24.12.2013 Views

Dynamically orthogonal field equations for stochastic flows with ...

Dynamically orthogonal field equations for stochastic flows with ...

Dynamically orthogonal field equations for stochastic flows with ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Quantifying Uncertainty in Complex Turbulent Systems<br />

<strong>Dynamically</strong> <strong>orthogonal</strong> <strong>field</strong> <strong>equations</strong> <strong>for</strong> <strong>stochastic</strong> <strong>flows</strong><br />

<strong>with</strong> applications<br />

Part I<br />

Themis Sapsis & Andrew Majda<br />

New York University, CIMS<br />

T. Sapsis, and P. Lermusiaux, <strong>Dynamically</strong> <strong>orthogonal</strong> <strong>field</strong> <strong>equations</strong> <strong>for</strong> continuous <strong>stochastic</strong> dynamical systems, Physica D, (2009).<br />

T. Sapsis, <strong>Dynamically</strong> <strong>orthogonal</strong> <strong>field</strong> <strong>equations</strong> <strong>for</strong> <strong>stochastic</strong> fluid <strong>flows</strong> and particle dynamics, PhD Thesis, 2010, MIT<br />

T. Sapsis, and P. Lermusiaux, Dynamical criteria <strong>for</strong> the evolution of the <strong>stochastic</strong> dimensionality in <strong>flows</strong> <strong>with</strong> uncertainty, Physica D, (2011).<br />

T. Sapsis and A. Majda, Uncertainty Quantification in Reduced order subspaces, CIMS letcture notes, 2011<br />

1


Large or ∞ dimensional systems <strong>with</strong> uncertainties<br />

Examples of continuous systems<br />

Geophysical fluid <strong>flows</strong><br />

Thermal transport in<br />

heterogeneous media<br />

Water waves<br />

spectrum evolution<br />

Examples of discrete systems<br />

Systems biology<br />

Structural systems<br />

2<br />

US power network


Challenges <strong>for</strong> continuous <strong>stochastic</strong> systems<br />

Sources of uncertainty<br />

• Initial and boundary conditions<br />

• Limited observations and data<br />

• Approximations on the modeling<br />

• Internal instabilities (e.g. turbulence)<br />

Computational Challenges<br />

• Large or infinite dimensional phase-space<br />

• Wide range of temporal and spatial scales<br />

• Non-Gaussian, non-homogeneous statistics<br />

• Transient and non-stationary dynamics<br />

Re = 3000<br />

Initial perturbation<br />

__<strong>with</strong> energy<br />

6<br />

10 −<br />

T = 30 22.5 50 27.5<br />

What you see is a<br />

1D family of solutions<br />

Aim of this work<br />

Develop new theory and tools <strong>for</strong> representing , evolving and describing <strong>stochastic</strong><br />

dynamical systems accurately and <strong>with</strong> low computational cost.<br />

3


Some tools <strong>for</strong> high dimensional <strong>stochastic</strong> problems<br />

Monte Carlo ‘based’ approaches<br />

• Most widely used tool <strong>for</strong> realistic applications<br />

• Can handle <strong>stochastic</strong> initial conditions, parametric uncertainties, random boundary conditions etc.<br />

• Cost reduction <strong>with</strong> <strong>stochastic</strong> subspace reduction techniques (generation of optimal set of samples)<br />

Ocean predictions and data assimilation: Lermusiaux, J. Comp. Phys., 2006; Lermusiaux, MWR, 1999.<br />

Transport in porous media: B. Ganapathysubramanian & N. Zabaras, J. Comp. Phys., 2009.<br />

• Spectrum evolution of nonlinear waves near coast<br />

Ocean Waves Spectrum evolution: e.g. Dysthe et al, JFM, 2003<br />

Slow convergence – vast computational cost <strong>for</strong> realistic simulations<br />

Hopf Functional Equations (Hopf, 1952)<br />

• Characteristic functional: contains the complete statistical in<strong>for</strong>mation<br />

• Hopf Functional Differential <strong>equations</strong>: Exact re<strong>for</strong>mulation of the original problem<br />

• Has been applied to a large series of problems including<br />

Stochastic Navier Stokes, Hopf, J. Rat. Mech. & Anal., 1952.<br />

Wave problems, Tatarskii, J. Exp. Theor. Phys., 1969.<br />

Porous media, Beran, Statistical Continuum Theories, 1968.<br />

• Infinite dimensional character of the functional equation<br />

• Very far from practical applicability<br />

• Need <strong>for</strong> representations of characteristic functional – very few available <strong>for</strong> simple cases<br />

4


Some tools <strong>for</strong> high dimensional <strong>stochastic</strong> problems<br />

Order Reduction Methods : Galerkin Projection (POD)<br />

• Identification of an ‘optimal’ finite dimensional base<br />

• Galerkin Projection of the original <strong>equations</strong><br />

• Derivation of low dimensional models that can capture the essential dynamical features (optimal base)<br />

Ergodic properties <strong>for</strong> 2D Navier Stokes (W. E & J. Mattingly,2001)<br />

