24.12.2013 Views

Sediment yield mapping in a large river basin: the Upper Yangtze ...

Sediment yield mapping in a large river basin: the Upper Yangtze ...

Sediment yield mapping in a large river basin: the Upper Yangtze ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Environmental Modell<strong>in</strong>g & Software 18 (2003) 339–353<br />

www.elsevier.com/locate/envsoft<br />

<strong>Sediment</strong> <strong>yield</strong> <strong>mapp<strong>in</strong>g</strong> <strong>in</strong> a <strong>large</strong> <strong>river</strong> bas<strong>in</strong>:<br />

<strong>the</strong> <strong>Upper</strong> <strong>Yangtze</strong>, Ch<strong>in</strong>a<br />

X.X. Lu a,∗ , P. Ashmore b , J. Wang b<br />

a<br />

Department of Geography, National University of S<strong>in</strong>gapore, 10 Kent Ridge Crescent, S<strong>in</strong>gapore 119260<br />

b<br />

Department of Geography, University of Western Ontario, London, Canada N6A 5C2<br />

Abstract<br />

A number of studies have mapped sediment <strong>yield</strong> at global or regional scales us<strong>in</strong>g sediment load measurements from <strong>river</strong>s.<br />

However, <strong>the</strong> suitability of <strong>the</strong> limited <strong>mapp<strong>in</strong>g</strong> methods has not been fully addressed, particularly for <strong>large</strong> <strong>river</strong> bas<strong>in</strong>s where <strong>the</strong><br />

sediment load data were obta<strong>in</strong>ed from a hierarchical <strong>river</strong> network. This study exam<strong>in</strong>es some of <strong>the</strong> issues related to <strong>the</strong> <strong>mapp<strong>in</strong>g</strong><br />

approaches us<strong>in</strong>g long-term sediment load data obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> <strong>Upper</strong> <strong>Yangtze</strong> bas<strong>in</strong>, Ch<strong>in</strong>a. The sediment <strong>yield</strong> data are treated<br />

as po<strong>in</strong>t values and <strong>in</strong>terpolated us<strong>in</strong>g <strong>the</strong> krig<strong>in</strong>g function <strong>in</strong> Arc/Info GIS. Barriers have been <strong>in</strong>corporated <strong>in</strong>to <strong>the</strong> <strong>in</strong>terpolation<br />

procedure to conf<strong>in</strong>e <strong>the</strong> <strong>in</strong>terpolation po<strong>in</strong>ts to <strong>the</strong> same major flow systems. The <strong>in</strong>corporation of barriers causes sharp changes<br />

of <strong>the</strong> <strong>in</strong>terpolated values along <strong>the</strong> barrier l<strong>in</strong>es, and significantly <strong>in</strong>creases <strong>in</strong>terpolation time. Scal<strong>in</strong>g ratios relative to a standard<br />

size of dra<strong>in</strong>age area have been developed for major dra<strong>in</strong>age bas<strong>in</strong>s to remove effects of dra<strong>in</strong>age sizes on sediment <strong>yield</strong>. By<br />

<strong>in</strong>corporat<strong>in</strong>g <strong>the</strong> scal<strong>in</strong>g ratios <strong>the</strong> sediment load data from various sizes of dra<strong>in</strong>age areas can be adjusted to what <strong>the</strong>y would be<br />

if <strong>the</strong> dra<strong>in</strong>age areas were <strong>the</strong> same and a less biased sediment <strong>yield</strong> map can be obta<strong>in</strong>ed as compared to us<strong>in</strong>g <strong>the</strong> orig<strong>in</strong>al dataset.<br />

© 2003 Elsevier Science Ltd. All rights reserved.<br />

Keywords: <strong>Sediment</strong> <strong>yield</strong>; Krig<strong>in</strong>g; Interpolation; Scal<strong>in</strong>g ratio; The <strong>Upper</strong> <strong>Yangtze</strong>; Ch<strong>in</strong>a<br />

1. Introduction<br />

<strong>Sediment</strong> <strong>yield</strong> is a ‘watershed wide’ measurement of<br />

soil erosion, transport and deposition (Lane et al., 1997)<br />

obta<strong>in</strong>ed by estimation of po<strong>in</strong>t loads at <strong>the</strong> outlet of <strong>the</strong><br />

bas<strong>in</strong>. <strong>Sediment</strong> <strong>yield</strong> maps can be used to <strong>in</strong>dicate <strong>the</strong><br />

regional variability of sediment sources with<strong>in</strong> a dra<strong>in</strong>age<br />

bas<strong>in</strong> and <strong>the</strong> temporal changes <strong>in</strong> <strong>the</strong> relative contributions<br />

of parts of <strong>the</strong> catchment (Lu and Higgitt,<br />

1998a,b). A number of authors have mapped sediment<br />

<strong>yield</strong> us<strong>in</strong>g sediment load data at global (Fournier, 1960;<br />

Strakhov, 1967; Milliman and Meade, 1983; Wall<strong>in</strong>g<br />

and Webb, 1983; Jansson, 1988; Ludwig and Probst,<br />

1998) or regional scales (Neil and Mazari, 1993; Stone<br />

and Saunderson, 1996). However, <strong>the</strong> suitability and<br />

comparability of <strong>mapp<strong>in</strong>g</strong> methods have not been fully<br />

addressed. Problems arise for two ma<strong>in</strong> reasons. First,<br />

sediment <strong>yield</strong> maps are areal representations of po<strong>in</strong>t<br />

∗<br />

Correspond<strong>in</strong>g author. Tel.: +1-65-6874-6135; fax: +1-65-6777-<br />

3091.<br />

E-mail address: geoluxx@nus.edu.sg (X.X. Lu).<br />

data that <strong>in</strong>tegrate <strong>the</strong> net upstream erosion effects—<br />

which raises <strong>the</strong> question of to what area should <strong>the</strong><br />

po<strong>in</strong>t value be attributed? Second, <strong>the</strong> relationship<br />

between upland erosion and downstream sediment <strong>yield</strong><br />

is complicated due to changes <strong>in</strong> sediment storage<br />

(Trimble, 1981) and variation <strong>in</strong> sediment delivery ratios<br />

(Wall<strong>in</strong>g, 1983) that often correlate with dra<strong>in</strong>age bas<strong>in</strong><br />

area. The significance of this effect of dra<strong>in</strong>age area on<br />

specific sediment <strong>yield</strong> lead Milliman and Syvitski<br />

(1992) to conclude that it is not possible to accurately<br />

map sediment <strong>yield</strong>.<br />

Certa<strong>in</strong>ly, <strong>the</strong>re is no generally agreed procedure for<br />

<strong>mapp<strong>in</strong>g</strong> and <strong>in</strong>terpret<strong>in</strong>g sediment <strong>yield</strong> data from a series<br />

of nested catchments. Lu and Higgitt (1998a) exam<strong>in</strong>ed<br />

three methods for sediment <strong>yield</strong> <strong>mapp<strong>in</strong>g</strong> <strong>in</strong> a <strong>large</strong><br />

<strong>river</strong> bas<strong>in</strong>: polygon attribution, multiple regression<br />

model<strong>in</strong>g and po<strong>in</strong>t <strong>in</strong>terpolation procedure. The previous<br />

methods used for sediment <strong>yield</strong> <strong>mapp<strong>in</strong>g</strong> at global<br />

and regional scales are classified us<strong>in</strong>g <strong>the</strong> three categories<br />

(Table 1). Each of <strong>the</strong> three methods has advantages<br />

and limitations (Lu and Higgitt, 1998a). Polygon attribution<br />

uses real values, but requires digitized boundaries<br />

for automated <strong>mapp<strong>in</strong>g</strong> and gives uniform values over<br />

1364-8152/03/$ - see front matter © 2003 Elsevier Science Ltd. All rights reserved.<br />

doi:10.1016/S1364-8152(02)00107-X


340 X.X. Lu et al. / Environmental Modell<strong>in</strong>g & Software 18 (2003) 339–353<br />

Table 1<br />

A summary of <strong>the</strong> previous sediment <strong>yield</strong> <strong>mapp<strong>in</strong>g</strong> methods<br />

Authors Number of Mapp<strong>in</strong>g area Mapp<strong>in</strong>g methods Notes<br />

stations<br />

Fournier (1960) 96 Global Polygon attribution<br />

Strakhov (1967) 60 Global Polygon attribution<br />

Milliman and Meade (1983) 65(?) Global Polygon attribution<br />

Wall<strong>in</strong>g and Webb (1983) 1500 Global Polygon attribution Only <strong>the</strong> data from 1000–10,000 km 2 used<br />

Jansson (1988) 2000 Global Polygon attribution 300–10,000 km 2 <strong>in</strong> dra<strong>in</strong>age area, and 2 years<br />

measurement <strong>in</strong>cluded<br />

Neil and Mazari (1993) 14 136 km 2 , Australia Multiple regression Investigated 14 reservoirs, and regression equation<br />

used for <strong>mapp<strong>in</strong>g</strong> a 136 km 2 catchment<br />

Stone and Saunderson (1996) 97 Laurentian Great Po<strong>in</strong>t <strong>in</strong>terpolation Only 37 stations used as a basis for <strong>in</strong>terpolation<br />

