br />

t<br />

0<br />

X 2 s<br />

where N t denotes the number of jumps of X on [0, t] . Furthermore<br />

( ) k |x|<br />

′ −k ( ) Nt<br />

k<br />

((k ′ ) 2 − k 2 ∫ )<br />

t<br />

ds<br />

M t :=<br />

exp<br />

|X t | k ′ 2 0<br />

X 2 s<br />

(10)<br />

is a <strong>strict</strong> <strong>local</strong> martingale under P (k′ )<br />

x , and<br />

where E (k′ )<br />

x is the expectation under P (k′ )<br />

x .<br />

P (k)<br />

x (T 0 > t) = E (k′ )<br />

x M t, (11)<br />

(<br />

Remark 9 Note that the law of T 0 under P x (k) is that of x 2 / 2Z (<br />

1<br />

gamma variable of a parameter 1 − k (see p.98 in [Yor01]).<br />

2<br />

2 −k) )<br />

, where Z (<br />

1<br />

−k)<br />

is a<br />

2<br />

Proof. Let X be a Dunkl Markov process. Note that ∆X s = X s − X s− = −2X s− , when<br />

∆X s ≠ 0. Hence if X s = 0, then X s− = 0 and<br />

T 0 = inf {s ≥ 0 |X s− = 0} = inf {s ≥ 0 ||X s | = 0} .<br />

In order to prove (9) we proceed as in the proof of Proposition 4 in [GY05]. First we need to<br />

extend Theorem 2 in [GY05] <strong>for</strong> k < 1 2 . Since |X| is a Bessel process <strong>with</strong> index ( k − 1 2)<br />

, <strong>for</strong><br />

k < 1 2 , T 0 < +∞ a.s., and, <strong>for</strong> k ≥ 1 2 , T 0 = +∞ a.s. Denote<br />

{<br />

τ t := inf s ≥ 0<br />

∣<br />

∫ s<br />

0<br />

du<br />

X 2 u<br />

}<br />

= t ,<br />

7


then τ t is a continuous <strong>strict</strong>ly increasing time change and τ ∞ = T 0 . Denote Y u := X τ u<br />

. Since<br />

<strong>for</strong> any f ∈ C 2 (R)<br />

is a <strong>local</strong> martingale,<br />

f (X t ) − f (X 0 ) −<br />

f (Y u ) − f (Y 0 ) −<br />

∫ t<br />

∫ t<br />

0<br />

0<br />

L k f (X s ) ds<br />

Y 2<br />

s L k f (Y s ) ds<br />

is a <strong>local</strong> martingale. Then as in the proof of Proposition 4 in [GY05] one obtains that Y is in<br />