• Respect dynamical symmetries<br />

P. Holmes, J. Lumley, G. Berkooz: Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 1996<br />

• Poor per<strong>for</strong>mance <strong>for</strong> transient problems<br />

• Need <strong>for</strong> a large set of realizations to extract optimal modes<br />

• ‘Importance’ of a POD mode is not always connected <strong>with</strong> its energy<br />

Polynomial Chaos Method (Ghanem & Spanos, 1991)<br />

• Based on Wiener Polynomial Chaos Theory<br />

• Fix a priori <strong>stochastic</strong> structure and evolve spatial structure<br />

• Has been applied to both structural systems and fluids<br />

Solid Mechanics, Ghanem & Spanos, 1991.<br />

Stochastic Fluids, Xiu & Karniadakis, 2002.<br />

• Slow convergence – exponential increase <strong>with</strong> order of PC method<br />

• Poor per<strong>for</strong>mance <strong>for</strong> strongly non-Gaussian processes<br />

• Difficulty to capture time dependent <strong>stochastic</strong> characteristics<br />

5


Outline of the presentation<br />

Part I<br />

Part II<br />

• Evolution of infinite-dimensional <strong>stochastic</strong> systems<br />

– Problem <strong>for</strong>mulation<br />

– A unified overview of existing methods<br />

– The dynamical <strong>orthogonal</strong>ity (DO) condition and the DO evolution <strong>equations</strong><br />

– Cost scaling of DO method – Curse of dimensionality<br />

• Application: Linear systems & 2D Navier-Stokes<br />

– Field <strong>equations</strong> <strong>for</strong> the evolution of <strong>stochastic</strong> Navier-Stokes<br />

– Stochastic response of Navier-Stokes <strong>for</strong> various flow configurations<br />

– Expansion-contraction of the <strong>stochastic</strong> subspace dimensionality<br />

• UQ in reduced order spaces<br />

– In<strong>for</strong>mation theoretic framework <strong>for</strong> UQ in reduced order subspace<br />

– Application to linear systems: the effect of non-normal operators<br />

– Application to quadratic systems: triad systems and Lorenz 96<br />

• Reduced-order <strong>stochastic</strong> dynamics <strong>for</strong> quadratic systems<br />

– Energy transport properties in quadratic systems<br />

– Volume and length de<strong>for</strong>mations in phase space in connection to energy flow from the mean <strong>field</strong><br />

– Nonlinear dimensionality of the support of the probability measure<br />

– Illustration in specific cases<br />

6


Problem Setup<br />

Statement of the problem: A <strong>stochastic</strong> PDE<br />

( ,; t ω)<br />

∂u x<br />

∂t<br />

L<br />

( t ω)<br />

= ⎡⎣u x,; ; ω⎤⎦<br />

u( x, t ; ω) = u ( x ; ω)<br />

x∈<br />

D B ⎡u| ∂D<br />

⎤= h[ ∂D;<br />

ω]<br />

0 0<br />

⎣<br />

x∈<br />

D<br />

⎦<br />

L[ g;ω ]<br />

h<br />

( x )<br />

u0 ;ω<br />

[ ∂D;<br />

ω]<br />

Nonlinear differential operator (possibly <strong>with</strong> <strong>stochastic</strong> coefficients)<br />

Stochastic initial conditions (given full probabilistic in<strong>for</strong>mation)<br />

Stochastic boundary conditions (given full probabilistic in<strong>for</strong>mation)<br />

Goal: Evolve the full probabilistic in<strong>for</strong>mation describing u( x,;<br />

t ω)<br />

An important representation property <strong>for</strong> the solution<br />

( ,; t ω) ( , t) Y ( t; ω) ( , t)<br />

u x u x u x<br />

= +∑<br />

s<br />

i=<br />

1<br />

i<br />

i<br />

Advantage: Finite Dimensionality of Stochastic Space<br />

Disadvantage: Redundancy of representation<br />

7


For a <strong>stochastic</strong> <strong>field</strong><br />

Geometrical picture of KL expansion<br />

Solution of the eigenvalue problem<br />

( )<br />

Provides principal directions ui<br />

x<br />

of the infinite-dimensional space<br />

over which probability is distributed<br />

∫ uu<br />

( )( ( ) ( ))<br />

u( x ;ω)<br />

we have C ( , ) = E ω ⎡<br />

⎢<br />

( ; ω) − ( ; ω)<br />

; ω − ;<br />

uu<br />

x y u x u x u y u y ω<br />

⎣<br />

2<br />

( ) ( ) d = λ ( )<br />

C x y u x x u y<br />

ui 1<br />

,<br />

i i i<br />

( x)<br />

Probability measure<br />

T<br />

⎤<br />

⎥⎦<br />

( )<br />

For each principal direction ui<br />

x<br />

the associated eigenvalue λ i<br />

defines the spread of the probability<br />

ui<br />

3<br />

( x)<br />

For infinite-dimensional probability measures (case of <strong>stochastic</strong> <strong>field</strong>s) we have<br />