Lakes area of<br />

us<strong>in</strong>g multi-quadric <strong>in</strong>terpolation<br />

Canada<br />

Ludwig and Probst (1998) 62 Global Comb. of multiple Modeled po<strong>in</strong>ts <strong>in</strong> a 0.5×0.5° longitude/latitude grid<br />

regression and corrected by 62 observations<br />

<strong>in</strong>terpolation<br />

Church et al. (1999) 151 Canada (exclud<strong>in</strong>g Po<strong>in</strong>t <strong>in</strong>terpolation A common scal<strong>in</strong>g used. Maps presented for <strong>the</strong><br />

<strong>the</strong> Shield) standard scales of 1, 10×10, 100×100 km 2<br />

<strong>in</strong>terpolated us<strong>in</strong>g krig<strong>in</strong>g<br />

<strong>the</strong> sub-catchment unit. Multiple regression model<strong>in</strong>g is<br />

attractive, because it avoids <strong>the</strong> need for digitized boundaries<br />

and <strong>the</strong>re is scope to extend <strong>the</strong> approach to physically<br />

based model<strong>in</strong>g. However, <strong>the</strong> quality of <strong>the</strong> map<br />

output is dependent on <strong>the</strong> accuracy of <strong>the</strong> model. The<br />

third approach, po<strong>in</strong>t <strong>in</strong>terpolation, can be undertaken<br />

more efficiently because <strong>the</strong>re is less work <strong>in</strong>volved than<br />

o<strong>the</strong>r approaches. The three methods can also be used as<br />

a supplementary way. For example, Ludwig and Probst<br />

(1998) <strong>in</strong>vestigated empirical relationships between sediment<br />

<strong>yield</strong> data obta<strong>in</strong>ed from 60 major world <strong>river</strong> bas<strong>in</strong>s<br />

and a <strong>large</strong> number of parameters extracted from<br />

available hydroclimatic, biological, and geomorphological<br />

datasets at a global scale, and subsequently comb<strong>in</strong>ed<br />

<strong>the</strong> results of multiple regressions with <strong>the</strong> <strong>in</strong>terpolation<br />

of <strong>the</strong> 60 po<strong>in</strong>ts to produce a global sediment<br />

<strong>yield</strong> map with a 2.5°×2.5° longitude/latitude grid resolution.<br />

Comparison between this map and o<strong>the</strong>r global<br />

maps (Wall<strong>in</strong>g and Webb, 1983; Jansson, 1988) shows<br />

great differences, <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong>re is need for<br />

fur<strong>the</strong>r improvements.<br />

One significant problem of <strong>mapp<strong>in</strong>g</strong> sediment <strong>yield</strong>s<br />

is <strong>the</strong> necessity of hav<strong>in</strong>g a consistent dra<strong>in</strong>age area.<br />

Church et al. (1999) attempted to solve this problem by<br />

empirical adjustment of specific sediment <strong>yield</strong> to a common<br />

bas<strong>in</strong> area. This was done by develop<strong>in</strong>g regional<br />

scal<strong>in</strong>g relations for <strong>the</strong> variation of suspended sediment<br />

load with dra<strong>in</strong>age bas<strong>in</strong> area. Mapp<strong>in</strong>g was <strong>the</strong>n done<br />

by spatial <strong>in</strong>terpolation (krig<strong>in</strong>g) of <strong>the</strong> adjusted po<strong>in</strong>t<br />

data. The issue of sediment storage and delivery is particularly<br />

obvious for <strong>large</strong> <strong>river</strong> bas<strong>in</strong>s such as <strong>the</strong> <strong>Upper</strong><br />

<strong>Yangtze</strong>, where <strong>the</strong> sub-catchments represented by po<strong>in</strong>t<br />

data are highly hierarchical. This study attempts to<br />

address <strong>mapp<strong>in</strong>g</strong> suitability and scal<strong>in</strong>g issues aris<strong>in</strong>g<br />

from <strong>the</strong> use of sediment load data for <strong>mapp<strong>in</strong>g</strong> purposes<br />

for a s<strong>in</strong>gle, <strong>large</strong> <strong>river</strong> system us<strong>in</strong>g <strong>the</strong> sediment load<br />

data for <strong>the</strong> <strong>Upper</strong> <strong>Yangtze</strong> bas<strong>in</strong> as an example. The<br />

aims are to (1) exam<strong>in</strong>e <strong>the</strong> suitability of methods for<br />

<strong>mapp<strong>in</strong>g</strong> sediment <strong>yield</strong> for <strong>large</strong> <strong>river</strong> bas<strong>in</strong>s where<br />

sediment load is measured from a series of overlapp<strong>in</strong>g<br />

catchments; (2) improve <strong>the</strong> <strong>in</strong>terpolation results by conf<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong> <strong>in</strong>terpolation procedure with<strong>in</strong> similar<br />

hydrological units, i.e. dra<strong>in</strong>age bas<strong>in</strong>s; and (3) attempt<br />

to remove effects of dra<strong>in</strong>age size on sediment <strong>yield</strong> by<br />

develop<strong>in</strong>g a scal<strong>in</strong>g ratio to normalize to a standard<br />

dra<strong>in</strong>age area. On <strong>the</strong> basis of <strong>the</strong> maps produced, it is<br />

possible to discuss <strong>the</strong> major sources of sediment <strong>in</strong> <strong>the</strong><br />

area. An understand<strong>in</strong>g of <strong>the</strong> l<strong>in</strong>ks between soil erosion<br />

and sediment <strong>yield</strong> and sediment transmission to <strong>the</strong><br />

fluvial system is an important component of environmental<br />

management <strong>in</strong> <strong>the</strong> bas<strong>in</strong> <strong>in</strong> <strong>the</strong> context of <strong>the</strong><br />

Three Gorges project.<br />

2. <strong>Sediment</strong> load and sediment <strong>yield</strong><br />

<strong>Sediment</strong> load (SL, t yr 1 ) from a watershed (or catchment<br />

or dra<strong>in</strong>age bas<strong>in</strong>) is <strong>the</strong> total quantity of sediment<br />

mov<strong>in</strong>g out of <strong>the</strong> watershed <strong>in</strong> a given time <strong>in</strong>terval,<br />

while sediment <strong>yield</strong> (SY, t km 2 yr 1 ) is <strong>the</strong> total quantity<br />

of sediment from a watershed relative to <strong>the</strong> watershed<br />

area. SL should <strong>in</strong>clude bed load as well as suspended<br />

load, but usually only suspended load is<br />

measured due to <strong>the</strong> difficulty of measur<strong>in</strong>g bed load.<br />

Bed load is often assumed to be of m<strong>in</strong>or importance<br />

even though <strong>in</strong> extreme cases it can reach 60% (Lane<br />

and Borland, 1951). The calculation for SY is not<br />

straightforward for a <strong>large</strong> <strong>river</strong> bas<strong>in</strong> consist<strong>in</strong>g of a


X.X. Lu et al. / Environmental Modell<strong>in</strong>g & Software 18 (2003) 339–353<br />

341<br />

series of hierarchical sub-catchments. There are two<br />

alternatives for calculat<strong>in</strong>g SY for such hierarchical subcatchments.<br />

Jansson (1988), Lajczak and Jansson (1993),<br />

and Ozturk (1996) calculated SY by deduct<strong>in</strong>g <strong>the</strong> sediment<br />

load at <strong>the</strong> neighbor<strong>in</strong>g upstream station from <strong>the</strong><br />

load at <strong>the</strong> gaug<strong>in</strong>g station which is <strong>the</strong>n divided by <strong>the</strong><br />

<strong>in</strong>cremental catchment area (Fig. 1). This may give a<br />

negative value, especially <strong>in</strong> downstream stretches of a<br />

<strong>large</strong> <strong>river</strong>, if part of sediment is deposited <strong>in</strong> <strong>the</strong> channel<br />

or on <strong>the</strong> floodpla<strong>in</strong>. SY may be looked upon as net erosion,<br />

because eroded soil and sediment may have been<br />

deposited many times before it reaches <strong>the</strong> <strong>river</strong>, where<br />

fur<strong>the</strong>r deposition may occur on flood pla<strong>in</strong>s, <strong>in</strong> lakes or<br />

<strong>in</strong> broad <strong>river</strong> sections upstream of <strong>the</strong> gaug<strong>in</strong>g stations<br />

(Jansson, 1988). This budget method is effective for dist<strong>in</strong>guish<strong>in</strong>g<br />

sediment generation or deposition for a certa<strong>in</strong><br />

<strong>river</strong> section. The alternative is to express SY as <strong>the</strong><br />

total load divided by <strong>the</strong> total catchment area upstream<br />

of <strong>the</strong> station. This means that problems of spatial averag<strong>in</strong>g<br />