the <strong>for</strong>m<br />

(<br />

)<br />

Y u = exp β (ν)<br />

u + iπN u<br />

(k/2) ,<br />

( )<br />

( )<br />

where ν := k − 1, β (ν)<br />

2 u is a Brownian motion <strong>with</strong> drift ν, N u<br />

(k/2) is a Poisson process <strong>with</strong><br />

( )<br />

parameter k/2 independent from . Denote<br />

then τ At = t, <strong>for</strong> t < T 0 . Hence<br />

β (ν)<br />

u<br />

A t :=<br />

∫ t<br />

0<br />

du<br />

,<br />

X 2 u<br />

X t = Y At , t < T 0 . (12)<br />

Note also that differentiating the equality A τ t<br />

= t <strong>with</strong> respect to time one gets<br />

d<br />

dt τ t = Yt<br />

2<br />

and A t = inf { s ≥ 0 ∣ ∫ s<br />

0 Y u 2 du = t } , t < T 0 . Note that (9) is equivalent to<br />

P x<br />

(k) ∣<br />

F<br />

X<br />

t<br />

Indeed (9) is equivalent to<br />

E (k′ )<br />

x (F (X s , s ≤ t)) = E (k)<br />

x<br />

( ) k |x|<br />

′ −k ( ) Nt<br />

k<br />

((k ′<br />

= ) 2 − k 2 ∫ t<br />

∩{t


where<br />

(<br />

D t : = exp (ν − ν ′ ) β (ν′ )<br />

t − 1 (<br />

ν 2 − (ν ′ ) 2) ) ( ) (k ′ /2) N (<br />

k<br />

t<br />

t<br />

exp − 1 )<br />

2<br />

k ′ 2 (k − k′ ) t<br />

(<br />

= exp (k − k ′ ) β (ν′ )<br />

t − 1 (<br />

k 2 − (k ′ ) 2) ) ( ) (k ′ /2) N k<br />

t<br />

t<br />

2<br />

k ′<br />

{<br />

and D At = M t , t < T 0 . Denote G t := σ β (ν′ )<br />

G As∧u measurable and<br />

(<br />

F<br />

E (k)<br />

x<br />

As u → +∞ one gets<br />

(<br />

F<br />

E (k)<br />

x<br />

(<br />

β (ν)<br />

A s<br />

, N (k/2)<br />

A s<br />

)<br />

1 {As≤u}<br />

)<br />

s , N (k′ /2)<br />

s<br />

(<br />

= E (k′ )<br />

x<br />

= E (k′ )<br />

x<br />

(<br />

β (ν)<br />

A s<br />

, N (k/2)<br />

A s<br />

)<br />

1 {As 0<br />

( ) ( )<br />

1<br />

c X(x)<br />

(d)<br />

ct = X (xc−1 )<br />

t<br />

(<br />

where<br />

X (x)<br />

t<br />

t≥0<br />

,<br />

t≥0<br />

)<br />

denotes a semi-stable Markov process started at x > 0. Denote<br />

T 0 := inf {s ≥ 0 |X s− = 0 or X s = 0} , (15)<br />

then Lamperti in [Lam72] showed that: either T 0 = +∞ a.s., or T 0 < +∞ a.s. and X T0 − = 0<br />

a.s., or T 0 < +∞ a.s. and X T0 − > 0 a.s. Furthermore this does not depend on the starting<br />

point x > 0.<br />

Note that <strong>for</strong> a semi-stable Markov process the following Lamperti relation is true.<br />

suppose that there is no killing inside (0, ∞) .<br />

Proposition 10 Let (ξ t ) be a one-dimensional Lévy process, starting at 0. Define<br />

A (x)<br />

t :=<br />

∫ t<br />

0<br />

x exp (ξ s ) ds,<br />

9<br />

We


<strong>for</strong> any x > 0. Then the process (X u ) , defined implicitly by<br />

is a semi-stable Markov process, starting at x, and<br />

where T 0 is defined by (15) . The converse is also true.<br />

Denote<br />

τ (x)<br />

t<br />

x exp ξ t = X (x) A<br />

, t < T 0 , (16)<br />

t<br />

A (x)<br />

∞ = T 0 , (17)<br />

:= inf { s ≥ 0 ∣ ∣A (x)<br />

s = t } .<br />

( )<br />

Let F ξ t be the natural filtration of (ξ t ) and ( )<br />

Ft<br />

X be the natural filtration of (Xt ) . As<br />

in [CPY94], using Proposition 10, one obtains the following absolute continuity relationship<br />

between two semi-stable Markov processes.<br />

Proposition 11 Suppose that (X t ) is a semi-stable Markov process associated <strong>with</strong> Lévy process<br />

(ξ t ) via Lamperti relation (16) and E P e bξ t = e tρ(b) < ∞. Define Q by<br />