Countable infinity of principal directions<br />

ui 2<br />

( x)<br />

However <strong>for</strong> most of them (infinite)<br />

the spread of the probability measure can be neglected!<br />

8


Geometrical picture of KL expansion<br />

Based on this property we define the <strong>stochastic</strong> subspace<br />

( ) u ( x )<br />

{ }<br />

V σ , t = span , t | λ > σ<br />

s cr i i cr<br />

V ⊥<br />

s<br />

Probability measure<br />

V s<br />

Finite dimensional<br />

V s<br />

σcr<br />

> λ←<br />

u<br />

i<br />

1<br />

( x,<br />

t)<br />

u<br />

i<br />

2<br />

( x,<br />

t)<br />

( ,; t ω) ( , t) Y ( t; ω) ( , t)<br />

u x u x u x<br />

= +∑<br />

• All the in<strong>for</strong>mation in V ⊥<br />

s<br />

is captured by u( x,t)<br />

• All the <strong>stochastic</strong> in<strong>for</strong>mation is captured by the <strong>stochastic</strong> coefficients Y ( t;<br />

ω)<br />

s<br />

i=<br />

1<br />

i<br />

i<br />

s=<br />

dimV<br />

s<br />

i<br />

9


A unified overview of existing methods (in fluids)<br />

[C. Rowley,<br />

Oberwolfach, 2008]<br />

[Lermusiaux & Robinson,<br />

Deep Sea Research, 2001]<br />

( ,; t ω) ( , t) Y ( t; ω) ( , t)<br />

u x u x u x<br />

= +∑<br />

10<br />

s<br />

i=<br />

1<br />

Uncertainty propagation via generalized<br />

Polynomial-Chaos Method<br />

Meecham & Siegel, Phys. Fluids, 1964<br />

Xiu & Karniadakis, J. Comp. Physics, 2002<br />

Knio & Maitre, Fluid Dyn. Research, 2006<br />

i<br />

Uncertainty propagation via Monte Carlo method<br />

Lermusiaux & Robinson, Deep Sea Research, 2001<br />

Lermusiaux, J. Comp. Phys., 2006<br />

i<br />

Redundant Representation<br />

Uncertainty propagation via POD method<br />

According to Lumley (Stochastic tools in Turbulence, 1971) it was introduced<br />

independently by numerous people at different times, including Kosambi (1943),<br />

Loeve (1945), Karhunen (1946), Pougachev (1953), Obukhov (1954 ).<br />

B. Ganapathysubramanian & N. Zabaras, J. Comp. Phys., (under review)<br />

[Xiu & Karniadakis,<br />

J. Comp. Physics, 2002]


The dynamical <strong>orthogonal</strong>ity (DO) condition<br />

(Sapsis & Lermusiaux, Physica D, 2009)<br />

V ⊥<br />

s<br />

Probability measure<br />

2<br />

( x,<br />

+δ )<br />

ui t t<br />

u<br />

i<br />

2<br />

( x,<br />

t)<br />

How is the probability measure evolving?<br />

Probability measure constrained to move inside<br />

V s<br />

How is evolving?<br />

Through its basis elements<br />

u<br />

i<br />

( x,<br />

t)<br />

1<br />

V s<br />

u<br />

i<br />

1<br />

( x,<br />

t)<br />

( x,<br />

+δ )<br />

ui t t<br />

V<br />

s<br />

completely controlled by Y ( t;<br />

ω)<br />

that can evolve in two ways:<br />

V ⊥<br />

s<br />

1) A basis element can vary towards causing modification of .<br />

2) A basis element can vary towards another direction of leaving invariant !<br />

Additionally, the second kind of variation can be covered by the evolution of Yi<br />

( t;<br />

ω)<br />

Source of Redundancy<br />

∂ui<br />

( x,<br />

t)<br />

∫ uj<br />

( x ) x=<br />

= =<br />

Constrain each basis element<br />

to vary normal to Vs<br />

∂t<br />

V<br />

s<br />

V s<br />

, t d 0 <strong>for</strong> all i 1,..., s and j 1,..., s<br />

V s<br />

i<br />

11


The DO representation<br />

( ,; t ω) ( , t) Y ( t; ω) ( , t)<br />

u x u x u x<br />

= +∑<br />

Separate deterministic from <strong>stochastic</strong> part<br />

Without loss of generality ( )<br />

12<br />

s<br />

i=<br />

1<br />

Y t; ω = 0<br />

Evolving the finite dimensional subspace<br />

Restrict evolution of to be normal to V i.e.<br />

∫<br />

∂u<br />

i<br />

( x,<br />

t)<br />

∂t<br />

( )<br />

i<br />

i<br />

u x, t dx= 0 <strong>for</strong> all i= 1,..., s and j = 1,..., s<br />

j<br />

i<br />

( , t)<br />

u x s<br />

• No restrictions on the probabilistic structure of the <strong>stochastic</strong> coefficients Y ( t;<br />

ω)<br />

• <strong>Dynamically</strong> evolving <strong>stochastic</strong> subspace<br />