<strong>in</strong>crease <strong>in</strong> significance downstream and <strong>in</strong> hierarchical<br />

catchments (or <strong>the</strong> nested sub-catchments),<br />

which requires methods to reduce <strong>the</strong> impact of <strong>the</strong> spatial<br />

averag<strong>in</strong>g.<br />

3. Data and methods<br />

3.1. The <strong>Upper</strong> Yangzte<br />

The <strong>Upper</strong> <strong>Yangtze</strong> <strong>in</strong> general refers to <strong>the</strong> area<br />

upstream of Yichang <strong>in</strong> Hubei Prov<strong>in</strong>ce (Fig. 2a). Ris<strong>in</strong>g<br />

from Q<strong>in</strong>ghai-Tibet plateau and descend<strong>in</strong>g <strong>in</strong>to <strong>the</strong><br />

Sichuan Bas<strong>in</strong>, <strong>the</strong> <strong>Upper</strong> <strong>Yangtze</strong> bas<strong>in</strong> <strong>in</strong>cludes a<br />

diverse range of environments. The climate <strong>in</strong> <strong>the</strong> <strong>Upper</strong><br />

<strong>Yangtze</strong> is ma<strong>in</strong>ly controlled by elevation, due to <strong>the</strong><br />

effect of Q<strong>in</strong>ghai-Tibet Plateau on atmospheric circulation<br />

(Ruddiman et al., 1989). The plateau constra<strong>in</strong>s<br />

<strong>the</strong> penetration of <strong>the</strong> monsoon, result<strong>in</strong>g <strong>in</strong> a complex<br />

pattern of precipitation with<strong>in</strong> <strong>the</strong> bas<strong>in</strong>, rang<strong>in</strong>g from<br />

arid <strong>in</strong> <strong>the</strong> extreme northwest to subtropical monsoon<br />

climates <strong>in</strong> <strong>the</strong> south. With an area of over 1 million km 2 ,<br />

<strong>the</strong> <strong>Upper</strong> <strong>Yangtze</strong> bas<strong>in</strong> conta<strong>in</strong>s <strong>the</strong> follow<strong>in</strong>g major<br />

tributaries: <strong>the</strong> J<strong>in</strong>sha, <strong>the</strong> Yalong, <strong>the</strong> Dadu-M<strong>in</strong>, <strong>the</strong><br />

Tuo, <strong>the</strong> Jial<strong>in</strong> and <strong>the</strong> Wu. The <strong>Upper</strong> J<strong>in</strong>sha, <strong>the</strong><br />

Yalong, <strong>the</strong> Dadu- M<strong>in</strong> pr<strong>in</strong>cipally dra<strong>in</strong> <strong>the</strong> mounta<strong>in</strong>ous<br />

areas to <strong>the</strong> west of <strong>the</strong> bas<strong>in</strong>, while <strong>the</strong> Tuo and<br />

<strong>the</strong> Jial<strong>in</strong> flow through areas of high population density<br />

and agricultural activity. The Wu, <strong>the</strong> only significant<br />

right bank tributary, is <strong>large</strong>ly agricultural but dra<strong>in</strong>s <strong>the</strong><br />

karst upland of Guizhou Prov<strong>in</strong>ce.<br />

3.2. Hydrological data<br />

Fig. 1. Schematic map show<strong>in</strong>g hierarchical sub-catchments. SY:<br />

sediment <strong>yield</strong> (t km 2 yr 1 ), SL: sediment load (t yr 1 ), and DA:<br />

dra<strong>in</strong>age area (km 2 ).<br />

A hydrological measurement network <strong>in</strong> <strong>the</strong> <strong>Upper</strong><br />

<strong>Yangtze</strong> bas<strong>in</strong> has been ma<strong>in</strong>ta<strong>in</strong>ed s<strong>in</strong>ce <strong>the</strong> 1950s.<br />

There are over 255 stations with both water discharge<br />

and sediment load measurements (Fig. 2b). The numbers<br />

of stations by dra<strong>in</strong>age area for <strong>the</strong> tributaries and <strong>the</strong><br />

ma<strong>in</strong> <strong>river</strong> are summarized <strong>in</strong> Table 2. The available data<br />

cover <strong>the</strong> period 1957–1987. The data after 1987 are no<br />

longer available <strong>in</strong> <strong>the</strong> public doma<strong>in</strong>. The length of record<br />

is varied: 187 stations have a length of record of 5<br />

years or over and 56 stations 25 years or over. Seven<br />

out of <strong>the</strong> 255 stations have no locations <strong>in</strong> latitude and<br />

longitude and were excluded from <strong>the</strong> analysis. The<br />

hydrological data set <strong>in</strong>cludes dra<strong>in</strong>age area upstream,<br />

monthly water discharge (m 3 s 1 ) and suspended sediment<br />

load (kg s 1 ), maximum and m<strong>in</strong>imum daily water<br />

discharge and suspended sediment transport plus <strong>the</strong><br />

dates of <strong>the</strong>ir occurrences. Details about <strong>the</strong> data set have<br />

been described elsewhere (Higgitt and Lu, 1996; Lu and<br />

Higgitt, 1998a,b). There are some <strong>in</strong>consistencies <strong>in</strong> <strong>the</strong><br />

orig<strong>in</strong>al data set; it took considerable time to correct<br />

those errors dur<strong>in</strong>g <strong>the</strong> conversion from paper to digital<br />

format. The dra<strong>in</strong>age areas and locations for many stations<br />

are not consistent throughout <strong>the</strong> time series. This<br />

may reflect correction of previous measurement of dra<strong>in</strong>age<br />

area or a slight change of station location. The names<br />

of some stations are also not consistent throughout <strong>the</strong><br />

measurement years. Limited data are available for bed<br />

load transport <strong>in</strong> <strong>the</strong> <strong>Upper</strong> <strong>Yangtze</strong> bas<strong>in</strong>. Dam eng<strong>in</strong>-


342 X.X. Lu et al. / Environmental Modell<strong>in</strong>g & Software 18 (2003) 339–353<br />

Fig. 2.<br />

The <strong>Upper</strong> <strong>Yangtze</strong> bas<strong>in</strong>: (a) major tributaries, and (b) hydrological stations and <strong>the</strong> <strong>in</strong>terpolation barriers.<br />

Table 2<br />

Numbers of hydrological stations for ma<strong>in</strong> tributaries <strong>in</strong> <strong>the</strong> <strong>Upper</strong> <strong>Yangtze</strong> bas<strong>in</strong><br />

Dra<strong>in</strong>age area (km 2 ) J<strong>in</strong>sha--Yalong Dadu-M<strong>in</strong> Jial<strong>in</strong> Wu Ma<strong>in</strong> <strong>Yangtze</strong> Total<br />

100 1 0 0 0 0 1<br />

100–1000 29 7 13 5 6 60<br />

1000–10,000 29 22 42 15 12 120<br />

10,000–100,000 11 19 14 6 1 51<br />

100,000–1,000,000 14 2 1 0 5 22<br />

1,000,000 0 0 0 0 1 1<br />

Total 84 50 70 26 25 255


X.X. Lu et al. / Environmental Modell<strong>in</strong>g & Software 18 (2003) 339–353<br />

343<br />

eers for <strong>the</strong> Three Gorges Project estimated bed load as<br />

0.05% of sediment load, but measurements at Yichang<br />

suggest a bed load contribution of 1.5–2% (Higgitt and<br />

Lu, 1996). This may be particularly significant <strong>in</strong> <strong>the</strong><br />

lower J<strong>in</strong>sha, <strong>the</strong> upper Jial<strong>in</strong> and <strong>the</strong> Three Gorges area,<br />

where landslides frequently occur. The underestimates<br />

of bed load transport will result <strong>in</strong> a higher risk for <strong>the</strong><br />

potential sedimentation of <strong>the</strong> reservoir.<br />

3.3. Krig<strong>in</strong>g<br />

The po<strong>in</strong>t data are <strong>in</strong>terpolated us<strong>in</strong>g <strong>the</strong> krig<strong>in</strong>g command<br />

<strong>in</strong> Arc/Info GIS. Krig<strong>in</strong>g, an advanced geostatistical<br />

procedure that generates an estimated surface from<br />

a scattered set of po<strong>in</strong>ts, <strong>in</strong>volves an <strong>in</strong>teractive <strong>in</strong>vestigation<br />

of <strong>the</strong> spatial behavior of <strong>the</strong> phenomenon, so that<br />