( ) b ( ∫ t<br />

Q| F<br />

X<br />

t ∩{t


( )<br />

Note that (X t /x) b = exp bξ (x) τ<br />

on {t < T 0 } . Differentiating (18) one gets that<br />

t<br />

Letting u tend to infinity, from (19) one gets<br />

But from (17)<br />

( { })<br />

Q A ∩ τ (x)<br />

t < +∞<br />

d<br />

dt τ (x)<br />

t = 1 Xt<br />

2 .<br />

{ }<br />

τ (x)<br />

t < +∞ = {t < T 0 } . Hence<br />

Q (A ∩ {t < T 0 }) = E P<br />

(1 A∩{t


where ˜Π (dx) = e bx Π (dx) . Hence, in order to have Q (T 0 < +∞) = 1 and P (T 0 = +∞) = 1<br />

one can choose b such that<br />

∫<br />

−a + xΠ (dx) ≥ 0 (20)<br />

|x|>1<br />

and<br />

∫<br />

−a + bσ 2 − x ( 1 − e bx) ∫<br />

Π (dx) + xe bx Π (dx) < 0. (21)<br />

|x|1<br />

It is easy to see that (20) and (21) imply that b < 0. For example, <strong>for</strong> any given a and Π, such<br />

that (20) is true, one can always choose b < 0 such that<br />

∫<br />

∫<br />

bσ 2 − e −b |x| Π (dx) < a − xΠ (dx) , (22)<br />

x1<br />

which implies (21) . Note that condition (22) is more re<strong>strict</strong>ive than (21) .<br />

References<br />

[BY05]<br />

J. Bertoin and M. Yor, Exponential functionals of Lévy processes, To appear in Probability<br />

Surveys (2005).<br />

[CPY94] P. Carmona, F. Petit, and M. Yor, Sur les fonctionnelles exponentielles de certains<br />

processus de Lévy, Stochastics Stochastics Rep. 47 (1994), no. 1-2, 71—101.<br />

[GY05]<br />

L. Gallardo and M. Yor, Some remarkable properties of the Dunkl <strong>martingales</strong>, To<br />

appear in Séminaire de Probabilités XXXIX. Dedicated to Paul-André Meyer, Lecture<br />

Notes in Math., Springer, Berlin, 2005.<br />

[Lam72] J. Lamperti, Semi-stable Markov processes. I, Z. Wahrscheinlichkeitstheorie und Verw.<br />

Gebiete 22 (1972), 205—225.<br />

[LN05]<br />

R. Liptser and A. Novikov, On tail distributions of supremum and quadratic variation<br />

of <strong>local</strong> <strong>martingales</strong>, Working paper (2005).<br />

[Mey76] P. A. Meyer, Un cours sur les intégrales stochastiques, Séminaire de Probabilités, X<br />

(Seconde partie: Théorie des intégrales stochastiques, Univ. Strasbourg, Strasbourg,<br />

année universitaire 1974/1975), Springer, Berlin, 1976, pp. 245—400. Lecture Notes in<br />

Math., Vol. 511.<br />

[MY05]<br />

[Pro05]<br />

D.B. Madan and M. Yor, Itô’s <strong>integrated</strong> <strong><strong>for</strong>mula</strong> <strong>for</strong> <strong>strict</strong> <strong>local</strong> <strong>martingales</strong>, To<br />

appear in Séminaire de Probabilités XXXIX. Dedicated to Paul-André Meyer, Lecture<br />

Notes in Math., Springer, Berlin, 2005.<br />

P. E. Protter, Stochastic integration and differential equations, second ed., Version<br />

2.1, Applications of Mathematics (New York), vol. 21, Springer-Verlag, Berlin, 2005,<br />

Stochastic Modelling and Applied Probability.<br />

12


[TL78] Temps locaux, Astérisque, vol. 52, Société Mathématique de France, Paris, 1978,<br />

Exposés du Séminaire J. Azéma-M. Yor, Held at the Université Pierre et Marie Curie,<br />

Paris, 1976—1977, With an English summary.<br />

[Yor01]<br />

M. Yor, Exponential functionals of Brownian motion and related processes, Springer<br />

Finance, Springer-Verlag, Berlin, 2001, With an introductory chapter by Hélyette<br />

Geman, Chapters 1, 3, 4, 8 translated from the French by Stephen S. Wilson.<br />

13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!