• DO condition preserves orthonormality of basis elements ui<br />

( x,<br />

t)<br />

d<br />

∂uj<br />

( x, t) ∂ui<br />

( x,<br />

t)<br />

( ) ( ) ( )<br />

( )<br />

∫ ∫ ∫<br />

ui x, t uj x, t dx = ui x, t dx + uj<br />

x, t dx=<br />

0<br />

dt ∂t ∂t<br />

T. Sapsis, and P. Lermusiaux, <strong>Dynamically</strong> <strong>orthogonal</strong> <strong>field</strong> <strong>equations</strong> <strong>for</strong> continuous <strong>stochastic</strong> dynamical systems, Physica D, 238 (2009) 2347.<br />

Vs<br />

i<br />

i


<strong>Dynamically</strong> Orthogonal Evolution Equations<br />

Theorem 1 (Sapsis & Lermusiaux, Physica D, 2009): For a <strong>stochastic</strong> <strong>field</strong><br />

described by the evolution equation<br />

( ,; t ω)<br />

∂u x<br />

= L ⎡ ( ,; t ω)<br />

; ω⎤<br />

∂t<br />

⎣u x ⎦<br />

, t ; ω = ; ω , x∈<br />

D<br />

u( x ) u ( x )<br />

⎡u( t ω) ⎤ h( t ω)<br />

0 0<br />

assuming a response of the <strong>for</strong>m<br />

, x∈<br />

following closed set of evolution <strong>equations</strong><br />

D<br />

B ⎣ ξ,; ⎦= ξ,; , ξ∈∂D<br />

( ,; t ω) ( , t) Y ( t; ω) ( , t)<br />

u x u x u x<br />

= +∑<br />

s<br />

i=<br />

1<br />

i<br />

i<br />

we obtain the<br />

SDE describing<br />

evolution of<br />

<strong>stochastic</strong>ity inside<br />

V s<br />

Family of PDEs<br />

describing evolution of<br />

<strong>stochastic</strong> subspace V s<br />

dY<br />

j<br />

( t;<br />

ω)<br />

dt<br />

( x,<br />

t)<br />

∫<br />

ω<br />

{ L⎡⎣ ( ,; ω) ⎤⎦−<br />

⎡L⎡ ⎣ ( ,; ω)<br />

⎤⎦<br />

⎤} j ( ,)<br />

= u y t E<br />

⎣<br />

u y t<br />

⎦<br />

u y t dy<br />

D<br />

∂uj<br />

ω<br />

⎡ ⎤<br />

= E ⎡Yi t t ⎤<br />

YY<br />

− E<br />

i j<br />

⎢ k<br />

t Yi t t d ⎥ YY i j k<br />

t<br />

t ⎣ ⎣u x<br />

∂<br />

⎦⎦<br />

C ∫ u y ⎣u y ⎦ y C u x<br />

⎣D<br />

⎦<br />

−<br />

( ) ( ) 1 ω<br />

−<br />

; ω L⎡ , ; ω ⎤ ( , ) ( ; ω) L⎡ ( , ; ω) ⎤<br />

1<br />

( , )<br />

1<br />

( t ) E ω<br />

−<br />

ω ⎡Y ( t ω) h( t ω) ⎤<br />

B ⎡<br />

⎣uj ξ,; ⎤= ⎦ ⎣ i<br />

; ξ, 0; ⎦CYY,<br />

ξ∈∂D<br />

i j<br />

PDE describing<br />

evolution of<br />

mean <strong>field</strong><br />

( , t)<br />

∂u x<br />

∂t<br />

L<br />

( t ω)<br />

ω<br />

= E ⎡<br />

⎣<br />

⎡⎣u x,; ⎤⎦<br />

⎤<br />

⎦<br />

, x∈<br />

D<br />

( t ω) E ω h( t ω)<br />

B ⎡⎣u<br />

ξ,; ⎤⎦= ⎡⎣ ξ,; ⎤⎦,<br />

ξ∈∂D<br />

T. Sapsis, and P. Lermusiaux, <strong>Dynamically</strong> <strong>orthogonal</strong> <strong>field</strong> <strong>equations</strong> <strong>for</strong> continuous <strong>stochastic</strong> dynamical systems, Physica D, 238 (2009) 2347.<br />

13


Stochastic initial conditions<br />

( , t ; ω) = ( ; ω)<br />

0 0<br />

Formulation of initial conditions<br />

u x u x x∈<br />

D<br />

Formulation in <strong>stochastic</strong> subspace terms<br />

Initial condition <strong>for</strong> the mean <strong>field</strong> equation<br />

( 0 0 )( 0( ) 0( ))<br />

( ) ⎡ ( ) ( )<br />

C , E ω uu<br />

x y = u x; ω −u x; ω u y; ω −u y;<br />

ω<br />

⎣<br />

∫ uu<br />

( , t ; ω) E ω<br />

( ; ω)<br />

u x<br />

0<br />

= ⎡⎣u0<br />

x ⎤⎦<br />

Initial condition <strong>for</strong> the basis of the <strong>stochastic</strong> subspace<br />

