25.12.2013 Views

Explicit inverses of some tridiagonal matrices - Estudo Geral ...

Explicit inverses of some tridiagonal matrices - Estudo Geral ...

Explicit inverses of some tridiagonal matrices - Estudo Geral ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

16 C.M. da Fonseca, J. Petronilho / Linear Algebra and its Applications 325 (2001) 7–21<br />

This result is well-known. It can be deduced, e.g., using results in the book <strong>of</strong><br />

Heinig and Rost [2, p. 28]. The next corollary is Theorem 3.1 <strong>of</strong> Kamps [3].<br />

Corollary 4.2. Let Σ be the n-square matrix<br />

⎛<br />

⎞<br />

a b 0<br />

b a b<br />

Σ =<br />

. b a ..<br />

. (17)<br />

⎜<br />

⎝<br />

. .. . ⎟ .. b ⎠<br />

0 b a<br />

The inverse is given by<br />

⎧<br />

(−1) ⎪⎨<br />

i+j 1 b<br />

(Σ −1 ) ij =<br />

⎪⎩ (−1) i+j 1 b<br />

U i−1 (a/2b)U n−j (a/2b)<br />

U n (a/2b)<br />

U j−1 (a/2b)U n−i (a/2b)<br />

U n (a/2b)<br />

if i j,<br />

if i>j.<br />

We consider now a second application. In [3,4], the <strong>matrices</strong> <strong>of</strong> type (17), with<br />

a>0, b/= 0anda>2|b|, arose as the covariance matrix <strong>of</strong> one-dependent random<br />

variables Y 1 ,...,Y n , with same expectation. Let us consider the least squares<br />

estimator<br />

ˆµ opt = 1t Σ −1 Y<br />

1 t Σ −1 1 ,<br />

where 1 = (1,...,1) and Y = (Y 1 ,...,Y n ) t , which estimates the parameter µ equal<br />

to the common expectation <strong>of</strong> the Y i ’s, with variance<br />

V ( ) 1<br />

ˆµ opt =<br />

1 t Σ −1 1 .<br />

According to Kamps, the estimator ˆµ opt is the best unbiased estimator based on Y .<br />

So, the sum <strong>of</strong> all the entries <strong>of</strong> the inverse <strong>of</strong> Σ, 1 t Σ −1 1, has an important role in the<br />

determination <strong>of</strong> this estimator and therefore in the computation <strong>of</strong> the variance V<br />

( ˆµ opt ). Kamps used in [3] <strong>some</strong> sum and product formulas involving different kinds<br />

<strong>of</strong> Chebyshev polynomials. We will prove the same results in a more concise way.<br />

Corollary 4.3. The sum s i <strong>of</strong> the ith row (or column) <strong>of</strong> Σ −1 , for i = 1,...,n is<br />

given by<br />

s i = 1 + b(σ 1i + σ 1,n−i+1 )<br />

,<br />

a + 2b<br />

where σ ij = (Σ −1 ) ij , when i j.<br />

Pro<strong>of</strong>. By Corollary 4.2, for i j,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!