<strong>the</strong> best estimation method for generat<strong>in</strong>g <strong>the</strong> output surface<br />

can be made (ESRI, 1994). Krig<strong>in</strong>g is based on <strong>the</strong><br />

regionalized variable <strong>the</strong>ory that assumes that <strong>the</strong> spatial<br />

variation <strong>in</strong> <strong>the</strong> phenomenon is statistically homogeneous<br />

throughout <strong>the</strong> surface. The spatial variation of<br />

a variable is quantified by a semi-variogram that can be<br />

modeled by fitt<strong>in</strong>g a <strong>the</strong>oretical function to <strong>the</strong> sample<br />

semi-variogram:<br />

g∗(h) [2N(h)] 1[z(x)z(x h)] 2 (1)<br />

where g∗(h) is <strong>the</strong> experimental variogram as a function<br />

of distance h, z(h) and z(x + h) are measurements of a<br />

given variable at locations x and x + h, separated by <strong>the</strong><br />

directional distance h, and N(h) is <strong>the</strong> number of pairs<br />

of sampl<strong>in</strong>g units <strong>in</strong> <strong>the</strong> given distance class. The variogram<br />

is derived us<strong>in</strong>g one of a number of suitable variogram<br />

models. Arc/Info provides two types of surface estimators:<br />

ord<strong>in</strong>ary krig<strong>in</strong>g and universal krig<strong>in</strong>g. Ord<strong>in</strong>ary<br />

krig<strong>in</strong>g, which assumes that <strong>the</strong> variation of <strong>the</strong> variable<br />

is free of any structural component (drift), uses <strong>the</strong><br />

spherical, circular, exponential, Gaussian and l<strong>in</strong>ear<br />

methods. Universal krig<strong>in</strong>g, represented by <strong>the</strong> universal<br />

1 (l<strong>in</strong>ear function) and universal 2 (quadratic equation)<br />

methods, assumes that <strong>the</strong> spatial variation across <strong>the</strong><br />

surface has a structural component (drift), i.e. a systematic<br />

change <strong>in</strong> a particular direction. The spatial variation<br />

of a variable for universal krig<strong>in</strong>g is <strong>the</strong> sum of three<br />

components: a structural component (drift), a random but<br />

spatially correlated component, and random noise represent<strong>in</strong>g<br />

<strong>the</strong> residual error (ESRI, 1994).<br />

The procedures outl<strong>in</strong>ed by ESRI (1994) are followed<br />

to generate <strong>the</strong> best results. The universal 1 (l<strong>in</strong>ear<br />

function) method is chosen because <strong>the</strong> sediment <strong>yield</strong>s<br />

show a clear <strong>in</strong>crease from west to east (Fig. 2b). The<br />

grid resolution has a substantial effect on <strong>the</strong> modeled<br />

semi-variogram. The 10 km grid resolution was selected,<br />

which gives a 100 km 2 of cell size and is close to <strong>the</strong><br />

size of <strong>the</strong> smallest catchment (Table 2). The grid resolution<br />

is also close to <strong>the</strong> resolutions of most environmental<br />

databases such as GTOPO30 and global land cover,<br />

which were used <strong>in</strong> a sediment <strong>yield</strong> study by Lu and<br />

Higgitt (1999) and Higgitt and Lu (1999). Under <strong>the</strong><br />

fixed grid resolution, <strong>the</strong> sample size and search radius<br />

should be based on <strong>the</strong> distance (range) with<strong>in</strong> which<br />

<strong>the</strong> observed po<strong>in</strong>t values are spatially correlated. The<br />

default value of sampl<strong>in</strong>g po<strong>in</strong>ts for Arc/Info is 12. To<br />

m<strong>in</strong>imize <strong>the</strong> possibility of us<strong>in</strong>g trans-boundary po<strong>in</strong>ts<br />

dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>terpolation procedure, <strong>the</strong> number of <strong>the</strong><br />

sampl<strong>in</strong>g po<strong>in</strong>ts was reduced to 6. The reduction <strong>in</strong> <strong>the</strong><br />

sampl<strong>in</strong>g po<strong>in</strong>ts permits local variations to be prom<strong>in</strong>ent.<br />

We left <strong>the</strong> maximum search radius (<strong>the</strong> diagonal extent<br />

of <strong>the</strong> <strong>in</strong>put sample) as <strong>the</strong> default. If <strong>the</strong> number of<br />

sampl<strong>in</strong>g po<strong>in</strong>ts cannot be satisfied with<strong>in</strong> <strong>the</strong> maximum<br />

search radius, a smaller number of po<strong>in</strong>ts will be used.<br />

4. Results and discussion<br />

The orig<strong>in</strong>al sediment load dataset was first <strong>in</strong>terpolated<br />

us<strong>in</strong>g krig<strong>in</strong>g. Subsequently, attempts were made<br />

to improve <strong>the</strong> <strong>in</strong>terpolation by (i) controll<strong>in</strong>g <strong>the</strong> <strong>in</strong>terpolation<br />

processes with<strong>in</strong> a similar hydrological unit, and<br />

(ii) remov<strong>in</strong>g <strong>the</strong> dra<strong>in</strong>age area effects on sediment <strong>yield</strong><br />

by develop<strong>in</strong>g a scal<strong>in</strong>g ratio us<strong>in</strong>g <strong>the</strong> relationship<br />

between sediment load and dra<strong>in</strong>age area. Some of <strong>the</strong><br />

issues associated with <strong>the</strong>se modifications are discussed<br />

<strong>in</strong> <strong>the</strong> follow<strong>in</strong>g sections.<br />

4.1. Data <strong>in</strong>terpolation<br />

The orig<strong>in</strong>al sediment load data were <strong>in</strong>terpolated follow<strong>in</strong>g<br />

<strong>the</strong> procedures outl<strong>in</strong>ed above. The contour l<strong>in</strong>es<br />

<strong>in</strong>dicate <strong>the</strong> four classes, 0–250, 250–500, 500–1000 and<br />

1000 t km 2 yr 1 (Fig. 3a), which are <strong>the</strong> standard<br />

categories of soil erosion classes used <strong>in</strong> Ch<strong>in</strong>a. The<br />

mean value of <strong>the</strong> sediment <strong>yield</strong> throughout <strong>the</strong> bas<strong>in</strong><br />

is 497 t km 2 yr 1 with a standard deviation of 519 t<br />

km 2 yr 1 . The upper Jial<strong>in</strong> and <strong>the</strong> lower J<strong>in</strong>sha tributaries<br />

have <strong>the</strong> highest sediment <strong>yield</strong>s (1000 t km 2<br />

yr 1 ), and <strong>the</strong> upper J<strong>in</strong>sha and Yalong tributaries <strong>the</strong><br />

lowest (250 t km –2 yr 1 ). The highest sediment <strong>yield</strong><br />

<strong>in</strong> <strong>the</strong> upper Jial<strong>in</strong> and <strong>the</strong> lower J<strong>in</strong>sha is associated<br />

with landslides, debris flows and a cover of loess<br />

materials (Yu et al., 1991; Higgitt and Lu, 1999). In contrast,<br />

<strong>the</strong> upper J<strong>in</strong>sha-Yalong and <strong>the</strong> upper Dadu-M<strong>in</strong><br />

are tundra areas with lower population density and lower<br />

sediment <strong>yield</strong>. <strong>Sediment</strong> <strong>yield</strong> is also higher <strong>in</strong> <strong>the</strong><br />

Sichuan bas<strong>in</strong> (ma<strong>in</strong>ly <strong>the</strong> Jial<strong>in</strong> and <strong>the</strong> Tuo tributaries),<br />

reflect<strong>in</strong>g an area dom<strong>in</strong>ated by agricultural lands with<br />

some of <strong>the</strong> highest population densities <strong>in</strong> Ch<strong>in</strong>a. Purple<br />

soil, one of <strong>the</strong> most erodible soils (Lu and Shi, 1992),<br />

is <strong>the</strong> dom<strong>in</strong>ant soil type <strong>in</strong> this area. When<br />

implement<strong>in</strong>g soil and water conservation measures,<br />

attention should be paid to those areas with higher sediment<br />

<strong>yield</strong>.


344 X.X. Lu et al. / Environmental Modell<strong>in</strong>g & Software 18 (2003) 339–353<br />

Fig. 3. Interpolated SY maps: (a) without barrier control, (b) with barrier control, (c) scaled to 100 km 2 , (d) scaled to 1000 km 2 , and (e) scaled to 10,000 km 2 .