V<br />

2<br />

( ) ( ) d = λ ( )<br />

C x y u x x u y<br />

,<br />

i i i<br />

Initial condition <strong>for</strong> the <strong>stochastic</strong> coefficients<br />

i<br />

( ; ω) ⎡ ( ; ω) − ( ; ω) ⎤ ( , )<br />

Y t<br />

( ) span ( )<br />

{ | }<br />

s cr i i cr<br />

∫ ⎣ 0 0 ⎦<br />

D<br />

= u y u y u y t dy<br />

i<br />

Computation of eigenvalues/eigenvectors<br />

σ = u x λ > σ Selection of Stoch. Subspace dimensionality<br />

T<br />

⎤<br />

⎦<br />

14


POD & PC methods from DO <strong>equations</strong><br />

SDE describing<br />

evolution of<br />

<strong>stochastic</strong>ity inside<br />

V s<br />

dY<br />

j<br />

( t;<br />

ω)<br />

dt<br />

∫<br />

ω<br />

{ L⎡⎣ ( ,; ω) ⎤⎦−<br />

⎡L⎡ ⎣ ( ,; ω)<br />

⎤⎦<br />

⎤} j ( ,)<br />

= u y t E<br />

⎣<br />

u y t<br />

⎦<br />

u y t dy<br />

D<br />

Family of PDEs<br />

describing evolution of<br />

<strong>stochastic</strong> subspace V s<br />

( x,<br />

t)<br />

∂uj<br />

ω<br />

⎡ ⎤<br />

= E ⎡Yi t t ⎤<br />

YY<br />

− E<br />

i j<br />

⎢ k<br />

t Yi t t d ⎥ YY i j k<br />

t<br />

t ⎣ ⎣u x<br />

∂<br />

⎦⎦<br />

C ∫ u y ⎣u y ⎦ y C u x<br />

⎣D<br />

⎦<br />

−<br />

( ) ( ) 1 ω<br />

−<br />

; ω L⎡ , ; ω ⎤ ( , ) ( ; ω) L⎡ ( , ; ω) ⎤<br />

1<br />

( , )<br />

1<br />

( t ) E ω<br />

−<br />

ω ⎡Y ( t ω) h( t ω) ⎤<br />

B ⎡<br />

⎣uj ξ,; ⎤= ⎦ ⎣ i<br />

; ξ, 0; ⎦CYY,<br />

ξ∈∂D<br />

i j<br />

PDE describing<br />

evolution of<br />

mean <strong>field</strong><br />

( , t)<br />

∂u x<br />

∂t<br />

L<br />

( t ω)<br />

ω<br />

= E ⎡<br />

⎣<br />

⎡⎣u x,; ⎤⎦<br />

⎤<br />

⎦<br />

, x∈<br />

D<br />

( t ω) E ω h( t ω)<br />

B ⎡⎣u<br />

ξ,; ⎤⎦= ⎡⎣ ξ,; ⎤⎦,<br />

ξ∈∂D<br />

Choosing a priori the <strong>stochastic</strong> subspace<br />

POD <strong>equations</strong>.<br />

V s<br />

using POD methodology we recover<br />

Choosing a priori the statistical characteristics of the <strong>stochastic</strong> coefficients<br />

we recover the PC <strong>equations</strong>.<br />

Yj<br />

( t;<br />

ω)<br />

T. Sapsis, and P. Lermusiaux, <strong>Dynamically</strong> <strong>orthogonal</strong> <strong>field</strong> <strong>equations</strong> <strong>for</strong> continuous <strong>stochastic</strong> dynamical systems, Physica D, 238 (2009) 2347.<br />

15


<strong>Dynamically</strong> <strong>orthogonal</strong> <strong>field</strong> <strong>equations</strong>: Some properties<br />

1) DO <strong>equations</strong> are exact; no approximations have been made and the operator<br />

is a general nonlinear differential operator (<strong>with</strong> polynomial nonlinearities).<br />

2) Equations are consistent <strong>with</strong> the representation constraint<br />

∫<br />

∂u<br />

i<br />

( x,<br />

t)<br />

∂t<br />

( )<br />

3) They are in resolved <strong>for</strong>m.<br />

u x, t dx= 0 <strong>for</strong> all i= 1,..., s and j = 1,..., s.<br />

j<br />

( )<br />

4) By choosing a priori the <strong>field</strong>s u x,<br />

t we recover POD method.<br />

5) By choosing a priori the <strong>stochastic</strong> processes Y t;<br />

ω we recover the<br />

various versions of Polynomial-Chaos Method.<br />

6) The consistency <strong>with</strong> the second constraint also guarantees preservation<br />

of orthonormal properties <strong>for</strong> u x,<br />

t .<br />

i<br />

i<br />

( )<br />

( )<br />

7) Preserve energy (quadratic functionals, e.g. energy) <strong>for</strong> conservative systems.<br />

i<br />

L[<br />

u]<br />

16


Application to linear systems<br />

We first apply the DO methodology to linear systems described by the equation<br />