X.X. Lu et al. / Environmental Modell<strong>in</strong>g & Software 18 (2003) 339–353<br />

345<br />

Fig. 3. Cont<strong>in</strong>ued


346 X.X. Lu et al. / Environmental Modell<strong>in</strong>g & Software 18 (2003) 339–353<br />

Fig. 3. Cont<strong>in</strong>ued


X.X. Lu et al. / Environmental Modell<strong>in</strong>g & Software 18 (2003) 339–353<br />

347<br />

Fig. 3. Cont<strong>in</strong>ued


348 X.X. Lu et al. / Environmental Modell<strong>in</strong>g & Software 18 (2003) 339–353<br />

Fig. 3. Cont<strong>in</strong>ued


X.X. Lu et al. / Environmental Modell<strong>in</strong>g & Software 18 (2003) 339–353<br />

349<br />

4.2. Data <strong>in</strong>terpolation with controls<br />

The above <strong>in</strong>terpolation uses adjo<strong>in</strong><strong>in</strong>g po<strong>in</strong>ts regardless<br />

of whe<strong>the</strong>r <strong>the</strong>y are <strong>in</strong> <strong>the</strong> same flow system. In<br />

order to conf<strong>in</strong>e <strong>the</strong> <strong>in</strong>terpolation processes with<strong>in</strong> relatively<br />

uniform environmental conditions, a barrier option<br />

is <strong>in</strong>corporated <strong>in</strong>to <strong>the</strong> <strong>in</strong>terpolation procedures. The<br />

bas<strong>in</strong> can be divided <strong>in</strong>to <strong>the</strong> six hydrological units: <strong>the</strong><br />

upper J<strong>in</strong>sha-Yalong, <strong>the</strong> lower J<strong>in</strong>sha, <strong>the</strong> Dadu-M<strong>in</strong>,<br />

<strong>the</strong> Jial<strong>in</strong>, <strong>the</strong> Wu and Ma<strong>in</strong> River (Fig. 2), based upon<br />

<strong>the</strong> major tributaries and environmental variables such<br />

as elevation, land cover and population density (Lu and<br />

Higgitt, 1999). Ma<strong>in</strong> River here refers to <strong>the</strong> rest of <strong>the</strong><br />

area which does not fall <strong>in</strong> any of <strong>the</strong> tributaries and<br />

ma<strong>in</strong>ly <strong>in</strong>cludes <strong>the</strong> Three Gorges area. Each of <strong>the</strong> six<br />

units has unique characteristics <strong>in</strong> terms of expla<strong>in</strong><strong>in</strong>g<br />

sediment <strong>yield</strong> variability (Lu and Higgitt, 1999). The<br />

division us<strong>in</strong>g <strong>the</strong> watershed boundaries as major <strong>in</strong>terpolation<br />

units is also relevant for watershed-based natural<br />

resource management and soil erosion control. The alternative<br />

is to put <strong>in</strong> barriers related to particular physiographic<br />

boundaries that cut across a bas<strong>in</strong> (e.g. a geological<br />

boundary), but allow <strong>in</strong>terpolation across watershed<br />

boundaries provided <strong>the</strong>y have similar physiography.<br />

This may be better than use of <strong>the</strong> dra<strong>in</strong>age bas<strong>in</strong>s <strong>in</strong><br />

terms of <strong>the</strong> controls on erosion rate, but it is difficult<br />

to obta<strong>in</strong> such boundaries without fur<strong>the</strong>r data.<br />

The orig<strong>in</strong>al data are <strong>in</strong>terpolated with <strong>the</strong> <strong>in</strong>corporation<br />

of <strong>the</strong> dra<strong>in</strong>age divides (Fig. 2b) as barriers us<strong>in</strong>g<br />

<strong>the</strong> krig<strong>in</strong>g barrier function <strong>in</strong> Arc/Info, and shaded<br />

us<strong>in</strong>g <strong>the</strong> same sediment <strong>yield</strong> classes <strong>in</strong>troduced above<br />

(Fig. 3b). The mean sediment <strong>yield</strong> for <strong>the</strong> entire bas<strong>in</strong><br />

is 493 t km 2 yr 1 with a standard deviation of 559 t<br />

km 2 yr 1 , which is very close to <strong>the</strong> <strong>in</strong>terpolation without<br />

any barriers. Us<strong>in</strong>g major bas<strong>in</strong> boundaries does<br />

allow step changes <strong>in</strong> <strong>yield</strong> that cannot occur with <strong>the</strong><br />

polygon attribution method (one of <strong>the</strong> <strong>mapp<strong>in</strong>g</strong> methods<br />

listed <strong>in</strong> Table 1). In o<strong>the</strong>r words us<strong>in</strong>g major dra<strong>in</strong>age<br />

bas<strong>in</strong> boundaries resembles polygon attribution but<br />

allows for variation with<strong>in</strong> polygons (i.e. <strong>the</strong> dra<strong>in</strong>age<br />

bas<strong>in</strong>s). If <strong>the</strong> barriers are set for each po<strong>in</strong>t, <strong>the</strong>n <strong>the</strong><br />

barriers become <strong>the</strong> boundary of each watershed and <strong>the</strong><br />

po<strong>in</strong>t <strong>in</strong>terpolation becomes polygon attribution, as<br />

described by Lu and Higgitt (1998a). However, <strong>the</strong> <strong>in</strong>troduction<br />

of barriers causes sharp changes along <strong>the</strong> barrier<br />

l<strong>in</strong>es (Fig. 3b). The effects of <strong>the</strong> barriers on <strong>in</strong>terpolation<br />

values are exam<strong>in</strong>ed us<strong>in</strong>g <strong>the</strong> three l<strong>in</strong>es across<br />

<strong>the</strong> bas<strong>in</strong> as outl<strong>in</strong>ed <strong>in</strong> Fig. 2b. The l<strong>in</strong>es of A–A1 and<br />

B–B1 cross <strong>the</strong> whole bas<strong>in</strong> approximately from west to<br />

east and north to south, while <strong>the</strong> l<strong>in</strong>e of C–C1 is <strong>the</strong><br />

l<strong>in</strong>e used as a barrier. The values <strong>in</strong>terpolated without<br />

or with barriers are very similar, except for <strong>the</strong> areas<br />

near <strong>the</strong> barrier l<strong>in</strong>es (Fig. 4). The <strong>in</strong>corporation of barriers<br />

<strong>in</strong>to <strong>the</strong> krig<strong>in</strong>g <strong>in</strong>terpolation considerably <strong>in</strong>creases<br />

<strong>the</strong> computer process<strong>in</strong>g time, and reduces <strong>the</strong> number<br />

of <strong>in</strong>terpolation po<strong>in</strong>ts which is problematic for <strong>the</strong> units<br />

with fewer data po<strong>in</strong>ts such as <strong>the</strong> ma<strong>in</strong> <strong>river</strong> unit. The<br />

effects of <strong>the</strong> barriers on <strong>the</strong> sediment <strong>yield</strong> map will<br />

also depend on <strong>the</strong> numbers of <strong>the</strong> sampl<strong>in</strong>g po<strong>in</strong>ts, e.g.<br />

<strong>the</strong> <strong>large</strong>r <strong>the</strong> number of sampl<strong>in</strong>g po<strong>in</strong>ts <strong>the</strong> stronger<br />

<strong>the</strong> barrier effect will be.<br />

4.3. <strong>Sediment</strong> <strong>yield</strong> scal<strong>in</strong>g<br />

The above <strong>in</strong>terpolation procedures treat <strong>the</strong> data as<br />

po<strong>in</strong>t values located at <strong>the</strong> sub-catchment outlets (<strong>the</strong><br />

gaug<strong>in</strong>g stations), which does not allow for a weight<strong>in</strong>g<br />

of <strong>the</strong> value accord<strong>in</strong>g to <strong>the</strong> size of sub-catchment area,<br />

upon which sediment <strong>yield</strong> is dependent. The dra<strong>in</strong>age<br />

areas of <strong>the</strong> sub-catchments from which <strong>the</strong> sediment<br />

measurement data were obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> <strong>Upper</strong> <strong>Yangtze</strong><br />

range from less than 100 to over 1,000,000 km 2 (Table<br />

2). SY from bas<strong>in</strong>s of widely vary<strong>in</strong>g sizes cannot be<br />

used directly for SY comparison because of <strong>the</strong> likely<br />

relation between SY and dra<strong>in</strong>age bas<strong>in</strong> area (Lu and<br />

Higgitt, 1998a; Church et al., 1999). The classic way to<br />

exam<strong>in</strong>e sediment <strong>yield</strong> for different dra<strong>in</strong>age areas is to<br />

plot sediment <strong>yield</strong> aga<strong>in</strong>st dra<strong>in</strong>age area. Recent discussion<br />

has questioned <strong>the</strong> validity of regression<br />

between variables that have catchment area as a common<br />

term (Waythomas and Williams, 1988; De Boer and<br />

Crosby, 1996). Milliman and Syvitski (1992) plotted<br />

sediment load and dra<strong>in</strong>age area to exam<strong>in</strong>e global sediment<br />

<strong>yield</strong>. A plot of SL and DA and <strong>the</strong>ir residuals for<br />

<strong>the</strong> <strong>Upper</strong> <strong>Yangtze</strong> bas<strong>in</strong> are shown <strong>in</strong> Fig. 5. The best<br />

fit equation is:<br />

SL 849.15DA 0.9215 (n 248, r 2 0.7735) (2)<br />

Despite <strong>the</strong> significant scatters <strong>in</strong> Fig. 5b, Eq. (2) <strong>in</strong>dicates<br />

that over 77% of <strong>the</strong> variance <strong>in</strong> sediment load<br />

(SL) can be expla<strong>in</strong>ed by <strong>the</strong> size of dra<strong>in</strong>age area (DA).<br />

The exponent (hereafter referred to as b) for Eq. (2) <strong>in</strong>dicates<br />

<strong>the</strong> extent to which SL <strong>in</strong>creases <strong>in</strong> <strong>the</strong> downstream<br />

direction (Higgitt and Lu, 1999). When b 1, SL is<br />

<strong>in</strong>creas<strong>in</strong>g more slowly than bas<strong>in</strong> area, which has been<br />

reported <strong>in</strong> many agricultural environments as a consequence<br />

of sediment storage (Wall<strong>in</strong>g, 1983). When b<br />

1, SL <strong>in</strong>creases more rapidly than bas<strong>in</strong> area. This<br />

situation is generally found <strong>in</strong> mounta<strong>in</strong>ous regions as a<br />

consequence of channel processes and/or rework<strong>in</strong>g of<br />

Quaternary sediments (Ashmore and Day, 1988; Church<br />

et al., 1989; Dedkov and Moszher<strong>in</strong>, 1992). The<br />

exponent for <strong>the</strong> whole <strong>Upper</strong> <strong>Yangtze</strong> is higher than<br />

those reported by Milliman and Syvitski (1992), <strong>in</strong>dicat<strong>in</strong>g<br />

that <strong>the</strong> proportion of eroded material transferred<br />

downstream is somewhat higher than <strong>the</strong> global average<br />

(Table 3).<br />

The close relationship between SL and DA is not surpris<strong>in</strong>g<br />

due to <strong>the</strong> fact that <strong>large</strong>r areas have <strong>the</strong> potential<br />

to generate more sediment. Eq. (2) divided by DA <strong>yield</strong>s<br />

a relationship between SY and DA as:<br />

SY 849.15DA 0.0785 (3)


350 X.X. Lu et al. / Environmental Modell<strong>in</strong>g & Software 18 (2003) 339–353<br />

Fig. 4. Profiles show<strong>in</strong>g barrier effects on <strong>in</strong>terpolation (l<strong>in</strong>es: without barriers, dots: with barriers). See positions of A–A1, B–B1 and C–C1 <strong>in</strong><br />

Figure 2b.<br />

Fig. 5.<br />

SL and DA relationship and residuals for <strong>the</strong> entire <strong>Upper</strong> <strong>Yangtze</strong> bas<strong>in</strong>.<br />

An exponent of 0.0785 (close to 0) <strong>in</strong>dicates almost<br />

no effect of area on SY, so <strong>the</strong>re is no need to adjust<br />

SY for differences <strong>in</strong> <strong>the</strong> entire <strong>Upper</strong> <strong>Yangtze</strong> bas<strong>in</strong>.<br />

However, <strong>the</strong> SL–DA relation differs between <strong>the</strong> six<br />

regions (Table 3), so <strong>the</strong>re is a need to make such adjustment<br />

for most of <strong>the</strong> regions. The exponents are contrary<br />

to expectation. The predom<strong>in</strong>antly agricultural areas (i.e.<br />

<strong>the</strong> Jial<strong>in</strong> and <strong>the</strong> Wu dra<strong>in</strong>age bas<strong>in</strong>s) have values of<br />

b 1, and <strong>the</strong> units located <strong>in</strong> <strong>the</strong> west part of <strong>the</strong> bas<strong>in</strong>,<br />

notably <strong>the</strong> J<strong>in</strong>sha-Yalong and <strong>the</strong> Dadu-M<strong>in</strong> bas<strong>in</strong>s,<br />

have b 1. The results may <strong>in</strong> part be an artifact due<br />

to <strong>the</strong> geographic spac<strong>in</strong>g of gaug<strong>in</strong>g stations (Higgitt<br />

and Lu, 1999). In <strong>the</strong> Jial<strong>in</strong> and <strong>the</strong> Wu bas<strong>in</strong>s agricultural<br />

land is ma<strong>in</strong>ly located <strong>in</strong> <strong>the</strong> lower parts of <strong>the</strong><br />

bas<strong>in</strong>s that have more sediment generation than sediment<br />

deposition, whereas <strong>in</strong> <strong>the</strong> western mounta<strong>in</strong>ous regions<br />

<strong>the</strong>re is a dramatic reduction <strong>in</strong> <strong>the</strong> relief <strong>in</strong> <strong>the</strong> lower<br />

parts of <strong>the</strong> bas<strong>in</strong>s, which provides more opportunity for<br />

sediment deposition. The difference <strong>in</strong> <strong>the</strong> exponent b<br />

between <strong>the</strong> six regions <strong>in</strong>dicates that <strong>the</strong>re is no spatially<br />

consistent scal<strong>in</strong>g, as compared with <strong>the</strong> Canadian<br />

case <strong>in</strong> which <strong>the</strong> scal<strong>in</strong>g relation for SY–DA was almost<br />

<strong>the</strong> same <strong>in</strong> all regions so that a s<strong>in</strong>gle adjustment could<br />

be made for all <strong>the</strong> data (Church et al., 1999).<br />

On <strong>the</strong> basis of Eq. (3), a scal<strong>in</strong>g ratio (SR) relative<br />

to a standard dra<strong>in</strong>age area (SDA) can be developed as:<br />

SR SDA 0.0785 DA 0.0785 (4)<br />

where SR = SY/SSY, with SSY be<strong>in</strong>g <strong>the</strong> sediment<br />

<strong>yield</strong> for <strong>the</strong> standard dra<strong>in</strong>age area. Assum<strong>in</strong>g a standard<br />

dra<strong>in</strong>age area of 100, 1000 and 10,000 km 2 , Eq. (4)<br />

results <strong>in</strong> a constant a = SDA 0.0785 of 1.44, 1.72 and 2.06,<br />

respectively. Us<strong>in</strong>g <strong>the</strong> same approach as develop<strong>in</strong>g Eq.<br />

(3) and (4), scal<strong>in</strong>g ratios relative to certa<strong>in</strong> standard<br />

dra<strong>in</strong>age areas can be developed. Fig. 6 shows <strong>the</strong> scal<strong>in</strong>g<br />

ratios relative to <strong>the</strong> three standard dra<strong>in</strong>age areas<br />

for each of <strong>the</strong> six hydrological units. There are two dist<strong>in</strong>ctive<br />

groups: (1) <strong>the</strong> Jial<strong>in</strong> and <strong>the</strong> Wu, and (2) <strong>the</strong><br />

J<strong>in</strong>sha-Yalong, <strong>the</strong> lower J<strong>in</strong>sha, <strong>the</strong> Dadu-M<strong>in</strong>, and<br />

Ma<strong>in</strong> River. The scal<strong>in</strong>g ratio of 1 <strong>in</strong>dicates an upward<br />

shift, and 1 a downward shift.<br />

With <strong>the</strong> scal<strong>in</strong>g ratios available, <strong>the</strong> orig<strong>in</strong>al sediment<br />

<strong>yield</strong> data were scaled to <strong>the</strong> three standard areas. The<br />

scaled data were <strong>the</strong>n <strong>in</strong>terpolated and shaded us<strong>in</strong>g <strong>the</strong><br />

same procedures outl<strong>in</strong>ed above (without barriers). One<br />

of <strong>the</strong> marked features is <strong>the</strong> pattern of <strong>the</strong> sediment<br />

<strong>yield</strong> chang<strong>in</strong>g with <strong>the</strong> standard dra<strong>in</strong>age sizes <strong>in</strong> <strong>the</strong><br />

southwest corner of <strong>the</strong> bas<strong>in</strong> (Fig. 3c–e). Fig. 3e has a


X.X. Lu et al. / Environmental Modell<strong>in</strong>g & Software 18 (2003) 339–353<br />

351<br />

Table 3<br />

The relationships between SL and dra<strong>in</strong>age area (DA) for <strong>the</strong> global<br />

data set (after Milliman and Syvitski, 1992) and <strong>the</strong> <strong>Upper</strong> <strong>Yangtze</strong><br />

bas<strong>in</strong><br />

River systems<br />

SL=aDA b<br />

a b R 2 Number of<br />

stations<br />

3000 m 280 0.46 0.80 21<br />

1000–3000 m<br />

N/S America, Africa, 170 0.52 0.70 41<br />

Alp<strong>in</strong>e Europe<br />

South Asia and Oceania 65 0.56 0.74 90<br />

Non-alp<strong>in</strong>e Europe and 50 0.73 0.78 10<br />

High Arctic<br />

500–1000 m 12 0.42 0.82 55<br />

100–500 m 8 0.66 0.81 43<br />

100 m 1 0.64 0.81 15<br />

<strong>Upper</strong> <strong>Yangtze</strong> 849 0.92 0.77 248<br />

J<strong>in</strong>sha-Yalong 5606 0.65 0.65 33<br />

Lower J<strong>in</strong>sha 639 1.01 0.76 47<br />

Dadu-M<strong>in</strong> 1569 0.84 0.76 44<br />

Jial<strong>in</strong> 222 1.13 0.84 75<br />

Wu 98 1.14 0.80 25<br />

Ma<strong>in</strong> <strong>Yangtze</strong> 611 0.96 0.97 24<br />

Table 4<br />

<strong>Sediment</strong> <strong>yield</strong> relative to each standard dra<strong>in</strong>age area calculated based<br />

on SY–DA relationships for <strong>the</strong> six units<br />

Major tributary Standard dra<strong>in</strong>age areas (km 2 )<br />

100 1000 10,000 100,000<br />

J<strong>in</strong>sha-Yalong 1102 489 216 96<br />

Lower-J<strong>in</strong>sha 465 475 486 497<br />

Dadu-M<strong>in</strong> 747 516 356 245<br />

Jial<strong>in</strong> 397 531 710 950<br />

Wu 183 250 342 468<br />

Ma<strong>in</strong> <strong>Yangtze</strong> 606 564 524 487<br />

very similar pattern to Fig. 3a, but it removes <strong>the</strong> effect<br />

of dra<strong>in</strong>age size on sediment <strong>yield</strong>. The effects of <strong>the</strong><br />

scal<strong>in</strong>g ratios are clearly shown <strong>in</strong> Table 4 <strong>in</strong> which sediment<br />