( ,; t ω)<br />

∂u x<br />

= L0( x, t) + L1( x, t) u+ Zk( t; ωσ ) k( x,<br />

t)<br />

, x∈<br />

D<br />

∂t<br />

u( x, t0; ω) = u0( x ; ω)<br />

, x∈<br />

D B ⎡⎣u( ξ,; t ω) ⎤⎦= h( ξ,; t ω)<br />

, ξ∈∂D<br />

To obtain the reduced order set<br />

∂ u =<br />

∂t<br />

( , ) + ( , )<br />

L x t L x t u<br />

0 1<br />

( t ω) E ω h( t ω)<br />

B ⎡⎣u<br />

ξ,; ⎤⎦= ⎡⎣ ξ,; ⎤⎦,<br />

ξ∈∂D<br />

dY<br />

∂<br />

j<br />

( t;<br />

)<br />

ω = YL u . u<br />

dt<br />

j 1 l j<br />

u<br />

j<br />

= L ( x , t) u − L ( x , t)<br />

u . u<br />

1<br />

( t ) E ω<br />

−<br />

ω ⎡Y ( t ω) h( t ω) ⎤<br />

∂t<br />

( )<br />

1 j 1 l l<br />

B ⎡<br />

⎣uj ξ,; ⎤= ⎦ ⎣ i<br />

; ξ, 0; ⎦CYY,<br />

ξ∈∂D<br />

i j<br />

17


Application to 2D Navier-Stokes <strong>flows</strong><br />

Stochastic Navier-Stokes <strong>equations</strong><br />

Zero-mean <strong>stochastic</strong> <strong>for</strong>cing<br />

∂u 1 = −∇ p+ Δ u − u. ∇ u − f k ˆ × u + τ( x , t) + ϕ( x , t; ω) ≡ L[ u ], x ∈ D,<br />

ω∈Ω<br />

∂t<br />

Re<br />

Deterministic <strong>for</strong>cing<br />

∇ . u = 0<br />

Expansion of <strong>for</strong>cing term<br />

Representation of flow<br />

Representation of pressure<br />

( x,; t ) Z ( t; ) ( x,<br />

t)<br />

ϕ ω = ∑ r<br />

ω ϕr<br />

r=<br />

1<br />

( ,; t ω) ( , t) Y ( t; ω) ( , t)<br />

u x u x u x<br />

= +∑<br />

Expanded <strong>for</strong>m of the system operator<br />

L<br />

R<br />

s<br />

i=<br />

1<br />

i<br />

i<br />

Inner-product (2D)<br />

T<br />

( t) ( )<br />

u, u = ∫ u x, u x,<br />

t dx<br />

1 2 1 2<br />

D<br />

( x,; ω) = ( x, ) + ( ; ω) ( x, ) − ( ; ω) ( ; ω) ( x,<br />

)<br />

0<br />

s s s<br />

∑<br />

p t p t Y t p t Y t Y t p t<br />

[ u] =−∇ p+ Δu−u. ∇u− fk× u+<br />

τ ( x t)<br />

i i i j ij<br />

i= 1 i= 1 j=<br />

1<br />

+<br />

∑∑<br />

R<br />

∑<br />

r=<br />

1<br />

r<br />

( ; ω) ( x,<br />

)<br />

Z t b t<br />

1 ˆ ,<br />

Re<br />

R<br />

⎡ 1 ˆ ⎤<br />

+ Yi ⎢<br />

Δui −u i. ∇u−u. ∇ u<br />

i+ fk× ui −YY ⎡ ⎤<br />

i j i<br />

∇<br />

j<br />

+ Zr t; r<br />

, t<br />

Re<br />

⎥ ⎣u . u ⎦ ∑ x<br />

⎣<br />

⎦<br />

r=<br />

1<br />

r<br />

( ωϕ ) ( )<br />

18


Application to 2D Navier-Stokes <strong>flows</strong><br />

Equations <strong>for</strong> the <strong>stochastic</strong> pressure<br />

Δ p0<br />

= div ( −u. ∇u − fkˆ<br />

× u +τ ( x,<br />

t)<br />

)<br />

Δ p = div u. ∇ u , i, j=<br />

1,..., s<br />

r<br />

ϕr( x )<br />

( )<br />

ij i j<br />

Equation <strong>for</strong> the mean flow<br />

Equations <strong>for</strong> the <strong>stochastic</strong> coefficients<br />

Equations <strong>for</strong> the DO modes<br />

( u . u u. u + kˆ<br />

u )<br />

Δ p = div − ∇ − ∇ f × , i=<br />

1,..., s<br />

i i i i<br />

Δ b = div , t , r = 1,..., R.<br />

∂u 1 = −∇ p0<br />

+ Δ u − u. ∇ u − f k ˆ × u + τ ( x , t) − C ⎡<br />

( ) ( )<br />

−∇p ⎤, .<br />

Yi t Yj t ij i<br />

∇<br />

j<br />

∈ D<br />

∂t<br />

Re ⎣ +u . u ⎦ x<br />

dYi<br />

dt<br />

∂ui<br />

∂t<br />

( ( ) ( ) ) ϕ<br />

Y t Y t ( ) ( ω)<br />

1<br />

= Δu −u . ∇u −u. ∇ u + fkˆ × u , u Y − u . ∇u , u Y Y − C + x, t , u Z t;<br />

m m m m i m m n i m n r i r<br />

Re<br />

m n<br />

= Qi − Qi, um um, x∈<br />

D, i=<br />

1,..., s<br />

1 ˆ<br />

−<br />

Q =−∇ p + Δu −u . ∇u −u. ∇ u + fk × u −C M −∇p<br />

+ u . ∇u<br />

Yi t Yj t Yj t Ym t Yn<br />

t<br />

Re<br />

1<br />

( ) ( ) ( ) ( ) ( ) [ ]<br />

i i i i i i mn m n<br />

−<br />

+ C C −∇ b + , t ⎤.<br />

Yi t Yj t Yj t Zr<br />

t ⎣<br />

⎦<br />

1<br />

( ) ( ) ( ) ( )<br />

⎡<br />

r<br />

ϕr( x )<br />

i= 1,..., s, ω ∈Ω.<br />

19


Spatial discretization<br />

Numerical scheme<br />

Finite-volume. Advection scheme used: Central difference or Total variation diminishing scheme.<br />

Time discretization<br />

Combination <strong>with</strong> projection methods allows <strong>for</strong> the solution of only 1+ s pressure <strong>equations</strong>.<br />

Stochastic ODE solution<br />

5<br />

( )<br />

Using Monte-Carlo method and O 10 samples (small dimensionality of SODE).<br />

Integration using a 4 th order Runge-Kutta method.<br />

Computational time<br />

( )<br />

4<br />

4<br />

Order of hours on a single processor <strong>for</strong> O 10 spatial nodes and O 10 time steps.<br />

Convergence<br />

Comparison <strong>with</strong> direct Monte-Carlo method.<br />

Second order convergence in space and first order convergence in time.<br />

( )<br />

20


An idealized wind-driven ocean circulation model<br />

∂ u = 0, v = 0<br />

∂y<br />

∂u 1 = −∇ p+ Δ u − u. ∇ u − f k ˆ × u + τ( x , t) + ϕ( x , t; ω)<br />

, x ∈ D,<br />

ω∈Ω<br />

∂t<br />

Re<br />

∇ . u = 0<br />

u = 0<br />

v = 0<br />

u = 0<br />

v = 0<br />

τ<br />

( x t)<br />

∂ u = 0, v = 0<br />

∂y<br />

Spatially symmetric <strong>for</strong>cing<br />

⎛ a ⎞<br />

, = ⎜ − cos2 πy,0 ⎟ ,<br />

⎝ 2π<br />

⎠<br />

Corriolis coefficient<br />

3<br />

a =10<br />

f = f0 +β0y<br />

U<br />

Ro = = 1.4×<br />

10<br />

Lf<br />

−4<br />

3<br />

Re =10<br />

Non-dimensional numbers<br />

based on realistic parameters<br />

L<br />

3<br />

= 10 km T = 4.46<br />

y<br />

Application of a very<br />

small <strong>stochastic</strong><br />

perturbation at t = 0<br />

Simmonet & Dijkstra, JPO, 2002<br />

21


An idealized wind-driven ocean circulation model<br />

u( x,t)<br />

vorticity<br />

u<br />

( g, t) , u( g,<br />

t)<br />

( ω)<br />

ω 2<br />

E ⎡<br />

⎣Yi<br />

t; ⎤<br />

⎦, i=<br />

1,...,5<br />

( x )<br />

u1 ,t<br />

vorticity<br />

f<br />

( y t)<br />

Y 3 3 ,<br />

( x )<br />

u2 ,t<br />

vorticity<br />

f<br />

( y t)<br />

Y 4 4 ,<br />

22


Flow behind a cylinder (Re = 3000)<br />

Re = 3000<br />

Initial perturbation<br />

__<strong>with</strong> energy<br />

6<br />

10 −<br />

T = 30 22.5 50 27.5<br />

23


Cost scaling <strong>with</strong> <strong>stochastic</strong> dimensionality<br />

Direct approach - ‘Curse’ of dimensionality<br />

Assuming that N degrees of freedom are involved in each <strong>stochastic</strong> dimension the storage cost will be<br />

Sdirect<br />

s<br />

( )<br />

= O N , where s is the <strong>stochastic</strong> dimension.<br />

Exponential growth of the number of unknowns <strong>with</strong> respect to the <strong>stochastic</strong> dimensionality of the problem.<br />

Polynomial Chaos method<br />

Assuming that p is the order of the polynomial-chaos approximation and s is<br />

the <strong>stochastic</strong> dimensionality we have the storage and computational cost<br />

where q is the nonlinearity order of the system operator. (Xiu & Karniadakis, 2003).<br />

DO method<br />

( ) (<br />

q<br />

)<br />

p<br />

p<br />

⎡ ⎤<br />

PC<br />

SPC<br />

= O Ns , C = O ⎣Ns<br />

⎦ .<br />

In this case the storage and computational cost will be<br />

(<br />

q<br />

)<br />

( ) [ ]<br />

S = O Ns , C = O Ns .<br />

DO<br />

For Navier-Stokes we have q = 2.<br />

DO<br />

In DO the storage cost grows linearly and the computational cost scales <strong>with</strong> the order of nonlinearity<br />

24<br />

Lid-driven cavity flow computational cost<br />

Numerical exponent = 1.986<br />

T. Sapsis, and P. Lermusiaux, Dynamical criteria <strong>for</strong> the evolution of the <strong>stochastic</strong> dimensionality in <strong>flows</strong> <strong>with</strong> uncertainty, Physica D, (2011).