<strong>yield</strong> relative to each of <strong>the</strong> standard dra<strong>in</strong>age areas<br />

is calculated for <strong>the</strong> six units. The upper J<strong>in</strong>sha-Yalong<br />

has a very high sediment <strong>yield</strong> for <strong>the</strong> smaller standard<br />

dra<strong>in</strong>age area, but rapidly dropped down when dra<strong>in</strong>age<br />

area <strong>in</strong>creases. An appropriate scal<strong>in</strong>g ratio for each of<br />

<strong>the</strong> six units can be determ<strong>in</strong>ed accord<strong>in</strong>g to <strong>the</strong> majority<br />

of dra<strong>in</strong>age bas<strong>in</strong> sizes (Table 2). The majority of dra<strong>in</strong>age<br />

areas of <strong>the</strong> entire <strong>Upper</strong> <strong>Yangtze</strong> bas<strong>in</strong> are with<strong>in</strong><br />

<strong>the</strong> range of 1000–10,000 km 2 , an appropriate standardized<br />

size <strong>the</strong>refore should fall <strong>in</strong> this range.<br />

5. Summary and conclusion<br />

Mapp<strong>in</strong>g sediment <strong>yield</strong> us<strong>in</strong>g sediment load measurements<br />

is not straightforward for a s<strong>in</strong>gle <strong>large</strong> <strong>river</strong> bas<strong>in</strong><br />

where <strong>the</strong> data set <strong>in</strong>cludes hierarchical relationships.<br />

After review<strong>in</strong>g <strong>the</strong> available sediment <strong>yield</strong> <strong>mapp<strong>in</strong>g</strong><br />

methods, this study <strong>in</strong>terpolates sediment load measurements<br />

from hydrological stations us<strong>in</strong>g krig<strong>in</strong>g. The<br />

characteristics of <strong>the</strong> <strong>in</strong>terpolated surface can be controlled<br />

by limit<strong>in</strong>g <strong>the</strong> number of po<strong>in</strong>ts used for calculat<strong>in</strong>g<br />

each <strong>in</strong>terpolated value, or by def<strong>in</strong><strong>in</strong>g <strong>the</strong> radius<br />

with<strong>in</strong> which all po<strong>in</strong>ts are used <strong>in</strong> <strong>the</strong> <strong>in</strong>terpolation. The<br />

<strong>in</strong>terpolation uses <strong>the</strong> nearest po<strong>in</strong>ts regardless of<br />

whe<strong>the</strong>r <strong>the</strong>y are from <strong>the</strong> same hydrological system;<br />

<strong>the</strong>refore, an attempt has been made to conf<strong>in</strong>e <strong>the</strong> po<strong>in</strong>ts<br />

used for <strong>in</strong>terpolation by <strong>in</strong>corporat<strong>in</strong>g major hydrological<br />

units as barriers. The <strong>in</strong>corporation of barriers causes<br />

sharp changes of <strong>the</strong> <strong>in</strong>terpolated values near <strong>the</strong> barriers,<br />

and significantly <strong>in</strong>creases <strong>in</strong>terpolation time. The<br />

control of <strong>the</strong> <strong>in</strong>terpolation might be necessary if <strong>the</strong> distribution<br />

of land surfaces undergo<strong>in</strong>g high rates of soil<br />

erosion does not co<strong>in</strong>cide with tributary boundaries.<br />

Krig<strong>in</strong>g <strong>in</strong>terpolates po<strong>in</strong>t values, which does not allow<br />

a weight<strong>in</strong>g of <strong>the</strong> value accord<strong>in</strong>g to <strong>the</strong> size of <strong>the</strong> subcatchment<br />

area. This study attempts to standardize <strong>the</strong><br />

sediment <strong>yield</strong> data by develop<strong>in</strong>g a scal<strong>in</strong>g ratio relative<br />

to <strong>the</strong> standard sizes of dra<strong>in</strong>age areas for each major<br />

hydrological unit. An appropriate standard size for scal<strong>in</strong>g<br />

is critical to obta<strong>in</strong> a less biased map.<br />

<strong>Sediment</strong> <strong>yield</strong> <strong>mapp<strong>in</strong>g</strong> through po<strong>in</strong>t <strong>in</strong>terpolation<br />

procedures treats <strong>the</strong> data as a po<strong>in</strong>t value located at <strong>the</strong><br />

sub-catchment outlet (<strong>the</strong> gaug<strong>in</strong>g station). This does not<br />

Fig. 6.<br />

Scal<strong>in</strong>g ratios as affected by dra<strong>in</strong>age areas.


352 X.X. Lu et al. / Environmental Modell<strong>in</strong>g & Software 18 (2003) 339–353<br />

<strong>in</strong>corporate any locational <strong>in</strong>formation about <strong>the</strong> subcatchment<br />

position o<strong>the</strong>r than <strong>the</strong> location of <strong>the</strong> outlet<br />

<strong>in</strong>to <strong>the</strong> <strong>in</strong>terpolation procedure. Stichl<strong>in</strong>g (1973) plotted<br />

sediment concentration <strong>in</strong> <strong>the</strong> center of gravity of <strong>the</strong><br />

catchment when draw<strong>in</strong>g a map of Canada. At present<br />

<strong>the</strong>re appear to be no suitable methods for <strong>in</strong>terpolat<strong>in</strong>g<br />

values which have hierarchical relationships. It is hoped<br />

that this paper has raised attention to <strong>the</strong> lack of a uniform<br />

approach to sediment <strong>yield</strong> <strong>mapp<strong>in</strong>g</strong> at present. The<br />

maps which have been generated have some utility for<br />

macro-scale management of problems imposed by high<br />

sediment transport, particularly <strong>in</strong> <strong>the</strong> identification of<br />

sediment sources attributable to soil erosion. The<br />

<strong>in</strong>creas<strong>in</strong>g availability of high resolution environmental<br />

databases suggests that it is possible to employ physically-based<br />

models for sediment <strong>yield</strong> <strong>mapp<strong>in</strong>g</strong> at both<br />

global and regional scales.<br />

Acknowledgements<br />

The research started while <strong>the</strong> first author was <strong>in</strong><br />

receipt of a Natural Sciences and Eng<strong>in</strong>eer<strong>in</strong>g Research<br />

Council of Canada (NSERC) Postdoctoral Fellowship,<br />

and subsequently completed at National University of<br />

S<strong>in</strong>gapore (NUS). We acknowledge f<strong>in</strong>ancial support<br />

from NUS to X.X. Lu, an NSERC grant to P. Ashmore,<br />

and an Academic Development Fund to J. Wang. We<br />

are grateful to Dr I. Creed, Department of Geography,<br />

University of Western Ontario, for access<strong>in</strong>g Arc/Info<br />

GIS facilities, and Mrs Lee Li Kheng, Department of<br />

Geography, NUS, for prepar<strong>in</strong>g some of <strong>the</strong> diagrams.<br />

References<br />

Ashmore, P.E., Day, T.J., 1988. Spatial and temporal patterns of suspended-sediment<br />

<strong>yield</strong> <strong>in</strong> <strong>the</strong> Saskachewan River bas<strong>in</strong>. Canadian<br />

Journal of Earth Sciences 25, 1450–1463.<br />

Church, M., Kellerhals, R., Day, T.J., 1989. Regional clastic sediment<br />

<strong>yield</strong> <strong>in</strong> British Columbia. Canadian Journal of Earth Science 26,<br />

31–45.<br />

Church, M., Ham, D., Hassan, M., Slaymaker, O., 1999. Fluvial clastic<br />

sediment <strong>yield</strong> <strong>in</strong> Canada: scaled analysis. Canadian Journal of<br />

Earth Sciences 39, 1267–1280.<br />

De Boer, D.H., Crosby, G., 1996. Specific sediment <strong>yield</strong> and dra<strong>in</strong>age<br />

bas<strong>in</strong> scale. In: Wall<strong>in</strong>g, D.E., Webb, B.W. (Eds.), Erosion and<br />

<strong>Sediment</strong> Yield: Global and Regional Perspectives (Proceed<strong>in</strong>gs of<br />