Evolution of <strong>stochastic</strong> dimensionality<br />

V ⊥<br />

s<br />

Probability measure<br />

V s<br />

σcr<br />

> λ<br />

ui 1<br />

( x)<br />

ui 2<br />

( x)<br />

• In the context of the DO <strong>equations</strong> the size of the <strong>stochastic</strong> subspace<br />

remains invariant.<br />

V s<br />

• For transient <strong>stochastic</strong> phenomena the dimensionality of the <strong>stochastic</strong><br />

subspace may vary significantly <strong>with</strong> time.<br />

We need criteria to evolve the dimensionality of the <strong>stochastic</strong> subspace<br />

This is a particularly important issue <strong>for</strong> <strong>stochastic</strong> systems <strong>with</strong><br />

deterministic initial conditions (initial dimensionality is zero)<br />

25


Criteria <strong>for</strong> dimensionality reduction / increase<br />

Dimensionality reduction<br />

C YY<br />

Comparison of the minimum eigenvalue of the correlation matrix .<br />

i<br />

j<br />

λ<br />

⎡C<br />

⎤< σ<br />

⎣ ⎦<br />

min YY i j<br />

2<br />

cr<br />

pre-defined value<br />

Removal of the corresponding direction from the <strong>stochastic</strong> subspace.<br />

Dimensionality increase<br />

Comparison of the minimum eigenvalue of the correlation matrix .<br />

i<br />

( , t)<br />

λ ⎡<br />

min<br />

C ⎤<br />

YY<br />

>Σ<br />

⎣ i j⎦<br />

u x Vs<br />

26<br />

2<br />

cr<br />

C YY<br />

pre-defined value<br />

Addition of a new direction in the <strong>stochastic</strong> subspace .<br />

How do we choose this new direction ?<br />

Same problem when we start <strong>with</strong> deterministic initial condition<br />

(dimension of <strong>stochastic</strong> subspace is zero)<br />

T. Sapsis, and P. Lermusiaux, Dynamical criteria <strong>for</strong> the evolution of the <strong>stochastic</strong> dimensionality in <strong>flows</strong> <strong>with</strong> uncertainty, Physica D, (2011).<br />

i<br />

j


Analytical criteria <strong>for</strong> selection of new directions<br />

Theorem 2 (Sapsis & Lermusiaux, 2010): For a <strong>stochastic</strong> <strong>field</strong> described by the equation<br />

∂u( x,;<br />

t ω)<br />

= L ⎡ ( ,; t ω)<br />

; ω⎤<br />

∂t<br />

⎣u x ⎦<br />

, x∈<br />

D<br />

and <strong>with</strong> current state at t = t c<br />

described by<br />

( , t ; ω) ( , t ) Y ( t ; ω) ( , t )<br />

u x u x u x<br />

= +∑<br />

c c i c i c<br />

i=<br />

1<br />

the maximum variance growth rate of a <strong>stochastic</strong> perturbation in<br />

s<br />

27<br />

V ⊥<br />

s<br />

will be given by<br />

Frechet Derivative<br />

L u( g,;<br />

t ω)<br />

( )<br />

δ u<br />

where ϑ<br />

i ( y, t)<br />

, i=<br />

1,..., m is a finite basis that approximates V ⊥ s .<br />

The corresponding direction of maximum growth is given by<br />

where v, i 1,..., m<br />

i<br />

⎡Aij<br />

+ Aji<br />

⎤ δ ⎡ ⎤<br />

ρ⎡tc; ( , t; ω) max λk , Aij ϑj ( , t<br />

⎣ ⎦<br />

⎣ u x ⎤⎦ = ⎢ ⎥ ≡ )<br />

⎡ϑi<br />

, t ⎤d<br />

k 2<br />

∫ y ⎣ y ⎦ y<br />

⎣ ⎦<br />

D<br />

ϑ<br />

m<br />

( x, t) vϑ<br />

( x,<br />

t)<br />

= ∑<br />

i=<br />

1<br />

= is the eigenvector associated <strong>with</strong> .<br />

The above analysis adds the direction <strong>with</strong> the maximum potential growth<br />

which is not included in the <strong>stochastic</strong> subspace.<br />

T. Sapsis, and P. Lermusiaux, Dynamical criteria <strong>for</strong> the evolution of the <strong>stochastic</strong> dimensionality in <strong>flows</strong> <strong>with</strong> uncertainty, Physica D, (2011).<br />

i<br />

i<br />

ρ


An idealized wind-driven ocean circulation model<br />

Number of required modes to capture variance as low as<br />

10 −6<br />

28


QUESTIONS ??<br />

29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!