<strong>the</strong> Exeter Symposium, July 1996). IAHS Publ. no. 236., pp.<br />

333–338.<br />

Dedkov, A.P., Moszher<strong>in</strong>, V.I., 1992. Erosion and sediment <strong>yield</strong> <strong>in</strong><br />

mounta<strong>in</strong> regions of <strong>the</strong> world. In: Wall<strong>in</strong>g, D.E., Davies, T.R.,<br />

Hasholt, B. (Eds.), Erosion, Debris Flows and Environment <strong>in</strong><br />

Mounta<strong>in</strong> Regions (Proceed<strong>in</strong>gs of <strong>the</strong> Chengdu Symposium, July).<br />

IAHS Publ. no. 209., pp. 29–36.<br />

ESRI, 1994. Cell-based modell<strong>in</strong>g with GRID, ArcDoc version 7.0.2<br />

on-l<strong>in</strong>e help.<br />

Fournier, F., 1960. Climat et Erosion. P.U.F., Paris, pp. 201<br />

Higgitt, D.L., Lu, X.X., 1996. Patterns of sediment <strong>yield</strong> <strong>in</strong> <strong>the</strong> <strong>Upper</strong><br />

<strong>Yangtze</strong> Bas<strong>in</strong>, Ch<strong>in</strong>a. In: Wall<strong>in</strong>g, D.E., Webb, B.W. (Eds.), Erosion<br />

and <strong>Sediment</strong> Yield: Global and Regional Perspectives. IAHS<br />

Publ. no. 236., pp. 205–214.<br />

Higgitt, D.L., Lu, X.X., 1999. Challenges <strong>in</strong> relat<strong>in</strong>g land use to sediment<br />

<strong>yield</strong> <strong>in</strong> <strong>the</strong> <strong>Upper</strong> <strong>Yangtze</strong>. Hydrobiologia 410, 269–277.<br />

Lajczak, A., Jansson, M.B., 1993. Suspended sediment <strong>yield</strong> <strong>in</strong> <strong>the</strong><br />

Baltic dra<strong>in</strong>age bas<strong>in</strong>. Nordic Hydrology 24, 31–52.<br />

Jansson, M.B., 1988. A global survey of sediment <strong>yield</strong>. Geogra. Ann.<br />

70A, 81–98.<br />

Lane, E.W., Borland, W.M., 1951. Estimat<strong>in</strong>g bed load. Trans. Am.<br />

Geophys. Union 32 (1).<br />

Lane, L.J., Hernandez, M., Nichols, M., 1997. Processes controll<strong>in</strong>g<br />

sediment <strong>yield</strong> from watersheds as functions of spatial scale.<br />

Environmental Modell<strong>in</strong>g & Software 12 (4), 355–369.<br />

Lu, X.X., Higgitt, D.L., 1998a. <strong>Sediment</strong> <strong>yield</strong> <strong>mapp<strong>in</strong>g</strong> us<strong>in</strong>g GIS <strong>in</strong><br />

<strong>the</strong> <strong>Upper</strong> <strong>Yangtze</strong>. In: Chao, Z.H. (Ed.), Soil, Human and Environment<br />

Interactions (Proceed<strong>in</strong>gs of International Symposium on<br />

Soil, Human and Environmental Interactions, 4–11 May 1997,<br />

Nanj<strong>in</strong>g, Ch<strong>in</strong>a). Ch<strong>in</strong>a Science & Technology Press, pp. 40–50.<br />

Lu, X.X., Higgitt, D.L., 1998b. Recent changes of sediment <strong>yield</strong> <strong>in</strong><br />

<strong>the</strong> <strong>Upper</strong> <strong>Yangtze</strong>, Ch<strong>in</strong>a. Environmental Management 22 (5),<br />

697–709.<br />

Lu, X.X., Higgitt, D.L., 1999. <strong>Sediment</strong> <strong>yield</strong>s variability <strong>in</strong> <strong>the</strong> <strong>Upper</strong><br />

<strong>Yangtze</strong>. Earth Surface Processes & Landforms 24 (11), 1077–<br />

1093.<br />

Lu, X.X., Shi, D.M., 1992. Soil erosion and revegetation <strong>in</strong> <strong>the</strong> hilly<br />

areas of South Ch<strong>in</strong>a. In: Proceed<strong>in</strong>gs of an International Symposium<br />

on Forage Development of <strong>the</strong> Red Soils of South Central<br />

Ch<strong>in</strong>a. Australian Center for International Agricultural Research,<br />

Canberra, pp. 31–34.<br />

Ludwig, W., Probst, J.L., 1998. River sediment discharge to <strong>the</strong> oceans:<br />

present-day controls and global budgets. American Journal of<br />

Science 298, 265–295.<br />

Milliman, J.D., Meade, R.H., 1983. World-wide delivery of <strong>river</strong> sediment<br />

to <strong>the</strong> oceans. Journal of Geology 91, 1–21.<br />

Milliman, J.D., Syvitski, J.P.M., 1992. Geomorphic/tectonic control of<br />

sediment discharge to <strong>the</strong> ocean: <strong>the</strong> importance of small mounta<strong>in</strong>ous<br />

<strong>river</strong>s. Journal of Geology 100, 525–544.<br />

Neil, D.T., Mazari, R.K., 1993. <strong>Sediment</strong> <strong>yield</strong> <strong>mapp<strong>in</strong>g</strong> us<strong>in</strong>g small<br />

dam sedimentation surveys, Sou<strong>the</strong>rn Tablelands, New South<br />

Wales. Catena 20, 13–25.<br />

Ozturk, F., 1996. Suspended sediment <strong>yield</strong>s of <strong>river</strong>s <strong>in</strong> Turkey. In:<br />

Wall<strong>in</strong>g, D.E., Webb, B.W. (Eds.), Erosion and <strong>Sediment</strong> Yield:<br />

Global and Regional Perspectives (Proceed<strong>in</strong>gs of <strong>the</strong> Exeter Symposium,<br />

July 1996). IAHS Publ. no.236., pp. 65–71.<br />

Ruddiman, W.F., Prell, W.L., Raymo, M.E., 1989. Late Cenozoic<br />

uplift <strong>in</strong> sou<strong>the</strong>rn Asia and <strong>the</strong> American West: rationale for general<br />

circulation model<strong>in</strong>g experiments. Journal of Geophysical<br />

Research 94, 18379–18391.<br />

Stichl<strong>in</strong>g, W., 1973. <strong>Sediment</strong> loads <strong>in</strong> Canadian <strong>river</strong>s. In: Fluvial<br />

Processes and Morphology, Proceed<strong>in</strong>gs, 9th Canadian Hydrology<br />

Symposium. National Research Council of Canada, Associate<br />

Committee on Geodesy and Geophysics, Subcommittee of<br />

Hydrology, pp. 39–72.<br />

Strakhov, N.M., 1967. Pr<strong>in</strong>ciples of Lithogenesis, Vol. 1, pp. 245. Oliver<br />

and Boyd, Ed<strong>in</strong>burgh.<br />

Stone, M., Saunderson, H.C., 1996. Regional patterns of sediment<br />

<strong>yield</strong> <strong>in</strong> <strong>the</strong> Laurentian Great Lakes bas<strong>in</strong>. In: Wall<strong>in</strong>g, D.E., Webb,<br />

B.W. (Eds.), Erosion and <strong>Sediment</strong> Yield: Global and Regional<br />

Perspectives (Proceed<strong>in</strong>gs of <strong>the</strong> Exeter Symposium, July 1996).<br />

IAHS Publ. no. 236., pp. 125–131.<br />

Trimble, S.W., 1981. Changes <strong>in</strong> sediment storage <strong>in</strong> <strong>the</strong> Coon Creek<br />

bas<strong>in</strong>, Driftless Area, Wiscons<strong>in</strong>, 1853–1975. Science 214, 181–<br />

183.<br />

Wall<strong>in</strong>g, D.E., Webb, B.W., 1983. Patterns of sediment <strong>yield</strong>. In: Gregory,<br />

K.J. (Ed.), Background to Palaeohydrology. John Wiley &<br />

Sons Ltd, pp. 69–100.


X.X. Lu et al. / Environmental Modell<strong>in</strong>g & Software 18 (2003) 339–353<br />

353<br />

Wall<strong>in</strong>g, D.E., 1983. The sediment delivery problem. Journal of<br />

Hydrology 65, 209–237.<br />

Waythomas, C.F., Williams, G.P., 1988. <strong>Sediment</strong> <strong>yield</strong> and spurious<br />

correlation—toward a better portrayal of <strong>the</strong> annual suspended<br />

sediment load of <strong>river</strong>s. Geomorphology 1, 309–316.<br />

Yu, J.R., Shi, L.R., Feng, M.H., Li, R.H., 1991. The surface erosion<br />

and fluvial silt <strong>in</strong> <strong>the</strong> upper reaches of Changjiang River. (<strong>in</strong><br />

Ch<strong>in</strong>ese) Bullet<strong>in</strong> of Soil and Water Conservation 11 (1), 9–17.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!